Chickens, Eggs, and Causality, or Which Came First?

Walter N. Thurman and Mark E. Fisher

Time-series evidence from the United States indicates unidirectional causality from eggs to chickens.

Key words: causality, chickens, eggs.

Granger’s seminal paper entitled “Investigating Causal Relations” has spawned a vast and influential literature. In macroeconomics, for example, the causal relationship between money and income has been investigated time (Sims) and again (Barth and Bennett; Williams, Goodhart, and Gowland; Ciccolo; Feige and Pearce; Hsiao). Some authors have taken exception to Granger’s definition of causality qua causality (Zellner; Jacobs, Leamer, and Ward; Conway et al.), and even Granger has suggested “a better term might be temporally related” (Granger and Newbold, p. 225). We find ourselves in agreement with the temporal ordering interpretation of Granger causality. In fact, we believe that the most natural application of tests for Granger causality (temporal ordering) has until now been overlooked. We refer, of course, to: “Which came first, the chicken or the egg?” Our purpose in this study is to provide an empirical answer to this venerable question, which theory alone has not resolved.

Empirical Results

We examine annual U.S. time series from 1930 to 1983 of egg production and chicken population. We count as chickens the 1 December population of all U.S. chickens except for commercial broilers. This definition is relevant in a study of the chicken-egg ordering because it includes all chickens that lay or fertilize eggs; i.e., all chickens capable of causing eggs. This measure excludes chickens raised only for meat. Eggs are measured in millions of dozens and include all eggs produced annually in the United States. All are potentially fertilizable.

The notion of Granger causality is simple: If lagged values of X help predict current values of Y in a forecast formed from lagged values of both X and Y, then X is said to Granger cause Y. We implement this notion by regressing eggs on lagged eggs and lagged chickens; if the coefficients on lagged chickens are significant as a group, then chickens cause eggs. A symmetric regression tests the reverse causality. We perform the Granger causality tests using one to four lags. The number of lags in each equation is the same for eggs and chickens. To conclude that one of the two “came first,” we must find unidirectional causality from one to the other. In other words, we must reject the noncausality of the one to the other and at the same time fail to reject the noncausality of the other to the one. If either both cause each other or neither causes the other, the question will remain unanswered. The test results are presented in table 1. They indicate a clear rejection of the hypothesis that eggs do not Granger cause chickens. They provide no such rejection of the hypothesis that chickens do not Granger cause eggs. Therefore, we conclude that the egg came first.\footnote{Feige and Pearce describe and distinguish among the several Granger causality tests. The validity of our test statistic requires lack of serial correlation, homoskedasticity, and normality of the disturbances in the distributed lag equations, which we of course assume.}

Walter N. Thurman is an assistant professor, and Mark E. Fisher is a lecturer, both in the Department of Economics and Business, North Carolina State University.

The authors thank Paul Godek for a useful suggestion.

Copyright 1988 American Agricultural Economics Association
Table 1. Granger Causality Tests

Part 1: Did the Chicken Come First?

The following equation was estimated by OLS:

\[\text{Eggs}_t = \mu + \sum_{i=1}^{L} \alpha_i \text{Eggs}_{t-i} + \sum_{i=1}^{L} \beta_i \text{Chickens}_{t-i} + \epsilon_t; \]

\(H_0 : \beta_1 = \ldots = \beta_L = 0 \) (chickens do not Granger cause eggs).

\[
\begin{array}{cccc}
L = \text{no.} & F- & P- & R^2 \text{ of} \\
of \text{lags} & \text{statistic} & \text{value} & \text{regression} \\
1 & .04 & .85 & .96 \\
2 & 1.71 & .19 & .97 \\
3 & 1.10 & .36 & .97 \\
4 & .79 & .54 & .97 \\
\end{array}
\]

Part 2: Did the Egg Come First?

