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Introduction 
  
  Panel data analysis is an increasingly popular form of longitudinal data analysis 
among social and behavioral science researchers. A panel is a cross-section or group of 
people who are surveyed periodically over a given time span.  First, we will consider a 
small sample of panel data analytic applications in the social sciences.  Then we will 
address the data structure for panel analysis.  Principal models of panel analysis will be 
summarized, along with some of their relative advantages and disadvantages.  We will 
discuss a test to determine whether to use fixed or random effects models.  After a 
synopsis of methods of estimations tailored to different situations, we will conclude with 
a brief discussion of popular software capable of performing panel analysis.  
 
 
Some Applications of Panel Analysis 
 
  Panel data analysis is a means of studying a particular subject within multiple 
sites, periodically observed over a defined time frame.  Within the social sciences, panel 
analysis has enabled researchers to undertake longitudinal analyses in a wide variety of 
fields. In economics, panel data analysis is used to study the behavior of firms and wages 
of people over time. In political science, it is used to study political behavior of parties 
and organizations over time.  It is used in psychology, sociology and health research to 
study characteristics of groups of people followed over time.  In educational research, 
researchers study classes of students or graduates over time.  With repeated observations 
of enough cross-sections, panel analysis permits the researcher to study the dynamics of 
change with short time series.  The combination of time series with cross-sections can 
enhance the quality and quantity of data in ways that would be impossible using only one 
of these two dimensions (Gujarati, 638).  Panel analysis can provide a rich and powerful 
study of a set of people, if one is willing to consider both the space and time dimension of 
the data.   
 
Panel Analysis: An Overview 
 

Panel data analysis endows regression analysis with both a spatial and temporal 
dimension.  The spatial dimension pertains to a set of cross-sectional units of observation.  
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These could be countries, states, counties, firms, commodities, groups of people, or even 
individuals.  The temporal dimension pertains to periodic observations of a set of 
variables characterizing these cross-sectional units over a particular time span.  An 
example of a panel data set is a collection of 3 countries for which there are the same 
economic variables—such as, personal expenditures, personal disposable income, and 
median household income, per capita income, personal disposable income, population 
size, unemployment, and employment--collected annually for 10 years.  This pooled data 
set, sometimes called time series-cross sectional data, contains a total of 3*10=30 
observations. In other words, the 3 countries are followed for 10 years and are sampled 
annually. 
 
  
Panel Data Set Structure 
 
 Panel data sets generally include sequential blocks or cross-sections of data, 
within each of which resides a time series.  A typical panel data set, including country, 
year, personal disposable income, personal expenditures, and median household income 
from 1991 through 2001 would look like: 
 
Countryid  year   pdinc  persexp hhldinc   
Xylandia    1991  34000  25000  60000 
Xylandia    1992  35000  26000 71000        
Xylandia    1993  36050  26500 72000 
    .                 .       .              .          . 
    .                 .       .              .          . 
    .                 .       .              .          . 
Xylandia    2001  45000  35000 92000 
Bergunia    1991 23000   19000 55000 
Bergunia    1992 24000   20100 57000 
    .                 .       .              .          . 
    .                 .       .              .          . 
    .                 .       .              .          . 
Begunia     2001 40000   35000  88000 
Taimat       1991 30999   20000  63000 
Taimat       1992 31000  21000   62030 
    .                 .       .              .          . 
    .                 .       .              .          . 
    .                 .       .              .          . 
Taimat      2001 36000  28000   69040 
 
Apart from the variable number, the data structure confers upon the variables two 
dimensions.  They have a cross-sectional unit of observation, which in this case is 
country i. They have a temporal reference, t, in this case the year. The error term has two 
dimensions, one for the country and one for the time period.  In this exemplar, assume 
that there are three countries and 10 years of time.  Even though time is nested within the 
cross-section in this example, Lois Sayrs (1989) writes that under some circumstances the 
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cross-sections may be nested within time.  If there are no missing values, the data set is 
called a balanced panel, but if there are missing values, the data set is referred to as an 
unbalanced panel.   
 
