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ESTIMATING TIME VARYING RISK PREMIA IN THE TERM
STRUCTURE: THE ARCH-M MODEL'

Bv RoBerT F. ENGLE, DaviD M. Linien, AND RuUSSELL P. ROBINS

The expectation of the excess holding yield on a long bond is postulated to depend
upon its conditional variance. Engle’s {1982a) ARCH model is extended ta allow the
canditional variance to be a determinant of the mean and is called ARCH-M. Estimation
and inference procedures are praposed and the maodel is applied to three interest rate data
sets. In most cases the ARCH process and the time varying risk premium. are highly
significant. A collection of LM diagnastic tests reveals the robustness of the model to
vatious specification changes such as alternative volatility or ARCH measures, regime
changes, and interest rate formulations. The model explains and interprets the recent
econametric failures of the expectations hypothesis of the term structure.

KEYWORDS: Term structure, financial madels, ARCH, risk premium, heteroskedasticity,
naonlingear models.

1. INTRODUCTION

ALTHOUGH THE VALUATION of risk is the central feature of financial economics,
the standard methods for measuring and predicting risk are extraordinarily simple
and unsuited for titme series analysis. As the degree of uncertainty in asset returns
varies over time, the compensation required by risk averse economic agents for
holding these assets, must also be varying. Time series models of asset prices
must therefore bath measure risk and its movement over time, and include it as
a determinant of price. Any increase in the expected rate of return of an asset
as it becomes more risky will be identified as a risk premium.

The importance of such risk premia in the term structure of interest rates has
been highlighted by a series of papers which all find the traditional expectations
hypothesis inadequate to explain the abserved data. For some recent examples
see Shiller {1979, 1981), Sargent (1979, 1972}, Shiller, Campbell, and Schoenholtz
{1983), Mankiw and Summers (1984), and Campbell {1984}. Some of these are
based upon tests which find the variance of long term rates too large to be
consistent with the expectations hypothesis. Others are based on regression tests
which essentially show that the implicit predictors of future interest rates, deriv-
able from the term structure, are inefficient and biased. Information available at
the time could have improved the accuracy of the forecasts. Stated another way,
these tests find that the one period rate of return which should, ex ante, be
unfarecastable, could have been predicted using available information.

These findings are generally interpreted as implying either some form of less
than fully rational expectations, or time varying premia on different term debt.
Attempts by Shiller, Campbell, and Schoenholtz (1983) and Mankiw and Summers
(1984) to model particular forms of irrational expectations were unsuccessful.

' The authors are indebted to many for helpful comments including Bob Shiller, Larry Summers,
Clive Granger, Ross Starr, Ken Wallis, David Hendry, Larry Weiss, and James Tobin, but retain
responsibility far remaining errors. Camputations were carefully carried out by Tim Bolleralev and
Yoahi Baba.
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392 R. F. ENGLE, D. M. LILIEN, AND R. P. ROBINS

Consequently, the main thrust of this literature is to introduce the possibility of
time varying term premia. Amsler {1984) and Pesando (1983) have extended
Shiller’s variance bounds to allow time varying term premia. Campbell (1984)
and Mankiw and Summers {1984) estimate or derive statistics about the required
properties of time varying term premia. The latter conclude: “Most of the changes
in the slope of the yield curve reflect these changing liquidity premiums or
expectations that do not satisfy the standard postulates of rationality. These
results suggest the importance of developing models capable of explaining fluc-
tuating liquidity premiums.”

The key postulate in the current paper is that time varying premia on different
term debt instruments can be well modeled as risk premia where the risk is due
to unanticipated interest rate mavements and is measured by the conditional
variance of the one period holding yield. While this is in the spirit of Bodie,
Kane, and McDonald (1983} and Fama (1976), new econometric techniques are
needed to estimate and test this model and these are develaped here.

The autoregressive conditional heteroscedasticity (ARCH) model introduced
by Engle (1982a), explicitly models time varying conditional variances by relating
them to variables known from previous periods. In its standard form the ARCH
madel expresses the conditional variance as a linear function of past squared
innovatians; in markets where price is a Martingale, price changes are innovations,
and this corresponds precisely to the Mandlebroit (1963) abservation: “Large
changes tend to be followed by large changes—of either sign—and small changes
tend to be followed by small changes ...” The ARCH madel is used to provide
a rich class of possible parameterizations of heteroscedasticity.

