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Abstract 

This chapter reviews the usefulness of the Kalman filter for parameter estimation 
and inference about unobserved variables in linear dynamic systems. Applications 
include exact maximum likelihood estimation of regressions with ARMA distur- 
bances, time-varying parameters, missing observations, forming an inference about 
the public’s expectations about inflation, and specification of business cycle 

dynamics. The chapter also reviews models of changes in regime and develops the 
parallel between such models and linear state-space models. The chapter concludes 
with a brief discussion of alternative approaches to nonlinear filtering. 

1. The state-space representation of a linear dynamic system 

Many dynamic models can usefully be written in what is known as a state-space 

form. The value of writing a model in this form can be appreciated by considering 
a first-order autoregression 

Y,+1 =$Yr+st+r, (1.1) 

with E, N i.i.d. N(0, a’). Future values of y for this process depend on (Y,, y,_ 1,. . . ) 
only through the current value y,. This makes it extremely simple to analyze the 
dynamics of the process, make forecasts or evaluate the likelihood function. For 
example, equation (1.1) is easy to solve by recursive substitution, 

Y f+m = 4”y, + 4m-1Ey+l + 4m-2Et+2 + ... 

+q5l~~+~-~ +E~+~ for m= 1,2,..., 

from which the optimal m-period-ahead forecast is seen to be 

E(Y,+,lY,,Y,-,,...)=~mY,. 

The process is stable if 14 1 < 1. 

(1.2) 

(1.3) 

The idea behind a state-space representation of a more complicated linear system 
is to capture the dynamics of an observed (n x 1) vector Y, in terms of a possibly 
unobserved (I x 1) vector 4, known as the state vector for the system. The dynamics 
of the state vector are taken to be a vector generalization of (1.1): 

5,+r =F&+n,+,. (1.4) 
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Here F denotes an (r x I) matrix and the (r x 1) vector II, is taken to be i.i.d. N(0, Q). 

Result (1.2) generalizes to 

5 t+m = F”& + F”-~I,+~ + Fm-2~t+2 + ... 

+ Fr~~+~-r +v,+, for m= 1,2,..., (1.5) 

where F” denotes the matrix F multiplied by itself m times. Hence 

Future values of the state vector depend on ({,, 4, _ 1,. . .) only through the current 
value 5,. The system is stable provided that the eigenvalues of F all lie inside the 
unit circle. 

The observed variables are presumed to be related to the state vector through 
the observation equation of the system, 

y, = A’.q + H’{, + w,. (1.6) 

Here yt is an (n x 1) vector of variables that are observed at date t, H’ is an (n x r) 
matrix of coefficients, and W, is an (n x 1) vector that could be described as 
measurement error; W, is assumed to be i.i.d. N(O,R) and independent of g1 and 
v, for t= 1,2,... . Equation (1.6) also includes x,, a (k x 1) vector of observed 

variables that are exogenous or predetermined and which enter (1.6) through the 
(n x k) matrix of coefficients A’. There is a choice as to whether a variable is defined 
to be in the state vector 5, or in the exogenous vector xt, and there are advantages 
if all dynamic variables are included in the state vector so that x, is deterministic. 
However, many of the results below are also valid for nondeterministic x,, as long 
as n, contains no information about &+, or w,+, for m = 0, 1,2,. . . beyond that 

containediny,_,,y,_,,..., yr. For example, X, could include lagged values of y or 
variables that are independent of 4, and W, for all T. 

The state equation (1.4) and observation equation (1.6) constitute a linear 
state-space repesentation for the dynamic behavior of y. The framework can be 
further generalized to allow for time-varying coefficient matrices, non-normal 
disturbances and nonlinear dynamics, as will be discussed later in this chapter. 

For now, however, we just focus on a system characterized by (1.4) and (1.6). 
Note that when x, is deterministic, the state vector 4, summarizes everything in 

the past that is relevant for determining future values of y, 

E(Yt+ml51,5r-l,...,Yt,Y1-1,...) 

=EC(A’x,+,+H’5,+,+w,+,)l5,,5,-,,...,y,,y,-l,...I 

=A’xy+,+H’E(5,+,151,&-1,...,~t,~*-l,...) 

= A'x~+~ + HlF"'&. (1.7) 
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As a simple example of a system that can be written in state-space form, consider 

a pth-order autoregression 

(Y,+1 - 11) = 4l(Y, - 4 + #dYte 1 - PL) + ... + 4p(Yt-p+l - 11) + Et+12 

E, - i.i.d. N(0, a2). 

(1.8) 

Note that (1.8) can equivalently be written as 

1 
Yt+1 -P 

Yz - P i ! = 

J&p+2 -P 

41 42 ... 4p-1 4p 
Yt - 1 0 P ... 0 0 

Yc-1 -P 
Ol...OO . 

. . 

. . . . . . . . 

: : 
.o 0 ... 1 0 11 J&p+1 -P 

Et+1 

0 ! I:1 + . . (1.9) 

0 

The first row of (1.9) simply reproduces (1.8) and other rows assert the identity 

Y,_j-p=Yy,_j-p forj=O,l,..., p - 2. Equation (1.9) is of the form of (1.4) with 
r=p and 

&=(yt-PL,Yt-1 -P~...#-p+l-P)I~ (1.10) 

v -(%+1,0,...,O)I, 2+1- (1.11) 

F= 0 1 ... (1.12) 
. . . . . . . . . 

-0 0 .‘. 

The observation equation is 

Yt = P + H’t,, (1.13) 

where H’ is the first row of the (p x ,p) identity matrix. The eigenvalues of F can 
be shown to satisfy 

(1.14) 

thus stability of a pth-order autoregression requires that any value 1 satisfying 
(1.14) lies inside the unit circle. 

Let us now ask what kind of dynamic system would be described if H’ in (1.13) 
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is replaced with a general (1 x p) vector, 

y,=/J+Cl 81 0, “. ~,-IK (1.15) 

where the 8’s represent arbitrary coefficients. Suppose that 4, continues to evolve 
in the manner specified for the state vector of an AR(p) process. Letting tjt denote 
the jth element of &, this would mean 

5 1,t+1 

r 2,t+ 1 I! 1 = 

r’ PJ+ 1 

41 42 ... 4,-l 4% 

1 0 ... 0 0 

0 1 ... 0 0 
. . . . . . . . . 

0 0 ... 1 0 1 + E t+1 

0 

:I 

. . 

0 

(1.16) 

The jth row of this system for j = 2,3,. . . , p states that <j,l+ 1 = (j- l,f, implying 

5jt=Lj51,t+l for j=1,2 ,..., p, (1.17) 

for L the lag operator. The first row of (1.16) thus implies that the first element 
of 4, can be viewed as an AR(p) process driven by the innovations sequence {E,}: 

(1-~l~-~2~2-~~~-~p~P)S1.1+l=~,+l. 

Equations (1.15) and (1.17) then imply 

(1.18) 

y,=p+(l +B,L’+e2L2+...+ep-1LP-1)51r. (1.19) 

If we subtract p from both sides of (1.19) and operate on both sides with 
(1 - c$,L- q5,L2 - ... - 4,Lp), the result is 

(1 -&L-4,L2- ... -~pLP)(yt-p)=(l+~1L1+~2L2+‘~~+ep-1LP-1) 

x (1 - $,L- f#),L2 - ... - f#),LP)&, 

=(1+8,L’+82L2+~~~+8p_,LP-1)E, 

(1.20) 

by virtue of(1.18). Thusequations(l.15)and (1.16)constitute a state-space represen- 
tation for an ARMA(p,p - 1) process. 

The state-space framework can also be used in its own right as a parsimonious 
time-series description of an observed vector of variables. The usefulness of forecasts 
emerging from this approach has been demonstrated by Harvey and Todd (1983), 
Aoki (1987), and Harvey (1989). 
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The state-space form is particularly convenient for thinking about sums of 

stochastic processes or the consequences of measurement error. For example, 
suppose we postulate the existence of an underlying “true” variable, &, that follows 
an AR(l) process 

(1.21) 

with u, white noise. Suppose that 4, is not observed directly. Instead, the econometri- 
cian has available data y, that differ from 5, by measurement error w,: 

Y, = 5, + wt. (1.22) 

If the measurement error is white noise that is uncorrelated with t+, then (1.21) 
and (1.22) can immediately be viewed as the state equation and observation 
equation of a state-space system, with I = n = 1. Fama and Gibbons (1982) used 
just such a model to describe the ex ante real interest rate (the nominal interest 
rate i, minus the expected inflation rate 7~;). The ex ante real rate is presumed to 
follow an AR( 1) process, but is unobserved by the econometrician because people’s 
expectation 7~: is unobserved. The state vector for this application is then 
<, = i, - rcr - /J where p is the average ex ante real interest rate. The observed ex 
post real rate (y, = i, - n,) differs from the ex ante real rate by the error people 
make in forecasting inflation, 

i, - x, = p + (i, - 7rcp - p) + (7~; - 71J, 

which is an observation equation of the form of (1.6) with R = 1 and w, = (~1 - 7~~). 
If people do not make systematic errors in forecasting inflation, then w, might 
reasonably be assumed to be white noise. 