The following equation was estimated by OLS:

\[\text{Chickens}_t = \mu + \sum_{i=1}^{L} \alpha_i \text{Chickens}_{t-i} + \sum_{i=1}^{L} \beta_i \text{Eggs}_{t-i}; \]

\(H_0 : \beta_1 = \ldots = \beta_L = 0 \) (eggs do not Granger cause chickens).

\[
\begin{array}{cccc}
L = \text{no.} & F- & P- & R^2 \text{ of} \\
of \text{lags} & \text{statistic} & \text{value} & \text{regression} \\
1 & 1.23 & .27 & .73 \\
2 & 10.36 & .0002 & .81 \\
3 & 5.85 & .0019 & .81 \\
4 & 4.71 & .0032 & .82 \\
\end{array}
\]

Data source: U.S. Department of Agriculture, 1983 and others. Note: The data are annual, 1930–83.

Suggestions for Future Research

The structural implications of our results are not yet clear. To draw them out fully will require collaboration between economists and poultry scientists. The potential here is great. As to other questions of temporal ordering, the chicken and egg question is only the most obvious application of causality testing. Other fruitful areas of research include the testing of “He who laughs last laughs best” and the multivariate “Pride goeth before destruction, and an haughty spirit before a fall.”

[Received June 1987; final revision received September 1987.]

References

Chickens vs. Eggs: Replicating Thurman and Fisher (1988)

by Arianto A. Patunru
Department of Economics, University of Indonesia
2004

1. Introduction

This exercise lays out the procedure for testing Granger Causality as discussed in the celebrated paper of Thurman and Fisher (American Journal of Agricultural Economics, 1988) entitled “Chickens, Eggs, and Causality, or Which Came First?”. This is inspired by Roger Koenker of University of Illinois.

2. Granger Causality, Cointegration and Unit Roots

2.1. Data and Variables

The data used in this part was originally provided by Thurman and adjusted by Koenker. It is available from R website. It consists of annual time series 1930-83 for the U.S. egg production in millions of dozens and U.S.D.A estimate of the U.S. chicken population.

<table>
<thead>
<tr>
<th>Variables</th>
<th>No. of Obs</th>
<th>Arith. mean</th>
<th>Std.</th>
<th>Min</th>
<th>Max</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eggs</td>
<td>54</td>
<td>4986.463</td>
<td>884.9662</td>
<td>3081</td>
<td>5836</td>
<td>5379.5</td>
</tr>
<tr>
<td>Chickens</td>
<td>54</td>
<td>419504</td>
<td>46406.94</td>
<td>364584</td>
<td>582197</td>
<td>403818.5</td>
</tr>
<tr>
<td>Year</td>
<td>54</td>
<td>1956.5</td>
<td>-</td>
<td>1930</td>
<td>1983</td>
<td>1956.5</td>
</tr>
</tbody>
</table>

2.2. Testing the Granger Causality: “Which Came First, Chicken or Egg?”

The following general equations with $k = 1, 2, 3$ and 4 were used for testing Granger-Causality to reproduce the comparable test statistics with Thurman and Fisher (1988)’s work.

\[Eggs_t = \mu + \sum_{k=1}^{p} \alpha_k Eggs_{t-k} + \sum_{k=1}^{p} \beta_k Chickens_{t-k} + \varepsilon_t \] (2.2.1)

\[Chickens_t = \mu + \sum_{k=1}^{p} \alpha_k Chickens_{t-k} + \sum_{k=1}^{p} \beta_k Eggs_{t-k} + \varepsilon_t \] (2.2.2)

2.2.1. Did the Chicken Come First?

To test whether “Chickens” do not Granger-cause “Eggs”, we first estimated the four variants (with different no. of lags in the RHS equation) of equation 2.2.1. Then we carried out the F-test as follows
Ho: $\beta_i = \ldots = \beta_k = 0$ (Chickens do not Granger cause Eggs)

Ha: At least one of β_i is not zero (Chickens Granger cause Eggs)

The results of F-test under Ho are presented as follows.

