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1. Introduction

Many economic processes, for example, housing decisions, technology adoption, unemployment,

welfare participation, price decisions, etc., exhibit spatial patterns. Recently, spatial models that

have a long history in regional science and geography have received substantial attention in various

areas of economics, including urban, environmental, labor, developmental and others. But the

allowance of dependence between observations complicates the estimation procedure and calls for

some specialized techniques.

The most popular spatial econometric model is the spatial autoregressive (SAR) model (e.g.,(1)

in Section 2). For a standard SAR model where the error terms are assumed to follow a normal dis-

tribution N(0, σ2), the most conventional estimation method is the maximum likelihood (ML). Since

there is a Jacobian term, the determinant of the Sn(λ) in the likelihood function,1 the ML method

entails significant computational complexities. Even though some simplification or approximation

techniques have been suggested,2 the computation involved may still be demanding, especially for

large sample sizes and general spatial weights matrices. Another estimation procedure is the two

stage least square (2SLS) for the mixed regressive, spatial autoregressive model (Kelejian and Prucha

(1998); Lee (2003)). The 2SLS estimator (2SLSE) has the virtue of computational simplicity but

it is inefficient relative to the maximum likelihood estimator (MLE) since it focuses only on the

deterministic part of the model, leaving the information contained in the (reduced form) error terms

unexplored. Furthermore, it will be inconsistent when all the exogenous regressors are irrelevant.

Kelejian and Prucha (1999) propose a Method of Moment (MOM) method for the regression model

with spatial autoregressive disturbances based on correlations of sample observations. But their

estimator is inefficient as compared to the MLE. Lee (2001) generalizes the MOM method into a

systematic generalized method of moments (GMM) procedure based on quadratic moment func-

tions and shows the existence of the best GMM estimator (GMME), which can be asymptotically

as efficient as the MLE. In Lee (2007a), a GMM procedure that combines both advantages of com-

putational simplicity and efficiency is introduced for the estimation of the mixed regressive, spatial

autoregressive model. It is shown that the GMME can be asymptotically more efficient than the

2SLSE and that the best GMME exists and it has the same limiting distribution as the MLE. The

basic idea is to combine quadratic moments with the linear moments, where the latter are based on

the orthogonality of the exogenous regressors with the model disturbances that generates the 2SLSE.
1Sn(λ) = In − λWn, where Wn is the spatial weights matrix. Note that its dimension is n × n, which is large for

large sample sizes.
2See, for example, Ord (1975), Smirnov and Anselin (2001).
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All these ML, MOM and GMM estimators are, however, designed for models with homoskedastic

disturbances.

The homoskedastic assumption may be restrictive in practice. In certain applications, we would

expect the variances of the error terms to be different. For instance, consider the analysis of the

spatial dependence in the unemployment or crime rates of contiguous states in the United States.

As a rate variable is a result of aggregation, heteroskedasticity may be present. In the presence

of social interactions, the variance of the aggregated level data will be inflated, with an extent

depending on the strength and structure of the interactions. In a study of cross-city crime rates,

Glaeser et al., (1996) show that the high variance of cross-city crime rates is largely caused by social

interactions among individuals. Therefore, the presence of social interactions could complicate the

variance structure of aggregated data, especially when social interaction patterns depend not only

on the population size in the city, but also on the distribution and composition of the population.

LeSage (1999) illustrates how the mean and variance of home selling prices change as we move across

observations with different distances from the central business district. More discussions on spatial

heteroskedasticity can be found in Anselin (1988).

In this paper, we consider the case when the error terms in the model are independent but with

unknown heteroskedasticity. If variances of the disturbances or the exact structure of heteroskedas-

ticity are known, we may get rid of the heteroskedasticity by some appropriate transformations and

then apply the conventional MLE or GMM techniques to the transformed model. But one may not

have accurate information about the nature of the heteroskedasticity in a model and may be unsure

of the specific structural form of the variances. With unknown heteroskedasticity, we would like to

know the consequences for various estimators if the SAR model were estimated as if the disturbances

were i.i.d. As will be shown without taking into account the heteroskedasticity, the MLE is generally

inconsistent. In contrast, the GMME obtained from certain carefully designed moment conditions

can be robust against unknown heteroskedasticity. Furthermore, one may improve the efficiency by

constructing optimal weighting for the GMM estimation even when the form of heteroskedasticity

is unknown.

Section 2 discusses the possible inconsistency property of the MLE and derives its asymptotic

bias for some special case. Robust GMM estimation under unknown heteroskedasticity is considered

in Section 3. Its consistency and asymptotic distribution are derived. Section 4 considers the

optimal weighting of the robust GMM estimation. Some extensive Monte Carlo studies illustrate

possible degrees of bias for the various estimators in finite samples in Section 5. Section 6 presents
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specification tests on the testing of unknown heteroskedasticity, and some Monte Carlo results on

levels of significance and powers of the Hausman-type and Lagrange Multiplier (LM) test statistics.

An empirical application on county teenage pregnancy rates is provided in Section 7. Conclusions

are drawn in Section 8. The technical details are given in the Appendix.

2. Inconsistency of the MLE in the Presence of Heteroskedastic Disturbances

The model considered is the mixed regressive, spatial autoregressive model

Yn = λ0WnYn +Xnβ0 + εn, (1)

where Xn is an n × k matrix of nonstochastic exogenous variables, Wn is an n × n spatial weights

matrix of known constants with zero diagonal elements, and the elements εni’s of the n-dimensional

vector εn are independent with mean 0 and variances σ2
ni, i = 1, · · · , n. The spatial effect coefficient

λ0 measures the average influence of neighboring observations on Yn, which usually lies between

(−1, 1) when Wn is row-normalized such that the sum of elements of each row is unity. For a general

Wn which is not row-normalized, the λ0 will usually be assumed to be in a parameter space which

guarantees that the determinant of (In − λ0Wn) is positive. There will be more discussion on the

parameter space of λ0 later on. The reduced form of the model is Yn = S−1
n Xnβ0 + S−1

n εn, where

Sn = In − λ0Wn.

For the SAR model in (1), under the assumption of i.i.d. N(0, σ2
0) disturbances, the log likelihood

for this standard model is

lnLn(δ) = −n
2

ln(2π)− n

2
lnσ2 + ln |Sn(λ)| − 1

2σ2
ε

′
n(θ)εn(θ), (2)

where δ = (λ, β′, σ2), θ = (λ, β′), Sn(λ) = In − λWn, and εn(θ) = Sn(λ)Yn −Xnβ.

Given λ, (1) becomes a regression equation of Sn(λ) on Xn, and, the MLE of β is

β̂n(λ) = (X ′nXn)−1X ′nSn(λ)Yn (3)

and the MLE of σ2 as σ̂2
n(λ) = 1

n [Sn(λ)Yn−Xnβ̂n(λ)]′[Sn(λ)Yn−Xnβ̂n(λ)] = 1
nY
′
nS
′
n(λ)MnSn(λ)Yn,,

where Mn = In −Xn(X ′nXn)−1X ′n.

Then, we can get the concentrated log likelihood function of λ, which is

lnLn(λ) = −n
2

(ln(2π) + 1)− n

2
ln σ̂2

n(λ) + ln |Sn(λ)|. (4)

The first order condition for the concentrated log likelihood function is

∂ lnLn(λ)
∂λ

=
1

σ̂2
n(λ)

Y ′nW
′
nMnSn(λ)Yn − tr(WnS

−1
n (λ)). (5)

3
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For consistency of the MLE λ̂n, the necessary condition is plimn→∞ 1
n
∂ lnLn(λ0)

∂λ = 0. But with

heteroskedastic disturbances, this condition may not be satisfied. Consequently, the consistency of

the MLE is not guaranteed.

In the presence of heteroskedasticity, at the true parameter λ0,

σ̂2
n(λ0) =

1
n

[SnYn −Xnβ̂n(λ0)]′[SnYn −Xnβ̂n(λ0)] =
1
n
ε′nMnεn =

1
n

n∑

i=1

σ2
ni + op(1). (6)

So, σ̂2
n(λ0) and the average of σ2

ni, σ
2 are asymptotically equivalent.3 Let Gn = WnS

−1
n . Then,

from equations (5) and (6), we have, at λ0,

1
n

∂ lnLn(λ0)
∂λ

=
1
n

[
1

σ̂2
n(λ0)

Y ′nW
′
nMnSnYn − tr(WnS

−1
n )]

=
1
nε
′
nG
′
nMnεn

1
nε
′
nMnεn

+
1
n (Xnβ0)′G′nMnεn

1
nε
′
nMnεn

− 1
n
tr(Gn) =

∑n
i=1Gn,iiσ

2
ni∑n

i=1 σ
2
ni

−Gn + op(1)

=
1
n

∑n
i=1[Gn,ii −Gn](σ2

ni − σ2)
σ2 + op(1) =

COV (Gn,ii, σ2
ni)

σ2 + op(1), (7)

where Gn = 1
n tr(Gn) = 1

n

∑n
i=1Gn,ii. Therefore, the limit of 1

n
∂ lnLn(λ0)

∂λ will be zero if and only

if the covariance between the diagonal elements of the matrix Gn, Gn,ii, i = 1, · · · , n, and the

individual variances σ2
ni, i = 1, · · · , n, is zero in the limit. In the heteroskedastic case, this condition

will be satisfied if almost all the diagonal elements of the matrix Gn are equal.4

It is of interest to see when we would have constant diagonal elements in the Gn matrix for some

special cases. Consider a “circular” world where the units are arranged on a circle such that the

last unit yn has neighbors y1 and yn−1, y1 has neighbors y2 and yn, and so forth.5 If we assign

equal weight to each neighbor of the same unit, the diagonal elements of the resulting Gn matrix

will be constant. The units in a “circular” world can have more neighbors, as long as each unit has

the same numbers of neighbors and with half of the neighbors lead and the rest lag, the diagonal

elements of the Gn matrix will be the same. Another special case is that Wn is a block-diagonal

matrix with an identical submatrix in the diagonal blocks and zeros elsewhere. This corresponds to

the group interactions scenario where all the group sizes are equal, and each neighbor of the same

unit is assigned equal weight. When these special spatial weights matrices are used, the MLE will

still be consistent in the presence of unknown heteroskedasticity. But for general spatial weights

matrices, the consistency is not ensured.
3The asymptotic arguments can follow from the law of large numbers in the Appendix. In this section, we do not

provide the rigorous analysis in order to save space.
4It will be zero if εni’s are i.i.d., since in that case σ2

ni = σ2, equation (7) will converge to zero regardless of the
diagonal elements of the matrix Gn.

5Kelejian and Prucha (1999) use this type of weights matrix in their Monte Carlo study.
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Following the inconsistency of the MLE of λ0, a consequence is the inconsistency of the MLE of

β0. Because from (3), we have

β̂n(λ̂) = β0 + (λ0 − λ̂)(X ′nXn)−1X ′nGnXnβ0 + op(1), (8)

which will not converge to β0 in the limit if λ̂ is not consistent.

Thus, besides the computational burden it entails, the MLE for the SAR model with unknown

heteroskedasticity is inconsistent as long as the diagonal elements of the matrix Gn are not all equal.

Because of the nonlinearity of λ in the concentrated log likelihood function, it is hard to make

any general conclusion about the asymptotic bias of λ̂. For the asymptotic bias of β̂n(λ̂) from

(8), it is (λ0 − λ̂)(X ′nXn)−1X ′n(GnXnβ0). Thus, given the bias of λ̂, the asymptotic bias of β̂n(λ̂)

is determined by the term (X ′nXn)−1X ′n(GnXnβ0), which is the OLSE of the coefficient in the

artificial regression of GnXnβ0 on Xn. Thus, given the bias of λ̂, the relative asymptotic bias of

β̂n(λ̂) depends on the properties of Xn and Wn. Consider a special case, which is often used in

empirical social interaction studies. This is the case of group interactions, where Wn is assumed to

be a block-diagonal matrix, and in each block, Wr = 1
mr−1 (lmr l

′
mr − Imr ), r = 1, · · ·, R, where

R is the number of groups, mr is the group size for group r, lmr is the mr-dimensional vector of

ones, and Imr is the mr-dimensional identity matrix. Note that the group sizes are not all equal,

and for the asymptotic properties, we let the number of groups R go to infinity while maintaining

{mr} is bounded. This interaction pattern means that there are no cross group interactions and a

unit is equally affected by all the other members in the same group. Group could be village, class,

and the like. This group interaction setting has been studied by Case (1991), Lee (2004, 2007c),

among others. Let’s assume for all the groups, the x’s are i.i.d. with mean µ and variance Σx for

all observations. In particular, in group r, let X(r) = (lmr , z(r)), X(r) = (1, z(r)), µ = (1, µz), and

Σx =
(

0 0
0 Σz

)
, where z(r) = (z′1r, · · · , z′mr,r)′ is the matrix of regressors excluding the intercept

term and z̄(r) = 1
mr

∑mr
i=1 zir. Then after some calculations we can get

X ′nGnXn =
R∑

r=1

( mr
1−λ0

mr
1−λ0

z(r)
mr

1−λ0
z′(r)

mr
1−λ0

z′(r)z(r) − 1
mr−1+λ0

∑mr
i=1(zir − z(r))′(zir − z(r))

)
(9)

and (X ′nXn)−1 =
[∑R

r=1

(
mr

∑mr
i=1 zir∑mr

i=1 z
′
ir

∑mr
i=1 z

′
irzir

)]−1

. Note that

lim
R→∞

{E(
1
n
X ′nGnXn)− [

µ′µ
1− λ0

+
1

1− λ0

R

n
Σx −

1
n

R∑

r=1

(
mr − 1

mr − 1 + λ0
)Σx]} = 0 (10)

5
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and (E( 1
nX
′
nXn))−1 =

(
1 + µzΣ−1

z µ′z −µzΣ−1
z

−Σ−1
z µ′z Σ−1

z

)
. Thus, we can get

lim
R→∞

(E(X ′nXn))−1E(X ′nGnXn) = lim
R→∞

( 1
1−λ0

( 1
1−λ0

− R
n

1
1−λ0

+ 1
n

∑R
r=1

mr−1
mr−1+λ0

)µz
0 (Rn

1
1−λ0

− 1
n

∑R
r=1

mr−1
mr−1+λ0

)Iz

)
, (11)

where Iz is the (k−1)-dimensional identity matrix. Therefore, in this group interaction setting with

randomly distributed x’s, if all the elements in x except the constant term have zero mean, i.e.,

µz = 0, the relative asymptotic bias of the intercept β10 will be 1
1−λ0

times the bias of the MLE

of λ0. Also, except the intercept β10, the MLE for all the other β0’s have the same magnitude of

relative asymptotic bias, which is the term (Rn
1

1−λ0
− 1

n

∑R
r=1

mr−1
mr−1+λ0

) times the bias of the MLE

of λ0. As (Rn
1

1−λ0
− 1

n

∑R
r=1

mr−1
mr−1+λ0

) is less than R
n

1
(1−λ0) and n

R is the average group size, the

relative asymptotic bias of the intercept will be larger than those of the other regression coefficients

in β0. In particular, if the average group size is moderately large, the biases of the coefficients of

regressors (rather than the intercept term) can be small.

The preceding paragraph has considered the asymptotic bias of the MLE under heteroskedasticity.

Likewise, the MOM estimator suggested by Kelejian and Prucha (1999) is not consistent in the

presence of unknown heteroskedasticity since the moment conditions they proposed do not have

zero mean at the true parameters. The following section discusses the feature of GMM estimation

and possible robust estimation.