This paper introduces the ARCH-M model which extends the ARCH model
to allow the conditional variance to affect the mean. In this way changing
conditional variances directly affect the expected return on a portfolio. This
resolves many of the empirical paradoxes in the term structure. Variables which
apparently were useful in forecasting excess returns are correlated with the risk
premia and lose their significance when a function of the conditional variance
is included as a regressor. Furthermore, the heteroscedasticity in the disturbances
had biased the test statistics, leading to the false finding of significant variables.

This model is applied to six manth treasury bills, to two month treasury bills,
and to 20 years Aaa corporate bands to determine whether there appear to be
time varying risk premia and how large they are. Section 2 develops a theoretical
model of the relationship between means and variances which is formulated as
a statistical model in Section 3. Section 4 describes the ARCH-M model and
Sections 5 and 6 present the applications. Section 7 is a summary.

2. A MODEL OF THE RELATION BETWEEN RISK AMND RETURM

Risk averse economic agents require compensation for holding risky assets. In
the simplest set-up of one risky asset with normally distributed returns and one
riskless asset, the risk is measured by the variance of the returns from holding
the asset, and the compensation by a rise in the expectation of the return. The
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relation between the mean and the variance of the returns which will insure that
the asset is fully held in equilibrium will depend upon the utility function of the
agents and the supply conditions of the assets.

To investigate this relation we now suppose that in this two asset economy the
variance of the payoff of the risky asset may change over time and consequently
the price offered by risk averse agents will change over time. This equilibrium
price determines the relation between the mean and variance of the excess returns
from holding the risky asset and therefare how the risk premium is related to
the variance of the returns.

Consider a world with two assets, one has price 1 and is perfectly elastically
supplied at a sure total rate of return r. The other has a price p and yields a
random total return g {denominated in units of the numeraire} which has mean
# and variance ¢. Wealth W, measured in units of the riskless asset, is therefore
allocated between shares of the sure asset x, and shares of the risky asset s, so that

(1} W=ps+x

The excess return per dollar invested in shares of the risky asset is given by

y=(g/p)-r

so that the mean-and variance of the excess returns is given by

(2) E(y)=p=(8/p)-r, VO)=0"=4¢/p"

Agents maximize expected utility of the end-of-period wealth, which, assuming
normality of the returns, means that only the first two moments of the distribution
matter. Under constant absolute risk aversion, expected utility can be expressed
by:

EU=2E(gs+rx)—bV(gs+x)

and it will be maximized by choaosing

3)  sp=p/lbad).

Now suppose ¢ has a time subscript and is known to agents although not to
the econometrician. Then the equilibrium values of p, i, %, and s will also vary
aver time. If in equilibrinm the safue of the cutstanding shares of the risky asset
remains constant, then the mean return will be proportional ta the variance of
returns since s, p, in (3) is a constant.

A convenient assumption is that the riskless asset is held in zero net supply
s0 that r becomes endogenous. The value of the outstanding shares of the risky
asset is simply W. The mean and variance will therefore be proportional regardless
of the supply elasticity of s if both wealth and b are constant. Such a model,
however, leaves no role for price in evaluating risk.

If, instead, the physical number of shares is fixed so that s, = s and r is fixed,
then in equilibrium {4} can be rewritten

i+ g, = bsa’ 8
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and, suppressing time subscripts,
{4) w=[—r+Jri+4bsa0]/2

so that the mean will be zero when the variance is zero, the slope is always
positive, and for large variance the mean is proportional to the standard deviation.
Thus if ¢ varies over time, but ¢, 5, and # do not, the econometrician should
expect to see a relation between observed means and variances of returns which

makes them move in the same direction but not proportionally.
For more general utility functions b will itself he a function of other variables

such as o°. Thus we can replace b in (4) with b{o”). Furthermare, there may be
same elasticity of supply of the risky asset so that

s=f(p)=f(8/{ntr})

can be substituted for 5. With these two flexible functions it is possible to find a
wide range of relationships between abserved means and variances.