Table 2. F-test Results under Ho: “Chickens do not Granger cause Eggs”.

<table>
<thead>
<tr>
<th>k = no. of lags</th>
<th>df</th>
<th>F-statistic</th>
<th>p-value</th>
<th>Adj. R^2 of the regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1, 50)</td>
<td>0.05</td>
<td>0.8292</td>
<td>0.9612</td>
</tr>
<tr>
<td>2</td>
<td>(2, 47)</td>
<td>0.88</td>
<td>0.4815</td>
<td>0.9650</td>
</tr>
<tr>
<td>3</td>
<td>(3, 44)</td>
<td>0.59</td>
<td>0.6238</td>
<td>0.9629</td>
</tr>
<tr>
<td>4</td>
<td>(4, 41)</td>
<td>0.39</td>
<td>0.8125</td>
<td></td>
</tr>
</tbody>
</table>

We see that the above F-statistic results failed to reject our null hypothesis at 5% level in all four variants of regression model 2.2.1.

2.2.2. Did the “Eggs” Come First?

To test whether “Eggs” do not Granger cause “Chickens”, we first estimated the four variants (with different no. of lags in the RHS equation) of equation 2.2.2. Then we carried out the F-test as follows:

Ho: $\beta_i = \ldots = \beta_k = 0$ (Eggs do not Granger cause Chickens)

Ha: At least one of β_i is not zero (Eggs Granger cause Chickens)

The F-test results presented as follows:

Table 3. F-test Results under Ho: “Eggs do not Granger cause Chickens”.

<table>
<thead>
<tr>
<th>k = no. of lags</th>
<th>df</th>
<th>F-statistic</th>
<th>p-value</th>
<th>Adj. R^2 of the regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1, 50)</td>
<td>1.21</td>
<td>0.2772</td>
<td>0.7140</td>
</tr>
<tr>
<td>2</td>
<td>(2, 47)</td>
<td>8.42</td>
<td>0.0006</td>
<td>0.7794</td>
</tr>
<tr>
<td>3</td>
<td>(3, 44)</td>
<td>5.40</td>
<td>0.0030</td>
<td>0.7831</td>
</tr>
<tr>
<td>4</td>
<td>(4, 41)</td>
<td>4.26</td>
<td>0.0057</td>
<td></td>
</tr>
</tbody>
</table>

Our F-test result above provided the empirical evidence against our null hypothesis “Eggs do not Granger cause chickens”.

In summary, our conclusion from Granger causality test results found to be consistent with the results shown by Thurman and Fisher (1988) despite the difference between their and our calculated F-test statistics. The difference may be due to the difference in the number of observations.

Observing the patterns of partial residuals may help to explain further the rather striking results above. We graph these patterns as follows:
However, we see that the partial residual plots above do not seem to support the hypothesis of “Eggs Grainger-cause chickens”. Therefore, we need to proceed on conducting necessary tests on the series used.

3. Test for Unit Roots

In order to be able to confirm our conjecture in the previous section, we need to conduct tests for unit roots on the two series. Before doing so, we observe the pattern of the series against time as follows:
The graphs above show that there was no systematic pattern of chicken series, while there seems to be a relatively systematic pattern of egg series, esp. after the first quarter of the observations. However, we should not rely solely on such rough graphs. Therefore, we need to test the non-stationarity formally. That is, we employed the augmented Dicky-Fuller (ADF) tests on the both series.