3. GMM Estimation Against Unknown Heteroskedasticity

3.1 A Brief Overview

The consistency of the GMME in Lee (2001, 2007a) with Pn from P1n which is a class of constant

n × n matrices Pn with tr(Pn) = 0; or P2n, a subclass of P1n with Diag(Pn) = 0, is based on the

fundamental moment property that E(ε
′
nPnεn) = 0. If the εni’s have heteroskedastic variances,

E(ε
′
nPnεn) = tr[PnE(εnε

′
n)] will not necessarily be zero if Pn is from P1n \ P2n. Consider the ith

component of Pnεn,
∑n
j=1 Pn,ijεnj , which is clearly correlated with the corresponding component εni

of εn if Pn,ii 6= 0. With homoskedastic disturbances, the correlations of Pnεn and εn can be canceled

out as long as tr(Pn) = 0. In the presence of heteroskedastic error terms, letting tr(Pn) = 0 may not

guarantee the correlations between each component of Pnεn and the corresponding component of εn

exactly canceled out. Therefore, when Pn is from P1n but not P2n, Pnεn may be correlated with εn

and thus loses its validity as an instrumental variable (IV) vector. In contrast, if Pn is from P2n,

E(ε
′
nPnεn) = 0 is true since tr[PnE(εnε

′
n)] = tr[Diag(Pn)E(εnε

′
n)] = 0. We successfully maintain

the uncorrelation between Pnεn and εn by excluding each component of εn from the corresponding

term of Pnεn. Thus, in the presence of unknown heteroskedasticity, the GMM estimation for the

6
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SAR model will be based on P2n but not P1n. Lee (2001) has noticed this possible robust property

of using quadratic moments with the matrix Pn’s from P2n but has not provided any rigorous theory.

This paper follows up on this observation and will provide a rigorous theory and investigate finite

sample properties in Monte Carlo studies for the SAR model.

The MOM method suggested in Kelejian and Prucha (1999) uses essentially the two moments

ε′nWnεn and ε′n(W ′nWn − tr(W ′
nWn)
n In)εn. While Wn has zero diagonal and the moment ε′nWnεn is

robust against unknown heteroskedasticity, the other moment is not as the diagonal of [W ′nWn −
tr(W ′

nWn)
n In] may not be zero. A robust version of this MOM method may replace the second moment

function by ε′n(W ′nWn−Diag(W ′nWn))εn, where Diag(A) for a square matrix A denotes the diagonal

matrix formed by the diagonal elements of A.6

3.2 Robust GMM Estimation

To analyze rigorously the robust property of GMM estimation with P2n, we adopt most regularity

assumptions for GMM estimation in Lee (2001, 2007a) with proper modifications to fit into the

heteroskedasticity setting. Interested readers may refer to Lee (2001, 2007a) for detailed discussions

on related assumptions for the i.i.d. disturbances case.7

Assumption 1. The εni’s are independent (0, σ2
ni) with finite moments larger than the fourth

order such that E|εni|4+η for some η > 0 are uniformly bounded for all n and i.

This assumption implies the uniform boundedness of the variances σ2
ni, the third moments, µni,3

and the fourth moments µni,4 of εni are also uniformly bounded for all n and i.

Assumption 2. The elements of the n×k regressor matrix Xn are uniformly bounded constants,

Xn has the full rank k, and limn→∞ 1
nX
′
nXn exists and is nonsingular.

Assumption 3. The spatial weights matrices {Wn} and the matrix {S−1
n } are uniformly bounded

in absolute value in both row and column sums.

This uniform boundedness assumption limits the spatial dependences among the units to a

tractable degree and is originated by Kelejian and Prucha (1999). It rules out the unit root case (in

time series as a special case).

Let Qn be an n×k∗ matrix, where k∗ ≥ k+1, of IV’s constructed from Xn and Wn, such as Xn,

WnXn, W 2
nXn, etc. The moment functions corresponding to the orthogonality conditions of Xn and

εn are Q′nεn(θ). But these linear moments reflect only the information in the deterministic part of
6After the completion of this paper, we realize that Kelejian and Prucha (2005) has extended their approach

in Kelejian and Prucha (1999) to cover the estimation of the SAR model with spatial SAR process with unknown
heteroskedaticity. Their approach for the SAR disturbance process has used the two moments ε̂′nWnε̂n and ε̂′n(W ′nWn−
Diag(W ′nWn))̂εn, where ε̂n is an estimated residual. For the SAR regression equation, they suggest the use of
generalized two stage least squares.

7In this paper, we do not consider the large group interactions case so as to simplify the presentation.

7
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WnYn, leaving those in the stochastic part unexplored. This can be seen from the reduced form of the

model. If ‖ λWn ‖< 1 where ‖ · ‖ is a matrix norm, we have (In−λWn)−1 = In+λWn+λ2W 2
n+ · · ·,

and the reduced-form equation becomes

Yn = S−1
n Xnβ0 + S−1

n εn = Xnβ0 + λ0WnXnβ0 + λ2
0W

2
nXnβ0 + · · ·+ S−1

n εn. (12)

It is obvious from (12) that forming IV vectors from functions of Wn and Xn focuses only on the

information in the nonstochastic part E(WnYn|Xn) of WnYn. Lee (2007a) suggests the use of the

moment conditions (Pjnεn(θ))′εn(θ) in addition to Q′nεn(θ). These additional moments capture

the correlations across the spatial units. They serve as the IV for Gnεn, the other component of

WnYn.
8 The matrices in P2n (more generally, P1n) are assumed to have similar uniform boundedness

property as in Wn and S−1
n .

Assumption 4. The matrices Pjn’s with Diag(Pjn) = 0 are uniformly bounded in both row and

column sums, and elements of Qn are uniformly bounded.

The set of moment functions for the GMM estimation is as follows

gn(θ) = (P1nεn(θ), ..., Pmnεn(θ), Qn)′εn(θ) = (ε′n(θ)P1nεn(θ), ..., ε′n(θ)Pmnεn(θ), ε′n(θ)Qn)′. (13)

Denote V ar(gn(θ)) = Ωn and, for any square matrix An, Asn = An + A′n is the sum of An and

its transpose. Let Σn = Diag{σ2
n1, · · · , σ2

nn}, where σ2
ni = E(ε2ni), i = 1, · · · , n.

Assumption 5. Either (a) limn→∞ 1
n Q′n(GnXnβ0, Xn) has the full rank (k + 1), or

(b) limn→∞ 1
n Q′nXn has the full rank k, limn→∞ 1

n tr(ΣnG
s
nPjn) 6= 0 for some j, and

limn→∞ 1
n (tr(ΣnGsnP1n), ..., tr(ΣnGsnPmn))′ and limn→∞ 1

n (tr(ΣnG′nP1nGn), ..., tr(ΣnG′nPmnGn))′

are linearly independent.

This assumption assures the identification of θ0 from the moment equations E(gn(θ0)) = 0 for

sufficiently large n. If GnXnβ0 and Xn are linearly dependent, which includes the case when all

exogenous variables Xn are irrelevant, the additional moments in (b) will help to identify θ0.

And the parameter space Θ of θ is assumed to have the following property:

Assumption 6. The θ0 is in the interior of the parameter space Θ, which is a bounded subset

of Rk+1.9

8Note that WnYn = GnXnβ0 +Gnεn.
9For nonlinear extremum estimation methods, such as the ML method, compactness on the parameter space Θ is

usually needed in order to apply some uniform laws of large numbers to demonstrate consistency of extremum estimates
(Amemiya 1985). However, for our GMM approach with linear and quadratic functions, θ appears nonlinearly in
moment conditions in terms of polynomials. For S−1

n (λ), only its value evaluated at consistent estimates of λ0 will
be used. So for asymptotic analysis, boundedness of Θ will be sufficient.

8
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The parameter space of λ is usually taken to be (−1, 1) when Wn is a row-normalized matrix.

For the cases in which Wn is not normalized but its eigenvalues are real with its largest eigen-

value µn,max > 0 and its smallest eigenvalue µn,min < 0, the parameter space can be the interval

(− 1
|µn,min| ,

1
|µn,max| ) (Anselin 1988). Kelejian and Prucha (2005) allow complex eigenvalues for Wn

and suggest the parameter space (− 1
τn
, 1
τn

) where τn is the spectral radius of Wn. These parameter

spaces are designed to guarantee that the determinant of (In−λWn) is positive. Kelejian and Prucha

(2005) also allow the parameters, including λ, to depend on n as they are the resulted parameters

after Wn being rescaled by a normalized factor which depends on n. If Wn is rescaled by the di-

vision with τn, the coefficient λn (= τnλ) can then be taken as (−1, 1). For our GMM estimation,

one does not need to impose a specific parameter space for the minimization of the GMM objective

function because it is simply a polynomial function of θ. So the regularity condition in the preceding

assumption on the parameter space is solely for the theoretical purpose of proving consistency of

the GMM estimator. As we do not emphasize on any scale normalization of Wn, we simply consider

θ0 being a constant parameter vector.

The following proposition concerns about the asymptotic property of a GMM estimator in the

general Hansen GMM setting with a linear transformation angn(θ) of the moment functions gn(θ),

where an is a matrix with a full row rank greater than or equal to the number of parameters in θ.

The a′nan in the GMM objective function g′n(θ)a′nangn(θ) is a nonnegative definite matrix, which

represents a weighting matrix in this distance function. This general framework motivates the issue

of optimum weighting matrix. Proposition 1 below is a generalization of Proposition 2.1 in Lee

(2001) to the heteroskedastic case.

Proposition 1. Suppose that diag(Pjn) = 0 for j = 1, · · ·,m, and Qn is a n × k∗ IV matrix

so that limn→∞ anE(gn(θ)) = 0 has a unique root at θ0 in Θ. Then, under the stated assumptions

1-6 and that limn→∞ 1
nanDn exists and has the full rank (k + 1), the RGMME θ̂n derived from

minθεΘ g
′
n(θ)a′nangn(θ) is a consistent estimator of θ0, and

√
n( θ̂n − θ0) D→ N(0,Γ), where

Γ = lim
n→∞

1
n

(D′na
′
nanDn)−1D′na

′
nanΩna′nanDn(D′na

′
nanDn)−1, (14)

Ωn = V ar(gn(θ0)) =




tr[ΣnP1n(ΣnP1n)s] tr[ΣnP1n(ΣnP2n)s] ... 0
tr[ΣnP2n(ΣnP1n)s] tr[ΣnP2n(ΣnP2n)s] ... 0

...
...

...
0 0 ... Q

′
nΣnQn




9
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=




∑n
i=1

∑n
j=1 P1n,ij(P1n,ij + P1n,ji)σ2

niσ
2
nj ... 0∑n

i=1

∑n
j=1 P2n,ij(P1n,ij + P1n,ji)σ2

niσ
2
nj ... 0

...
...

0 ... Q
′
nΣnQn


 , (15)

Dn = −∂E(gn(θ0))
∂θ′ =




tr(ΣnP s1nGn) 0
...

...
tr(ΣnP smnGn) 0
Q

′
nGnXnβ0 Q

′
nXn


 . (16)

The proof is similar to the i.i.d. case once we realize that the uniform convergence of sample

averages of relevant moment functions can hold in the presence of heteroskedasticity and the central

limit theorem for linear-quadratic forms by Kelejian and Prucha (1999) allows for heteroskedastic

disturbances. The details of the proofs of all propositions are given in the Appendix.

From Proposition 1, the RGMME obtained from an arbitrary weighting matrix (with moment

functions constructed from P2n) can be consistent (robust) against unknown heteroskedasticity. In

particular, if we construct the optimal GMM as in the i.i.d. case without taking into account the

presence of heteroskedasticity, i.e., if we replace the weighting matrix a′nan by (Ω̃n)−1, where Ω̃n is

an estimator of Ωn based on an initial estimate of θ as if εni’s were i.i.d., the resulting GMME will

still be consistent and asymptotically normal. But the correct asymptotic covariance matrix will not

be the one, (limn→∞ 1
nD
′
nΩ−1

n Dn)−1, in the i.i.d. case. Instead, it will take the messier form of

lim
n→∞

1
n

(D′nΩ
−1

n Dn)−1D′nΩ
−1

n ΩnΩ
−1

n Dn(D′nΩ
−1

n Dn)−1, (17)

where 1
nΩn is the probability limit of 1

n Ω̃n, whose value depends on the specific formula of 1
n Ω̃n. Fur-

thermore, as a special case of the GMM estimation, the 2SLS estimation with an = (0, (Q′nQn)−1/2)

and angn(θ) = (Q′nQn)−1/2Q′nεn(θ) can be consistent from Proposition 1.10 It can also serve as the

initial consistent estimator in our GMM estimation.

In order to make asymptotically valid inferences from the RGMME, we need to find a consistent

estimator of the asymptotic variance as given in (14). As in White (1980), we can consistently

estimate the part 1
nQ

′
n

∑
nQn in Ωn in (15) without being able to estimate

∑
n, which involves

n unknowns, consistently. The tricky part is the estimation of the other elements associated with

the quadratic moment functions. Those elements consist of 1
n times a sum of n2 terms. However,

the uniform boundedness property of Pn ensures the convergence of these sums. The following

proposition can be used to provide a consistent estimator for the covariance matrix Ωn.
10Assumption 5(a) is crucial for the consistency of the 2SLSE.

10
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Proposition 2. Under the assumed regularity conditions, 1
n (D̂n − Dn) = oP (1) and 1

n (Ω̂n −
Ωn) = oP (1), where 1

nD̂n and 1
n Ω̂n are, respectively, estimators of 1

nDn and 1
nΩn with θ0 replaced

by a consistent initial estimator θ̂n and Σn by Σ̂n, where Σ̂n = Diag{ε̂2n1, · · · , ε̂2nn} and ε̂ni’s are the

residuals of the model with θ0 estimated by θ̂n.

4. “Optimal” RGMM Estimator

From the preceding section, we see that the consistency of the RGMME is, in general, not

affected by the choice of the weighting matrix, but its asymptotic variance is. By using a “wrong”

weighting matrix, we’ll still get the consistent estimator but the estimator may not be efficient. By

the generalized Schwartz inequality, the optimal weighting matrix for the GMM estimation with

the moment functions gn(θ) is Ω−1
n , the inverse of the covariance matrix for the moment functions

gn(θ0). Proposition 3 shows that, with a consistent estimator Ω̂−1
n , the feasible “optimal” RGMME

obtained from minθεΘ g
′
n(θ)Ω̂−1

n gn(θ) will be consistent and asymptotically normal with variance

(limn→∞ 1
nD
′
nΩ−1

n Dn)−1.

The variance matrix Ωn is assumed to satisfy some conventional regularity conditions.

Assumption 7. The limn→∞ 1
nΩn exists and is nonsingular.

Proposition 3. Suppose that ( 1
n Ω̂n)−1−( 1

nΩn)−1 = op(1), then the feasible “optimal” ORGMME

θ̂o,n derived from minθεΘ g
′
n(θ)Ω̂−1

n gn(θ) has the asymptotic distribution

√
n(θ̂o,n − θ0) D→ N(0, (lim n→∞

1
n
D′nΩ−1

n Dn)−1). (18)

Similarly, a consistent estimator for the asymptotic covariance matrix is ( 1
nD̂
′
nΩ̂−1

n D̂n)−1.

The “optimal” ORGMME here refers to the RGMME based on the optimal weighting with

specified moment functions.11 In the i.i.d. disturbances case, the best choices Pn from P2n and Qn

are available, which are, respectively, known as (Gn −Diag(Gn)) and (GnXnβ0, Xn). However, for

the case with unknown heteroskedasticity, the best selection of Pn and Qn may not be available.

This is so because

Dn =




tr(P s1nGnΣn) 0
...

...
tr(P smnGnΣn) 0
Q

′
nGnXnβ0 Q

′
nXn




11If the Pn and Qn used involve the unknown parameters λ0 and β0, the feasible RGMM estimation will be carried

out with λ0 and β0 replaced by some initial consistent estimators λ̂, β̂. The resulting feasible RGMME will have
the same limiting distribution. The proof is similar to the i.i.d. case thus is omitted here. Details can be found in
Proposition 2.3 in Lee (2001).