In many.economic models, the public’s expectations of the future have important 

consequences. These expectations are not observed directly, but if they are formed 
rationally there are certain implications for the time-series behavior of observed 
series. Thus the rational-expectations hypothesis lends itself quite naturally to a 
state-space representation; sample applications include Wall (1980), Burmeister 
and Wall (1982), Watson (1989), and Imrohoroglu (1993). 

In another interesting econometric application of a state-space representation, 

Stock and Watson (1991) postulated that the common dynamic behavior of an 
(n x 1) vector of macroeconomic variables yt could be explained in terms of an 
unobserved scalar ct, which is viewed as the state of the business cycle. In addition, 
each series y, is presumed to have an idiosyncratic component (denoted a,J that 
is unrelated to movements in yjt for i #j. If each of the component processes could 
be described by an AR(l) process, then the [(n + 1) x l] state vector would be 

4 = L a 113 Qtv . . . 2 a,,) (1.23) 
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with state equation 

[$j=[j{ZGJ 

and observation equation 

Yl, 

Y2t 1: Y “t I = P2 

:I I 

. + yz O l ... 0 . . . 
. . . . . . . 
. . . 

P”1 1% 00 ... 1 

C, 

1: 
UC,,+ 1 

al, v1,t+ 1 

azr + v2,t+l 

c, 
al* 1 
a,, 

:I a m 

J.D. Hamilton 

(1.24) 

(1.25) 

Thus yi is a parameter measuring the sensitivity of the ith series to the business 
cycle. To allow for @h-order dynamics, Stock and Watson replaced c, and ai, in 
(1.23) with the (1 xp) vectors (c,,c,_t ,..., c,-,,+r) and (~,,,a~,~_, ,..., ~_~+r) so 
that 4, is an [(n + 1)~ x l] vector. The scalars C#I~ in (1.24) are then replaced by 
(p x p) matrices Fi with the structure of (1.12), and blocks of zeros are added in 
between the columns of H’ in the observation equation (1.25). A related theoretical 
model was explored by Sargent (1989). 

State-space models have seen many other applications in economics. For partial 
surveys see Engle and Watson (1987), Harvey (1987), and Aoki (1987). 

2. The Kalman filter 

For convenience, the general form of a constant-parameter linear state-space model 
is reproduced here as equations (2.1) and (2.2). 

State equation 

5 1+1 = J-5, + v,+1 
(r x 1) (r x r)(r x 1) (r x 1) 

E(v,+~$+J= Q 
(r x 4 

Observation equation 

Yt = .4’x, + WC& + w, 
(n x 1) (n x k)(k x 1) (n x r)(r x 1) (n x 1) 

E(w,w;) = R . 

(n x n) 

(2.1) 

(2.2) 
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Writing a model in state-space form means imposing certain values (such as 
zero or one) on some of the elements of F, Q,A,H and R, and interpreting the 
other elements as particular parameters of interest. Typically we will not know 
the values of these other elements, but need to estimate them on the basis of 
observation of {y,, y,, . . . , yT} and {x1,x2,. . . ,x,}. 

2.1. Overview of the Kalman Jilter 

Before discussing estimation of parameters, it will be helpful first to assume that 
the values of all of the elements of F, Q, A, H and R are known with certainty; the 
question of estimation is postponed until Section 3. The filter named for the 
contributions of Kalman (1960, 1963) can be described as an algorithm for 
calculating an optimal forecast of the value of 4, on the basis of information 
observed through date t - 1, assuming that the values of F, Q, A, H and R are all 
known. 

This optimal forecast is derived from a well-known result for normal variables; 
[see, for example, DeGroot (1970, p. 55)]. Let z1 and zZ denote (n, x 1) and (n2 x 1) 
vectors respectively that have a joint normal distribution: 

Then the distribution of zZ conditional on z1 is N(m,Z) where 

m=k +%~;,‘(z, -II,), (2.3) 

E= .n,, - f2&2;;.(2,*. 

Thus the optimal forecast of z2 

J%,Iz,)=lr, +&l.n;,‘(z, 

with Z characterizing the mean 

(2.4) 

conditional on having observed z1 is given by 

-P,), (2.5) 

squared error of this forecast: 

EC& - Mz, - m)‘lz,l = f12, - f2,,R ;:f&. (2.6) 

To apply this result, suppose that the initial value of the state vector (et) of a 
state-space model is drawn from a normal distribution and that the disturbances 
a, and w, are normal. Let the observed data obtained through date t - 1 be 
summarized by the vector 
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Then the distribution of 4, conditional on &_r turns out to be normal for 
t = 2,3,,. . , T. The mean of this conditional distribution is represented by the (r x 1) 
vector {,,,_ 1 and the variance of this conditional distribution is represented by the 
(I x r) matrix PrIt_ r. The Kalman filter is simply the result of applying (2.5) and 
(2.6) to each observation in the sample in succession. The input for step t of the 
iteration is the mean &-, and variance P,,t_I that characterize the distribution 
of 4, conditional on &- 1. The output for step t is the mean c$+,,, and variance 
P t+ I,f of I&+ 1 conditional on 6,. Thus the output for step t is used as the input for 
step t + 1. 

2.2. Derivation of the Kalman filter 

The iteration is started by assuming that the initial value of the state vector gI is 
drawn from a normal distribution with mean denoted G$,,, and variance denoted 
PI,,. If the eigenvalues of F are all inside the unit circle, then the vector process 
defined by (2.1) is stationary, and ~,,, would be the unconditional mean of this 
process, 

&o = 09 (2.7) 

while P,,, would be the unconditional variance 

PII, = E(44:). 

This unconditional variance can be calculated from’ 

vec(P,,,) = [I+ - (F@F)]-‘.vec(Q). (2.f3) 

Here Z,2 is the (r2 x r2) identity matrix, “0” denotes the Kronecker product and 

1 The unconditional variance of 4 can be found by postmultiplying (2.1) by its transpose and taking 
expectations: 

E(5,+,r;+,)=E(~5,+ol+,)(5:F’+~:+,) 

= F.E(S,S;)~ + w,+ ,u;+ J. 

If 4, is stationary, then E({,+ ,S;+,) = E(t,J;) = P,,,, and the above equation becomes 

P,,, = FP,,,F’ + Q. 

Applying the vet operator to this equation and recalling [e.g. Magnus and Neudecker (1988, p. 30)] 
that vec(ABCJ = (C&I A).vec(B) produces 

WP,,,) = (F@WWP,I,) + ve4Q). 
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vec(P,,,) is the (r2 x 1) vector formed by stacking the columns of Pi,,, one on top 
of the other, ordered from left to right. 

For time-variant or nonstationary systems, s,,, could represent a guess as to 
the value of {i based on prior information, while Pi,, measures the uncertainty 
associated with this guess ~ the greater our prior uncertainty, the larger the 
diagonal elements of Pi,,. ’ This prior cannot be based on the data, since it is 
assumed in the derivations to follow that ut+i and W, are independent of <i for 
t= 1,2,..., T. The algorithm described below can also be adapted for the case of 
a completely diffuse prior (the limiting case when Pi,,, becomes infinite); as described 

by Ansley and Kohn (1985), Kohn and Ansley (1986) and De Jong (1988, 1989, 
1991). 

At this point we have described the values of & 1 and P+ 1 that characterize 
the distribution of 4, conditional on a_ 1 for t = 1. Since a similar set of calculations 
will be used for each date t in the sample, it is helpful to describe the next step 
using notation appropriate for an arbitrary date t. Thus let us assume that the 
values of Et,,- l and P,,,_ 1 have been calculated for some t, and undertake the task 
of using these to evaluate &+ ilt and P,+ Ilf. If the distribution of 4, conditional on 
&_i is N(&,,_r, P,I,_l), then under the assumptions about n,, this is the same as 
the distribution of 4, conditional on &- l and x,. Since W, is independent of X, and 
&_ 1, the forecast of yt conditional on I& 1 and X, can be inferred immediately 
from (2.2): 

E(y,Ix,,r,-,)=A’x,+H’%,,-,. (2.9) 

From (2.2) and (2.9) the forecast error can be written 

Yt - &,I x,9 r, - 1) = (A’& + H’5, + 4 - (A’nt + H’a,, - 1) 

= H’(4 - Et,,- 1) + wt. (2.10) 

Since & _ 1 is a function of & _ 1, the term W, is independent of both 4, and $,,_ r. 
Thus the conditional variance of (2.10) is 

E(Cy,-E(y,lx,,r,-,)lCy,-E(y,Ix,,r,-l)l’lx,,r,-1} 

=H’.E{Cr,-~,,,-,1C51-~,1-ll’lrl-1}H+E(w,w:) 

= H’Pt,,_lH+ R. 