Thus in general, one might expect the mean to increase less than in proportion
to the variance with the precise relation determined by the supply elasticity of
the risky (and possibly the riskless) asset and the risk preferences of agents. This
paper introduces some empirical evidence on this relationship.

3. FORMULATION OF THE MODEL

Letting 1, be the risk premium, y, the excess holding yield on a loeng bond
relative to a one period treasury bill, and g, the difference between the ex ante
and ex post rate of return which in efficient markets would be unforecastable,

{5} Ve = et E, Var (g, |all available information) = h>.

It is assumed that the risk in holding a long bond is not diversifiable so that only
the variance matters. The initial specification takes the mean as a linear function
of the standard deviation:

(6) 8, =B+ h,.

A nonzero value of 8 might reflect the linearization of a nonlinear function such
as that derived above, or a preferred habitat argument. The choice of the standard
deviation represents the assumption that changes in variance are reflected less
than proportionally in the mean. Empirically, the log of A, is found to be even
better.

A complication in the interpretation of 8, arises from the differential tax
treatment of capital gains and interest income. Under the tax laws, long term
capital gains are taxed at a lower rate than ordinary interest income and short
term capital gains. This feature of the tax system makes a strategy of investing
in long term bonds more desirable than rolling over short term paper. Investors
can, to a large extent, treat one period capital losses as ordinary income far tax
purposes by selling the bond and realizing their losses. Short term capital gains
can be turned into long term capital gains for tax purposes by holding the bond
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fora year or longer. Because this choice can be made ex post, after Y, is observable,
risk neutral investors should be willing to hold long term bonds at a lower
expected pre tax yield than is paid on treasury bills. This tax advantage may
explain the fact that the average value of Y, for many types of long term bands,
has been below the average short term treasury bill rate over the last 30 years.
We might therefore expect 8 <0.

To complete the specification of the model, h’, the conditional variance, must
be parameterized as a function of the information set available to investars. We
assume that the most useful information to agents are the previous innovations
or surprises g,. If these have been large in absolute value then, extending
Mandlebroit’s observation, they are likely to be large in the future. In its simplest
form we postulate that

P
(?) h:2=ac+at 2 wigl.-—i-

i=1
The conditional variance as observed by both the economic agents and the
econometrician is a weighted sum of past squared surprises. One can discount
older innovatians in this weighting scheme.

Other variables which are in the information set at time ¢ could also be
introduced into (7) in the fashion of more traditional heteroscedasticity correc-
tions. One such suggestion would be to use the squared changes in price as
analyzed by Mandlebroit. Such a specification misses the fact that in the bond
market a portion of the price change may be anticipated and this information is
unlikely to be useful in forecasting changes in variance.

In the next section, the estimation and testing of the model in (5), (6), and (7)
is considered in a more general context. In the following three empirical analyses,
many of the caveats discussed above are then put to test.

4. ESTIMATING AND TESTING THE ARCH-M MODEL

The economic madel described in the previous section incorporates an impor-
tant extension of Engle’s (1982a) ARCH madel or in fact any heteroscedastic
model; not only are the disturbances heteroscedastic, but the standard deviation
of each observation affects the mean of that observation. In this section the
estimation and testing of such models, called ARCH in mean or ARCH-M models,
is discussed.

The general setup is given by

(8} Yr|Xn H,~N(B'X,+6h,,h,2),
9) hl=a'W, +y'Z,

where X, and Z, are kx 1 and jx1 vectors of weakly exogenous and lagged
dependent variables, as in Engle, Hendry, and Richard {1983). The vector Z,
tncludes a constant whose coefficient represents the constant variance component
of h,. The px1 vector n|=(£:_,,..., e,z_,,) where g, are the disturbances given
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by Y,—A'X, — 8h,. The matrix W is a g X p array of fixed constants which may
be used to impose restricted parameterizations on the response of the conditional
variance to past squared residuals. In the mast unrestricted case, W woaould be
the identity matrix. The variance parameter vectors e and y are therefore g4 x 1
and jx I respectively while the mean parameter vectors 8 and & are kx1 and
1 x 1. These parameters can be combined into ¢’ =(a’, ¥, 8', §), an m x 1 vector
where m=g+j+k+1.