11
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and

Ωn =




tr(ΣnP1n(ΣnP1n)s) tr(ΣnP1n(ΣnP2n)s) ... 0
tr(ΣnP2n(ΣnP1n)s) tr(ΣnP2n(ΣnP2n)s) ... 0

...
...

...
tr(ΣnPmn(ΣnP1n)s) tr(ΣnPmn(ΣnP2n)s) ... 0

0 0 ... Q
′
nΣnQn




(19)

involve the unknown Σn. If a best selection were available, they would involve the matrix Σn but

the latter has an unknown form. In practice, the selection of consistently estimated (Gn−Diag(Gn))

and (GnXnβ0, Xn) might be a desirable strategy.

Remark: The results in Propositions 1 and 3 are derived for the spatial scenario where each

of the spatial units interacts with only a few neighboring ones. This is the typical case in spatial

models. However, some models with social interactions, in particular, involving all members in a

group setting, involve large group interactions. The large group interactions case has been studied

in Lee (2004) for the ML estimation, and Lee (2007c) for a conditional ML approach. For the GMM

estimation, it is in Lee (2007a) for the SAR model with homoskedastic disturbances. To simplify

presentations, we have not considered the large group interactions case in this paper. However, it

will be of interest to have some remarks on this scenario.

In the large group interactions scenario (Lee 2004, 2007b, 2007c), a spatial unit may be influenced

by many neighboring units, but each of its neighbors’ influence will be uniformly small in the sense

that elements of Wn = (wn,ij) are of order O( 1
hn

) uniformly in all n, i and j, where hn → ∞
as n → ∞. Similar results of Propositions 1 and 3 can hold with some proper modifications and

additions of the assumed regularity conditions. For the large group interactions case, while hn →∞,

it shall be assumed that limn→∞
hn
n = 0 in order to obtain consistent estimates. Assumption 4 needs

to be strengthened in that elements of Pjn’s are of order O( 1
hn

) uniformly in i, j and n so that their

magnitudes are compatible with those of elements of Wn. With Assumption 5(a) in addition to the

(modified) Assumptions 1-4, the results in Proposition 1 will be valid. The results in Proposition 3

will also be valid if Assumption 6 is replaced by that limn→∞
hn
n Ωn exists and nonsingular. Note

that under Assumption 5(a), the quadratic moments will be dominated by the linear moments in the

GMM estimation and the GMM estimates will be asymptotically equivalent to the 2SLS estimates

under the large group interactions. (Lee 2007b).

However, when Assumption 5(a) fails in that GnXnβ0 and Xn are linearly dependent, the

quadratic moments will be useful. When GnXnβ0 and Xn are multicollinear, there would be no

(extra) IV variable available for WnYn or linear moments. Then λ0 can only be estimated via the

12
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quadratic moments under the modified Assumption 5(b): limn→∞
hn
n tr(ΣnG

s
nPjn) 6= 0 for some j,

and limn→∞[hnn tr(ΣnG
s
nP1n), · · · , hnn tr(ΣnGsnPmn)]′ and limn→∞[hnn tr(ΣnG

′
nP1nGn), · · · , hnn tr(ΣnG′nPmnGn)]′

are linearly independent. The divergent rate of hn to infinity shall satisfy the condition limn→∞
h
1+ 2

δ
n

n =

0 for some δ > 0 such that E|εn,i|4+2δ are uniformly bounded in all n and i. This strengthened

condition is needed in order to apply the generalized CLT for linear and quadratic form in Lee

(2004). For this case, while the GMM estimates can be consistent, their rates of convergence will be

of order O(
√

n
hn

), which is lower than the
√
n order of the case without multicollinearity. Interested

readers can consult Lee (2007b) for more details.

5. Monte Carlo Study

Some Monte Carlo experiments are designed to study the finite sample properties of the various

robust and non-robust estimators. We focus on the case of group interactions. The data generating

process is as follows. There are two regressors in addition to the intercept term, which are generated

as xir,1 ∼ N(3, 1) and xir,2 ∼ U(−1, 2). The size of each group is determined by a uniform U(3, 20)

variable (round to the closest integer), so the mean group size is about 11. The error terms are

normally distributed with mean zero and their variances vary across groups. We consider several

variance structures with special attention on this particular design: for each group, if group size

is greater than 10, then the variance is constructed to be the same as group size, otherwise, the

variance is the square of the inverse of the group size (V-D1). This design V-D1 emphasizes a

nonlinear variance structure. The variance function is decreasing and then increasing. Another

simpler variance design assumes that the variance is the inverse of group size (V-D2). For comparison

purpose, the corresponding baseline homoskedastic case has disturbances being i.i.d. N(0, σ2), where

σ2 is the mean of the variances of the heteroskedastic errors.

For each of the variance designs, several sets of true parameters are considered. Parameter

design 1 (P-D1) has θ0 = (λ0, β10, β20, β30) = (0.2, 0.8, 0.2, 1.5), and design 2 (P-D2) has θ0 =

(λ0, β10, β20, β30) = (0.2, 0.2, 0.2, 0.1). The stochastic part of the model with P-D2 becomes relatively

more dominant than that of P-D1, since the deterministic regression part of the model has the smaller

coefficients on the Xn’s. We expect that it would be difficult to deal with P-D2 by the 2SLS approach

as its regressors have much smaller effects on Yn. In addition for λ0 = 0.2, we also consider a stronger

interaction effect model with λ0 = 0.6. The parameter design P-D3 has θ0 = (λ0, β10, β20, β30) =

(0.6, 0.8, 0.2, 1.5), and P-D4 has θ0 = (λ0, β10, β20, β30) = (0.6, 0.2, 0.2, 0.1).12

12In addition to λ0, we also pay attention to x and its coefficients. We are interested in comparing the 2SLS and
the robust GMM estimates. The 2SLS estimates might be sensitive to x and its coefficients, since the 2SLS forms
estimation based only on the deterministic part of the model, which is determined by the importance of x.

13
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The models are estimated by the method of maximum likelihood (ML); the non-robust GMM

(GMM) with Pn = (Gn − tr(Gn)
n In) and IV matrix (GnXnβ,Xn); the robust GMM (RGMM) with

Pn = (Gn − Diag(Gn)) and IV matrix (GnXnβ,Xn).13 Both the GMM and RGMM approaches

will require an initial estimate in the evaluation of Gn (and β in GnXnβ). The initial estimate

used can be from a simple 2SLS or a simple first step GMM. The simple first step GMM (SGMM)

uses Pn = Wn and the linearly independent columns of (WnXn, Xn) as IV’s without a weighting

matrix. For the simple 2SLS (2SLS), the IV’s used are simply the linearly independent columns

of (WnXn, Xn). And for the weighting matrices in the GMM and RGMM approaches, we use the

variance formulas for the i.i.d. case. For the RGMM approach, the optimal weighting based on

the robust variance formula under unknown heteroskedasticity will also be considered, which is the

ORGMM. When IV matrix W 2
nXn in addition to (WnXn, Xn) are used in a 2SLS estimation, it is

noted as 2SLS-2 estimation. The feasible best 2SLS with the IV matrix (GnXnβ,Xn), evaluated at

the simple 2SLSE, will be denoted by B2SLS. For the feasible GMM and RGMM, the SGMME is

usually used as the initial estimate of Gn. When the simple 2SLSE is used instead, the corresponding

approaches will be denoted as GMM(2sl) and RGMM(2sl) .

For each case, the results reported are based on 1000 Monte Carlo replications. The numbers

of groups R are 100 and 200.14 For the estimates of each coefficient, we report the empirical mean

(Mean), the corresponding bias (Bias), the empirical standard error (SD), and the root mean square

error (RMSE).

Table 1 summarizes the results from V-D1 with P-D1. The case with small coefficients of β0’s in

P-D2 is reported in Table 2. The estimates reported in these two tables focus on the MLE, non-robust

GMME, RGMME, ORGMME, and 2SLSE. We compare the finite sample biases of these robust and

non-robust estimates, and their relative efficiency in terms of SD and RMSE. Table 3 supplements the

results in Tables 1 and 2 with additional estimators, such as the 2SLS-2, B2SLS, SGMM, GMM(2sl)

and RGMM(2sl) estimators, for comparison purposes. To economize the presentation, only results

for R = 100 are reported in Table 3, 4 and 5. Table 4 presents the results with P-D3 and P-D4,

where λ0 = 0.6. Results for the variance design V-D2 with the four parameter sets are reported in

Table 5. The salient features of results for various estimators are summarized in the following list:

• For the i.i.d. disturbances case, the MLE has some biases in λ0 and the intercept term β10 when

R = 100. These biases become small when R increases to 200. With heteroskedastic disturbances,
13The matrices correspond to the best Pn and Qn in the i.i.d. case.
14We have also experimented with R = 50. Because of space limitation, those results are not reported here but

they can be found in the working paper version of this paper.
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the MLE can be biased in λ0 and β10 even in large sample R = 200. The bias of the estimate of λ0 is

downward. However, those biases are not statistically significant even with R = 200. The estimate

of the intercept term is biased upward. The estimates of the regression coefficients β20 and β30 are

unbiased even for the heteroskedastic cases. These patterns hold in Tables 1 and 2 for both P-D1

and P-D2 with large or small coefficients β0’s for V-D1. The features of the biases of the MLE of

λ0 hold with P-D3 and P-D4 in Table 4 under the same design V-D1.

With V-D2 (and all P-D1, P-D2, P-D3, and P-D4) in Table 5, the MLE’s are essentially unbiased

for all the parameters, even when there are heteroskedastic disturbances.

• In terms of bias, the GMME has similar patterns as the MLE. In terms of magnitudes of the

biases, some may be slightly better than those of the MLE but are mostly similar.

• For the RGMM, the RGMME’s are essentially unbiased for all the cases (in Tables 1, 2, 4, and

5 ).

• The 2SLSE’s are consistent in theory. However, its finite sample performance in terms of bias

can vary, depending on the pattern of variances of the disturbances and the parameter values. With

P-D2 and P-D4 under V-D1, where β0’s are small, the 2SLSE’s for λ0 and β10 can have large biases

even for R = 200 (in Tables 2 and 4). These are also accompanied by relatively large SD’s. This is

so regardless whether the disturbances are i.i.d. or heteroskedastic. For the other parameter designs

with larger β0’s (P-D1 in Table 1, P-D3 in Table 4 or V-D2 in Table 5), the performance of the

2SLSE’s in terms of bias is satisfactory. This 2SLS uses (WnXn, Xn) as IV’s. For the design P-D2

with V-D1, the 2SLS-2 uses additional IV’s W 2
nXn may reduce the bias only a little in Table 3.

• The 2SLSE’s for λ0 and β10 have the largest SD and RMSE compared with those of the MLE’s

and the various GMME’s (under V-D1 in Tables 1, 2 and 4, and under V-D2 in Table 5, for all

parameter designs). With the additional IV’s W 2
nXn in 2SLS-2 (in Table 3), the SD and RMSE can

be slightly reduced. In these finite samples, the SD and RMSE of the B2SLSE can even be larger

than those of the 2SLSE. Under V-D1, when the coefficients β0’s are small, the biases and SD’s of

the various 2SLSE’s for λ0 and β10 are too large to be acceptable.

• When the 2SLSE is poor, it has consequences for the GMM and RGMM approaches if it is

used as an initial estimate for Gn and GnXnβ. In Table 3 with P-D2 in V-D1, the GMME(2sl)

and RGMME(2sl) are poor as they have large biases and SD’s in λ0 and β10. When the 2SLSE’s

are satisfactory for P-D1, the GMME(2sl) and RGMME(2sl) in Table 3 are comparable with the

corresponding GMME and RGMME in Table 1 (in both Mean and SD).

• In terms of SD and RMSE, the GMME and MLE are similar under all the designs (as reported in
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Tables 1, 2, 4, and 5). The SD’s of the GMME and MLE of λ0 under heteroskedasticity are slightly

larger than those under i.i.d. disturbances for V-D1. With V-D1, the RMSE’s of the MLE and

GMME of λ0 under heteroskedastic misspecification are larger than those of the correctly specified

i.i.d. cases. The corresponding RMSE’s for the intercept term are larger but to a smaller degree.

For V-D2 (in Table 5), those SD’s and RMSE’s are mostly similar for all parameter designs.

• As for a comparison of the SGMME in Table 3 with the GMME in Tables 1 and 2, the

SGMME’s are less efficient in λ0 and β10.15

• The RGMME does not seem to lose efficiency compared with the GMME as their SD’s and

RMSE’s are similar under i.i.d. disturbances in these finite samples, even though the RGMME might

be theoretically less asymptotically efficient than the GMME. This is so for all the results in Tables

1, 2, 4 and 5 with all the variance and parameter designs.

• Under heteroskedaticity, there is no obvious dominated pattern in terms of SD comparison of

the RGMME with the GMME. In terms of RMSE, with R = 200, the RMSE’s of the RGMME’s of

λ0 and β10 are slightly smaller than those of the GMME’s (in Tables 1, 2 and 4).16 For V-D2 in

Table 5, there is no difference between these two estimators.

• The ORGMM is the RGMM which uses the robust heteroskedastic variance of the moments

as the optimal weighting matrix. Comparing the results of ORGMME with those of RGMME, the

results are similar overall. It does not seem that optimal weighting with a robust variance under

unknown heteroskedaticity would improve efficiency in these finite samples.

6. Tests for Heteroskedasticity

6.1 The LM Test for Heteroskedasticity

The possible presence of heteroskedasticity can be tested with the Breusch-Pagan LM test

(Breusch and Pagan 1979), using estimated residuals ε̂ni’s of the model from MLE or GMME.

The Breusch-Pagan LM test assumes the alternative hypothesis σ2
ni = f(α1 + ziα2), where zi is a

vector of p-dimensional exogenous variables and f is a continuously differentiable function. However,

due to the local nature of the LM test, one does not need to specify the functional form of f . So

the functional restriction on this test is simply a linear index structure α1 + ziα2 on the form of

unknown heteroskedasticity. Under the null hypothesis H0, α2 = 0. Let Zn be the n×(p+1) matrix

of observations on (1, zi) and let dn be the n-dimensional vector of dni = ε̂2ni
ε̂′
n ε̂n/n

− 1. Then the LM

test statistic is 1
2d
′
nZn(Z ′nZn)−1dn, which is asymptotically χ2(p) under H0.

15Additional results of the SGMME in the settings of Tables 4 and 5 can be found in the working paper version.
16For R=50, there are a few cases where the MLE or GMME have smaller RMSEs than those of RGMME. These

occur when RGMME happens to have a relatively larger SD.
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6.2 The Hausman-type Tests

Alternative statistics may be based on the comparison of robust estimates against estimates

which are asymptotically efficient under H0. These are the Hausman-type test statistics (Haus-

man 1978), which seem natural as the 2SLSE and RGMME are robust and the MLE and GMME

are asymptotically efficient under H0 for our model. The Hausman-type test does not need the

assumption of a linear index form for the variance function.

The main idea of the Hausman-type test is to compare two estimators θ̂n and θ̃n, with θ̂n being

asymptotically efficient under the null hypothesis H0, but inconsistent under the alternative H1,

while θ̃n is consistent under both H0 and H1. The Hausman-type test statistic is

(θ̂n − θ̃n)′V ar(θ̂n − θ̃n)−(θ̂n − θ̃n) = (θ̂n − θ̃n)′[V ar(θ̃n)− V ar(θ̂n)]−(θ̂n − θ̃n) D∼ χ2(m),

where [V ar(θ̃n)−V ar(θ̂n)]− is a generalized inverse of the matrix [V ar(θ̃n)−V ar(θ̂n)] with m being

its rank (see, e.g., Ruud (2000)). Asymptotically, this statistic is invariant with respect to the choice

of a generalized inverse.