3.1 Augmented Dicky-Fuller Equations for “Chickens”

The three equations below represent our testing model for (i) random walk behavior, (ii) random walk with drift, and (iii) random walk with drift and trend, respectively.

\[\Delta Chickens_t = (\rho - 1) Chickens_{t-1} + \sum_{k=1}^{p} \delta_k \Delta Chickens_{t-k} + \epsilon_t \]
(3.1.1)

\[\Delta Chickens_t = \text{Constant} + (\rho - 1) Chickens_{t-1} + \sum_{k=1}^{p} \delta_k \Delta Chickens_{t-k} + \epsilon_t \]
(3.1.2)

\[\Delta Chickens_t = \text{Constant} + (\rho - 1) Chickens_{t-1} + \gamma \text{trend} + \sum_{k=1}^{p} \delta_k \Delta Chickens_{t-k} + \epsilon_t \]
(3.1.3)

3.2 Augmented Dicky-Fuller equations for “Eggs”

Similarly, the equations for testing the egg series are:

\[\Delta Eggs_t = (\rho - 1) Eggs_{t-1} + \sum_{k=1}^{p} \delta_k \Delta Eggs_{t-k} + \epsilon_t \]
(3.2.1)

\[\Delta Eggs_t = \text{Constant} + (\rho - 1) Eggs_{t-1} + \sum_{k=1}^{p} \delta_k \Delta Eggs_{t-k} + \epsilon_t \]
(3.2.2)
\[
\Delta \text{Eggs}_t = \text{Constant} + (\rho - 1) \text{Eggs}_{t-1} + \gamma \text{trend}_t + \sum_{k=1}^{k} \delta_k \Delta \text{Eggs}_{t-k} + \epsilon_t \quad (3.2.3)
\]

Before estimating the ADF equations from 3.1.1 to 3.2.3, we first determine the value of \(k \). For this purpose we arbitrarily selected \(k = 1, 2, 3 \) and 4 and estimated four variants of those equations. Then we carried out the \(F \)-test to test the joint \(H_0: \delta_1 = \ldots = \delta_k = 0 \) against \(H_a: \) At least one of the \(\delta_k \) is not zero. In case that the \(F \)-test provided the empirical evidence against \(H_0 \), we then computed the Schwarz’s Information Criterion (SIC) using equation 3.2.4 below for those estimated equations.

\[
SIC_j = \log \hat{\sigma}_j^2 + (k_j / n) \log n \quad (3.2.4)
\]

where \(n \) is the number of observations, \(k \) is the number of parameters, and \(\hat{\sigma}_j^2 \) is the residual sum of squares estimated from OLS divided by \(n \).

Our results for SIC for different lag structure in equation 3.1.1 to 3.2.3 are summarized as follows:

<table>
<thead>
<tr>
<th>Equation</th>
<th>SIC values corresponding to ADF equations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of lags (k)</td>
</tr>
<tr>
<td>Chicken</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Eggs</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

As a decision rule we chose \(k \) number of lags that minimized the SIC for each equation. If we follow this rule for SIC value we should use \(k = 1 \) in ADF equations for “Chicken” and “Eggs” (section 3.1 and 3.2) for the purpose of testing unit roots. However, for pedagogical purpose, we estimated ADF equations for all four different \(k \) values, ranging from 1 to 4.

3.3 Hypothesis Testing for Nonstationarity

We first estimated the ADF equations from 3.1.1 to 3.2.3 with \(k = 1, 2, 3, 4 \) and tested the following hypothesis in each equation to determine whether there is a unit root in the given time series.

\[
H_0: \rho = 1 \quad \text{(There is unit root in the series)}
\]
\[
H_a: \rho < 1 \quad \text{(There is no unit root in the series)}
\]

The test results and corresponding test statistics are presented as follows:
Based on the results presented in Table 6, we failed to reject our Ho, hence confirmed that time series observations for “Chickens” is nonstationary.

In the same fashion, based on the results presented in Table 7, we also failed to reject the associated Ho, hence confirmed that time series observations for “Eggs” is also nonstationary.

Thus we confirmed that both “Chickens” and “Eggs” series are nonstationary. That is, they exhibit the presence of unit-root or I(1) process. This implies a violation to the classical iid conditions for residuals in equation (2.1.1) and (2.1.2). In other words, our prior conclusion that “Eggs Grainger-cause chickens” is somehow weakened, in the sense that our F-statistics in Table 2 might have been overstated.