Similarly, the conditional covariance between (2.10) and the error in forecasting 

*Meinhold and Singpurwalla (1983) gave a nice description of the Kalman filter from a Bayesian 
perspective. 
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the state vector is 

Thus the distribution of the vector (y;, 4:)’ conditional on X, and C,_ 1 is 

It then follows from (2.3) and (2.4) that &I & = ~,Ix,,Y,, <,- 1 is distributed W&, Ptit) 

where 

&t = B,,- 1 + p,,,- l~(H’P,,,- ,H+ WYY, - A’? - et,,- l), (2.12) 

P,(,=P,,,_l-P,(,_lH(H’P,,,_lH+R)-’H’P,,,_l. (2.13) 

The final step is to calculate a forecast of &+ 1 conditional on 5,. It is not hard 

to see from (2.1) that 5, + 1 I G - N& + l,f, P,+ I,t) where 

E+ 111 = %> (2.14) 

P t+ l,t = FP,,,F’ + Q. (2.15) 

Substituting (2.12) into (2.14) and (2.13) into (2.15), we have 

%+1/t = F~,,,-l+FP,,,-,H(H’P,,,-,~+R)-‘(y,-~’x,-H’~~,,-,), (2.16) 

P t+l,,= FPt,,_lF’- FPt,,_lH(H’Pt,,_lH+ R)-‘H’Pt,,_lF’+Q. (2.17) 

To summarize, the Kalman filter is an algorithm for calculating the sequence 

{&+ &= 1 and P-T+ &= 1y where & + 1 ,f denotes the optimal forecast of 4, + 1 based 
on observation of (yt,yt_ i,.. .,yl,n,,x,_, ,..., x1) and Pt+l,t denotes the mean 
squared error of this forecast. The filter is implemented by iterating on (2.16) and 
(2.17) for t = 1,2,. . . ,T. If the eigenvalues of F are all inside the unit circle and 
there is no prior information about the initial value of the state vector, this iteration 
is started using equations (2.7) and (2.8). 

Note that the sequence {Pt+I,t}:=l is not a function of the data and can be 
evaluated without calculating the forecasts {tt+ llt}T= 1. Because P,+ l,t is not a 
function of the data, the conditional expectation of the squared forecast error is 
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the same as its unconditional expectation, 

This equivalence is a consequence of having assumed normal distributions with 
constant variances for II, and w,. 

2.3. Forecasting with the Kalman filter 

An m-period-ahead forecast of the state vector can be calculated from (1.5): 

$+,,t = E(5,+,lu,,u,- l,...,Y1,Xt,X,-l,...,X1)=FrnSt,r. (2.18) 

The error of.this forecast can be found by subtracting (2.18) from (1.5), 

4 t+m - $+l4, = Fm(5A,,,,+Fm-1”r+l +Fm-2vt+2+ ... +F’u,+,_l +Ut+m, 

from which it follows that the mean squared error of the forecast (2.18) is 

P t+m,t = EC(&+, - %+,,,,G+, - tt+d'l 

=FmPC,,(Fm)‘+Fm-‘Q(Fm-1)‘+Fm-2Q(Fm-2)’+~~~+FQF’+Q. (2.19) 

These results can also be used to describe m-period-ahead forecasts of the 
observed vector y! + ,,,, provided that {x,} is deterministic. Applying the law of 
iterated expectations to (1.7) results in 

9 t+mlr=E(yr+mIYt,Yt-1,...,Y1)=A’~,+,+H’F”$I,. (2.20) 

The error of this forecast is 

Y t+m -A+,I, = V’xt+m + H’b+, + w,+,) - V’xt+m + H’F”&t) 
= H’(5,+* - E+m,,) + Wt+m 

with mean squared error 

EC(y,+m -9t+mlr)(Yt+m -9,+,1,)'1= H’Pt.,,,H+ R. (2.21) 

2.4. Smoothed inference 

Up to this point we have been concerned with a forecast of the value of the state 
vector at date t based on information available at date t - 1, denoted &,- 1, or 
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with an inference about the value of the state vector at date t based on currently 
available information, denoted &. In some applications the value of the state vector 
is of interest in its own right. In the example of Fama and Gibbons, the state 
vector tells us about the public’s expectations of inflation, while in the example of 
Stock and Watson, it tells us about the overall condition of the economy. In such 
cases it is desirable to use information through the end of the sample (date T) to 
help improve the inference about the historical value that the state vector took 
on at any particular date t in the middle of the sample. Such an inference is known 
as a smoothed estimate, denoted e,, = E({,j c&). The mean squared error of this 
estimate is denoted PtJT = E(g, - &T)(g, - &-)I. 

The smoothed estimates can be calculated as follows. First we run the data 
through the Kalman filter, storing the sequences {Pt,,}T=i and {P+ ,}T=, as 
calculated from (2.13) and (2.15) and storing the sequences ($,,}T= 1 and {$t,l_ ,>,‘= 1 

as calculated from (2.12) and (2.14). The terminal value for {&t}Z” i then gives the 
smoothed estimate for the last date in the sample, I$=,~, and P,,, is its mean squared 
error. 

The sequence of smoothed estimates { &T)TE 1 is then calculated in reverse order 
by iterating on 

for t = T- 1, T- 2,. . . , 1, where J, = P,,,F’P;,‘,,,. The corresponding mean squared 
errors are similarly found by iterating on 

(2.23) 

inreverseorderfort=T-l,T-2,..., 1; see for example Hamilton (1994, Section 
13.6). 

2.5. Interpretation of the Kalman jilter with non-normal disturbances 

In motivating the Kalman filter, the assumption was made that u, and w, were 
normal. Under this assumption, &,_ 1 is the function of <,- 1 that minimizes 

a-(4, - Et,,- 1NC - %,,- l)‘l> (2.24) 

in the sense that any other forecast has a mean squared error matrix that differs 
from that of &,_ 1 by a positive semidefinite matrix. This optimal forecast turned 
out to be a constant plus a linear function of L-;. The minimum value achieved 
for (2.24) was denoted PIi, _ 1. 

If D, and w, are not normal, one can pose a related problem of choosing &, _ 1 
to be a constant plus a linear function of &- i that minimizes (2.24). The solution 
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to this problem turns out to be given by the Kalman filter iteration (2.16) and its 
unconditional mean squared error is still given by (2.17). Similarly, when the 
disturbances are not normal, expression (2.20) can be interpreted as the linear 
projection of yt +m on 5, and a constant, with (2.21) its unconditional mean squared 
error. Thus, while the Kalman filter forecasts need no longer be optimal for systems 
that are not normal, no other forecast based on a linear function of & will have 
a smaller mean squared error [see Anderson and Moore (1979, pp. 92298) or 

Hamilton (1994, Section 13.2)]. These results parallel the Gauss-Markov theorem 
for ordinary least squares regression. 

2.6. Time-varying coefficient models 

The analysis above treated the coefficients of the matrices F, Q, A, H and R as 
known constants. An interesting generalization obtains if these are known functions 
of n,: 

yt = a(~,) + CHbJ1’5, + w,, (2.26) 

E(w,w:ln,, r,- 1) = W,). 

Here F(.), Q(.), H(.) and R( .) denote matrix-valued functions of x, and a(.) is an 

(n x 1) vector-valued function of x,. As before, we assume that, apart from the 
possible conditional heteroskedasticity allowed in (2.26), x, provides no information 
about 4, or w, for any t beyond that contained in c,_ r. 