When εni’s are i.i.d. normal, the MLE is asymptotically efficient. So is the best GMME θ̂n

obtained by setting Pn = (Gn− tr(Gn)
n In) and Qn = (GnXnβ0, Xn), as it is asymptotically equivalent

to the MLE when εni’s are i.i.d. normal. Under H0, the asymptotic variance matrix of the MLE (or

GMME) is V ar(θ̂n) = Σ−1
1n , where

Σ1n =

(
tr[(Gn − tr(Gn)

n In)sGn] + 1
σ2
0
(GnXnβ0)′(GnXnβ0) 1

σ2
0
(GnXnβ0)′Xn

1
σ2
0
X ′n(GnXnβ0) 1

σ2
0
X ′nXn

)
. (20)

The corresponding RGMME θ̃n has Qn = (GnXnβ0, Xn) but Pn = (Gn − Diag(Gn)), which is

consistent under both H0 and H1, but is not asymptotically efficient under H0. So is the B2SLSE

with Qn = (GnXnβ0, Xn). The RGMME θ̃n has the asymptotic variance matrix V ar(θ̃n) = Σ−1
2n

where

Σ2n =

(
tr[(Gn −Diag(Gn))sGn] + 1

σ2
0
(GnXnβ0)′(GnXnβ0) 1

σ2
0
(GnXnβ0)′Xn

1
σ2
0
X ′n(GnXnβ0) 1

σ2
0
X ′nXn

)
, (21)

and the B2SLSE θ̃n,b has its asymptotic variance V ar(θ̃n,b) = Σ−1
b,n where

Σb,n =
1
σ2

0

(
(GnXnβ0)′(GnXnβ0) (GnXnβ0)′Xn

X ′n(GnXnβ0) X ′nXn

)
. (22)

Under the alternative H1 of heteroskedasticity, as the MLE and GMME θ̂n are inconsistent but the

B2SLSE θ̃n,b and RGMME θ̃n are consistent, these estimators can be used to form the Hausman-type

test statistics.
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The difference in variance matrices, [V ar(θ̃n) − V ar(θ̂n)], may or may not have full rank. To

investigate the rank of [V ar(θ̃n)−V ar(θ̂n)] and/or [V ar(θ̃n,b)−V ar(θ̂n)], the expression V ar(θ̃n)−
V ar(θ̂n) = V ar(θ̂n)[V ar(θ̂n)−1 − V ar(θ̃n)−1]V ar(θ̃n) is useful as V ar(θ̂n) and V ar(θ̃n) are in-

vertible. The rank of this difference in variance matrices is that of [V ar(θ̂n)−1 − V ar(θ̃n)−1],

i.e., the rank of the matrix of the difference in the precision matrices. From (20) and (21),

V ar(θ̂n)−1 − V ar(θ̃n)−1 =
(
tr[(Diag(Gn)− tr(Gn)

n In)sGn] 0
0 0

)
, and, with (22), V ar(θ̂n)−1 −

V ar(θ̃n,b)−1 =
(
tr[(Gn − tr(Gn)

n In)sGn] 0
0 0

)
, both of which have rank one. Therefore, a gen-

eralized inverse of the difference in variance matrices of MLE (or GMME) vs RGMME can be

[V ar(θ̃n)− V ar(θ̂n)]− = V ar(θ̃n)−1

(
tr−1[(Diag(Gn)− tr(Gn)

n In)sGn] 0
0 0

)
V ar(θ̂n)−1, (23)

and that of the MLE (or GMME) vs B2SLSE is

[V ar(θ̃n,b)− V ar(θ̂n)]− = V ar(θ̃n,b)−1

(
tr−1[(Gn − tr(Gn)

n In)sGn] 0
0 0

)
V ar(θ̂n)−1. (24)

Another generalized inverse can be derived with the eigenvalue and eigenvector decomposition of

the matrix [V ar(θ̃n)−V ar(θ̂n)]. As this matrix has rank one from our preceding analysis, let µ > 0

be the single nonzero eigenvalue and let the corresponding orthonormal eigenvector matrix be Γn.

The corresponding generalized inverse of [V ar(θ̃n) − V ar(θ̂n)] is Γ′nΛ−nΓn where Λ−n is a diagonal

matrix consisting of 1
µ and zeros on the diagonal elements. This generalized inverse is numerically

non-negative definite and is the Moore-Penrose generalized inverse.17

The Hausman-type tests by comparing MLE (or GMME) vs RGMME, and MLE (or GMME)

vs B2SLSE are both asymptotically χ2(1).

6.3 Monte Carlo Results for the Tests

Table 6 presents the results of the Hausman-type and LM tests for heteroskedasticity in the SAR

model. The Monte Carlo experimental designs are V-D1 with P-D1 and P-D2. The corresponding

ML, GMM and RGMM estimates are those in Tables 1 and 2, and the B2SLSE is in Table 3. The

left panel of the table shows the results for the homoskedasticity cases, and the right panel shows

those for the heteroskedasticity cases. In each panel, the first two columns present, respectively, the

results for the Hausman-type tests, using MLE vs B2SLSE and MLE vs RGMME. The results for

the two LM tests, one based on MLE, the other on GMME, are shown in the last two columns of

each panel. The alternative hypothesis for the LM tests is σ2
ni = f(α0 +ziα), with zi being the group

17On the other hand, the generalized inverses in (23) and (24) are not symmetric. With a finite sample, the
generalized inverse based on the eigenvalue and eigenvector has the numerical advantage in that the derived asymptotic
χ2 test statistics will always be non-negative.
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size.18 As discussed in the previous subsection, it is not necessary to specify the functional form

of f . The Hausman-type tests use both the Moore-Penrose generalized inverse and the generalized

inverses in (23) and (24). The corresponding results are similar.19

The Hausman-type test using MLE vs B2SLSE has no power for the sample sizes R = 50 to

200. Even though its empirical levels are higher than the theoretical ones, its powers are not even

larger than the empirical levels. For the Hausman-type test of MLE vs RGMME, its empirical

levels are very large, showing over-rejection of the null hypothesis. It does have power even after

adjusting the proper level of significance, but its large empirical levels will render this test useless.

These phenomena can be understood by investigating the generalized inverse formulas in (23) and

(24) and the small biases of the corresponding estimates. For the Hausman-type test using MLE vs

RGMME, the test statistic is inflated by the variance difference term tr[Diag(Gn)− tr(Gn)
n In)sGn].

In the samples for the Monte Carlo study, this term happens to be very small, with mean ranging

from 0.26 to 1.06 for all cases. These are small even though the trace operation is a summation

over n terms. Thus, it might produce a big number when its inverse is involved, which is explicit

in (23). On the contrary, for the Hausman-type test using MLE vs B2SLSE, the corresponding

variance difference term has mean value ranging from 150 to 670, which would give a small number

after inversion. Overall, the Hausman-type tests are not reliable.

In contrast, the LM tests perform very well. The empirical levels are close to the theoretical ones

and they have excellent powers.20

7. Application to County Teenage Pregnancy Rates

Teenage pregnancy is one of the contexts where social interaction effects are believed to be most

important. Jencks and Mayer (1990), for example, conclude that, “neighborhoods and classmates

probably have a stronger effect on sexual behavior than on cognitive skills, school enrollment deci-

sions, or even criminal activity.” Many studies, including Hogan and Kitagawa (1985), Crane (1991),

Case and Katz (1991) and Evans et al., (1992), analyze neighborhood effects in teenage pregnancy

by using micro-data. It would be of interest to study the spatial effects at more aggregated levels

and see how county teenage pregnancy rates are affected by each other. We suspect the possible

presence of unknown heteoskedasticity in this aggregated data. Therefore, we apply the RGMM
18In the variance design V-D1, the group size variable in the variance function is nonlinear and complicated. So the

linear index specification of the variance for the LM test provides only an approximation to the true variance function.
Our intention is to see whether a linear index approximation can capture the alternative in its power function, since
in practice we may not know the exact variance function.

19The results of the Hausman-type tests reported in Table 6 are those with the Moore-Penrose generalized inverse.
20This may indicate that the linear index approximation of the nonlinear variance function is valuable. The linear

approximation does capture the group size variable in the variance function.
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estimation procedures and compare them to other estimation methods.

The model considered is the SAR model in (1), by which we related a county’s teenage pregnancy

rate to those of its neighbors and its own characteristics. Following Kelejian and Robinson (1993), we

focus on counties in the 10 Upper Great Plains States, including Colorado, Iowa, Kansas, Minnesota,

Missouri, Montana, Nebraska, North Dakota, South Dakota, and Wyoming, which consist of 761

counties. A county’s neighbors are referred to its geographically neighboring counties.

The data used are from “Health and Healthcare in the United States — County and Metro Area

Data” (Thomas 1999), and the 1990 US Census (U.S. Census Bureau 1992). The specific model is

given by

Teeni = λ

760∑

j=1

wijTeenj + β1 + Eduiβ2 + Incoiβ3 + FHHiβ4 +Blackiβ5 + Phyiβ6 + εi,

where Teeni is the teenage pregnancy rate in county i, which is the percentage of pregnancies

occurring to females of 12-17 years old. wij is the entry in the spatial weights matrix Wn, which will

be zero if two counties are not neighboring counties. The neighbors of the same county are assigned

equal weight in the row-normalized spatial weights matrix. The term,
∑760
j=1 wijTeenj , is simply

the average of the teenage pregnancy rates of county i’s neighbors. Edui is the education service

expenditure (divided by 100), Incoi is median household income (divided by 1000), FHHi is the

percentage of female-headed households, Blacki is the proportion of black population and Phyi is

the number of physicians per 1000 population, all in county i.21 We assume that the εni’s have zero

mean and variances σ2
ni’s, and are independent across counties.

The model is estimated by 2SLS, B2SLS, ML, non-robust GMM, robust RGMM and optimal

weighting RGMM procedures. The results are reported in Table 7. Consistent with the Monte Carlo

results, most of the differences among the estimators are for λ0 and the intercept, with the 2SLSE

λ̂2SLS = 0.409 being larger than those of the others: λ̂B2SLS = 0.358, λ̂ML = 0.339 and all three

GMME’s are 0.343 or 0.344. Thus, relative to the RGMME, the 2SLSE overestimates λ0, and the

B2SLSE improves upon the 2SLSE by decreasing the relative bias. For the intercept term, the 2SLSE

is relatively smaller than the others. The estimates obtained from all the other methods are similar.

For the t-statistics, we can see that those for the MLE and all the three GMME’s procedures are

similar, while those for 2SLSE and the B2SLSE are smaller for the estimates of λ0 and the intercept,

which reflects the inefficiency of the 2SLSE’s. Furthermore, the differences between the robust

and non-robust standard errors for the 2SLS’s and the robust GMM estimators are notable. In
21Some variables, such as the percentage of high school graduates, are insignificant in the preliminary study thus

are dropped.
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particular, for all the three procedures, the non-robust standard errors for the coefficient on female-

headed households are only about 60% as large as the robust ones, which is striking. And the

larger non-robust standard errors of the coefficient on education service expenditure make it become

marginally insignificant, although it should be statistically significant at the 5% level based on the

robust standard errors. These distinctions could have impact on the inferences, especially when the

estimates are on the margin of being significant.

Based on the various GMM and MLE results, we see that the county teenage pregnancy rates in

these 10 states exhibit a strong spatial convergence, with an estimated spatial coefficient of around

0.34. Thus, about 34% of the changes in the teenage pregnancy rates of neighboring counties

will be absorbed by a county’s own teenage pregnancy rate.22 All the other parameters have the

expected signs. From Table 7 we can see that other significant and important determinants of county

teenage pregnancy rate include median household income, proportion of female-headed households,

fraction of black population and the number of physicians per 1000 population. Generally speaking,

other things being equal, the larger the percentage of female-headed households or the higher the

proportion of black population, the higher the county teenage pregnancy rate. And the number

of physicians per 1000 population, household income and education service expenditure all help to

reduce county teenage pregnancy rate.

We perform two Hausman-type tests using MLE vs B2SLSE and also MLE vs RGMME, and two

LM tests based on MLE and non-robust GMME, using county population size as zi in the variance

function. The LM test statistics based on the MLE is 18.506, the one based on the GMME is 18.557,

both reject the null hypothesis of homoskedasticity. However, the Hausman-type test statistics using

the MLE vs B2SLSE is as small as 0.054, and the other one with the MLE vs RGMME is 18.315.

From the Monte Carlo study, we observe that the Hausman-type test by comparing the MLE and

B2SLSE does not have power, and the one using the MLE vs RGMME tends to over-reject the null.

Thus, the Hausman-type tests might have the same weakness as in the Monte Carlo cases. Even

though the LM tests may reject the null of homoskedastic errors, our overall conclusion is that even

if there were any heteroskedasticity in this sample, it does not have noticeable effects on the ML

and GMM coefficient estimates in this application. However, the presence of heteroskedasticity does
22Our result is consistent with previous studies which also find significant neighborhood effects in teenage pregnancy.

In particular, Hogan and Kitagawa (1985) find that the probabilities of becoming pregnant were about 1/3 higher
for teenagers from low-quality neighborhoods and living in the West Side ghetto increased the chances by about
2/5. Crane (1991) also finds significant neighborhood influences in teenage pregnancy, especially in the very worst
neighborhoods. However, in our case, county teenage pregnancy rates are aggregated from individual outcomes and
are treated as continuous. Other studies, including Case and Katz (1991) and Evans et al., (1992), find insignificant
neighborhood effects in teenage pregnancy.
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affect the estimates of the standard errors, and consequentially, the statistical inferences.

8. Conclusion

This paper considers the GMM estimation in the presence of unknown heteroskedasticity in a

SAR model where the disturbances are independent but may have heteroskedastic variances.

In the presence of heteroskedastic disturbances, the ML approach for the SAR model would in

general provide an inconsistent MLE if the disturbances were treated as i.i.d. Method of Moments

or GMM approaches would theoretically suffer from the inconsistency if the moment functions are

designed for i.i.d. disturbances, and thus, ignore the unknown heteroskedaticity in the disturbances.

In this paper, we analyze a general systematic framework in GMM estimation where the moment

functions take into account the possible presence of unknown heteroskedastic disturbances. The

resulted estimator RGMME is shown to be consistent and asymptotically normal. Asymptotically

valid inferences can be drawn with consistently estimated covariance matrices. We also consider the

optimal RGMM estimation which can improve asymptotic efficiency by the construction of a feasible

optimal weighting matrix under unknown heteroskedasticity. Statistical procedures for testing the

presence of unknown heteroskedaticity are investigated.

Monte Carlo experiments are designed to study the finite sample properties of the ML, GMM,

2SLS, robust GMM and some related estimators, and the test statistics. The Monte Carlo results

show that even though 2SLSE’s shall be consistent in the presence of unknown heteroskedaticity,

they may have large variances and biases in finite samples for cases where regressors do not have

strong effects. The robust GMME has desirable properties while the biases associated with the MLE

and non-robust GMME may remain in large samples, especially, for the spatial effect coefficient and

the intercept term. However, the magnitudes of biases are only moderate. With moderately large

sample sizes, those biases may be statistically insignificant. The Hausman-type test statistics are

shown to be unreliable, but the LM test statistics have good finite sample properties.