The Panel Analysis Equation 
 
 Therefore the equation explaining personal expenditures might be 
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 where  
            HHinc1it =  Household income. 
  PDI2it=personal disposable income 
 
Types of Panel Analytic Models 
 
 There are several types of panel analytic models. There are constant coefficients 
models, fixed effects models, and random effects models.  Among these types of models 
are dynamic panel, robust models, and covariance structure models.  Solutions to 
problems of heteroskedasticity and autocorrelation are of interest here.  We will try to 
summarize some of the prominent aspects of this kind of methodology, but first we need 
to consider the data structure. 
 
  

The Constant Coefficients Model 
 
One type of model has constant coefficients, referring to both intercepts and slopes.  In 
the event that there is neither significant country nor significant temporal effects, we 
could pool all of the data and run an ordinary least squares regression model.  Although 
most of the time there are either country or temporal effects, there are occasions when 
neither of these is statistically significant.  This model is sometimes called the pooled 
regression model. 
 

The Fixed Effects Model (Least Square Dummy Variable Model) 
 

Another type of panel model would have constant slopes but intercepts that differ  
according to the cross-sectional (group) unit—for example, the country.  Although there 
are no significant temporal effects, there are significant differences between countries in 
this type of model.  While the intercept is cross-section (group) specific and in this case 
differs from country to country, it may or may not differ over time. These models are 
called fixed effects models. 
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After we discuss types of fixed effects models, we proceed to show how to test for 
the presence of statistically significant group and/or time effects. Finally, we discuss the 
advantages and disadvantages of the fixed effects models before entertaining alternatives.  
Because i-1 dummy variables require leaving out one country, where I is used to 
designate the particular country, this same model is sometimes called the Least Square 
Dummy Variable model (Eq. 2).  
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Another type of fixed effects model could have constant slopes but intercepts that 
differ according to time.  In this case, the model would have no significant country 
differences but might have autocorrelation owing to time-lagged temporal effects.  The 
residuals of this kind of model may have autocorrelation in the process.  In this case, the 
variables are homogenous across the countries.  They could be similar in region or area of 
focus.   For example, technological changes or national policies would lead to group 
specific characteristics that may effect temporal changes in the variables being analyzed.  
We could account for the time effect over the t years with t-1 dummy variables on the 
right-hand side of the equation.  In Equation 3, the dummy variables are named according 
to the year they represent. 
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            There is another fixed effects panel model where the slope coefficients are 
constant, but the intercept varies over country as well as time.  In Equation 4, we would 
have a regression model with i-1 country dummies and t-1 time dummies.   The model 
could be specified as follows:  
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Another type of fixed effects model has differential intercepts and slopes.  This 
kind of model has intercepts and slopes that both vary according to the country.    To 
formulate this model, we would include not only country dummies, but also their 
interactions with the time-varying covariates as well (Eq. 5).  
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 In this model, the intercepts and slopes cumulatively vary with the country.  The 
intercept for Country1 would be a1.  The intercept for Country2 would also include an 
additional intercept, a2, so the intercept for Country2 would be a1+a2.   The intercept for 
Country3 would include an additional intercept.  Hence, its intercept would be a1+a3.    
The slope for PDI2it with Country2 would be b2 + b4, while the slope for PDI2it with 
Country3 would be b2 + b5.  One could similarly compute the slope for HHinc3it with 
Country2 as b3 + b6.  In this way, the intercepts and slopes vary with the country. 
 
   There is also a fixed effects panel model in which both intercepts and slopes 
might vary according to country and time.  This model specifies i-1 Country dummies,   
t-1 Time Dummies, the variables under consideration and the interactions between them.  
If all of these are statistically significant, there is no reason to pool.   The degree of 
freedom consumption leaves this model with few degrees of freedom to test the variables.  
If there are enough variables, the model may not be analyzable.  
 
 

Fixed Effect Hypothesis Testing 
 
 We may wish to hierarchically test the effects of the fixed effects model. We use 
the pooled regression model as the baseline for our comparison.   We first test the group 
(country) effects.  We can perform this significance test with an F test resembling the 
structure of the F test for R2 change between the fixed effects model (fem) and the pooled 
version. 
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Here T=total number of temporal observations. n=the number of groups, and k=number 
of regressors in the model. If we find significant improvements in the R2 then, we have 
statistically significant group effects. 
 