Even if u, and w, are normal, with x, stochastic the unconditional distributions 
of 4, and yt are no longer normal. However, the system is conditionally normal 
in the following sense.3 Suppose that the distribution of 4, conditional on &_ 1 is 
taken to be N(&I,P,,t_,). Then 4, conditional on x, and &t has the same 
distribution. Moreover, conditional on x,, all of the matrices can be treated as 
deterministic. Hence the derivation of the Kalman filter goes through essentially 
as before, with the recursions (2.16) and (2.17) replaced with 

s t + Iit= W& - I + FW’,I, - 1H(xt) 1 CHWI’~,,, - ,H(x,) + R(4) - ’ 

x {u, - 44 - CWx,)l’tt,,-J, (2.27) 

P t+ I,( = F(x,)Pt,,- 1F(x,)l- (F(-q)Pt,,- ~H(n,)CCWxt)l’f’t~t- ,4x,) + R(xt)l-i 

x CfWJl’f’+ - 1 CF(41’) + QW (2.28) 

3See Theorem 6.1 in Tjestheim (1986) for further discussion. 
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It is worth noting three elements of the earlier discussion that change with 
time-varying parameter matrices. First, the distribution calculated for the initial 
state in (2.7) and (2.8) is only valid if F and Q are fixed matrices. Second, 
m-period-ahead forecasts of y,,, or &,., for m > 1 are no longer simple to 
calculate when F, H or A vary stochastically; Doan et al. (1984) suggested approxi- 

mating W, + 2 Iyl,yt - l,...,~l) with E(y,,21~,+t,~,,...,~l) evaluated al yrir = 
E(Y,+,~Y,,Y,- I,. . . ,yl). Finally, if u, and W, are not normal, then the one-period- 
ahead forecasts Et+ Ilf and 9,+ Ilt no longer have the interpretation as linear 
projections, since (2.27) is nonlinear in x,. 

An important application of a state-space representation with data-dependent 
parameter matrices is the time-varying coefficient regression model 

Y, = xi@, + w f’ (2.29) 

Here & is a vector of regression coefficients that is assumed to evolve over time 
according to 

&+I-@=I;tSI-h+vt+v (2.30) 

Assuming the eigenvalues of F are all inside the unit circle, fi has the interpretation 
as the average or steady-state coefficient vector. Equation (2.30) will be recognized 
as a state equation of the form of (2.1) with 4, = Vpt - $). Equation (2.29) can then 
be written as 

Yt = 4 -I- x:5* + w,, (2.31) 

which is in the form of the observation equation (2.26) with a(%,) = X$ and 
[L&J] = xi. Higher-order dynamics for /It are easily incorporated by, instead, 
defining 4: = [(B - @,‘, (B, _ 1 - @)‘, . . . , c/pt _ p+ 1 - j?,‘] as in Nicholls and Pagan 
(1985, p. 437). 

Excellent surveys of time-varying parameter regressions include Raj and Ullah 
(1981), Chow (1984) and Nicholls and Pagan (1985). Applications to vector auto- 
regressions have been explored by Sims (1982) and Doan et al. (1984). 

2.7. Other extensions 

The derivations above assumed no correlation between II, and VU,, though this is 
straightforward to generalize; see, for example, Anderson and Moore (1979, p. 108). 
Predetermined or exogenous variables can also be added to the state equation with 
few adjustments. 

The Kalman filter is a very convenient algorithm for handling missing 
observations. If y, is unobserved for some date t, one can simply skip the updating 
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equations (2.12) and (2.13) for that date and replace them with Et,* = &,_ 1 and 
P,,, = P,,r_ r; see Jones (1980), Harvey and Pierse (1984) and Kohn and Ansley 
(1986) for further discussion. Modifications of the Kalman filtering and smoothing 
algorithms to allow for singular or infinite P,,, are described in De Jong (1989, 1991). 

3. Statistical inference about unknown parameters using the Kalman filter 

3.1. Maximum likelihood estimation 

The calculations described in Section 2 are implemented by computer, using the 
known numerical values for the coefficients in the matrices F, Q, A, H and R. 

When the values of the matrices are unknown we can proceed as follows. Collect 
the unknown elements of these matrices in a vector 8. For example, to estimate 
theARMA(p,p-l)process(1.15)-(1.16),8=($,,4, ,..., 4p,01,02 ,..., Bp_rr~,~)‘. 
Make an arbitrary initial guess as to the value of t9, denoted 0(O), and calculate 
the sequences {&- r(@(‘))}T= 1 and {Pt,t_,(B(o))}t’E1 that result from this value in 
(2.16) and (2.17). Recall from (2.11) that if the data were really generated from the 
model (2.1)-(2.2) with this value of 0, then 

_hbt,r14e(0) - w4oW, 409(o))), (3.1) 

where 

p,(e(O)) = p(e(o))]k, + [H(e(O))]&_ 1(8(O)), (3.2) 

qe(O)) = pz(e(o))]~p,,,_ ,(e(O))] [qe(O))] + R(e(O)). (3.3) 

The value of the log likelihood is then 

f logf(y,lx,,r,_,;e(O))= -$i09(27+:$ iOglzt(e(0))l 
t=1 

- f,fl h - ~vWi~~w(o9i - lb, -)u,iw I. (3.4) 

which reflects how likely it would have been to have observed the data if 0(O) were 
the true value for 8. We then make an alternative guess 0(l) so as to try to achieve 
a bigger value of (3.4), and proceed to maximize (3.4) with respect to 8 by numerical 
methods such as those described in Quandt (1983), Nash and Walker-Smith (1987) 
or Hamilton (1994, Section 5.7). 

Many numerical optimization techniques require the gradient vector, or the 
derivative of (3.4) with respect to 0. The derivative with respect to the ith element 
of 8 could be calculated numerically by making a small change in the ith element 
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The vector of parameters to be estimated is 8 = (B’, 19r, 8,, a)‘. By making an 
arbitrary guess4 at the value of 8, we can calculate the sequences {&_,(B)}T=, 

and (ptlt- ,(W>T= r in (2.16) and (2.17). The starting value for (2.16) is the 

unconditional mean of er, 

0 

s^,,, =E EtY1 = 0 ) 

; II-1 Et-2 0 

while (2.17) is started with the unconditional variance, 

; 

Et 

&,-I 1 a* 0 0 

P,,,=E [E, Et_1 Et_21 = 0 a2 
5 - 2 

: 

0 0 

0 1 
i72 

From these sequences, u(e) and E,(0) can be calculated in (3.2) and (3.3), and 
(3.4) then provides 

log f(YT,YT-l,...,YlIXT,XT-1,...,Xl;~). (3.7) 

Note that this calculation gives the exact log likelihood, not an approximation, 
and is valid regardless of whether 8, and e2 are associated with an invertible 
MA(2) representation. The parameter estimates j, 8r, 8, and b are the values that 
make (3.7) as large as possible. 

3.2. Identijication 

The maximum likelihood estimation procedure, just described, presupposes that 
the model is identified, that is, it assumes that a change in any of the parameters 
would imply a different probability distribution for {y,},“, 1. 

One approach to checking for identification is to rewrite the state-space model 
in an alternative form that is better known to econometricians. For example, since 
the state-spacemode1(1.15)-(1.16)isjust another way ofwritingan ARMA(p,p - 1) 
process, the unknown parameters (4r,. . . ,4p, O1,. . . ,8,_ 1, p, a) can be consistently 
estimated provided that the roots of (1 + t9,z + 0,z2 + ... + 8,_ r.zp-r) = 0 are 
normalized to lie on or outside the unit circle, and are distinct from the roots of 
(1 -C#J1z-CJS2z2- ... - 4,~“) = 0 (assuming these to lie outside the unit circle as 
well). An illustration of this general idea is provided in Hamilton (1985). As another 

4Numerical algorithms are usually much better behaved if an intelligent initial guess for 0”’ is used. 
A good way to proceed in this instance is to use OLS estimates of (3.5) to calculate an initial guess 
for /?, and use the estimated variance sz and autocorrelations PI and p2 of the OLS residuals to 
construct initial guesses for O,, O2 and c using the results in Box and Jenkins (1976, pp. 187 and 519). 
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example, the time-varying coefficient regression model (2.31) can be written 

Yt = x:s+ 4, (3.8) 

where 

If X, is deterministic, equation (3.8) describes a generalized least squares regression 
model in which the varianceecovariance matrix of the residuals can be inferred 
from the state equation describing 4,. Thus, assuming that eigenvalues of F are all 
inside the unit circle, p can be estimated consistently as long as (l/T)CT= ix& 
converges to a nonsingular matrix; other parameters can be consistently estimated 
if higher moments of x, satisfy certain conditions [see Nicholls and Pagan (1985, 
p. 431)]. 

The question of identification has also been extensively investigated in the 
literature on linear systems; see Gevers and Wertz (1984) and Wall (1987) for a 
survey of some of the approaches, and Burmeister et al. (1986) for an illustration 
of how these results can be applied. 