The various approaches are applied to the study of county teenage pregnancy rates. The empirical

results show a strong spatial convergence among county teenage pregnancy rates with a significant

spatial effect. The LM test statistics confirm the presence of heteroskedasticity, but it has no impact

on the coefficient estimates of this empirical model. However, the presence of heteroskedasticity

does affect the estimates of the standard errors, and consequentially, the statistical inferences.
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Appendix A: Some Useful Lemmas and Proofs of Main Results

Lemma A.1 For any two square matrices An = [an,ij ] and Bn = [bn,ij ] of dimension n with

zero diagonals, assume that εni’s have zero mean and are mutually independent. Then,

1) E(Anεn · ε′nBnεn) = 0,

2) E(Anεn(Bnεn)′) = AnΣnB′n, and

3) E(ε′nAnεn · ε′nBnεn) =
∑n
i=1

∑n
j=1 an,ij(bn,ij + bn,ji)σ2

niσ
2
nj = tr[ΣnAn(B′nΣn + ΣnBn)];

where Σn = Diag{σ2
n1, · · · , σ2

nn} with σ2
ni = E(ε2ni) and εn = (εn1, · · · , εnn)′.

Proof: 1) Because εni’s are mutually independent and bn,ii = 0,

E(Anεn · ε′nBnεn) = An

n∑

i=1

n∑

j=1

bn,ijE(εniεnjεn) = An

n∑

i=1

bn,iiE(ε3ni) = 0.

2) E(Anεn(Bnεn)′) = AnE(εnε′n)B′n = AnΣnB′n.

3) As ε′nAnεnε
′
nBnεn =

∑n
i=1

∑n
j=1

∑n
k=1

∑n
l=1 an,ijbn,klεniεnjεnkεnl, the mutual independence

of εnis implies that E(εniεnjεnkεnl) 6= 0 only if (i = j = k = l), (i = j, k = l), (i = k, j = l), or

(i = l, j = k). It follows that

E(ε′nAnεn · ε′nBnεn) =
n∑

i=1

an,iibn,iiE(ε4ni) +
n∑

i=1

n∑

j 6=i
(an,iibn,jj + an,ijbn,ij + an,ijbn,ji)E(ε2ni)E(ε2nj)

=
n∑

i=1

n∑

j=1

(an,iibn,jj + an,ijbn,ij + an,ijbn,ji)σ2
niσ

2
nj

= tr[ΣnAn(ΣnBn +B′nΣn)],

because an,ii = bn,ii = 0 for all i. Q.E.D.

The expressions in Lemma A.1 provide the formula for Ωn in (15).

Lemma A.2 For any square matrices An = [an,ij ] of dimension n, assume that εni’s have zero

mean and are mutually independent. Then,

1) E(ε′nAnεn) =
∑n
i=1 an,iiσ

2
ni = tr(ΣnAn),

2)

E(ε′nAnεn)2 =
n∑

i=1

a2
n,ii[E(ε4ni − 3σ4

ni] + (
n∑

i=1

an,iiσ
2
ni)

2 +
n∑

i=1

n∑

j=1

an,ij(an,ij + an,ji)σ2
niσ

2
nj

=
n∑

i=1

a2
n,ii[E(ε4ni − 3σ4

ni] + tr2(ΣnAn) + tr[ΣnAn(A′nΣn + ΣnAn)],

and

23



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

3)

Var(ε′nAnεn) =
n∑

i=1

a2
n,ii[E(ε4ni)− 3σ4

ni] +
n∑

i=1

n∑

j=1

an,ij(an,ij + an,ji)σ2
niσ

2
nj

=
n∑

i=1

a2
n,ii[E(ε4ni)− 3σ4

ni] + tr[ΣnAn(A′nΣn + ΣnAn)];

where Σn = Diag{σ2
n1, · · · , σ2

nn} with εn = (εn1, · · · , εnn)′ and σ2
ni = E(ε2ni) .

Proof: 1) E(ε′nAnεn) =
∑n
i=1

∑n
j=1 an,ijE(εniεnj) =

∑n
i=1 an,iiσ

2
ni = tr(ΣnAn).

2) From the proof of part 3) of Lemma A.1, one has

E(ε′nAnεn)2 =
n∑

i=1

a2
n,ii[E(ε4ni)− 3σ4

ni] + (
n∑

i=1

an,iiσ
2
ni)

2 +
n∑

i=1

n∑

j=1

an,ij(an,ij + an,ji)σ2
niσ

2
nj

=
n∑

i=1

a2
n,ii[E(ε4ni)− 3σ4

ni] + tr2(ΣnAn) + tr[ΣnAn(A′nΣn + ΣnAn)].

3) The result follows from 1) and 2) because Var(ε′nAnεn) = E(ε′nAnεn)2 −E2(ε′nAnεn). Q.E.D.

Lemma A.3 Suppose that {An} are uniformly bounded in both row and column sums and ε′nis

have zero mean and are mutually independent where its sequence of variances {σ2
ni} is bounded,

and, in addition, if an,ii 6= 0 for some i, the sequence four moments {µni,4} is bounded. Then,

E(ε′nAnεn) = O(n), var(ε′nAnεn) = O(n), ε′nAnεn = OP (n), and 1
nε
′
nAnεn − 1

nE(ε′nAnεn) = oP (1).

Proof: As σ2
ni’s are bounded, the variance matrix Σn = Diag{σ2

n1, · · · , σ2
nn} is bounded in both

row and column sum norms. The product of two matrices which are uniformly bounded in row

(column) sum norm is uniformly bounded in row (column) sum norm. Furthermore, elements of

uniformly bounded in row (or column) sum matrices are uniformly bounded.

As ΣnAn are uniformly bounded in row (or column) sum norm, E(ε′nAnεn) = tr(ΣnAn) = O(n).

From Lemma A.2, the variance of ε′nAnεn is
∑n
i=1 a

2
n,ii(µni,4−3σ4

ni) + tr[ΣnAn(A′nΣn+ ΣnAn)].

As ΣnAn is uniformly bounded in row or column sums, it implies tr(ΣnAnA′nΣn) and tr(ΣnAnΣnAn)

are O(n). In addition, if anii’s are not zero, the uniform boundedness of σ2
ni and µni,4 will guarantee

that
∑n
i=1 a

2
n,ii(µni,4 − 3σ4

ni) is O(n). Hence, var(ε′nAnεn) = O(n) follows.

As E(ε′nAnεn)2 = var(ε′nAnεn) + E2(ε′nAnεn) = O(n2), the generalized Chebyshev inequality

implies that P ( 1
n |ε′nAnεn| ≥ M) ≤ 1

M2 ( 1
n )2E(ε′nAnεn)2 = 1

M2O(1) and, hence, 1
nε
′
nAnεn = OP (1).

Finally, because var( 1
nε
′
nAnεn) = O( 1

n ) = o(1), the Chebyshev inequality implies that 1
nε
′
nAnεn −

1
nE(ε′nAnεn) = oP (1). Q.E.D.
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Lemma A.4 Suppose that An is an n×n matrix with its column sums being uniformly bounded,

elements of the n × k matrix Cn are uniformly bounded, and elements εni of εn = (εn1, · · · , εnn)′

are mutually independent with zero mean and finite third absolute moments, which are uniformly

bounded for all n and i.

Then, 1√
n
C ′nAnεn = OP (1) and 1

nC
′
nAnεn = oP (1). Furthermore, if the limit of 1

nC
′
nAnΣnA′nCn

exists and is positive definite, then 1√
n
C ′nAnεn

D→ N(0, limn→∞ 1
nC
′
nAnΣnA′nCn).

Proof: Let an,j denote the jth column of An. It follows that 1√
n
C ′nAnεn = 1√

n

∑n
j=1 qnjεj

where qnj = C ′nan,j . The first result follows from Chebyshev’s inequality because {qnj} and {σ2
nj}

are uniformly bounded and var( 1√
n
C ′nAnεn) = 1

n

∑n
j=1 σ

2
njqnjq

′
nj . The second result follows from

the Liapounov double array CLT and the Cramer-Wold device (Billingsley 1995, Theorem 27.3 and

Theorem 29.4). To check the Liapounov condition, let α be a non-zero row vector of constants and

B2
n = var(αC ′nAnεn) = σ2αC ′nAnΣnA′nCnα

′. The assumptions imply that limn→∞ 1
nB

2
n > 0 and

there exist constants c1 and c2 such that |αqnj | < c1 and E|εni|3 < c2, for all n and j. Hence, the

Liapounov condition
∑n
j=1

1
B3
n
E(|αqnjεj |3) ≤ c31c2

( 1
nB

2
n)

3
2 n

1
2
→ 0 holds. Q.E.D.

Lemma A.5 Suppose that {An} is a sequence of symmetric n×n matrices with row and column

sums uniformly bounded and bn = [bni] is a n-dimensional column vector such that supn
1
n

∑n
i=1 |bni|2+η1 <

∞ for some η1 > 0. The εn1, · · · , εnn are mutually independent with zero mean and moments higher

than four exist such that E(|εni|4+η2) for some η2 > 0, for all n and i, are uniformly bounded.

Let σ2
Qn

be the variance of Qn where Qn = ε′nAnεn + b′nεn − tr(AnΣn). Assume that 1
nσ

2
Qn

is

bounded away from zero. Then, Qn
σQn

D−→ N(0, 1).

Proof: See Kelejian and Prucha (2001). Q.E.D.

Proof of Proposition 1.

For consistency of an extremum estimate, a standard approach can follow, for example, the

setting in Theorem 4.1.1 of Amemiya (1985). Let sn(θ) = 1
nangn(θ). The essential ingredients in

that theorem are (i) a compact parameter space Θ of θ, (ii) sn(θ) is continuous in θ, (iii) sn(θ)

converges in probability to s(θ), where s(θ) = limn→∞ 1
nangn(θ), uniformly in θ ∈ Θ, and (iv)

s(θ) has the unique global extremum at θ0 in Θ. The (iv) is an identification condition, which

will be satisfied under our identification assumptions. For our case, the compactness of Θ can be

replaced by boundedness because sn(θ) is simply a polynomial function of θ. The continuity of sn(θ)

in (ii) is obvious. So it remains to demonstrate the uniform convergence of sn(θ) to s(θ) in (iii).

Let an = (an1, · · · , anm, anx), where anj is jth column of the matrix, anx is a submatrix. And let

ai,n be the ith row of the matrix an. Furthermore, explicitly, denote ai,n = (ai,n1, · · · , ai,nm, ai,nx)
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where ai,nj , j = 1, · · · ,m, are scalars, and ai,nx is a row subvector with its dimension k∗ as the

number of rows of Qn. It is sufficient to consider the uniform convergence of ai,ng(θ) for each i.

Then ai,ngn(θ) = ε′n(θ)(
∑m
j=1 ai,njPjn)εn(θ) + ai,nxQ

′
nεn(θ). Because Sn(λ) = Sn + (λ0 − λ)Wn, by

expansion, εn(θ) = dn(θ) + εn + (λ0 − λ)Gnεn where dn(θ) = (λ0 − λ)GnXnβ0 + Xn(β0 − β). It

follows that ε′n(θ)(
∑m
j=1 ai,njPjn)εn(θ) = d′n(θ)(

∑m
j=1 ai,njPjn)dn(θ) + ln(θ) + qn(θ), where ln(θ) =

d′n(θ)(
∑m
j=1 ai,njP

s
jn)(εn+(λ0−λ)Gnεn) and qn(θ) = (ε′n+(λ0−λ)ε′nG

′
n)(
∑m
j=1 ai,njPjn)(εn+(λ0−

λ)Gnεn). The term ln(θ) is linear in εn. By expansion,

1
n
ln(θ) = (λ0 − λ)

1
n

(Xnβ0)′G′n(
m∑

j=1

ai,njP
s
jn)εn + (β0 − β)′

1
n
X ′n(

m∑

j=1

ai,njP
s
jn)εn

+(λ0 − λ)2 1
n

(Xnβ0)′G′n(
m∑

j=1

ai,njP
s
jn)Gnεn + (λ0 − λ)(β0 − β)′

1
n
X ′n(

m∑

j=1

ai,njP
s
jn)Gnεn

= oP (1),

by Lemmas A.4, uniformly in θ ∈ Θ. The uniform convergence in probability follows because ln(θ)

is simply a quadratic function of λ and β and Θ is a bounded set. Similarly,

1
n
qn(θ) =

1
n
ε′n(

m∑

j=1

ai,njPjn)εn + (λ0 − λ)
1
n
ε′nG

′
n(

m∑

j=1

ai,njP
s
jn)εn + (λ0 − λ)2 1

n
ε′nG

′
n(

m∑

j=1

ai,njPjn)Gnεn

= (λ0 − λ)
1
n

m∑

j=1

ai,njtr(ΣnG′nP
s
jn) + (λ0 − λ)2 1

n

m∑

j=1

ai,njtr(ΣnG′nPjnGn) + oP (1),

uniformly in θ ∈ Θ, by Lemmas A.2 and A.3, and E(ε′nPjnεn) = tr(ΣnPjn) = tr(Σn ·Diag{Pjn}) = 0

for all j = 1, · · · ,m because Diag{Pjn} = 0 by design. Consequently,

1
n
ε′n(θ)(

m∑

j=1

ai,njPjn)εn(θ) =
1
n
d′n(θ)(

m∑

j=1

ai,njPjn)dn(θ) + (λ0 − λ)
1
n

m∑

j=1

ai,njtr(ΣnP sjnGn)

+(λ0 − λ)2 1
n

m∑

j=1

ai,njtr(ΣnG′nPjnGn) + oP (1),

uniformly in θ ∈ Θ. The consistency of the GMME θ̂n follows from this uniform convergence and

the identification condition.

For the asymptotic distribution of θ̂n, by Taylor’s expansion of ∂g′
n(θ̂n)
∂θ a′nangn(θ̂n) = 0 at θ0,23

√
n(θ̂n − θ0) = −[

1
n

∂g′n(θ̂n)
∂θ

a′nan
1
n

∂gn(θ̄n)
∂θ′

]−1 1
n

∂g′n(θ̂n)
∂θ

a′n
1√
n
angn(θ0).

23Note that the Taylor’s expansion of
∂g′
n(θ̂n)

∂θ
a′nangn(θ̂n) is only to expand the component g(θ̂n) at θ0 but not the

component
∂g′
n(θ̂n)

∂θ
. So the second order derivative of gn(θ) would not be needed. This simplifies our analysis.
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As ∂εn(θ)
∂θ′ = −(WnYn, Xn), it follows that ∂gn(θ)

∂θ′ = −(P s1nεn(θ), · · · , P smnεn(θ), Qn)′(WnYn, Xn).

Explicitly, 1
nε
′
n(θ)P sjnWnYn = 1

nε
′
n(θ)P sjnGnXnβ0 + 1

nε
′
n(θ)P sjnGnεn. By Lemmas A.3 and A.4,

1
n
ε′n(θ)P sjnGnXnβ0 =

1
n
d′n(θ)P sjnGnXnβ0 +

1
n
ε′nP

s
jnGnXnβ0 + (λ0 − λ)

1
n
ε′nG

′
nP

s
jnGnXnβ0

=
1
n
d′n(θ)P sjnGnXnβ0 + oP (1),

and

1
n
ε′n(θ)P sjnGnεn =

1
n
d′n(θ)P sjnGnεn +

1
n
ε′nP

s
jnGnεn +

1
n

(λ0 − λ)ε′nG
′
nP

s
jnGnεn

=
1
n
tr(ΣnP sjnGn) + (λ0 − λ)

1
n
tr(ΣnG′nP

s
jnGn) + oP (1),

uniformly in θ ∈ Θ. Hence,

1
n
ε′n(θ)P sjnWnYn =

1
n
d′n(θ)P sjnGnXnβ0 +

1
n
tr(ΣnP sjnGn) + (λ0 − λ)

1
n
tr(ΣnG′nP

s
jnGn) + oP (1),

uniformly in θ ∈ Θ. At θ0, dn(θ0) = 0 and, hence, 1
nε
′
n(θ0)P sjnWnYn = 1

n tr(ΣnP
s
jnGn)+oP (1). At θ0,

1
nε
′
n(θ0)P sjnXn = oP (1). Finally, 1

nQ
′
nWnYn = 1

nQ
′
nGnXnβ0 + 1

nQ
′
nGnεn = 1

nQ
′
nGnXnβ0 + oP (1).