Conditional on the initial values of all the data, the log likelihood function
can be expressed as

(10) L(¢)=% L(¢); L(¢)=—logh —el/2h].

In practice, the presample values of the disturbances are set to their expectation,
zero. The first arder conditions for a maximum of this likelihood are given by:

(11)  aLjog =% ([el—hi—hbe]h ") ahlfap/2
—Y [e/hi1aB" /e

The derivatives of the parameters with respect to ¢ are simply matrices with
zeros and ones which select which terms to include for each derivative. The
second line of (11) is the term relevant for GLS estimation of the regression
coeflicients without ARCH complications, that is when o =0. The expression in
(11) gives the standard ARCH model when & is zero.

The primary complexity introduced in this model comes in evaluating ak*/a¢.
From (9} this depends upon the derivatives of previous innavations with respect
to the parameters. Yet these derivatives in turn depend upon the past derivatives
of h with respect to the parameters if & is nonzera. The desired derivatives must
be camputed recursively from an assumption that the initial values do not depend
upan the parameters.

In the early analyses presented in Engle, Lilien, and Robins (1982) summarized
in Section 5, analytical derivatives were calculated recursively and used to evaluate
(11). However, numerical derivatives gave similar results, were simpler to compute
and gave added flexibility to changes in specification. They therefore are probably
the preferred approach tor the ARCH-M maodel.

Estimation and testing can simply be carried out in terms of these dertvatives.
aL/a¢ can be written compactly in terms of the T x m array § with typical element

(S]:=aL/a¢,
as
(12} alLfag = 8"
where [ is a T x 1 unit vector so the first order condition is simply

§i=0.
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The Hessian of the log likelihood is the sum of the Hessians of the f conditional
lag likelihoods, L,. Under the assumption that the likelihood function is correctly
specified,

#,=E[3L,/3p aL /3¢ 1= —E[3'L,/a¢ 36']

where .#, is the information matrix of the fth abservation. Defining the information
in the sample # is the average of the information aver each observation,

F=E[88/T]L

Under slightly stronger conditions, 5’8/ T is also consistent for 4.
A ready solution to the maximization of this likelihood function is to adopt
the Berndt, Hall, Hall, Hausman {1974} approach using the iteration

(13) T ="' +A(S'8)7 S

with A as a step length which is adjusted from its a priori value of unity by a
simple line search, and § as the matrix of first derivatives evaluated at ¢'.

The likelihood is in the form analyzed by Crowder {1976}. Under sufficient
regularity conditions, a solution to (13) will have the property that

(14)  (8'S)"2(¢*— %) 2 N(O, I)

where ¢* is the maximum likelihood estimator obtained from (13) and ¢° is the
true value of the parameters. Unlike the simple ARCH model, this information
matrix is not block diagonal between the parameters of the mean and the
parameters of the variance.

Pantula (1984) has carefully investigated regularity conditions sufficient to
guarantee {14) in the simple first order ARCH case. His conditions are stronger
than can be accepted for this study in that he requires the existence of eighth
order moments of the disturbance which are only finite for very small values of
the ARCH parameter. Weiss (1986} has suggested some slightly weaker condi-
tions; haowever, neither has addressed the ARCH-M madel. Thus the appropriate-
ness of the asymptotic distribution theory for this analysis remains a conjecture
at this point.

Subject to the above caveat, inference procedures are available directly fram
(14}. In particular, Wald tests can be computed in standard fashion. Lagrange
multiplier tests can be simpler if the model has already been estimated under the
null hypothesis and are easily constructed from the matrix of scores, S. Suppose
the null hypothesis specifies that ¢ € ®° which is a proper subset of @. Denote
by 5° the matrix of scores calculated assuming the more general model to be
true, but evaluated at the parameter estimates under the null. The scores corre-
sponding to the restricted parameters are the Lagrange multipliers, and their
variances are given by the infarmation matrix. The LM test can be constructed as

(15) Dy =SS0 8%
= TR}
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where R} is the uncentered R’ achieved by regressing the unit vector on the
matrix of scores under the null. This statistic will asymptotically be chi squared
with the number of degrees of freedom of the restriction when the null is true.
This is easily computed from the R® of the first iteration of (13) starting from
the estimates faund under the null. Thus the tests take a form familiar from Engle
(1982b, 1984) and it is recommended to construct a battecy of diagnostics to
convey information on the validity of the model both to the user and the reader.