3.3. Asymptotic properties of maximum likelihood estimates 

Under suitable conditions, the estimate 8 that maximizes (3.4) is consistent and 
asymptotically normal. Typical conditions require 8 to be identified, eigenvalues 
of F to be inside the unit circle, the exogenous variable x, to behave asymptotically 
like a full rank linearly nondeterministic covariance-stationary process, and the 
true value of 8 to not fall on the boudary of the allowable parameter space; see 

Caines (1988, Chapter 7) for a thorough discussion. Pagan (1980, Theorem 4) and 
Ghosh (1989) demonstrated that for particular examples of state-space models 

(3.9) 

where $ZDST is the information matrix for a sample of size T as calculated from 
second derivatives of the log likelihood function: 

x 2D.T = (3.10) 

Engle and Watson (1981) showed that the row i, column j element of $2D.T is 
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given by 

(3.11) 

One option is to estimate (3.10) by (3.11) with the expectation operator dropped 
from (3.11). Another common practice is to assume that the limit of $ZD,T as 
T+ co is the same as the plim of 

1 T a2w-(~,Ir,-,~-0) 3-g 3 

f 1 aeaef e=ti 
(3.12) 

which can be calculated analytically or numerically by differentiating (3.4). Reported 
standard errors for 8 are then square roots of diagonal elements of (l/T)(3)-‘. 

It was noted above that the Kalman filter can be motivated by linear projection 
arguments even without normal distributions. It is thus of interest to consider as 
in White (1982) what happens if we use as an estimate of 8 the value that maximizes 
(3.4), even though the true distribution is not normal. Under certain conditions 
such quasi-maximum likelihood estimates give consistent and asymptotically 
normal estimates of the true value of 0, with 

Jm- 4) L NO, C92d (p2,] - ‘), (3.13) 

where $2D is the plim of (3.12) when evaluated at the true value 0, and .YoP is 
the limit of (l/T)CT, 1 [s,(&,)] [s,(B,)]’ where 

mu = 
[ 

ai0gf(.hIr,-,~-0) 
ae I 1. e=eo 

An important hypothesis test for which (3.9) clearly is not valid is testing the 
constancy of regression coefficients [see Tanaka (1983) and Watson and Engle 
(1985)]. One can think of the constant-coefficient model as being embedded as a 
special case of (2.30) and (2.31) in which E(u,+ lu:+ J = 0 and /I1 = $. However, 
such a specification violates two of the conditions for asymptotic normality 
mentioned above. First, under the null hypothesis Q falls on the boundary of the 
allowable parameter space. Second, the parameters of Fare unidentified under the 
null. Watson and Engle (1985) proposed an appropriate test based on the general 
procedure of Davies (1977). The results in Davies have recently been extended by 
Hansen (1993). Given the computational demands of these tests, Nicholls and 
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Pagan (1985, p. 429) recommended Lagrange multiplier tests for heteroskedasticity 
based on OLS estimation of the constant-parameter model as a useful practical 

approach. Other approaches are described in Nabeya and Tanaka (1988) and 
Leybourne and McCabe (1989). 

3.4. Confidence intervals for smoothed estimates and forecasts 

Let &,(0,) denote the optimal inference about 4, conditional on obervation of 
all data through date T assuming that 0, is known. Thus, for t d T, {,IT(OO) is the 
smoothed inference (2.22) while for r > T, &,(O,,) is the forecast (2.18). If 0, were 
known with certainty, the mean squared error of this inference, denoted PZIT(&,), 
would be given by (2.23) for r d T and (2.19) for t > T. 

In the case where the true value of 0 is unknown, this optimal inference is 
approximated by &,(o) for e^ the maximum likelihood estimate. To describe the 
consequences of this, it is convenient to adopt the Bayesian perspective that 8 
is a random variable. Conditional on having observed all the data &-, the posterior 
distribution might be approximated by 

elc,- N(@(lIT)@-‘). (3.14) 

where Etilr,(‘) denotes the expectation of (.) with respect to the distribution in 
(3.14). Thus the mean squared error of an inference based on estimated parameters 
is the sum of two terms. The first term can be written as E,,c,{P,,T(0)}, and might 
be described as “filter uncertainty”. A convenient way to calculate this would 
be to generate, say, 10,000 Monte Carlo draws of 8 from the distribution (3.14), 
run through the Kalman filter iterations implied by each draw, and calculate 
the average value of PrIT(0) across draws. The second term, which might be 
described as “parameter uncertainty”, could be estimated from the outer product of 
[&.(ei) - &,(i!j)] with itself for the ith Monte Carlo draw, and again averaging 
across Monte Carlo realizations. 

Similar corrections to (2.21) can be used to generate a mean squared error for 
the forecast of y,,, in (2.20). 

3.5. Empirical application - an analysis of the real interest rate 

As an illustration of these methods, consider Fama and Gibbons’s (1982) real 
interest rate example discussed in equations (1.21) and (1.22). Let y, = i, - 7c, denote 
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Figure 1. Top panel. Ex post real interest rate for the United States, qua;terly from 1960:1 to_ 1992:III, 
quoted at an annual rate. Middle panel. F$er_uncertainty. Solid line: P,,,(e). Dashed line: PflT(B). Bottom 

panel. Smoothed inferences t,,(0) along with 95 percent confidence intervals. 

the observed ex post real interest rate, where i, is the nominal interest rate on 
3-month U.S. Treasury bills for the third month of quarter t (expressed at an 
annual rate) and rr, is the inflation rate between the third month of quarter t and 
the third month oft + 1, measured as 400 times the change in the natural logarithm 
of the consumer price index. Quarterly data for y, are plotted in the top panel of 
Figure 1 for t= 1960:1 to 1992:III. 

The maximum likelihood estimates for the parameters of this model are as 
follows, with standard errors in parentheses, 

& = 0.9145,_ 1 + u, 8” = 0.977 
(0.041) (0.177) 

y,=1.43+r,+w, 6, = 1.34 . 
(0.93) (0.14) 
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Here the state variable 5, = i, - 71: -p has the interpretation as the deviation of 
the unobserved ex ante real interest rate from its population mean p. 

Even if the population parameter vector 8= (4, o,,~, g,J’ were known with 
certainty, the econometrician still would not know the value of the ex ante real 
interest rate, since the market’s expected inflation 7~: is unobserved. However, the 
econometrician can make an educated guess as to the value of 5, based on 
observations of the ex post real rate through date t, treating the maximum 
likelihood estimate aas if known with certainty. This guess is the magnitude &,(a), 
and its mean squared error P,,,(a) is plotted as the solid line in the middle panel 
of Figure 1. The mean squared error quickly asymptotes to 

which is a fixed constant owing to the stationarity of the process. 
The middle panel of Figure. 1 also plots the mean squared error for the smoothed 

inference, PrIT(a). For observations in the middle of the sample this is essentially 
the mean squared error (MSE) of the doubly-infinite projection 

The mean squared error for the smoothed inference is slightly higher for 
observations near the beginning of the sample (for which the smoothed inference 
is unable to exploit relevant data on y,,y_ I,. . .) and near the end of the sample 
(for which knowledge of YT+ r, Y~+~, . . . would be useful). 

The bottom panel of Figure 1 plots the econometrician’s best guess as to the 

value of the ex ante real interest rate based on all of the data observed: 

Ninety-five percent confidence intervals for this inference that take account of both 
the filter uncertainty P1,r(a) and parameter uncertainty due to the random nature 
of 8 are also plotted. Negative ex ante real interest rates during the 1970’s and 
very high ex ante real interest rates during the early 1980’s both appear to be 
statistically significant. Hamilton (1985) obtained similar results from a more 
complicated representation for the ex ante real interest rate. 

4. Discrete-valued state variables 

The time-varying coefficients model was advocated by Sims (1982) as a useful way 
of dealing with changes occurring all the time in government policy and economic 
institutions. Often, however, these changes take the form of dramatic, discrete 
events, such as major wars, financial panics or significant changes in the policy 
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objectives of the central bank or taxing authority. It is thus of interest to consider 
time-series models in which the coefficients change only occasionally as a result 
of such changes in regime. 

Consider an unobserved scalar s, that can take on integer values 1,2,. . . , N 
corresponding to N different possible regimes. We can then think of a time-varying 
coefficient regression model of the form of (2.29), 

Yt = x:Bs, + wt (4.1) 

for x, a (k x 1) vector of predetermined or exogenous variables and w, - i.i.d. 
N(0, a’). Thus in the regime represented by s, = 1, the regression coefficients are 
given by /?r, when s, = 2, the coefficients are f&, and so on. The variable s, 
summarizes the “state” of the system. The discrete analog to (2.1), the state 
transition equation for a continuous-valued state variable, is a Markov chain in 
which the probability distribution of s, + 1 depends on past events only through 
the value of s,. If, as before, observations through date t are summarized by the 
vector 

the assumption is that 

Prob(s,+,= jlst=i,st_l=il,st_Z=i2,...,&)=Prob(st+i=jls,=i) 

- pij. (4.2) 

When this probability does not depend on the previous state (pij = pu for all i, j, 
and I), the system (4.1)-(4.2) is the switching regression model of Quandt (1958); 
with general transition probabilities it is the Markov-switching regression model 

developed by Goldfeld and Quandt (1973) and Cosslett and Lee (1985). When x, 
includes lagged values of y, (4.1)-(4.2) describes the Markov-switching time-series 
model of Hamilton (1989). 