To re-check the result we can impose first difference on both series in order to make them follow I(0) process. Therefore, our new models for causality tests are:
\[\Delta Eggs_t = \mu + \sum_{k=1}^{p} \alpha_k \Delta Eggs_{t-k} + \sum_{k=1}^{p} \beta_k \Delta Chickens_{t-k} + \epsilon_t \]
\[\Delta Chickens_t = \mu + \sum_{k=1}^{p} \alpha_k \Delta Chickens_{t-k} + \sum_{k=1}^{p} \beta_k \Delta Eggs_{t-k} + \epsilon_t \]

The associated results are presented in the following table:

Table 8. F-test Results under Ho: “Chickens do not Granger cause Eggs” (Stationary)

<table>
<thead>
<tr>
<th>k = no. of lags</th>
<th>df</th>
<th>F-statistic</th>
<th>p-value</th>
<th>Adj. R(^2) of the regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (1,49)</td>
<td></td>
<td>0.54</td>
<td>0.4646</td>
<td>0.1086</td>
</tr>
<tr>
<td>2 (2,46)</td>
<td></td>
<td>0.39</td>
<td>0.6816</td>
<td>0.0698</td>
</tr>
<tr>
<td>3 (3,43)</td>
<td></td>
<td>0.22</td>
<td>0.8788</td>
<td>0.0184</td>
</tr>
<tr>
<td>4 (4,40)</td>
<td></td>
<td>0.28</td>
<td>0.8881</td>
<td>-0.0219</td>
</tr>
</tbody>
</table>

Table 9. F-test Results under Ho: “Eggs do not Granger cause Chickens” (Stationary)

<table>
<thead>
<tr>
<th>k = no. of lags</th>
<th>df</th>
<th>F-statistic</th>
<th>p-value</th>
<th>Adj. R(^2) of the regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (1,49)</td>
<td></td>
<td>10.37</td>
<td>0.0023</td>
<td>0.1681</td>
</tr>
<tr>
<td>2 (2,46)</td>
<td></td>
<td>3.92</td>
<td>0.0268</td>
<td>0.136</td>
</tr>
<tr>
<td>3 (3,43)</td>
<td></td>
<td>2.93</td>
<td>0.0441</td>
<td>0.1229</td>
</tr>
<tr>
<td>4 (4,40)</td>
<td></td>
<td>4.18</td>
<td>0.0064</td>
<td>0.2281</td>
</tr>
</tbody>
</table>

It turns out that the results in Table 8 and Table 9 **provide support to our conclusion that “Eggs Granger-cause Chickens”**. In addition, after correcting for nonstationarity, we found that even the model with lag-one of eggs in chickens-eggs equation is significant.

3.4. Tests for Cointegration

We confirmed from Table 6 and 7 that both variables “Chickens” and “Eggs” are nonstationary meaning that they showed the presence of unit roots. To test whether those series are cointegrated, we first observe the relationships between the residuals and time and between the residual with its lag as follows:
There are not many inferences we can get from Graph 4. On the other hand, Graph 5 suggests a weak positive relation between residual and its lag.

Next, we estimated the following long run equilibrium equation (3.4.1) for Chicken-Egg processes.

\[\text{Chickens}_t = \beta_1 + \beta_2 \text{Eggs}_t + \nu_t \quad \text{and} \quad \nu_t \sim iidN(0, \sigma^2 I_T) \]

(3.4.1)

Then we estimated the following augmented Engle-Graewner (AEG) equations 3.4.2-3.4.4 for testing the presence of unit roots in residuals of equation (3.41).

\[\Delta \hat{\nu}_t = (\rho - 1) \hat{\nu}_{t-1} + \sum_{k=1}^{p} \delta_k \Delta \hat{\nu}_{t-k} + \epsilon_t \]

(3.4.2)

\[\Delta \hat{\nu}_t = \text{Constant} + (\rho - 1) \hat{\nu}_{t-1} + \sum_{k=1}^{p} \delta_k \Delta \hat{\nu}_{t-k} + \epsilon_t \]

(3.4.3)

1 The procedure is similar to ADF. The only difference here is that we impose the test on residual series. This is why this test is also called “residual-based test”.