The LM tests are convenient far testing restrictions in either the mean or the
variance specification since reestimation may be costly and convergence is some-
times unsure. Tests are easily constructed for variables excluded from the mean
such as interest rates or other functional forms. It is just as simple to test variance
restrictions such as @ = 0, o« is a set of linearly declining weights, or elements of
¥ are equal to zero (thereby testing for variables excluded from A). Many of the
variance tests, however, may be interpreted as being on the boundary of the
admissible parameter space so that one-tailed tests or other adjustments may be
apprapriate.

For the preferred models in this study k, depended only on the intercept and
a weighted average of past squared innovations where the weights are assumed
to be linearly declining. These strong restrictions are subjected to a great variety
of tests which allow changes in slope, seasonal spikes, freely estimated coefficients,
and a wide variety of observable variables such as interest rates, volatility, and
dummy variables for policy regimes. The models generally accept the more
parsimonious specification at reasonable significance levels either because they
are close to the true specification or because there is little power in the data to
discriminate between alternative variance formulations. If the models with less
restricted parameterizations are iterated toward convergence (for example to
calculate a Wald or a likelihood ratio test} we found it difficult to prevent
nonnegativities in the parameters regardless of the types of penalty functions or
transformations considered. In this case there were likely to be many local maxima
and generally the likelihood was ill-behaved. Thus the imposition of a par-
simonious specification for the variance function such as linearly declining weights
appears to be statistically supportable, computationally useful, and econamically
sensible.

5. THE REBULTS FOR SHORT TERM T-BILLS

Using Salomon Brothers data from the Analytical Record of Yields from 1960
through 1984 II on 3 and 6 month treasury bills, the excess holding yield, y,, was
calculated as:

=+ R/ U+ ra)]-(1+r)
which is approximately
Pe=2R —r—v

where R, is the yield on a six manth bill and r, is the three month yield, each
measured at the beginning of the quarter.
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Regressing the excess holding vield on a constant gives

(16} y,=.142+e,, £=.351,
(4.04)

L=511.

Thus, the mean of the excess holding yield over the sample period is .142 per
cent at quarterly rates or .568 per cent at annual rates. The standard deviation
is .35 at quarterly rates. From the linearized expression for the excess holding
yield above, the average yield spread was half .568 per cent or .284 per cent at
annual rates. The maximum return on a three month balanced portfolio abtained
by borrowing at the three month rate and lending at the six, was 8.2 per cent at
annual rates. The worst return occurred in the subsequent quarter and was —3.1
per cent. The rates of return from such portfolios are quite erratic and, as expected,
are not large especially if transaction costs are important in forming these
portfalios.

A glance at the solid line in Figure 1 confirms the changes in variance which
are hypathesized by the ARCH-M model to account for the changing risk premia.
The vertical axis is measured in quarterly percentage rates of return. Clearly, the
period subsequent to the 1979 change in operating procedures shows substantially
more variability than earlier periods; hawever, there are also earlier episodes of
increased variability. Regressing the squared residuals on a fourth order linearly
declining weighted average of past squared residuals gives the ARCH test as
TR*=10.1 which would be X} if there were no ARCH. There is clearly strong
evidence of heteroscedasticity in the errors.

excess holding yield

FFFFFF term premium

[a+]
L A B R B AL

Quarterly Perceninge Rates

|

FEENERNEN EURTTRTT ST EA N SAVERV IR T ST B B A A A B |
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-2

Time

Fiouae 1—Excess hold yield of 6§ month Treasury Bills and estimated risk premia.
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Regressing the excess holding yield on a constant and allowing ARCH disturb-
ances of fourth order gives:

(17) y.=.048+¢,, h?= 0044190 ¥ woel,
(3.77) {95) (7.3) "¢

L=8517, ws=(5—1)/10 (r=1,...,4).

The ARCH effect is very strong, showing a ¢ statistic of 7.3. The magnitude is
also very large as values over 1 imply nonstationary variance processes. The
estimate of the mean changes dramatically when the high variance periods are
given less weight in the regression; the constant term premium falls to .048 per
cent at a quarterly rate or .2 per cent at annual rates.