In conclusion, 1
n
∂gn(θ̃n)
∂θ = − 1

nDn + oP (1) with Dn in (16). On the other hand, Lemma A.5 implies

that 1√
n
angn(θ0) = 1√

n
[ε′n(

∑m
j=1 anjPjn)εn + anxQ

′
nεn] D→ N(0, limn→∞ 1

nanΩna′n). The asymptotic

distribution of
√
n(λ̂n − λ0) follows. Q.E.D.

Proof of Proposition 2

A. The consistency of 1
n Ω̂n : We shall show that each element in 1

n Ω̂n − 1
nΩn is of order op(1).

(a) The consistency of some elements: One generic form of the elements in the matrix 1
nΩn is

1
n

∑n
i=1

∑n
j=1 P∆n,ijσ

2
niσ

2
nj , with P∆n,ij = Pan,ij(Pbn,ij +Pbn,ji), note that P∆n,ii = 0. We shall first

show that 1
n

∑n
i=1

∑n
j=1 P∆n,ijε

2
niε

2
nj − 1

n

∑n
i=1

∑n
j=1 P∆n,ijσ

2
niσ

2
nj = op(1), then we establish that

this convergence holds when εni’s are replaced by the residuals ε̂ni’s.

(i) Show that 1
n

∑n
i=1

∑n
j=1 P∆n,ijε

2
niε

2
nj − 1

n

∑n
i=1

∑n
j=1 P∆n,ijσ

2
niσ

2
nj = op(1).

Define the n × n matrix P∆n = [P∆n,ij ]. Because Pbn is uniformly bounded in either row or

column sum norms, its elements are uniformly bounded, i.e., there exists a constant c such that

|Pbn,ij + Pbn,ji| ≤ c for all i, j and n. Therefore |P∆n,ij | ≤ c|Pan,ij |. Because Pan is uniformly

bounded in both row and column norms, it follows that P∆n is uniformly bounded in both row and

colum sum norms.

As ε2niε
2
nj − σ2

niσ
2
nj = (ε2ni − σ2

ni)(ε
2
nj − σ2

nj) + σ2
ni(ε

2
nj − σ2

nj) + σ2
nj(ε

2
ni − σ2

ni), one has

1
n

n∑

i=1

n∑

j=1

P∆n,ij(ε2niε
2
nj − σ2

niσ
2
nj) = Qn + Ln1 + Ln2,
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where Qn = 1
n

∑n
i=1

∑n
j=1 P∆n,ij(ε2ni−σ2

ni)(ε
2
nj−σ2

nj), Ln1 = 1
n

∑n
i=1

∑n
j=1 σ

2
njP∆n,ij(ε2ni−σ2

ni), and

Ln2 = 1
n

∑n
i=1

∑n
j=1 σ

2
niP∆n,ij(ε2nj −σ2

nj). Define vectors un = (un1, · · · , unn) where uni = ε2ni−σ2
ni,

and Cσn = (σ2
n1, · · · , σ2

nn). It follows that Qn = 1
nu
′
nP∆nun, Ln1 = 1

nu
′
nP∆nC

′
σn, and Ln2 =

1
nCσnP∆nun. As E(u′nP∆nun) = tr(P∆nΛn) where Λn = E(unu′n) = Diag{µn1,4 − σ4

n1, · · · , µnn,4 −
σ4
nn} is a diagonal matrix, E(u′nP∆nun) = tr(Diag(P∆n)Λn) = 0 because P∆n,ii = 0 for all i. It

follows by Lemma A.3 that Qn = oP (1). On the other hand, Lemma A.4 gives Ln1 = op(1) and

Ln2 = op(1). Hence, we conclude the convergence in (i). Next, we’ll show that the εni’s can be

replaced by the residuals ε̂ni’s.

(ii) Show that 1
n

∑n
i=1

∑n
j=1 P∆n,ij ε̂

2
niε̂

2
nj − 1

n

∑n
i=1

∑n
j=1 P∆n,ijε

2
niε

2
nj = op(1). Now

1
n

n∑

i=1

n∑

j=1

P∆n,ij ε̂
2
niε̂

2
nj −

1
n

n∑

i=1

n∑

j=1

P∆n,ijε
2
niε

2
nj = Bn1 +Bn2 +Bn3,

where Bn1 = 1
n

∑n
i=1

∑n
j=1 P∆n,ijε

2
nj(ε̂

2
ni−ε2ni), Bn2 = 1

n

∑n
i=1

∑n
j=1 P∆n,ijε

2
ni(ε̂

2
nj−ε2nj), and Bn3 =

1
n

∑n
i=1

∑n
j=1 P∆n,ij(ε̂2ni − ε2ni)(ε̂2nj − ε2nj). From the model, we get

ε̂n = Sn(λ̂)Yn −Xnβ̂ = εn + (λ0 − λ̂)Gnεn +Xn(β0 − β̂) + (λ0 − λ̂)GnXnβ0

In scalar form, ε̂ni = εni + bni + cni, where bni = (λ0 − λ̂)(ei,nGnεn) and cni = ei,nXn(β0 −
β̂) + (λ0 − λ̂)ei,nGnXnβ0, where ei,n is the ith row in the n × n identity matrix. Thus ε̂2ni =

ε2ni+ b2ni+ c2ni+ 2εnibni+ 2εnicni+ 2bnicni. We shall consider that all the three terms Bnl, l = 1, 2, 3,

converges to zero in probability. Let’s consider Bn1

Bn1 =
1
n

n∑

i=1

n∑

j=1

P∆n,ijε
2
nj(ε̂

2
ni − ε2ni) =

1
n

n∑

i=1

n∑

j=1

P∆n,ijε
2
nj [b

2
ni + c2ni + 2εnibni + 2εnicni + 2bnicni].

We want to show this is op(1). We shall pay special attention to those terms with the higher orders

in ε’s. The other remaining terms are simpler. One of such terms is

1
n

n∑

i=1

n∑

j=1

P∆n,ijε
2
njεnibni = (λ0 − λ̂)

1
n

n∑

i=1

n∑

j=1

n∑

l=1

P∆n,ijGn,ilεniε
2
njεnl.

As λ̂ − λ0 = op(1), this will be op(1) if 1
n

∑n
i=1

∑n
j=1

∑n
l=1 P∆n,ijGn,ilεniε

2
njεnl is stochastically

bounded. By Cauchy’s inequality, E|εniεnlε2nj | ≤ [E(εniεnl)2]
1
2E

1
2 (ε4nj) ≤ E

1
4 (ε4ni)E

1
4 (ε4nl)E

1
4 (ε4nj) ≤

c for some constant c, for all i, j, l, and n because {µni,4} is a bounded sequence. It follows that

E| 1
n

n∑

i=1

n∑

j=1

n∑

l=1

P∆n,ijGn,ilεniε
2
njεnl| ≤ c

1
n

n∑

i=1

(
n∑

j=1

|P∆n,ij |)(
n∑

l=1

|Gn,il|) = O(1),
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because P∆,n and Gn are uniformly bounded in row and column sums. By the Markov inequality,

it implies that 1
n

∑n
i=1

∑n
j=1

∑n
l=1 P∆n,ijGn,ilεniε

2
njεnl = Op(1).

Another term with high order ε’s is

1
n

n∑

i=1

n∑

j=1

P∆n,ijε
2
njb

2
ni = (λ0 − λ̂)2 1

n

n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=1

P∆n,ijGn,ikGn,ilε
2
njεnkεnl = op(1),

because

E| 1
n

n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=1

P∆n,ijGn,ikGn,ilε
2
njεnkεnl| ≤ c

1
n

n∑

i=1

(
n∑

j=1

|P∆n,ij |)(
n∑

k=1

|Gn,ik|)(
n∑

l=1

|Gn,il|) = O(1).

The remaining terms in Bn1 are simpler and the same arguments with the Markov inequality shall

be applicable. Thus Bn1 = op(1). Bn2 has similar structure as Bn1 as i is replaced by j and vice

versa. So Bn2 = op(1).

It remains to consider Bn3, which is

Bn3 =
1
n

n∑

i=1

n∑

j=1

P∆n,ij [b2ni + c2ni + 2εnibni + 2εnicni + 2bnicni][b2nj + c2nj + 2εnjbnj + 2εnjcnj + 2bnjcnj ].

The highest order term with ε’s is

1
n

n∑

i=1

n∑

j=1

P∆n,ijb
2
nib

2
nj =

1
n

n∑

i=1

n∑

j=1

P∆n,ij(ei,nGnεn)(ej,nGnεn)(λ0 − λ̂)2 = (λ0 − λ̂)2Kn,

whereKn = 1
n

∑n
i=1

∑n
j=1

∑n
k1=1

∑n
k2=1

∑n
l1=1

∑n
l2=1 P∆n,ijGn,ik1Gn,ik2Gn,jl1Gn,jl2εnk1εnk2εnl1εnl2 .

The Cauchy inequality implies that E|εnk1εnk2εnl1εnl2 | ≤ µnk1,4µnk2,4µnl1,4µnl2,4 ≤ c, for some con-

stant c for all n. By the uniform boundedness in row and column sums for P∆,n and Gn,

E|Kn| ≤
c

n

n∑

i=1

(
n∑

j=1

|P∆n,ij |)(
n∑

k1=1

|Gn,ik1 |)(
n∑

k2=1

|Gn,ik2 |)(
n∑

l1=1

|Gn,jl1 |)(
n∑

l2=1

|Gn,jl2 |) = O(1),

which implies that Kn = Op(1) by the Markov inequality. Other terms in Bn3 can similarly be

analyzed. Thus, we conclude that Bn3 = oP (1).

Therefore, 1
n

∑n
i=1

∑n
j=1 P∆n,ij ε̂

2
niε̂

2
nj − 1

n

∑n
i=1

∑n
j=1 P∆n,ijε

2
niε

2
nj = op(1). Combining (i) and

(ii), we have 1
n

∑n
i=1

∑n
j=1 P∆n,ij ε̂

2
niε̂

2
nj − 1

n

∑n
i=1

∑n
j=1 P∆n,ijσ

2
niσ

2
nj

p→ 0.

(b) The consistency of the other elements: The other elements in the matrix 1
nΩn are of the form

1
nQ

′
n

∑
nQn = 1

n

∑n
i=1 σ

2
niq
′
iqi. With similar arguments in (a) or arguments as in White (1980),

1
n

∑n
i=1 ε̂

2
niq
′
iqi

P→ 1
n

∑n
i=1 σ

2
niq
′
iqi.

In conclusion, we’ve shown that 1
n Ω̂n

P→ 1
nΩn.
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B. The consistency of 1
nD̂n : One generic form for the elements of 1

nDn is 1
n

∑n
i=1(P sjnGn)iiσ2

ni.

Since P ′ns,G
′
ns are all uniformly bounded in both row and column sums, so are the matrices

(P sjnGn)′s. Thus 1
n

∑n
i=1(P sjnGn)iiε̂2i − 1

n

∑n
i=1(P sjnGn)iiσ2

ni
p→ 0 can be shown with the same argu-

ments in part (a) above.

Together, these prove the validity of Proposition 2. Q.E.D.

Proof of Proposition 3. The generalized Schwartz inequality implies that the optimal weight-

ing matrix for a′nan in Proposition 1 is ( 1
nΩn)−1. For consistency, consider 1

ng
′
n(θ)Ω̂−1

n gn(θ) =
1
ng
′
n(θ)Ω−1

n gn(θ) + 1
ng
′
n(θ)(Ω̂−1

n − Ω−1
n )gn(θ). With an = ( 1

nΩn)−1/2 in Proposition 1, Assump-

tion 6 implies that a0 = (limn→∞ 1
nΩn)−1/2 exits. Because a0 is nonsingular, the identification

condition of θ0 corresponds to the unique root of limn→∞E( 1
ngn(θ)) = 0 at θ0, which is satis-

fied by Assumption 5. Hence, the uniform convergence in probability of 1
ng
′
n(θ)Ω−1

n gn(θ) to a

well defined limit uniformly in θ ∈ Θ follows by a similar argument in the proof of Proposi-

tion 1. So it remains to show that 1
ng
′
n(θ)(Ω̂−1

n − Ω−1
n )gn(θ) = oP (1) uniformly in θ ∈ Θ. Let

‖ · ‖ be the Euclidean norm or the maximum row sum norm for vectors and matrices. Then,

‖ 1
ng
′
n(θ)(Ω̂−1

n − Ω−1
n )gn(θ) ‖≤ ( 1

n ‖ gn(θ) ‖)2 ‖ ( Ω̂n
n )−1 − (Ωn

n )−1 ‖ . From the proof of Proposition

1, 1
n [gn(θ)− E(gn(θ))] = oP (1) uniformly in θ ∈ Θ. On the other hand, as

1
n
d′n(θ)Pjndn(θ) = (λ0 − λ)2 1

n
(Xnβ0)′G′nPjnGn(Xnβ0)

+(λ0 − λ)
1
n

(Xnβ0)′G′nP
s
jnXn(β0 − β) + (β0 − β)′

1
n
X ′nPjnXn(β0 − β) = OP (1),

uniformly in θ ∈ Θ, 1
nE(ε′n(θ)Pjnεn(θ)) = 1

nd
′
n(θ)Pjndn(θ) + (λ0 − λ) 1

n tr(ΣnP
s
jnGn) + (λ0 −

λ)2 1
n tr(ΣnG

′
nPjnGn) = O(1), uniformly in θ ∈ Θ. Similarly, 1

nE(Q′nεn(θ)) = 1
nQ
′
ndn(θ) = (λ0 −

λ) 1
nQ
′
nGnXnβ0+ 1

nQ
′
nXn(β0−β) = O(1) uniformly in θ ∈ Θ. These imply that ‖ 1

nE(gn(θ)) ‖= O(1)

uniformly in θ ∈ Θ. Consequently, by the Markov inequality, 1
n ‖ gn(θ) ‖= OP (1) uniformly in θ ∈ Θ.

Therefore, ‖ 1
ng
′
n(θ)(Ω̂−1

n − Ω−1
n )gn(θ) ‖ converges in probability to zero, uniformly in θ ∈ Θ. The

consistency of the feasible optimum GMME θ̂o,n follows.

For the limiting distribution, as 1
n
∂gn(θ̂n)
∂θ = −Dnn + oP (1) from the proof of Proposition 1,

√
n(θ̂o,n − θ0) = −


 1
n

∂g′n(θ̂n)
∂θ

(
Ω̂n
n

)−1
1
n

∂gn(θ̂n)
∂θ



−1

1
n

∂g′n(θ̂n)
∂θ

(
Ω̂n
n

)−1
1√
n
gn(θ0)

=

[
D′n
n

(
Ωn
n

)−1
Dn

n

]−1
D′n
n

(
Ωn
n

)−1 1√
n
gn(θ0) + oP (1).