8
We tested the following hypothesis for the presence of unit roots in the above three AEG equations.

Ho: \(\rho = 1 \) (There is unit root in the estimated residuals of equation 3.4.1)

Ha: \(\rho < 1 \) (There is no unit root in the estimated residuals of equation 3.4.1)

Our Dicky-Fuller test statistics are presented as follows:

Table 10. Augmented Dickey-Fuller Tests for Residuals Series

<table>
<thead>
<tr>
<th>Lag</th>
<th>Cons</th>
<th>Trend</th>
<th>Test Statistic</th>
<th>1% Critical Value</th>
<th>5% Critical Value</th>
<th>p-value</th>
<th>Reject Ho</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z(0)</td>
<td>c t</td>
<td>-2.291</td>
<td>-4.143</td>
<td>-3.497</td>
<td>0.4404</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c -</td>
<td>-2.120</td>
<td>-3.576</td>
<td>-2.928</td>
<td>0.2364</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- -</td>
<td>-2.146</td>
<td>-2.619</td>
<td>-1.950</td>
<td>-</td>
<td>Yes (5%)</td>
<td></td>
</tr>
<tr>
<td>Z(1)</td>
<td>c t</td>
<td>-2.025</td>
<td>-4.146</td>
<td>-3.498</td>
<td>0.5885</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c -</td>
<td>-1.810</td>
<td>-3.577</td>
<td>-2.928</td>
<td>0.3756</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- -</td>
<td>-1.834</td>
<td>-2.619</td>
<td>-1.950</td>
<td>-</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Z(2)</td>
<td>c t</td>
<td>-2.619</td>
<td>-4.148</td>
<td>-3.499</td>
<td>0.2714</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c -</td>
<td>-2.282</td>
<td>-3.579</td>
<td>-2.929</td>
<td>0.1778</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- -</td>
<td>-2.311</td>
<td>-2.620</td>
<td>-1.950</td>
<td>-</td>
<td>Yes (5%)</td>
<td></td>
</tr>
<tr>
<td>Z(3)</td>
<td>c t</td>
<td>-2.583</td>
<td>-4.150</td>
<td>-3.500</td>
<td>0.2885</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c -</td>
<td>-2.251</td>
<td>-3.580</td>
<td>-2.930</td>
<td>0.1884</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- -</td>
<td>-2.282</td>
<td>-2.620</td>
<td>-1.950</td>
<td>-</td>
<td>Yes (5%)</td>
<td></td>
</tr>
<tr>
<td>Z(4)</td>
<td>c t</td>
<td>-3.163</td>
<td>-4.159</td>
<td>-3.504</td>
<td>0.0919</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c -</td>
<td>-2.659</td>
<td>-3.587</td>
<td>-2.933</td>
<td>0.0814</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- -</td>
<td>-2.695</td>
<td>-2.622</td>
<td>-1.950</td>
<td>-</td>
<td>Yes (5%)</td>
<td></td>
</tr>
</tbody>
</table>

This implies that estimated residuals from equation 3.4.1 exhibits nonstationary. We also found that both estimated parameters for models with trend and drift were statistically insignificant at 5% level in all three equations from 3.4.2-3.4.4. With the exception of cases without both constant and trend, in general, we failed to reject the null. This means, **the eggs and chickens series were not cointegrated**.

4. Notes

You can do all the above procedure on Stata in a pretty straightforward way. Better yet, this is probably a good way to start using R. Koenker has made the data available in R.