Economic Data Analysis Using R

- Introduction to R
- Getting Started - Using Rstudio IDE
- Economic Data
- Data Visualization – Using Graphs
- Data Analysis I
- Data Analysis II
Data Analysis I

• Descriptive Statistics
• Correlation and Covariance
• Analysis of Variances (AOV, ANOVA)
 – Using contingency tables
 – AOV with one category variable
 – AOV with two category variables
Data Analysis I

• Hypothesis Testing
 – DGP ~ Non IID
 – One-Variable Testing (t-test)
 – Two-Variable Testing (paired t-test)
Economic Data Analysis Using R

• Introduction to R
• Getting Started - Using Rstudio IDE
• Economic Data
• Data Visualization – Using Graphs
• Data Analysis I
• Data Analysis II
Data Analysis II

• Cross Sections Data
 – Hypothesis Testing
 • Homoscedasticity
 • Normality
 – Linear Regression
 • Ordinary Least Squares
 • Quantile Regression
 – Least Absolute Deviation
 • Maximum Likelihood
Data Analysis II

• Time Series Data
 – Hypothesis Testing
 • Durbin-Watson
 • Box-Pierce / Ljung-Box
 • ACF/PACF
 – Transformation: Lag, Difference
 – ARIMA Model

• Panel Data
 – Multilevel Analysis (lml4)
Data Analysis II

• Based on An Introduction to Statistical Learning with R (by James, G., Witten, D., Hastie, T., Tibshirani, R.) [Check here]
Data Analysis II

• **Regression** (ISLR Chapter 3)
• **Classification** (ISLR Chapter 4)
• **Cross Validation** (ISLR Chapter 5)
• **Model Selection** (ISLR Chapter 6)
• **Nonlinear Models** (ISLR Chapter 7)
Data Analysis II

• **Regression** (ISLR Chapter 3)
 – Linear Regression
 – Extensions
 • Including Qualitative Variables
 • Including Polynomials and Interactions
 – Model Selection
 • Selection Criteria: C_p, AIC, BIC, Adj-R^2, CV
 • Forward/Backward Selection
Data Analysis II

• **Classification** (ISLR Chapter 4)
 – Logistic Regression
 • Logit and Probit
 – Bayes Theorem for Classification
 – Discriminant Analysis
 • Linear Discriminant Analysis
 • Quadratic Discriminant Analysis
Data Analysis II

- **Cross Validation** (ISLR Chapter 5)
 - Resampling Methods
 - Cross Validation
 - Bootstrapping
Data Analysis II

• **Model Selection** (ISLR Chapter 6)
 – Stepwise Regression
 – Ridge Regression
 – LASSO
 – PCA: Principal Components Analysis
Discriminant Analysis

• Based on Bayes’ Theorem

\[
Pr(Y \mid X) = \frac{Pr(X \mid Y)Pr(Y)}{Pr(X)}, \quad \text{where } Y = k \text{ (class), } X = x
\]

Let \(Pr(Y = k) = \pi_k = \text{ prior probability} \)

\(Pr(X = x \mid Y = k) = f_k(x; \mu_k, \sigma^2_k) = \text{normal density} \)

\[
= \frac{1}{\sqrt{2\pi\sigma^2_k}} \exp \left[-\frac{(x - \mu_k)^2}{2\sigma^2_k} \right]
\]

Since \(Pr(X = x) = \sum_l \pi_l f_l(x; \mu_l, \sigma^2_l), \)

\[
Pr(Y = k \mid X = x) = \frac{\pi_k f_k(x; \mu_k, \sigma^2_k)}{\sum_l \pi_l f_l(x; \mu_l, \sigma^2_l)} = p_k(x)
\]
Discriminant Analysis

• Discriminant Function

Comparing class \(k = 1, 2\) with \(p_k(x) = \frac{\pi_k f_k(x; \mu_k, \sigma_k^2)}{\pi_1 f_1(x; \mu_1, \sigma_1^2) + \pi_2 f_2(x; \mu_2, \sigma_2^2)}\)