The limiting distribution of
√
n(θ̂on − θ0) follows from this expansion. Q.E.D.
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Table 1. Estimates under Designs V-D1 and P-D1
V-D1: If group size> 10, variance=group size, else variance=1/(group size)2

True parameters P-D1: (λ0, β10, β20, β30) = (0.2, 0.8, 0.2, 1.5)
R Mean Bias SD RMSE Mean Bias SD RMSE

Homoskedasticity Heteroskedasticity
ML 100 λ 0.1917 (-.0083) .0542 .0549 0.1614 (-.0386) .0617 .0728

β1 0.8217 ( .0217) .3577 .3584 0.9081 ( .1081) .3651 .3808
β2 0.2000 (-.0000) .1010 .1010 0.1974 (-.0026) .1020 .1021
β3 1.4960 (-.0040) .1184 .1184 1.4939 (-.0061) .1155 .1157

200 λ 0.1950 (-.0050) .0386 .0389 0.1659 (-.0341) .0435 .0553
β1 0.8123 ( .0123) .2541 .2544 0.8915 ( .0915) .2559 .2717
β2 0.2003 ( .0003) .0699 .0699 0.2003 ( .0003) .0724 .0724
β3 1.4988 (-.0012) .0812 .0812 1.4971 (-.0029) .0851 .0852

GMM 100 λ 0.1951 (-.0049) .0543 .0545 0.1679 (-.0321) .0592 .0673
β1 0.8137 ( .0137) .3575 .3578 0.8921 ( .0921) .3609 .3725
β2 0.1997 (-.0003) .1008 .1008 0.1972 (-.0028) .1019 .1020
β3 1.4947 (-.0053) .1183 .1184 1.4924 (-.0076) .1155 .1158

200 λ 0.1967 (-.0033) .0387 .0388 0.1707 (-.0293) .0419 .0511
β1 0.8083 ( .0083) .2539 .2541 0.8794 ( .0794) .2532 .2654
β2 0.2002 ( .0002) .0698 .0698 0.2002 ( .0002) .0724 .0724
β3 1.4981 (-.0019) .0811 .0811 1.4962 (-.0038) .0850 .0851

2SLS 100 λ 0.1995 (-.0005) .2400 .2400 0.1886 (-.0114) .2124 .2127
β1 0.8098 ( .0098) .7184 .7184 0.8425 ( .0425) .6576 .6590
β2 0.1982 (-.0018) .1004 .1004 0.1962 (-.0038) .1019 .1020
β3 1.4868 (-.0132) .1197 .1204 1.4868 (-.0132) .1176 .1184

200 λ 0.1987 (-.0013) .1604 .1604 0.2033 ( .0033) .1238 .1239
β1 0.8069 ( .0069) .4930 .4931 0.7943 (-.0057) .3914 .3914
β2 0.1996 (-.0004) .0696 .0696 0.1998 (-.0002) .0721 .0721
β3 1.4943 (-.0057) .0815 .0817 1.4931 (-.0069) .0850 .0853

RGMM 100 λ 0.1952 (-.0048) .0544 .0547 0.1906 (-.0094) .0686 .0692
β1 0.8135 ( .0135) .3575 .3578 0.8321 ( .0321) .3716 .3730
β2 0.1997 (-.0003) .1008 .1008 0.1971 (-.0029) .1019 .1019
β3 1.4947 (-.0053) .1183 .1184 1.4918 (-.0082) .1155 .1158

200 λ 0.1969 (-.0031) .0387 .0389 0.1936 (-.0064) .0479 .0484
β1 0.8080 ( .0080) .2539 .2540 0.8182 ( .0182) .2596 .2602
β2 0.2002 ( .0002) .0698 .0698 0.2002 ( .0002) .0723 .0723
β3 1.4981 (-.0019) .0811 .0811 1.4954 (-.0046) .0850 .0851

ORGMM 100 λ 0.1935 (-.0065) .0535 .0539 0.1943 (-.0057) .0702 .0704
β1 0.8033 ( .0033) .3565 .3565 0.8334 ( .0334) .3851 .3866
β2 0.2050 ( .0050) .1012 .1014 0.1946 (-.0054) .1015 .1017
β3 1.5033 ( .0033) .1209 .1210 1.4943 (-.0057) .1196 .1197

200 λ 0.1976 (-.0024) .0391 .0391 0.1976 (-.0024) .0497 .0497
β1 0.8161 ( .0161) .2408 .2414 0.8028 ( .0028) .2616 .2616
β2 0.1960 (-.0040) .0709 .0710 0.2008 ( .0008) .0718 .0718
β3 1.5080 ( .0080) .0825 .0829 1.5015 ( .0015) .0846 .0846

Note: For GMM estimation with the matrix Gn, an initial consistent GMM estimate is used in the
evaluations of Gn and GnXnβ.
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Table 2. Estimates under Designs V-D1 and P-D2
V-D1: if group size> 10, variance=group size, else variance=1/(group size)2

True parameters P-D2: (λ0, β10, β20, β30) = (0.2, 0.2, 0.2, 0.1)
R Mean Bias SD RMSE Mean Bias SD RMSE

Homoskedasticity Heteroskedasticity
ML 100 λ 0.1913 (-.0087) .0559 .0566 0.1589 (-.0411) .0650 .0769

β1 0.2084 ( .0084) .3318 .3319 0.2481 ( .0481) .3322 .3357
β2 0.2000 ( .0000) .1010 .1010 0.1974 (-.0026) .1020 .1020
β3 0.0963 (-.0037) .1183 .1184 0.0932 (-.0068) .1155 .1157

200 λ 0.1948 (-.0052) .0397 .0400 0.1621 (-.0379) .0465 .0600
β1 0.2044 ( .0044) .2327 .2327 0.2405 ( .0405) .2367 .2402
β2 0.2003 ( .0003) .0699 .0699 0.2004 ( .0004) .0725 .0725
β3 0.0989 (-.0011) .0812 .0812 0.0963 (-.0037) .0852 .0852

GMM 100 λ 0.1952 (-.0048) .0562 .0564 0.1664 (-.0336) .0630 .0714
β1 0.2051 ( .0051) .3316 .3317 0.2410 ( .0410) .3309 .3334
β2 0.1998 (-.0002) .1009 .1009 0.1972 (-.0028) .1020 .1020
β3 0.0962 (-.0038) .1182 .1183 0.0932 (-.0068) .1154 .1156

200 λ 0.1968 (-.0032) .0396 .0397 0.1665 (-.0335) .0452 .0563
β1 0.2025 ( .0025) .2325 .2326 0.2361 ( .0361) .2364 .2391
β2 0.2002 ( .0002) .0698 .0698 0.2003 ( .0003) .0724 .0724
β3 0.0989 (-.0011) .0812 .0812 0.0962 (-.0038) .0851 .0852

2SLS 100 λ 0.7743 ( .5743) .7099 .9131 0.8026 ( .6026) .7260 .9436
β1 -0.4052 (-.6052) .8281 1.0256 -0.4337 (-.6337) .8765 1.0815
β2 0.1990 (-.0010) .1091 .1091 0.2003 ( .0003) .1067 .1067
β3 0.0983 (-.0017) .1257 .1257 0.0971 (-.0029) .1208 .1208

200 λ 0.6648 ( .4648) .8130 .9365 0.6138 ( .4138) 1.6272 1.6790
β1 -0.2941 (-.4941) .9153 1.0401 -0.2450 (-.4450) 1.8081 1.8621
β2 0.2005 ( .0005) .0732 .0732 0.2018 ( .0018) .0842 .0842
β3 0.0996 (-.0004) .0875 .0875 0.0958 (-.0042) .0890 .0890

RGMM 100 λ 0.1953 (-.0047) .0564 .0566 0.1917 (-.0083) .0743 .0748
β1 0.2050 ( .0050) .3316 .3316 0.2147 ( .0147) .3325 .3328
β2 0.1998 (-.0002) .1009 .1009 0.1971 (-.0029) .1019 .1019
β3 0.0962 (-.0038) .1182 .1182 0.0932 (-.0068) .1154 .1156

200 λ 0.1970 (-.0030) .0397 .0398 0.1924 (-.0076) .0526 .0532
β1 0.2023 ( .0023) .2325 .2325 0.2091 ( .0091) .2369 .2370
β2 0.2002 ( .0002) .0698 .0698 0.2001 ( .0001) .0724 .0724
β3 0.0989 (-.0011) .0812 .0812 0.0961 (-.0039) .0850 .0851

ORGMM 100 λ 0.1935 (-.0065) .0557 .0560 0.1948 (-.0052) .0972 .0973
β1 0.1926 (-.0074) .3323 .3324 0.2239 ( .0239) .3434 .3442
β2 0.2048 ( .0048) .1009 .1010 0.1944 (-.0056) .1012 .1014
β3 0.1050 ( .0050) .1209 .1210 0.0965 (-.0035) .1193 .1193

200 λ 0.1979 (-.0021) .0404 .0404 0.1971 (-.0029) .0540 .0541
β1 0.2117 ( .0117) .2275 .2278 0.1994 (-.0006) .2334 .2334
β2 0.1960 (-.0040) .0710 .0712 0.2006 ( .0006) .0717 .0717
β3 0.1087 ( .0087) .0824 .0828 0.1024 ( .0024) .0846 .0847

Note: For GMM estimation with the matrix Gn, an initial consistent GMM estimate is used in the
evaluations of Gn and GnXnβ.

34



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Table 3. Miscellaneous 2SLSE and GMME
V-D1, true parameters P-D1 and P-D2, R=100

Mean Bias SD RMSE Mean Bias SD RMSE
P-D1 Homoskedasticity Heteroskedasticity
2SLS-2 λ 0.1787 (-.0213) .2349 .2359 0.2058 ( .0058) .1839 .1840

β1 0.8499 ( .0499) .7114 .7132 0.8054 ( .0054) .5890 .5890
β2 0.2037 ( .0037) .1008 .1008 0.1942 (-.0058) .1019 .1021
β3 1.4965 (-.0035) .1220 .1221 1.4907 (-.0093) .1212 .1216

B2SLS λ 0.1384 (-.0616) .3048 .3109 0.1462 (-.0538) .2155 .2222
β1 0.9728 ( .1728) .9019 .9183 0.9556 ( .1556) .6673 .6852
β2 0.1986 (-.0014) .1009 .1010 0.1962 (-.0038) .1017 .1018
β3 1.4861 (-.0139) .1215 .1223 1.4872 (-.0128) .1174 .1180

SGMM λ 0.1928 (-.0072) .0564 .0569 0.1546 (-.0454) .0775 .0898
β1 0.8260 ( .0260) .3800 .3809 0.9519 ( .1519) .4492 .4742
β2 0.1978 (-.0022) .1060 .1061 0.1899 (-.0101) .1131 .1136
β3 1.4960 (-.0040) .1188 .1188 1.4930 (-.0070) .1161 .1163

GMM(2sl) λ 0.1933 (-.0067) .0549 .0553 0.1628 (-.0372) .0742 .0830
β1 0.8155 ( .0155) .3680 .3683 0.9024 ( .1024) .3916 .4048
β2 0.2029 ( .0029) .1041 .1042 0.1998 (-.0002) .1011 .1011
β3 1.4954 (-.0046) .1196 .1197 1.4983 (-.0017) .1177 .1177

RGMM(2sl) λ 0.1936 (-.0064) .0542 .0546 0.1916 (-.0084) .0702 .0707
β1 0.8145 ( .0145) .3669 .3671 0.8263 ( .0263) .3792 .3801
β2 0.2029 ( .0029) .1041 .1041 0.1997 (-.0003) .1010 .1010
β3 1.4955 (-.0045) .1196 .1197 1.4969 (-.0031) .1177 .1177

P-D2
2SLS-2 λ 0.4245 ( .2245) .7650 .7973 0.7576 ( .5576) .6991 .8942

β1 -0.0465 (-.2465) .9003 .9334 -0.3795 (-.5795) .8800 1.0536
β2 0.2025 ( .0025) .1041 .1041 0.1982 (-.0018) .1101 .1101
β3 0.1039 ( .0039) .1230 .1231 0.0970 (-.0030) .1245 .1245

SGMM λ 0.1926 (-.0074) .0566 .0571 0.1536 (-.0464) .0782 .0909
β1 0.2142 ( .0142) .3507 .3509 0.2526 ( .0526) .3402 .3443
β2 0.1980 (-.0020) .1060 .1060 0.1978 (-.0022) .1031 .1031
β3 0.0960 (-.0040) .1187 .1188 0.0933 (-.0067) .1154 .1156

GMM(2sl) λ 0.6338 ( .4338) .7609 .8759 0.5280 ( .3280) .8385 .9004
β1 -0.3063 (-.5063) .8683 1.0051 -0.1971 (-.3971) 1.0062 1.0817
β2 0.2138 ( .0138) .1112 .1120 0.2155 ( .0155) .1064 .1075
β3 0.1026 ( .0026) .1330 .1331 0.1072 ( .0072) .1273 .1275

RGMM(2sl) λ 0.6136 ( .4136) .7673 .8717 0.5517 ( .3517) .7100 .7924
β1 -0.2862 (-.4862) .8900 1.0141 -0.2113 (-.4113) .8635 .9564
β2 0.2141 ( .0141) .1115 .1124 0.2126 ( .0126) .1053 .1060
β3 0.1021 ( .0021) .1331 .1331 0.1052 ( .0052) .1256 .1257

Note:
1. The 2SLS uses Qn = [WnXn, Xn] as IV’s.
2. The 2SLS-2 uses IV’s [W 2

nXn,WnXn, Xn].
3. RGMM(2sl): Robust GMM estimation with the matrix Gn, and 2SLSE used as initial consistent

estimate in the evaluations of Gn and GnXnβ.
4. P-D1: (λ0, β10, β20, β30) = (0.2, 0.8, 0.2, 1.5).
5. P-D2: (λ0, β10, β20, β30) = (0.2, 0.2, 0.2, 0.1).
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Table 4. Estimates under Designs V-D1 and P-D3, P-D4
V-D1: If group size> 10, variance=group size, else variance=1/(group size)2

True parameters P-D3: (λ0, β10, β20, β30) = (0.6, 0.8, 0.2, 1.5)
P-D4: (λ0, β10, β20, β30) = (0.6, 0.2, 0.2, 0.1)

R=100
Mean Bias SD RMSE Mean Bias SD RMSE
Homoskedasticity Heteroskedasticity

ML P-D3 λ 0.5950 (-.0050) .0292 .0296 0.5515 (-.0485) .0370 .0610
β1 0.8256 ( .0256) .3619 .3628 1.0571 ( .2571) .3833 .4615
β2 0.2001 ( .0001) .1010 .1010 0.1985 (-.0015) .1025 .1025
β3 1.4967 (-.0033) .1185 .1186 1.5020 ( .0020) .1160 .1160

P-D4 λ 0.5950 (-.0050) .0302 .0306 0.5481 (-.0519) .0393 .0651
β1 0.2094 ( .0094) .3333 .3334 0.3104 ( .1104) .3398 .3573
β2 0.2001 ( .0001) .1010 .1010 0.1987 (-.0013) .1025 .1025
β3 0.0964 (-.0036) .1184 .1184 0.0936 (-.0064) .1159 .1161

GMM P-D3 λ 0.5975 (-.0025) .0282 .0284 0.5560 (-.0440) .0362 .0570
β1 0.8138 ( .0138) .3591 .3594 1.0356 ( .2356) .3790 .4463
β2 0.1998 (-.0002) .1008 .1008 0.1981 (-.0019) .1023 .1024
β3 1.4950 (-.0050) .1185 .1186 1.4995 (-.0005) .1161 .1161

P-D4 λ 0.5975 (-.0025) .0292 .0293 0.5521 (-.0479) .0392 .0618
β1 0.2050 ( .0050) .3321 .3322 0.3030 ( .1030) .3378 .3532
β2 0.1998 (-.0002) .1009 .1009 0.1983 (-.0017) .1023 .1024
β3 0.0962 (-.0038) .1182 .1183 0.0936 (-.0064) .1158 .1160

2SLS P-D3 λ 0.6002 ( .0002) .1273 .1273 0.5938 (-.0062) .1205 .1206
β1 0.8073 ( .0073) .7393 .7393 0.8447 ( .0447) .7156 .7169
β2 0.1982 (-.0018) .1005 .1005 0.1963 (-.0037) .1020 .1021
β3 1.4869 (-.0131) .1204 .1211 1.4874 (-.0126) .1180 .1187