 We also want to test for the time effects.  This can be done by a contrast, using the 
first or last time point as a reference. We assume that the sum of the time effects is equal 
to zero. Referring to Equation 3, we use a contrast, which is a paired t test between the 
reference and test value.  Greene (2003) expresses Eq. 3 more generally as: 
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In this formulation, the group effects are the iα  s and the time effects are the tγ s. 
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One can obtain least squares estimates for ys and xs with 
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Greene (2003) formulates the time effects by 
 
 

. .ˆ ( ) ( ) ' ( . )t t t tc y y x x b Eq 9γ = = − − −  
 
 
We can test for group, time, and interaction effects, assuming that we have not consumed 
all of our degrees of freedom.    We hope to see an improvement in the R2 without a 
problem with autocorrelation. 
 If the panels are unbalanced, adjustments to the total counts are made.  By using  

1

n
ii

T
=∑  instead of nT to account for the total number of observations, proper variances 

and F tests are computed.   Hence, the unbalanced panels are easy to accommodate. 
 
 Because fixed effects estimators depend only on deviations from their group 
means, they are sometimes referred to as within-groups estimators (Davidson and 
MacKinnon, 1993).   If the cross-sectional effects are correlated with the regressors, then 
the cross-sectional effects will be correlated with the group means. Ordinary least squares 
estimation on the pooled sample would be inconsistent, even though the within-groups 
estimator would be consistent.   If, however, the fixed effects are uncorrelated with the 
regressors, the within-groups estimator will not be efficient.  If there is only variation 
between the group means, then it would be permissible to use the between-groups 
estimator, but this would inconsistent if the cross-sectional errors are correlated with the 
group means of the regressors (Davidson and MacKinnon, 1993).    
 

Fixed Effects Pros and Cons  
 
  Fixed effects models are not without their drawbacks.  The fixed effects models 
may frequently have too many cross-sectional units of observations requiring too many 
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dummy variables for their specification.  Too many dummy variables may sap the model 
of sufficient number of degrees of freedom for adequately powerful statistical tests.  
Moreover, a model with many such variables may be plagued with multicollinearity, 
which increases the standard errors and thereby drains the model of statistical power to 
test parameters.  If these models contain variables that do not vary within the groups, 
parameter estimation may be precluded. Although the model residuals are assumed to be 
normally distributed and homogeneous, there could easily be country-specific 
(groupwise) heteroskedasticity or autocorrelation over time that would further plague 
estimation.  
  
 The one big disadvantage of the fixed effects model is that the error terms may be 
correlated with the individual effects.  If group effects are uncorrelated with the group 
means of the regressors, it would probably be better to employ a more parsimonious 
parameterization of the panel model. 
 
 

The Random Effects Model 
 
 Prof. William H. Greene calls the random effects model a regression with a 
random constant term (Greene, 2003). One way to handle the ignorance or error is to 
assume that the intercept is a random outcome variable.  The random outcome is a 
function of a mean value plus a random error.  But this cross-sectional specific error 
term, iv  which indicates the deviation from the constant of the cross-sectional unit –in this 
example, country—must be uncorrelated with the errors of the variables if this is to be 
modeled.  The time series cross-sectional regression model is one with an intercept that is 
a random effect.  
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Under these circumstances,   the random error iv is heterogeneity-specific to a cross-
sectional unit –in this case, country.  This random error iv is constant over time.  
Therefore, [ | ]i iE v x σ=2 2 .  The random error ite   is specific to a particular observation.  
For iv  to be properly specified, it must be orthogonal to the individual effects.   Because 
of the separate cross-sectional error term, these models are sometimes called one-way 
random effects models. Owing to this intrapanel variation, the random effects model has 
the distinct advantage of allowing for time-invariant variables to be included among the 
regressors. 
 
 

Error Components Models 
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 If, however, the random effects model depends on both the cross-section and the 
time series within it, the error components (sometimes referred to as variance 
components) models are referred to as a two-way random effects model.  In that case, the 
error term should be uncorrelated with the time series component and the cross-sectional 
(group) error. The orthogonality of these components allows the general error to be 
decomposed into cross-sectional specific, temporal, and individual error components. 
 

( . )it i t ite v e Eq 11η= + +    
   
The component, vi, is the cross-section specific error.  It affects only the observations in 
that panel. Another, et, is the time-specific component.  This error component is peculiar 
to all observations for that time period, t.  The third itη  affects only the particular 
observation.   These models are sometimes referred to as two-way random effects models 
(SAS, 1999).   
          