The time varying risk premium has been swept into the disturbance term in
(17) and represents misspecification. The hypothesized true model, as presented
in Seetion 2, can be formalized as:

(18} »=8+38h+e¢,
£,/ past infarmation ~ N(0, h?),
hi=y+a T wel w,=(5—7)/10 (r=1,...,4).

r=1.4
The maximum likelihood estimates and their ¢ statistics are:

(19} y,=—.0241+ 687 h,+e,,
(—1.29) (5.15)

R?=.0023+1.64F w,el
(1.08) (6.30)

L=96.34, w,={5-7)/10 (r=1,...,4).

As can be easily seen, all the slope coefficients are highly significant, indicating
that there is not only an ARCH effect (a # 0}, but also a time varying risk premium
(8 #0). The expected riskless return is negative but not significantly so and the
minimum possible expected return which would be achieved if all recent forecasts
had been precisely correct, is very small and positive {.0009). The risk premium
is two thirds of the standard deviation of the return, which is quite substantial,
indicating stronger risk aversion by the borrowers than the lenders in this market.

The parameter in the ARCH equation is above one which implies that the
unconditional variance of the excess holding vield is infinite with a fat tailed
distribution. The conditional distribution,which for mast purposes is the relevant
distribution, is of course still normal with a finite variance. An arbitrarily large
return could occur if a sufficiently long string of innovations were all large. Such
an episode would be easily reversed by a number of innovations near their median
value of zero. Simulations of this situation show rather sensibly behaved series
with larger bursts of volatility than would be expected from a marginally normal
random variable. It is possible that the maximum likelihood estimates will not
have their standard properties, but, as in the unit root case, they may have superior
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convergence rates and correctly calculated standard errars. As mentioned in the
previous section, the asymptotic distribution theory for this problem remains to
be solved. The infinite unconditional variance may be related to the frequent
failures of the variance bounds tests for interest rates.

A series of diagnostic tests were calculated for the model in {19). Although
several were significant, the tests for the functional relationship between the risk
and rate of return are of particular interest. LM tests for omitted variables h?,
exp {h,}, and log (h,) were computed to test the assumed linearity between the
standard deviation and mean of returns. Economic theory has little to say on the
nature of this trade-off as it presumably depends on the risk preferences of the
traders. Only the log variable was significant with a test statistic of 4.13. Estimating
the model with both h, and log (h,) produced ¢ statistics of 2.0 on the log and
—.4 on the level and a log likekihood of L =101.62, thereby confirming that the
model with the log of standard deviation is superior to that in the level of the
standard deviation.

The final preferred model is therefore:

(20) v, =.355+.135log h, +e,,
(4.38) (3.36)

h2=005+148 Y wel,,
(2.22) (5.56) 7~

L=10135, w,=(5—7)/10.

In this model all the coefficients are significant and the log likelihcod is substan-
tially above that of (19). The minimum term premium occurring when all past
innovations are zera is now a very small negative value of —.008 per cent at
quarterly rates.

Several sets of diagnostic tests were performed with this madel as well. These
are summarized in Table 1. Volatility is defined by:

Volatility= ¥ wyi_,, w,={5—7)/10,
T=1,4

so that it differs from the ARCH variance by the time varying risk premium. One
would expect that the weighted average of residuals would give a better estimate
of the true residual variance than the same function of the dependent variable;
however there is no guarantee, Table I shows the robustness of the model in (20)
to a variety of types of misspecification. None of the tests is significant at the §
per cent level. The tests check for nonlinearities in the risk premium, volatility,
structural shifts in October 1979, and misspecifications of the ARCH process
through omitted variables or inappropriately applied constraints. The ARCH
model with log Volatility alone achieves only log likelihood L =98.4 although
the significance and size of the variables is nearly the same as in (20).