\(\Leftrightarrow \pi_1 f_1(x; \mu_1, \sigma_1^2) \quad \text{vs.} \quad \pi_2 f_2(x; \mu_2, \sigma_2^2)\)

\(\Leftrightarrow \log(\pi_1) + \log(f_1(x; \mu_1, \sigma_1^2)) \quad \text{vs.} \quad \log(\pi_2) + \log(f_2(x; \mu_2, \sigma_2^2))\)

where \(\log(f_k(x; \mu_k, \sigma_k^2)) = -\frac{1}{2} \log(2\pi) - \frac{1}{2} \log(\sigma_k^2) - \frac{(x - \mu_k)^2}{2 \sigma_k^2}\)

Define the discriminant function: \(\delta_k(x) = \log(\pi_k) - \frac{1}{2} \log(\sigma_k^2) - \frac{(x - \mu_k)^2}{2 \sigma_k^2}\)

Comparing class \(k = 1, 2\) with \(\delta_k(x)\)

\(\Leftrightarrow \delta_1(x) \quad \text{vs.} \quad \delta_2(x) \quad (\delta_k(x) \text{ is quadratic in } x)\)
Discriminant Analysis

• Linear Discriminant Analysis

Assume \(\sigma_k^2 = \sigma^2 \; \forall k = 1, 2, \) we have

\[
\log(f_k(x; \mu_k, \sigma^2)) = -\frac{1}{2} \left[\log(2\pi) + \log(\sigma^2) + \frac{x^2}{\sigma^2} \right] + x \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2}
\]

Then the discriminant function is linear in \(x \):

\[
\delta_k(x) = \log(\pi_k) + x \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{\sigma^2}
\]

Comparing class \(k = 1, 2 \) with \(\delta_k(x) \):

\[
\log(\pi_1) + x \frac{\mu_1}{\sigma^2} - \frac{\mu_1^2}{\sigma^2} \quad \text{vs.} \quad \log(\pi_2) + x \frac{\mu_2}{\sigma^2} - \frac{\mu_2^2}{\sigma^2}
\]
Discriminant Analysis

• Linear Discriminant Analysis

(μ_k, σ^2) can be estimated from $X \Rightarrow (\hat{\mu}_k, \hat{\sigma}^2)$

π_k is the prior probability of $Y \Rightarrow \hat{\pi}_k$

$\hat{\delta}_k(x) = \log(\hat{\pi}_k) + x \frac{\hat{\mu}_k}{\hat{\sigma}^2} - \frac{\hat{\mu}_k^2}{\hat{\sigma}^2} \forall k = 1, 2, \text{ and compare.}$

From $\hat{\delta}_k(x)$, the estimated $\Pr(Y = k \mid X = x) = \frac{\exp(\hat{\delta}_k(x))}{\sum_l \exp(\hat{\delta}_l(x))}$

– Bayes classifier assigns an observation $X=x$ to the class $Y=k$ for which the discriminant function is largest.
Discriminant Analysis

• Quadratic Discriminant Analysis
 – Without equal variance assumption, we have

\[
\delta_k (x) = \log(\pi_k) - \frac{1}{2} \log(\sigma_k^2) - \frac{(x - \mu_k)^2}{2\sigma_k^2}
\]
Discriminant Analysis

• Generalization to Multivariate Case
 – Assumes \(X \sim N(\mu_k, \Sigma_k) \), the QDA classifier for \(X=x \)
 \[
 \delta_k(x) = \log(\pi_k) - \frac{1}{2} \log |\Sigma_k| - \frac{1}{2} (x - \mu_k)' \Sigma_k^{-1} (x - \mu_k)
 \]
 – When \(\Sigma_k = \Sigma \), we have the LDA classifier for \(X=x \)
 \[
 \delta_k(x) = \log(\pi_k) + x' \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k' \Sigma^{-1} \mu_k
 \]