  

The Random Parameters Model 
 
 In the Hildreth, Houck, and Swamy random coefficient model, the parameters are 
allowed to vary over the cross-sectional units.  This model allows both random intercept 
and slope parameters that vary around common means.  The random parameters can be 
considered outcomes of a common mean plus an error term, representing a mean 
deviation for each individual.  This model assumes neither heteroskedasticity nor 
autocorrelation within the panels to avoid complicating the covariance matrix. 
             
 In multilevel models pertaining to students, schools, and cities, there can be 
individual student, school, and city random error terms as well.  There can also be cross-
level interactions within these hierarchical models also. 
   
 

Dynamic Panel Models 
   
 If there is autocorrelation in the model, it is necessary to deal with it.  One can 
apply one or more of the several tests for residual autocorrelation.  The Durbin-Watson 
test for first-order autocorrelation in the residuals was modified by Bhargava et al. to 
handle balanced panel data.  Baltagi and Wu (1999) modified it further to handle 
unbalanced panel and equally spaced data (STATA, 2003). There may be panel specific 
autocorrelation or there may be common autocorrelation across all panels.  There are 
provisions for specifying the type of autocorrelation.  Alternatively, an autoregression on 
lags of the residuals may indicate the presence or absence of autocorrelation and the need 
for dynamic panel analysis.  
 

If there is autocorrelation from one temporal period to another, it is possible to 
analyze the “differences in differences” of these observations, using the first or last as a 
baseline (Wooldridge, 2002).  If autocorrelation inheres across these observations, the 
model may be first partial differenced to control for the autocorrelation effects on the 
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residuals (Greene, 2002).  Arellano and Bond introduced lagged dependent variables into 
their model to account for dynamic effects.  The lagged dependent variables can be 
introduced to either fixed or random effects models. Their inclusion assumes that the 
number of temporal observations is greater than the number of regressors in the model. 

   
Even if one assumes no autocorrelation, problems from the correlation of the 

lagged endogenous and the disturbance term may plague the analysis. Bias can result 
especially when the sample is finite or small.  If one uses general methods of moments, 
with instrumental variables, the use of the proxy variables or instruments may circumvent 
problems with correlations of errors.  Moreover, there are a large number of instruments 
provided by lagged variables. GMM with these instruments and larger orders of moments 
can be used to obtain additional efficiency gains.  
 
 Another approach to deal with autocorrelation in the random errors is the Parks 
method. The model assumes an autoregressive error structure of the first order along with 
contemporaneous correlation among the cross-sections and this model is estimated by a 
two-state generalized least squares procedure (SAS Institute, 1999).  
 

, ( . )  it i i t ite e Eq 12ρ η−= +1  
   

 Panel data models with generalized estimating equations can handle higher order 
panel data analysis. 
 

Robust Panel Models 
 
 There are a number of problems that plague panel data models.  Outliers can bias 
regression slopes, particularly if they have bad leverage. These outliers can be 
downweighted with the use of M-estimators in the model.  Heteroskedasticity problems 
arise from groupwise differences, and often taking group means can remove 
heteroskedasticity.  The use of a White heteroskedasticity consistent covariance estimator 
with ordinary least squares estimation in fixed effects models can yield standard errors 
robust to unequal variance along the predicted line (Greene, 2002; Wooldridge, 2002).   
 
 Sometimes autocorrelation inheres within the panels from one time period to 
another. Some problems with dynamic panels that contain autocorrelation in the residuals 
are handled with a Prais-Winston transformation or a Cochrane-Orcutt transformation 
that amounts to a first partial differencing to remove the bias from the autocorrelation.  
Arellano, Bond, and Bover developed one and two step general methods of moments 
(GMM) estimators for panel data analysis.  GMM is usually robust to deviations of the 
underlying data generation process to violations of heteroskedasticity and normality, 
insofar as they are asymptotically normal but they are not always the most efficient 
estimators. 
 