4.1. Linear state-space representation of the Markov-switching model 

The parallel between (4.2))(4.1) and (2.1))(2.2) is instructive. Let F denote an 
(N x N) matrix whose row i, column j element is given by pji: 

r hl P21 ... PNll 

F= P12 P22 “’ PN2 
. . 

. . . . . 

1 PIN P2N “. PNN] 
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Let e, denote the ith column of the (N x N) identity matrix and construct an 
(N x 1) vector 4, that is equal to e, when s, = i. Then the expectation of &+ 1 is an 
(N x 1) vector whose ith element is the probability that s,, 1 = i. In particular, the 
expectation of &+r conditional on knowing that s, = 1 is the first column of F. 
More generally, 

E(5*+,l51,5r-l,...,51~a)=F5~. (4.4) 

The Markov chain (4.2) thus implies the linear state equation 

(4.5) 

where u,, 1 is uncorrelated with past values of 4, y or x. 
The probability that s,, 2 = j given s, = i can be calculated from 

Probh.2 =jlSt = i) = PilPlj + Pi2P2j + “’ + PiNPNj 

= Pljpil + PZjPi2 + “’ + PNjPiNr 

which will be recognized as the row j, column i element of F2. In general, the 
probability that st+,,, = j given s, = i is given by the row j, column i element of F”, 
and 

Moreover, the regression equation (4.1) can be written 

y, = x:q + w,, (4.7) 

where B is a (k x N) matrix whose ith column is given by pi. Equation (4.7) will 
be recognized as an observation equation of the form of (2.26) with [H(x,)]’ = x:B. 

Thus the model (4.1)-(4.2) can be represented by the linear state-space model 
(2.1) and (2.26). However, the disturbance in the state equation u,, 1 can only take 
on a set of N2 possible discrete values, and is thus no longer normal, so that the 
Kalman filter applied to this system does not generate optimal forecasts or 
evaluation of the likelihood function. 

4.2. OptimalJilter when the state variable follows a Markov chain 

The Kalman filter was described above as an iterative algorithm for calculating 
the distribution of the state vector 4, conditional on 5,-i. When 4, is a continuous 
normal variable, this distribution is summarized by its mean and variance. When 
the state variable is the discrete scalar s,, its conditional distribution is, instead, 
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summarized by 

Prob(s,=ilG_,) for i=1,2 ,..., N. (4.8) 

Expression (4.8) describes a set of N numbers which sum to unity. Hamilton (1989) 
presented an algorithm for calculating these numbers, which might be viewed as 
a discrete version of the Kalman filter. This is an iterative algorithm whose input 
at step t is the set of N numbers {Prob(s, = iIT,_ ,)}y=, and whose output is 
{Prob(s,+, = i 1 &)}r= 1. In motivating the Kalman filter, we initially assumed that 
the values of F, Q, A, Hand R were known with certainty, but then showed how 
the filter could be used to evaluate the likelihood function and estimate these 
parameters. Similarly, in describing the discrete analog, we will initially assume 
that the values of j?l,j?Z,. . . ,&, CJ, and (pij}Tj= 1 are known with certainty, but will 

then see how the filter facilitates maximum likelihood estimation of these parameters. 
A key difference is that, whereas the Kalman filter produces forecasts that are 
linear in the data, the discrete-state algorithm, described below, is nonlinear. 

If the Markov chain is stationary and ergodic, the iteration to evaluate (4.8) 
can be started at date t = 1 with the unconditional probabilities. Let ni denote the 
unconditional probability that s, = i and collect these in an (N x 1) vector a- 

(XI,?,..., 7~~)). Noticing that scan be interpreted as E(&), this vector can be found 
by taking expectations of (4.5): 

n= Fx. (4.9) 

Although this represents a system of N equations in N unknowns, it cannot be 
solved for n; the matrix (IN - F) is singular, since each of its columns sums to zero. 
However, if the chain is stationary and ergodic, the system of (N + 1) equations 
represented by (4.9) along with the equation 

l’a= 1 (4.10) 

can be solved uniquely for the ergodic probabilities (here “1” denotes an (N x 1) 
vector, all of whose elements are unity). For N = 2, the solution is 

711 = (1 - P22Ml - Pll + 1 - PA (4.11) 

x2 = (1 - Pl Ml - Pll + 1 - P22). (4.12) 

A general solution for scan be calculated from the (N + 1)th column of the matrix 
(A’A)- ‘A’ where 

A = 
Z, - F 

,N+*,xN [ 1 1’ . 
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The input for step t of the algorithm is (Prob(s, = i/T,_ r)}y=,, whose ith entry 
under the assumption of predetermined or exogenous x, is the same as 

Prob(s, = i/x,, G-r). (4.13) 

The assumption in (4.1) was that 

1 
f(~,ls, = Otr G-i) = (2Zca2)1,2 exp 

[ 

- (Y, - $Bi)’ 
2oZ 1 (4.14) 

For given i, xf,yt,/(, and C, the right-hand side of (4.14) is a number that can be 
calculated. This number can be multiplied by (4.13) to produce the likelihood of 
jointly observing s, = i and y,: 

Expression (4.15) describes a set of N numbers (for i = 1,2,. . . , N) whose sum is 
the density of y, conditional on x, and &_ 1: 

f(~,lx,~LJ= f f(Yt~st=ilxt~Ld (4.16) 
i=l 

If each of the N numbers in (4.15) is divided by the magnitude in (4.16), the result 
is the optimal inference about s, based on observation of IJ, = { yt, xr, J, _ i}: 

f(~,,s,= il~t~~-l) 
Prob(s, = i) &) = - 

f(YtIx,~L,) . 
(4.17) 

The output for thejth iteration can then be calculated from 

Prob(s,+, = jl&)= 2 Prob(s,+, =j,s,=il&) 
i=l 

= i$l Prob(s,+, = j/s, = i, &),Prob(s, = iI&) 

= itI Pij. Prob(s, = iI&). (4.18) 

To summarize, let &- 1 denote an (N x 1) vector whose ith element represents 
Prob(s, = iIT,- J and let fit denote an (N x 1) vector whose ith element is given by 
(4.14). Then the sequence {&,_ , },‘= 1 can be found by iterating on 
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(4.19) 

where “0” denotes element-by-element mu_ltiplication and 1 represents an (N x 1) 
vector of ones. The iteration is started with Ljl,O = IC where 1c is given by the solution 

to (4.9) and (4.10). The contemporaneous inference G$ is given by (&, 0 ?,I*)/ 

V’(&l,- 10 %)I. 

4.3. Extensions 

The assumption that y, depends only on the current value s, of a first-order Markov 
chain is not really restrictive. For example, the model estimated in Hamilton (1989) 
was 

Y,-Ps;=4(Yr-l-P* 
St- 1 

)+~*(Y,-z-~,:_l)+...+~p(Yr_p-~,* )++ 
f-P 

(4.20) 

where SF can take on the values 1 or 0, and follows a Markov chain with 

Prob(s:+ 1 = jlsf = i) = p$. This can be written in the form of (4.1)-(4.2) by letting 
N = 2p+ ’ and defining 

s, = 1 

s, = 2 

if (ST = l,s:_, = 1,. . . , and ST_, = l), 

if (ST = O,s:_‘, = 1,. . ., and s:_~ = l), 

(4.21) 

s,=N- 1 if (SF= l,s:_, =O,..., and s* t_-p=O)’ 

s, = N if (s:=O,s,*_, =0 ,..., and s:_~=O). 

For illustration, the matrix of transition probabilities when p = 2 is 

F= 
(8 x 8) 

-p:1 0 0 0 pT1 0 0 0 

P:O 0 0 0 p& 0 0 0 

0 p& 0 0 0 p& 0 0 

0 PO*0 0 0 0 p& 0 0 

0 0 P:l 0 0 0 P;l 0 

0 0 p:o 0 0 0 Pro 0 

0 0 0 p& 0 0 0 p& 

0 0 0 p& 0 0 0 p& 

(4.22) 
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There is also no difficulty in generalizing the above method to (n x 1) vector 
processesyt with changing coefficients or variances. Suppose that when the process 
is in state s,, 

Yt I St, 1, - wQf 52,) (4.23) 

where n;, for example, is an (n x k) matrix of regression 
when s, = 1. Then we simply replace (4.14) with 

coefficients appropriate 

1 
.f‘(~,ls,=i,x~,i-~)=(~~)“,~,~~,~,~exp 

[ 
- $, - qx,),n ,: I(& - n;x,, 1 ) 

(4.24) 

with other details of the recursion identical. 
It is more difficult to incorporate changes in regime in a moving average process 

such as y, = E, + Os.s,_ i. For such a process the distribution of y, depends on the 

completehistory(i,_,,y,_, ,..., y,,s:,s:_, ,... , ST), and N, in a representation such 
as (4.21), grows with the sample size T. Lam (1990) successfully estimated a related 
model by truncating the calculations for negligible probabilities. Approximations 
to the optimal filter for a linear state-space model with changing coefficient matrices 
have been proposed by Gordon and Smith (1990), Shumway and Stoffer (1991) 
and Kim (1994). 

