Economic Data Analysis Using R

• Introduction to R
 – Getting Started
 – Using RStudio IDE
 – R Basics

• Economic Data
 – Cross Sections
 – Time Series
 – Panel Data
Introduction to R

• Getting Started
 – R 3.2.x
 – RStudio 0.99.xxx

• Using Rstudio IDE
 – Console (Input/Output)
 – Editor (Script, Data, Project)
 – History (Environment, Search)
 – Help (Viewer, Files, Plots, Packages)
Getting Started

• R Basics

 – Roger D. Peng: Computing for Data Science
 • Data Types and Basic Operations: Note 1, Note 2, Note 3, Note 4
 • Reading and Writing Data: Note 5, Note 6
 • Functions: Note 7
Introduction to R

• R Resources
 – R-Projects (CRAN)
 – R-bloggers
 – Quick-R
 – DataCamp

• R References
 – An Introduction to R, by W. N. Venables, D. M. Smith and the R Core Team, 2015
Economic Data

• Data Structure
 – Cross Sections
 – Time Series
 – Panel Data

• Random Experiments
 \[x_i \sim iid \ (normal) \]
 \[x_t \sim arima \]
 \[x_{it} \sim iid + arima \]

• Data Size
 – High Frequency Financial Data
 – Massive Datasets (Big Data)
 • Public Administrative Data
 • Private Company Data
Economic Data

• Data Generating Process (DGP)
 – Economic Theory
 – Probability Distribution

 uniform \(f(x; \text{min}, \text{max}) = \frac{1}{\text{max} - \text{min}}, \text{min} \leq x \leq \text{max} \)

 normal \(f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right), -\infty < x < \infty \)

 binomial \(f(x; n, p) = \binom{n}{x} p^x (1 - p)^{n-x}, x = 0, 1, \ldots, n \)

 posssion \(f(x; \lambda) = \lambda^x \frac{\exp(\lambda)}{x!}, x = 0, 1, 2, \ldots \)

…
Economic Data

• High Frequency Financial Data
 – Stock Market Daily Time Series
 – S&P 500, VIX (Fear Index), China SSEC
 – Exchange Rates
 – Ticker Data
 • Apple Co. (AAPL)
 • Tesla Motors, Inc. (TSLA)
Economic Data

• Useful On Line Data Resources
 – [Quandl](#)
 – [quantmod](#)
 – [Kaggle Datasets](#)
 – [Google Public Data](#)
 – [Amazon AWS Public Data](#)
 – [Intraday Stock Quotes](#)
Economic Data Analysis

• Data Preparation
 – Getting Data
 – Tidying Data
• Data Visualization
 – Using Graphs
• Data Analysis
 – Regression
 – Classification
Data Preparation

• Getting Data
 – Using R: read.table(), read.csv(), read.dta(), read_excel()

• Tidying Data
 – Structuring datasets to facilitate visualization and analysis:
 • Each variable forms a column; Each observation forms a row; Each type of observational unit forms a table.
 – Using R: reshape(), subset(), order(), transform(), aggregate()
Data Visualization

• Simple Graphs
 – Scatter, Line, Bar, and Box Plots
 – Histogram and Distribution

• Using ggplot2 Package
 – Grammar of Graphics (Part1, Part2)

• References
 – Data Visualization with ggplot2
 – Tutorial Example
R Package ggplot2: qplot

• `qplot(data, x, y, ..., geom(...)) + ...`
 – Data Frame
 – Aesthetics: x, y, alpha, color, size, shape, fill, ...
 – Geometry: point, line, bar, jitter, boxplot, histogram, density, smooth, ...

• Adding facets
 – `facet_grid`
R Package ggplot2: ggplot

• ggplot(data, aes(x,y,\ldots), geom_\ldots) + \ldots
 – Data
 – Aesthetics
 – Geometry
 – Stats, Facets
 – Scales, Colors, Coordinates
 – Labels, Legends
 – Themes
Data Analysis I

• Descriptive Statistics
• Correlation and Covariance
• Analysis of Variances (AOV, ANOVA)
• Hypothesis Testing
 – DGP ~ Non IID
 – One-Variable Testing (t-test)
 – Two-Variable Testing (paired t-test)
Data Analysis I

• Cross Sections Data
 – Hypothesis Testing
 • Normality
 • Independence
 • Homoscedasticity
 – Linear Regression
 • Least Squares Regression
 • Maximum Likelihood
Data Analysis I

• Time Series Data
 – Hypothesis Testing
 • Durbin-Watson
 • Box-Pierce / Ljung-Box
 • ACF/PACF
 – Transformation: Lag, Difference
 – Model Estimation
 – Forecasting
Data Analysis I

• Panel Data
 – Hypothesis Testing
 • Unobserved Heterogeneity
 • Spatial Correlation
 – Model Estimation
 • Fixed Effects
 • Random Effects
 – Multilevel Analysis