The economically most interesting test is that for the yield spread and we turn
to a more careful analysis of this model. Mankiw and Summers (1984) (MS) find
that the yield spread is a significant and positive determinant of the excess halding
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TABLE [
DiagNosTIC TESTS FGR ARCH-M MapEeL (20)

Variahle TR? Dristribution

Variables Omitted from the Mean

R, A1 ~ X
h? 1.67 ~ x
Volatility 1.44 ~ )(;
Lag Volatility .50 - X,
Post Getober 1979 Dummy 38 - Xi
r, 60 - xi
R, 8~ xi
R —r 292 ~ xi
Yo 14 -~ X
Yica 3.38 - Xi

Variables Omitted from the Variance

Volatility 27 ~ X
Past Octaber 1979 Pummy a7 ~ ¥
r, 1.64 - xi
R, 1.60 -~ Xi
R,—r, .90 - X1
£ 31 - Xi
T .62 - Xi
£ 1, €12, £y il - X3
Yowrel g, wy=(13-7)/78, v=1,...,12 76 ~ x

yield. This implies a failure in the expectations hypothesis and a failure of an
alternative hypaothesis that long rates are overly sensitive to short rates. Our data
set gives the following least squares estimate for this model:

{21) ¥y =—250+244(R,—r)+e, a=.312
{—1.10)(5.46)

The corresponding coefficient and ¢ statistic in MS for the yield spread are 1.72
and 3.1 respectively. Their data set is a little shorter, from a different source and
embodies the Shiller linearizations.

Adding the yield spread to model (20) gives:

(22) ¥, =325+ .1301log h,+.392 (R, — 1} t+e,
(4.28) (3.59) (2.58)

ho=.004+1.64Y w,e?_,,
(1.38) (4.86)

L=10348, w,={(5—1)/10 (r=1,...,4).

It now can be seen that by both Wald and LR tests the yield spread is a signiftcant
determinant at the 5 per cent but not 1 per cent level and by the LM test it is
significant at the 10 per cent but not 5 per cent level. By economic standards the
size of the coefficient on the yield spread has fallen dramatically from the least
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TABLE II

ESTIMATES OF YARIOUS ARCH-M MODELS
Excess HOLDING YIELD OF 6 MONTH T-BILLS

Indep 59.1-84.2 39.1-11.3 T1.4-342 5B.1-791 613741

Log A, 135 092 196 A7 .093
{3.36) (3.88) (2.40) (2.96) ¢2.01)

Canst. 355 272 455 446 261
(4.38) {(4.31) {1.36) (3.72) {(2.52)
ARCH & 1.48 1.67 1.49 1.25 1.20
(5.56) (5.15) €1.57) (4.60) (2.84)

squares fit. The rest of the parameter estimates are very clase to those obtained
before in (20). Economically, it is not surprising to find some residual effect in
the yield spread. The expected value of the spread is approximately praportional
to the risk premium this period. Since it is highly autocorrelated, it will be a very
good predictor of the risk premium next period. If information other than past
innovations is useful in forecasting risk premia, then one might expect to find a
significant coefficient an the past yield spread. A useful extension would be to
allow the yield spread to directly influence the variance and consequently to
indirectly influence the risk premium.

As much of the variance in interest rates is concentrated at the end of the
sample period, the model was reestimated using subsets of the data. Surprisingly,
the results are relatively insensitive to the sample period both in magnitude and
in significance. See Table 1.

Figure 1 plots the excess holding yield and the estimated risk premium. The
scale is in quarterly percentage rates of return. The term premium rises to its
highest value {41 per cent quarterly or 1.64 per cent annual rates) in the fourth
quarter of 1980. Over the sample period there are two values which are very
slightly negative. On average, the term premium is .14 per cent. Although the
most interesting and noticeable rise in the term premium is 1979-1984, there are
also relative increases in 1960, 1972, and 1975, each of which is accompanied by
an increase in volatility of the excess holding yield.

6. MODELLING OTHER INTEREST RATES

Two additional interest rate series have been modelled using the ARCH-M
mode]l and more are in progress. The first is the monthly data set constructed by
Fama (1976} on two month vs. one month treasury bills from 1953.1 to 1971.7.
The data set differs from that used above in the sampling interval and in the
sample period. In this case the holding period is naturally taken to be one month
rather than one quarter and consequently the riskless asset is the one month
treasury bill rather than two or three month treasury bills. If a quarter is the
correct interval, then shorter lived assets must be rolled over at uncertain rates
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and therefore, the short term asset would be the risky one. For a theoretical
discussion of these issues see Woodward (1983).