4.4. Forecasting 

Applying the law of iterated expectations to (4.6), the optimal forecast of &+, 
based on data observed through date t is 

~(5t+,lr,) = FrnE,r, (4.25) 

where I$, is the optimal inference calculated by the filter. 
As an example of using (4.25) to forecast yt, consider again the example in (4.20). 

This can be written as 

Y, = Ps; + z,, (4.26) 

where z, = 4iz,-i + &z,_~ + ... + 4pzt-p + E,. If {SF} were observed, an m-period- 
ahead .forecast of the first term in (4.26) turns out to be 

E(~~~+_ls:)=~,+{~l+~“(s:-n,)}(~,-~,), (4.27) 
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where ;1= (- 1 + PT1 + p&J and rrI = (1 - p&,)/(1 - ~7~ + 1 - P&). If ~7~ and P& 
are both greater than i, then 0 < ,I < 1 and there is a smooth decay toward the 
steady-state probabilities. Similarly, the optimal forecast of z,+, based on its own 
lagged values can be deduced from (1.9): 

(4.28) 

where e; denotes the first row of the (p x p) identity matrix and @ denotes the 
(p x p) matrix on the right-hand side of (1.12). Recalling that z, = y, - psz is known 

if y, and ST are known, we can substitute (4.27) and (4.28) into (4.26) to conclude 

E(Yt+,l% r,) = PO + 1% + JrnK - “1Wl -PO) 

+ e;@Y(Y, -P,:) b-1 -P,:_l) ... &J+1 - Ps;_p+lu. 

(4.29) 

Since (4.29) is linear in (ST}, the forecast based solely on the observed variables 
& can be found by applying the law of iterated expectations to (4.29): 

E(y,+,IG) = cl0 + {x1 + AmCProb(s: = 1 I&) - rrJ}(~, - pO) + e;@“_F(, (4.30) 

where the ith element of the (p x 1) vector j, is given by 

.Fit=Yt-i+l - p. Prob(s,*_i+ r =Ol&)-pr Prob($-i+r= 114). 

The ease of forecasting makes this class of models very convenient for rational- 
expectations analysis; for applications see Hamilton (1988), Cecchetti et al. (1990) 
and Engel and Hamilton (1990). 

4.5. Smoothed probabilities 

We have assumed that the current value of s, contains all the information in the 
history of states through date t that is needed to describe the probability laws for 
y and s: 

Prob(s,+, =jls,=i)=Prob(s,+, =j(sf=i,sf_-l =it_l,...,sl =il). 

Under these assumptions we have, as in Kitagawa (1987, p, 1033) and Kim (1994), 
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that 

Prob(s,=j,s,+,=ilr,)=Prob(s,+,=ilrr)Prob(s,=jls,+,=i,r,) 

=Prob(s,+,=il&)Prob(s,=jls,+r=i,&) 

= Prob(s,+, = iI&) 
Prob(s, = j, s,, 1 = iI 4,) 

Prob(s,+r = iI&) 

= Prob(s,+, = il&) 
Prob(s,= jl<,)Prob(s,+ 1 =ils, = j) 

’ Prob(s,+, = iI&) 
(4.31) 

Sum (4.31) over i= l,..., N and collect the resulting equations for j = 1,. . . , N in 
a vector EtIT, whose jth element is Prob(s, = jlcr): 

(4.32) 

where “( + ),, denotes element-by-element division. The smoothed probabilities are 
thus found by iterating on (4.32) backwards for t = T- 1, T- 2,. . . , 1. 

4.6. Maximum likelihood estimation 

For given numerical values of the transition probabilities in F and the regression 
parameters such as (ZI,, . . . , I&, 52,, . , . , L2,) in (4.24), the value of the log likelihood 
function of the observed data is CT’ 1 log f(y,Ix,, & _ r) for f(y,Ix,, &_ J given by 
(4.16). This can be maximized numerically. Again, the EM elgorithm is often an 
efficient approach [see Baum et al. (1970), Kiefer (1980) and Hamilton (1990)]. For 
the model given in (4.24), the EM algorithm is implemented by making an arbitrary 
initial guess at the parameters and calculating the smoothed probabilities. OLS 

regression of y,,/Prob(s, = 1 I CT) on I,,,/ Prob(s, = 1 I&.) gives a new estimate of 
I7r and a new estimate of J2, is provided by the sample variance matrix of these 
OLS residuals. Smoothed probabilities for state 2 are used to estimate ZI, and 
SL,, and so on. New estimates for pij are inferred from 

5 Prob(s,=j,s,_, =il&) 
t=2 1 

Pi’= [ f: Prob(s,_I =il&)] ’ 
t=2 

with the probability of the initial state calculated from pi = Prob(s, = iI &.) rather 
than (4.9)-(4.10). These new parameter values are then used to recalculate the 
smoothed probabilities, and the procedure continues until convergence. 
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When the variance depends on the state as in (4.24), there is an essential 
singularity in the likelihood function at 0, = 0. This can be safely ignored without 
consequences; for further discussion, see Hamilton (199 1). 

4.7. Asymptotic properties of maximum likelihood estimates 

It is typically assumed that the usual asymptotic distribution theory motivating 
(3.9) holds for this class of models, though we are aware of no formal demonstration 
of this apart from Kiefer’s (1978) analysis of i.i.d. switching regressions. Hamilton 
(1993) examined specification tests derived under the assumption that (3.9) holds. 

Two cases in which (3.9) is clearly invalid should be mentioned. First, the 

maximum likelihood estimate flij may well be at a boundary of the allowable 
parameter space (zero or one), in which case the information matrix in (3.12) need 
not even be positive definite. One approach in this case is to regard the value of 
Pij as fixed at zero or one and calculate the information matrix with respect to other 
parameters. 

Another case in which standard asymptotic distribution theory cannot be invoked 

is to test for the number of states. The parameter plZ is unidentified under the 
null hypothesis that the distribution under state one is the same as under state 
two. A solution to this problem was provided by Hansen (1992). Testing the specifi- 
cation with fewer states for evidence of omitted heteroskedasticity affords a simple 
alternative. 

4.8. Empirical application ~ another look at the real interest rate 

We illustrate these methods with a simplified version of Garcia and Perron’s (1993) 
analysis of the real interest rate. Let y, denote the ex post real interest rate data 
described in Section 3.5. Garcia and Perron concluded that a similar data set was 
well described by N = 3 different states. Maximum likelihood estimates for our 
data are as follows, with standard errors in parentheses:5 

Y,~s, = 1 - N( 5.69 , 3.72 ), 

(0.41) (1.11) 

y,ls,=2-N( 1.58, 1.93), 

(0.16) (0.32) 

y,ls, = 3 - N( - 1.58 , 2.83 ), 

(0.30) (0.72) 

‘Garcia and Perron also included p = 2 autoregressive terms as in (4.20), which were omitted from 
the analysis described here. 
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- 0.950 0 0.036 

(0.044) (0.030) 

0.050 0.990 0 

F= (0.044) (0.010) 

0 0.010 0.964 

(0.010) (0.030). 

J.D. Hamilton 

The unrestricted maximum likelihood estimates for the transition probabilities 
occur at the boundaries with fir3 = Fiji = flS2 = 0. These values were then imposed 
a priori and derivatives were taken with respect to the remaining free parameters 
8= (~~,P~,~~,u:,cJ$, ~~,p~~,p~~,p~J to calculate standard errors. 

IO.0 

75 .- 
_ - _ 

5.0 - 

25- 

VtiA 

-- _- _- . 

0.0 - _ _ ___ 

-2.5 - 
-5.0 ’ 

60 63 66 69 72 7s 78 BI 84 87 90 

60 63 66 69 72 75 78 81 El4 87 90 

60 63 66 69 72 75 78 81 84 87 90 

60 63 66 69 72 75 78 81 84 87 90 

Figure 2. Top panel. Solid line: ex post real interest rate. Dashed line: pi6^i,,, where Ji,, = I if 

Prob(s, = i(&; 8) > 0.5 and c?~,, = 0 otherwise. Second panel. Prob(_, = I 1 I&; 6). Third panel. 
Prob(s, = 21 CT; a). Fourth panel. Prob(s, = 3 1 CT; 0). 
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Regime 1 is characterized by average real interest rates in excess of 5 percent, 
while regime 3 is characterized by negative real interest rates. Regime 2 represents 
the more typical experience of an average real interest rate of 1.58 percent. 