If there is autocorrelation in the models, one can obtain a weight adjusted 
combination of the White and Newey-West estimator to handle both the 
heteroskedasticity and the autocorrelation in the model. 
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Specification tests: the Quandary of Random or Fixed Effect Models  
  
 The Hausman specification test is the classical test of whether the fixed or random 
effects model should be used.  The research question is whether there is significant 
correlation between the unobserved (unit of observation) specific random effects and the 
regressors.   If there is no such correlation, then the random effects model may be more 
powerful and parsimonious. If there is such a correlation, the random effects model 
would be inconsistently estimated and the fixed effects model would be the model of 
choice. 
 
 The test for this correlation is a comparison of the covariance matrix of the 
regressors in the LSDV model with those in the random effects model. The null 
hypothesis is that there is no correlation.  If there is no statistically significant difference 
between the covariance matrices of the two models, then the correlations of the random 
effects with the regressors are statistically insignificant. The Hausman test is a kind of 
Wald χ

2
test with k-1 degrees of freedom (Where k=number of regressors) on the 

difference matrix between the variance-covariance of the LSDV with that of the Random 
Effects model.  SAS, LIMDEP and STATA all contain the Hausman specification test.  
LIMDEP also contains the Bhargarva and Sargan Test (1983).   
  
 
Model Estimation 
 

Models have to be estimated by methods that handle the problems afflicting them. 
A constant coefficients model with residual homogeneity and normality can be estimated 
with ordinary least squares estimation (OLS). As long as there is no groupwise or other 
heteroskedastic effects on the dependent variable, OLS may be used for fixed effects 
model estimation as well (Sayrs, 1989).  For OLS to be properly applied, the errors have 
to be independent and homoskedastic.  Those conditions are so rare that is often 
unrealistic to expect that OLS will suffice for such models (Davidson and MacKinnon, 
1993). 
       

Heteroskedastic models are usually fitted with estimated or feasible generalized 
least squares (EGLS or FGLS). Heteroskedasticity can be assessed with a White or a 
Breusch-Pagan test.  For the most part, fixed effects models with groupwise 
heteroskedasticity cannot be efficiently estimated with OLS.  If the sample size is large 
enough and autocorrelation plagues the errors, FGLS can be used. Random sampling and 
maximum likelihood iterated by generalized least squares have also been used (Greene, 
2002).  Beck and Katz (1995) reportedly found that if the sample size is finite or small, 
the total number of temporal observations must be as large as the number of panels; 
moreover they reportedly found that OLS with panel corrected errors provided more 
efficient estimation than FGLS (Greenberg, 2003; STATA, 2003). 
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 If the model exhibits autocorrelation and/or moving average errors, first 
differences (Wooldridge, 2002) or GLS corrected for ARMA errors can be used (Sayrs, 
1989).  Hausman and Taylor (1981) have used weighted instrumental variables, based 
only on the information within the model, for random effects estimation to be used when 
there are enough instruments for the modeling.  The instrumental variables, which are 
proxy variables uncorrelated with the errors, are based on the group means.  The use of 
these instrumental variables allows researchers to circumvent the inconsistency and 
inefficiency problems following from correlation of the individual variables with the 
errors.   
 

For dynamic panels with lagged dependent variables, Arellano, Bond, and Bover 
have used general methods of moments, which are asymptotically normal (Wooldridge, 
2002).  With greater numbers of moment conditions, they are able to handle some 
missing data and they can attain gains in efficiency as long as there are three or four 
periods of data (Greene, 2002). 

  
Another estimation procedure was developed by Arnold Zellner, called seemingly 

unrelated regression (SUR) requires that the number of explanatory variables in each 
cross-section is the same. In the SUR approach, variables are transformed with a form of 
Cochrane-Orchutt correction to model the autocorrelation. Feasible generalized least 
squares is used to estimate a covariance matrix. The parameter estimates are also 
modeled.  The process is iterated until the errors are minimized.    

 
LIMDEP 8 (Greene, 2002) has its own protocol for estimating random parameter 

models, including the limited dependent variable models.  The limited dependent variable 
models are population averaged models.  In LIMDEP, the estimation for such models 
begins with an OLS estimation of starting values and then proceeds to simulation with 
Halton draws.  This procedure, Greene maintains, is generally faster than the quadrature 
estimation used by Stata.  When the panels are large in number and size, it may be the 
only timely method for estimation. 
       