The model in (18) was estimated directly although a longer lag was allowed
in the ARCH process to give a camparable memory to the variance estimator.
The results are:

{23) y.==.00052+ 80k, hi=ec+1.13 ¥ wel,,
(-1.2) (47 (8.6) "1

w,={13—7)/78 (r=1,...,12).

These are quite similar to those in equation (19) where in both cases the ARCH
parameters are in the explosive range and the coefficient of the standard deviation
is highly significant with a value of .69 befare and .8 here. The estimated risk
premium is plotted in Figure 2.

A somewhat different result was obtained using 20 year AAA carporate bands
from 1953.1 to 1980.2. Assuming that the bonds are effectively infinitely lived,
the one quarter excess holding yield can be expressed in terms of the quarterly
yield to maturity, R,, and the three month treasury bill rate, 7,:

»w=R—r—-1+R/R, ..

The average return from holding long term bonds and borrowing at the ¢-bill
rate is —.75 per cent at quarterly rates or —3 per cent at annual rates. Thus bond
holders have taken a loss over this sample period in spite of the fact that the
average long term rate was 5.9 per cent while the short term rate was only 4.6
per cent. This is a consequence of unexpected increases in interest rates possibly
due to unexpected acceleration of inflation.

Maximum likelihood estimation of {18) produced:

(24) yi=—28+.505h,  hi=c+.75 ¥ wel,,
(—2.2)(1.6) (2.6) 7~

w, ={5-r1)/10 (r=1,...,4),
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FiGgure 2—Conditional standard errors of one month forward rates.
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Figure 1—Conditional standard errars of quarterly holding yields for Moody's Aaa bond.

for the fourth order ARCH-M model, and

(25) v, =—33+.651 A, W=c,+.8 Y wel,,
(_24](19) (34) =112

w,={13—7}/78 (r=1,...,12),

for the twelfth order model.

These estimates differ from the short end of the spectrum in that they no longer
exhibit the explosive ARCH parameter, the coefficient on the risk premium is
roughly the same size but has a larger standard error, and the intercept is
considerably more negative. When (25) is estimated on data prior to 1978, the
coefficient an h, rises slightly to .84 but the ¢ statistic falls to 1.7. Thus the same
model appears to be appropriate; hawever, the significance falls due to the
omission of the highly volatile period of 1979 and 1980. The estimated risk
premium is plotted in Figure 3.

Further analysis of these two series is contained in Engle, Lilien, and Robins
{1982).

7. CONCLUSIONS

The precision with which agents can predict the future varies significantly over
timao. In relatively quiet periods, like the mid-1960%s, relatively accurate forecasts
can he made and agents can speculate on the future without absorbing large
risks. In volatile periads, like the early 1970°s and early 198(0's, forecasts are less
certain and speculation is riskier. Risk premia therefore adjust to induce investors
to absorb the greater uncertainty associated with holding the risky asset.

In this paper we have extended the simple ARCH technique of measuring
conditional variances to the ARCH-M model where the canditional variance is
a determinant of the current risk premium, and thus enters the forecasting equation
of expected financial returns. Qur results from applying this model to three
different data sets of bond holding yields are quite promising. ARCH was clearly
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present in the forecast errors of bond holding vields indicating substantjal vari-
ation in the degree of uncertainty over time. This measure of uncertainty proved
very significant in explaining the expected returns in two of the data sets, and
was significant only at slightly more than the 5 per cent level for the third. We
therefore conclude that risk premia are not time invariant; rather they vary
systematically with agent’s perceptions of underlying uncertainty.

While our initial results suggest the promise of the ARCH technique to applica-
tions that require the measurement of uncertainty, we feel that the current model
is but a first step. The ARCH framework may be applied to more general models
of uncertainty and risk. For example, the capital asset pricing model sugpests
that risk premia are not a function of simple risk, but rather of undiversifiable
risk. Risk premia therefore depend on the covariance of asset returns with the
returns of the market as a whole. The general ARCH framework may he extended
to allow conditional covariances to vary, resulting in time varying risk betas.
Such a model s beyond the scope of the current paper and is mentioned to give
some indication of possible extensions of our much simpler approach.
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