The bottom three panels of Figure 2 plot the smoothed probabilities Prob(s, = 
i( CT; 8) for i = 1,2 and 3, respectively. The high interest rate regime lasted from 
1980:IV to 1986:11, while the negative real interest rate regime occurred during 
1972:,3 to 1980:III. 

Regime 1 only occurred once during the sample, and yet the asymptotic standard 
errors reported above suggest that the transition probability @ii has a standard 
error of only 0.044. This is because there is in fact not just one observation useful 
for estimating pi 1, but, rather, 23 observations. It is exceedingly unlikely that one 

could have flipped a fair coin once each quarter from 1980:IV through 1986:11 
and have it come up heads each time; thus the possibility that pii might be as 
low as 0.5 can easily be dismissed. 

The means fli, & and f13 corresponding to the imputed regime for each date 
are plotted along with the actual data for y, in the top panel of Figure 2. Garcia 
and Perron noted that the timing of the high real interest rate episode suggests 
that fiscal policy may have been more important than monetary policy in producing 
this unusual episode. 

5. Non-normal and nonlinear state-space models 

A variety of approximating techniques have been suggested for the case when the 
disturbances I+ and W, come from a general non-normal distribution or when the 
state or observation equations are nonlinear. This section reviews two approaches. 
The first approximates the optimal filter using a finite grid and the second is known 
as the extended Kalman filter. 

5.1. Kitagawa’s grid approximation for nonlinear, non-normal 
state-space models 

Kitagawa (1987) suggested the following general approach for nonlinear or 
non-normal filtering. Although the approach in principle can be applied to vector 
systems, the notation and computations are simplest when the observed variable 
(y,) and the state variable (r,) are both scalars. Thus consider 

t If1 =dJ(5,)+~,+1~ (5.1) 

Yt = 45,) + wt. (5.2) 

The disturbances v, and w, are each i.i.d. and mutually independent and have 
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densities denoted q(u,) and r(wJ, respectively. These densities need not be normal, 
but they are assumed to be of a known form; for example, we may postulate that 
u, has a t distribution with v degrees of freedom: 

q(ut) = c(1 + (u:/v))-(V+l)‘*, 

where c is a normalizing constant. Similarly c$(.) and h(.) represent parametric 
functions of some known form; for example, 4(.) might be the logistic function, 
in which case (5.1) would be 

5 
1 

r+l=l+aexp(-_&)+u’+l’ (5.3) 

Step t of the Kalman filter accepted as input the distribution of 5, conditional 

on Li =(Y~-~,Y~-~,..., yl)’ and produced as output the distribution of &+1 
conditional on 6,. Under the normality assumption the input distribution was 
completely summarized by the mean &_ 1 and variance I’,,,_ 1. More generally, 
we can imagine a recursion whose input is the density f(<, I&- 1) and whose output 
is f(&+ 1 16,). These, in general, would be continuous functions, though they can 
be summarized by their values at a finite grid of points, denoted t(O), t(l), . . . , ttN). 
Thus the input for Kitagawa’s filter is the set of (N + 1) numbers 

KIr,-,)I,,=,(~) i=O,l,...,N (5.4) 

and the output is (5.4) with t replaced by t + 1. 
To derive the filter, first notice that under the assumed structure, 5, summarizes 

everything about the past that matters for y,: 

f(YtI5J =f(Y,I5,~Ld 

Thus 

f(Y*,5,lr,-l)=f(Y,I~,)f(5,Ir,-l) 

= d-Y, - ~(5,)l_f-(5,1 L 1) (5.5) 

and 

f(Ytlr,-1) = 
s 

m f(Y,, 5,lL AdL (5.6) 
-Kl 

Given the observed y, and the known form for I(.) and II(.), the joint density (5.5) 
can be calculated for each 5, = t(‘), i = 0, 1,. . . , N, and these values can then be 
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used to approximate (5.6) by 

The updated density for 5, is obtained by dividing each of the N + 1 numbers in 
(5.5) by the constant (5.7): 

fKlr,)=f(5tlYt~Ll) 

JYdtlL1) 
f(Y,lL 1) . 

(5.8) 

The joint conditional density of 5,+ 1 and 5, is then 

f(rt+l,rtIrt)=f(5r+lI5t)f(51lT1) 

= d5,+ 1 - 4(&)l.m, I 0 (5.9) 

For any pair of values t(‘) and 5”’ equation (5.9) can be evaluated at 5, = 5”’ and 
5, + 1 = 5”’ from (5.8) and the form df q( .) and 4( .). The recursion is completed by: 

f(5t+11Tl)l~t+,=p)= 
s 

m f(5,+1,5,Ir,)I,,+,=,,j,d5, 
-02 

+f(t 1+lr51151)ls,+,=6(,,,6,=6ci~1,}3{5(i)-5(i-1)}. 
(5.10) 

An approximation to the log likelihood can be calculated from (5.6): 

logf(Yr~Yr-l~..*~ Yl) = i h2f(Y,ILJ 
1=1 

(5.11) 

The maximum likelihood estimates of parameters such as a, b and v are then the 
values for which (5.11) is greatest. 

Feyzioglu and Hassett (1991) provided an economic application of Kitagawa’s 
approach to a nonlinear, non-normal state-space model. 
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5.2. Extended Kalman jilter 

Consider next a multidimensional normal state-space model 

5*+1 = 9(5,)+4+1, (5.12) 

Yr = 44 + 45,) + WI, (5.13) 

where I$: IR’-+lR’, a: Rk-+IR” and h: IR’+fR”, u,-i.i.d. N(O,Q) and IV,-i.i.d. 
N(0, R). Suppose 4 (.) in (5.12) is replaced with a first-order Taylor’s approximation 
around 4, = &, 

5,+1=~,++,(5,-%,t)+u,+1, (5.14) 

where 

4 = d&t) @t -“$I (5.15) 
0.x 1) (r x r) f &=F,, 

For example, suppose r = 1 and 4(.) is the logistic function as in (5.3). Then (5.14) 
would be given by 

5 
1 

abexp(-b5,1J (&-5;,1)+ur+I. 
f+1=1+aexp(-~~~,,)+[1+aexp(-~~~I,)]2 

(5.16) 

If the form of 4 and any parameters it depends on [such as a and b in (5.3)] are 

known, then the inference &, can be constructed as a function of variables observed 
at date t (&) through a recursion to be described in a moment. Thus & and 4$ in 
(5.14) are directly observed at date t. 

Similarly the function h(.) in (5.13) can be linearized around I$- 1 to produce 

Yt = 44 + ht + fq5t - Et,,- 1) + wt, (5.17) 

where 

4 f h(&,,-1) Hi =Wi) 
(nx 1) (nxr) a<: st=it,,- t 

(5.18) 

Again h, and H, are observed at date t - 1. The function a(.) in (5.13) need not be 
liearized since X, is observed directly. 

The idea behind the extended Kalman filter is to treat (5.14) and (5.17) as if 
they were the true model. These will be recognized as time-varying coefficient 
versions of a linear state-space model, in which the observed predetermined variable 
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4, - @&, has been added to the state equation. Retracing the logic behind the 
Kalman filter for this application, the input for step t of the iteration is again the 
forecast Et,,_ 1 and mean squared error I’+ 1. Given these, the forecast of _v~ is 

found from (5.17): 

E(y,Ix,,r,-l)=a(x,)+h, 

= a@,) + h(&- 1). (5.19) 

The joint distribution of 4, and y, conditional on X, and 4, _ 1 continues to be given 
by (2.11), with (5.19) replacing the mean of yt and II, replacing H. The contem- 
poraneous inference (2.12) goes through with the same minor modification: 

&, = &,,- 1 + J’,,,- ,H,W:f’,,,- IH, + W- ‘br - 4x,) - 4$,,- Jl. (5.20) 

If (5.14) described the true model, then the optimal forecast of &+1 on the basis 
of 6, would be 

To summarize, step t of the extended Kalman filter uses &,, _ 1 and I’,,,_ 1 to 
calculate H, from (5.18) and &, from (5.20). From these we can evaluate @t in 
(5.15). The output for step t is then 

$+ 111 = &,t), (5.21) 

P ~+II,=~~P,I,-,~:-(~~P,,~-,H,(H:P,,,-~H,+R)-'H:P,,~-,~:}+Q. 

(5.22) 

The recursion is started with &,, and P,,, representing the analyst’s prior 
information about the initial state. 

5.3. Other approaches to nonlinear state-space models 

A number of other approaches to nonlinear state-space models have been explored 
in the literature. See Anderson and Moore (1979, Chapter 8) and Priestly (1980, 
1988) for partial surveys. 
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