 If there are enough temporal observations, they can use either the lagged levels or 
lagged differences as instruments, while the other variables serve as their own 
instruments in an extension.   If group sizes are larger than 20 and the autocorrelation is 
higher than 0.4, the random effects quadrature algorithms can bog down or even fail to 
converge (STATA, 2003). 
       
 Robust estimation, when one has heteroskedasticity, autocorrelation, or outliers to 
contend with, may be performed with the general methods of moments and combination 
of White and Newey-West estimators to obtain robust panel standard errors.  Arellano, 
Bond, and Bover have used GMM in their models and these are incorporated into 
LIMDEP version 8 and Stata version 8 special edition. GMM models tends to be robust 
with respect to heteroskedasticity and nonnormality.  Professors Jeffrey Powell and 
Kenneth Chay (2003), University of California at Berkeley, have applied robust 
estimation to semiparametric censored panel data regression analysis 
(http://elsa.berkeley.edu/~kenchay/ftp/binresp/jepfinal.pdf, September 21, 2003).  They 



 12

have used least absolute deviations estimation, form of robust modeling that is relatively 
invulnerable to outlier distortion, to apply to censored data.     
 
 
 
Statistical Packages 
 

Among those statistical packages that excel in programs for panel data analysis 
are LIMDEP, STATA, and SAS.  Although all three statistical packages have procedures 
dedicated to panel data analysis, LIMDEP and STATA appear to have a particularly rich 
variety of panel analytic procedures. All three packages have fixed and random effects 
models, can handle balanced or unbalanced panels, and can estimate one or two-way 
random and fixed effects models. Although LIMDEP and STATA have the both 
Hausman and Sargan tests for specification, SAS has only the Hausman specification test.  
Both LIMDEP and STATA have the Hausman and Taylor estimator for random effects. 
All three packages have procedures that can correct for autocorrelation in the models. 
LIMDEP and STATA have Arellano, Bond and Bover’s estimator for dynamic panel 
models, whereas SAS uses the Parks method. LIMDEP, STATA, and SAS procedures 
can handle groupwise heteroskedasticity in the random effects model.  LIMDEP and 
STATA have the Hildreth, Houck, and Swamy random coefficients model.  Stata has 
xtreg for performing a random coefficient analysis with only a random intercept.  When 
more than one random coefficient has to be analyzed, one can use the gllamm ( 
generalized linear latent and mixed models) procedure (Twisk, 2003). SAS can perform 
this kind of analysis with its Mixed procedure. STATA and LIMDEP have procedures for 
panel corrected standard errors.  SAS has a variance component moving average (De 
Silva) procedure.   

 
Both LIMDEP and STATA have procedures for limited dependent panel data 

analysis.  They have poisson, negative binomial, logit, probit, and complimentary log-log 
panel models with either fixed or random effects.  Although Stata can model these 
limited dependent variable models as random effects or population averaged models 
(with the exceptions of the poisson and negative binomial models which can be modeled 
as fixed, random, or population averaged models), LIMDEP can model them as either 
fixed or random effects models. Both can analyze panel stochastic frontier models.   

 
STATA and LIMDEP have cross-sectional time series population average 

generalized estimating equation models as well. These models use a variety of link 
functions (identify, log, logit, probit, negative binomial, and complimentary log-log), 
distribution families (Gaussian, inverse Gaussian, binomial, poisson, negative binomial, 
and gamma) and working correlation matrix structures (independent, exchangeable, 
autoregressive, stationary, structured, and unstructured) that provide for a flexible 
modeling for equally or unequally spaced correlation structures of panel data with 
iterated reweighted least squares estimation.  LIMDEP has a procedure for the random 
parameters model and for a Latent Class Linear Regression model. 
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Conclusion 
 
Panel data analysis is an important method of longitudinal data analysis. 

It permits a sophisticated family of regression analysis in both spatial and temporal 
dimensions.  When the data are from various sites and the time series or too short for 
separate time series analysis, panel data analysis may provide the only way to 
longitudinally analyze the data.  Even if the series are long enough for separate analysis, 
panel data analysis provides a rich family of techniques with which to long at change 
over time common to a particular type of cross-sectional unit.  In short, these techniques 
may be a necessary part of the toolkit of the social or behavioral researcher.  
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