P-D4 λ 0.8941 ( .2941) .3437 .4524 0.9014 ( .3014) .3844 .4885
β1 -0.4048 (-.6048) .7736 .9820 -0.4155 (-.6155) .9210 1.1078
β2 0.1944 (-.0056) .1053 .1054 0.1949 (-.0051) .1045 .1046
β3 0.0957 (-.0043) .1217 .1217 0.0944 (-.0056) .1182 .1183

RGMM P-D3 λ 0.5975 (-.0025) .0286 .0287 0.5950 (-.0050) .0355 .0359
β1 0.8137 ( .0137) .3596 .3598 0.8326 ( .0326) .3723 .3737
β2 0.1998 (-.0002) .1009 .1009 0.1972 (-.0028) .1018 .1019
β3 1.4950 (-.0050) .1185 .1186 1.4924 (-.0076) .1157 .1160

P-D4 λ 0.5976 (-.0024) .0296 .0297 0.5956 (-.0044) .0383 .0386
β1 0.2051 ( .0051) .3320 .3321 0.2152 ( .0152) .3325 .3328
β2 0.1998 (-.0002) .1009 .1009 0.1971 (-.0029) .1019 .1020
β3 0.0962 (-.0038) .1182 .1183 0.0933 (-.0067) .1154 .1156

ORGMM P-D3 λ 0.5966 (-.0034) .0282 .0284 0.5969 (-.0031) .0364 .0365
β1 0.8040 ( .0040) .3583 .3583 0.8352 ( .0352) .3858 .3874
β2 0.2050 ( .0050) .1013 .1014 0.1944 (-.0056) .1015 .1017
β3 1.5038 ( .0038) .1211 .1212 1.4951 (-.0049) .1199 .1200

P-D4 λ 0.5966 (-.0034) .0293 .0295 0.5960 (-.0040) .0389 .0391
β1 0.1928 (-.0072) .3325 .3326 0.2266 ( .0266) .3395 .3406
β2 0.2049 ( .0049) .1009 .1010 0.1943 (-.0057) .1009 .1011
β3 0.1051 ( .0051) .1210 .1211 0.0966 (-.0034) .1192 .1192
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Table 5. Estimates under Design V-D2 and Various Parameters
V-D2: variance=1/(group size)

True parameters: P-D1, P-D2, P-D3 and P-D4; R=100
Mean Bias SD RMSE Mean Bias SD RMSE
Homoskedasticity Heteroskedasticity

ML P-D1 λ 0.1994 (-.0006) .0173 .0173 0.1984 (-.0016) .0167 .0168
β1 0.8016 ( .0016) .0533 .0534 0.8046 ( .0046) .0513 .0515
β2 0.2000 ( .0000) .0085 .0085 0.1998 (-.0002) .0084 .0084
β3 1.4996 (-.0004) .0100 .0100 1.4996 (-.0004) .0097 .0097

P-D2 λ 0.1946 (-.0054) .0495 .0498 0.1920 (-.0080) .0490 .0497
β1 0.2058 ( .0058) .0585 .0587 0.2088 ( .0088) .0580 .0587
β2 0.2000 (-.0000) .0085 .0085 0.1998 (-.0002) .0084 .0084
β3 0.0997 (-.0003) .0100 .0100 0.0996 (-.0004) .0097 .0097

P-D3 λ 0.5996 (-.0004) .0088 .0088 0.5992 (-.0008) .0086 .0086
β1 0.8018 ( .0018) .0535 .0536 0.8046 ( .0046) .0517 .0520
β2 0.2000 ( .0000) .0085 .0085 0.1999 (-.0001) .0084 .0084
β3 1.4997 (-.0003) .0101 .0101 1.4997 (-.0003) .0099 .0099

P-D4 λ 0.5967 (-.0033) .0265 .0267 0.5951 (-.0049) .0267 .0272
β1 0.2068 ( .0068) .0605 .0608 0.2104 ( .0104) .0609 .0618
β2 0.2000 ( .0000) .0086 .0086 0.1999 (-.0001) .0085 .0085
β3 0.0997 (-.0003) .0100 .0100 0.0996 (-.0004) .0097 .0097

GMM P-D1 λ 0.1993 (-.0007) .0172 .0172 0.1984 (-.0016) .0166 .0167
β1 0.8019 ( .0019) .0531 .0532 0.8047 ( .0047) .0510 .0512
β2 0.2000 (-.0000) .0085 .0085 0.1998 (-.0002) .0085 .0085
β3 1.4995 (-.0005) .0100 .0100 1.4995 (-.0005) .0097 .0097

P-D2 λ 0.1969 (-.0031) .0494 .0495 0.1960 (-.0040) .0602 .0604
β1 0.2038 ( .0038) .0585 .0586 0.2051 ( .0051) .0685 .0687
β2 0.1998 (-.0002) .0085 .0085 0.1996 (-.0004) .0084 .0085
β3 0.0996 (-.0004) .0100 .0100 0.0995 (-.0005) .0097 .0097

P-D3 λ 0.5996 (-.0004) .0090 .0090 0.5991 (-.0009) .0087 .0087
β1 0.8021 ( .0021) .0541 .0542 0.8048 ( .0048) .0519 .0521
β2 0.2000 (-.0000) .0085 .0085 0.1998 (-.0002) .0085 .0085
β3 1.4996 (-.0004) .0101 .0101 1.4996 (-.0004) .0099 .0099

P-D4 λ 0.5984 (-.0016) .0257 .0258 0.5973 (-.0027) .0259 .0261
β1 0.2038 ( .0038) .0591 .0592 0.2064 ( .0064) .0592 .0596
β2 0.1998 (-.0002) .0085 .0085 0.1997 (-.0003) .0085 .0085
β3 0.0996 (-.0004) .0100 .0100 0.0995 (-.0005) .0097 .0097

2SLS P-D1 λ 0.2002 ( .0002) .0180 .0180 0.1993 (-.0007) .0176 .0176
β1 0.7993 (-.0007) .0550 .0550 0.8020 ( .0020) .0531 .0532
β2 0.2000 (-.0000) .0085 .0085 0.1998 (-.0002) .0084 .0084
β3 1.4996 (-.0004) .0100 .0100 1.4996 (-.0004) .0097 .0097

P-D2 λ 0.2069 ( .0069) .1091 .1093 0.1993 (-.0007) .1159 .1159
β1 0.1937 (-.0063) .1168 .1170 0.2020 ( .0020) .1243 .1243
β2 0.1997 (-.0003) .0086 .0086 0.1995 (-.0005) .0085 .0085
β3 0.0995 (-.0005) .0100 .0100 0.0994 (-.0006) .0097 .0097

P-D3 λ 0.6001 ( .0001) .0095 .0095 0.5996 (-.0004) .0093 .0093
β1 0.7993 (-.0007) .0562 .0562 0.8020 ( .0020) .0543 .0544
β2 0.2000 (-.0000) .0085 .0085 0.1998 (-.0002) .0084 .0084
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β3 1.4996 (-.0004) .0101 .0101 1.4996 (-.0004) .0099 .0099
P-D4 λ 0.6036 ( .0036) .0576 .0577 0.5996 (-.0004) .0614 .0614

β1 0.1936 (-.0064) .1198 .1200 0.2022 ( .0022) .1280 .1280
β2 0.1996 (-.0004) .0087 .0087 0.1995 (-.0005) .0086 .0086
β3 0.0995 (-.0005) .0100 .0100 0.0995 (-.0005) .0097 .0097

RGMM P-D1 λ 0.1993 (-.0007) .0172 .0172 0.1984 (-.0016) .0166 .0167
β1 0.8019 ( .0019) .0532 .0532 0.8047 ( .0047) .0510 .0512
β2 0.2000 (-.0000) .0085 .0085 0.1998 (-.0002) .0085 .0085
β3 1.4995 (-.0005) .0100 .0100 1.4995 (-.0005) .0097 .0097

P-D2 λ 0.1969 (-.0031) .0495 .0496 0.1960 (-.0040) .0602 .0603
β1 0.2038 ( .0038) .0585 .0586 0.2050 ( .0050) .0685 .0686
β2 0.1998 (-.0002) .0085 .0085 0.1996 (-.0004) .0084 .0085
β3 0.0996 (-.0004) .0100 .0100 0.0995 (-.0005) .0097 .0097

P-D3 λ 0.5996 (-.0004) .0090 .0090 0.5991 (-.0009) .0087 .0087
β1 0.8021 ( .0021) .0542 .0543 0.8048 ( .0048) .0518 .0520
β2 0.2000 (-.0000) .0085 .0085 0.1998 (-.0002) .0085 .0085
β3 1.4996 (-.0004) .0101 .0101 1.4996 (-.0004) .0099 .0099

P-D4 λ 0.5984 (-.0016) .0260 .0261 0.5973 (-.0027) .0260 .0261
β1 0.2038 ( .0038) .0596 .0597 0.2063 ( .0063) .0592 .0595
β2 0.1998 (-.0002) .0085 .0085 0.1997 (-.0003) .0085 .0085
β3 0.0996 (-.0004) .0100 .0100 0.0995 (-.0005) .0097 .0097

ORGMM P-D1 λ 0.1988 (-.0012) .0162 .0162 0.2000 (-.0000) .0164 .0164
β1 0.8023 ( .0023) .0506 .0507 0.8008 ( .0008) .0521 .0521
β2 0.2004 ( .0004) .0085 .0085 0.1997 (-.0003) .0085 .0085
β3 1.5003 ( .0003) .0102 .0102 1.4997 (-.0003) .0100 .0100

P-D2 λ 0.1956 (-.0044) .0580 .0581 0.1965 (-.0035) .0486 .0487
β1 0.2040 ( .0040) .0672 .0673 0.2049 ( .0049) .0590 .0592
β2 0.2003 ( .0003) .0086 .0086 0.1996 (-.0004) .0085 .0085
β3 0.1003 ( .0003) .0102 .0102 0.0997 (-.0003) .0100 .0100

P-D3 λ 0.5994 (-.0006) .0085 .0085 0.6000 (-.0000) .0085 .0085
β1 0.8023 ( .0023) .0515 .0515 0.8009 ( .0009) .0528 .0528
β2 0.2004 ( .0004) .0085 .0085 0.1997 (-.0003) .0085 .0085
β3 1.5004 ( .0004) .0103 .0103 1.4997 (-.0003) .0101 .0101

P-D4 λ 0.5972 (-.0028) .0254 .0256 0.5982 (-.0018) .0254 .0254
β1 0.2050 ( .0050) .0582 .0584 0.2049 ( .0049) .0597 .0599
β2 0.2003 ( .0003) .0086 .0086 0.1996 (-.0004) .0085 .0085
β3 0.1004 ( .0004) .0102 .0102 0.0998 (-.0002) .0100 .0100

Note:
P-D1: (λ0, β10, β20, β30)=(0.2, 0.8, 0.2, 1.5);
P-D2: (λ0, β10, β20, β30)=(0.2, 0.2, 0.2, 0.1);
P-D3: (λ0, β10, β20, β30)=(0.6, 0.8, 0.2, 1.5);
P-D4: (λ0, β10, β20, β30)=(0.6, 0.2, 0.2, 0.1).
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Table 6. Tests for Heteroskedasticity
V-D1; Two sets of true parameters: P-D1 and P-D2

R Empirical level Power
MLE MLE LM LM MLE MLE LM LM
vs vs via via vs vs via via

B2SLSE RGMME MLE GMME B2SLSE RGMME MLE GMME
P-D1

50 1% 6.9 33.7 0.7 0.7 2.4 99.4 (19.5) 100 100
5% 10.1 43.7 5.0 5.0 4.2 99.6 (91.9) 100 100
10% 12.5 50.2 9.3 9.3 6.0 99.7 (97.0) 100 100

100 1% 6.1 32.9 1.1 1.1 2.4 100 (68.8) 100 100
5% 10.3 43.5 3.8 3.8 4.6 100 (99.5) 100 100
10% 12.5 51.1 8.5 8.5 7.5 100 (99.8) 100 100

200 1% 3.4 33.4 1.1 1.1 0.9 100 (100) 100 100
5% 6.9 44.6 6.0 6.0 2.6 100 (100) 100 100
10% 11.0 52.2 11.9 11.9 5.4 100 (100) 100 100

P-D2

50 1% 11.7 33.5 0.7 0.7 11.5 99.8 (6.8) 100 100
5% 15.1 44.0 5.2 5.1 15.3 99.8 (85.5) 100 100
10% 18.7 49.6 9.4 9.5 17.0 99.9 (98.4) 100 100

100 1% 12.3 32.7 1.1 1.1 14.8 99.7 (46.8) 100 100
5% 16.7 45.3 3.9 3.8 16.9 99.8 (99.3) 100 100
10% 19.3 52.5 8.2 8.2 19.8 99.9 (99.5) 100 100

200 1% 17.2 35.0 1.3 1.3 15.6 100 (99.7) 100 100
5% 21.9 46.4 5.9 5.9 18.4 100 (99.8) 100 100
10% 24.9 53.1 11.9 12.0 21.5 100 (99.9) 100 100

Note:
1. The Hausman-type tests are χ2(1) under the null hypothesis of homoskedasticity.
2. The LM tests are χ2(1) under the null hypothesis of homoskedasticity.
3. Table shows the percentages of rejecting the null hypothesis in all the 1000 Monte Carlo replica-

tions, for nominal sizes 1%, 5%, 10%.
4. The numbers in parentheses for the powers of the Hausman-type test with MLE vs RGMME are

the bias-adjusted empirical powers.
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Table 7. Estimation of Spatial Effects for County Teenage Pregnancy Rates

2SLS B2SLS ML GMM RGMM ORGMM
λ 0.409 0.358 0.339 0.343 0.343 0.344

(4.92) (3.98) (7.53) (7.64) (7.64) —
[4.83] [4.09] — — [6.86] [6.92]

Cons 7.179 7.879 8.140 8.096 8.091 8.076
(4.77) (4.73) (6.81) (6.78) (6.77) —
[4.24] [4.89] — — [6.54] [6.57]

Edu -0.011 -0.011 -0.011 -0.011 -0.011 -0.011
(-1.63) (-1.72) (-1.75) (-1.74) (-1.74) —
[-2.37] [-2.50] — — [-2.52] [-2.53]

Inco -0.197 -0.204 -0.206 -0.206 -0.206 -0.206
(-4.90) (-4.80) (-5.20) (-5.20) (-5.20) —
[-4.59] [-4.94] — — [-5.39] [-5.39]

FHH 0.751 0.763 0.763 0.766 0.766 0.768
(11.83) (11.92) (11.92) (12.43) (12.43) —
[7.71] [7.86] — — [8.18] [8.25]

Black 0.138 0.145 0.145 0.147 0.147 0.147
(2.42) (2.58) (2.58) (2.64) (2.64) —
[2.79] [2.88] — — [2.89] [2.89]

Phy -0.512 -0.523 -0.523 -0.526 -0.526 -0.527
(-2.74) (-2.80) (-2.80) (-2.81) (-2.81) —
[-2.30] [-2.69] — — [-2.72] [-2.72]

Note:
1. The explanatory variables are: Cons=intercept term, Edu=education service expenditure (divided

by 100), Inco=median household income (divided by 1000), FHH=percentage of female-headed
households, Black=proportion of black population, and Phy=number of physicians per 1000
population.

2. 2SLS uses (WnXn, Xn) as IV’s; B2SLS uses (GnXnβ,Xn) as IV’s and 2SLSE as initial estimate.
3. All GMM’s use an initial SGMME in the evaluations of Gn and GnXnβ.
4. The t-statistics in parentheses are those under i.i.d. disturbances assumption. The t-statistics

for the 2SLS, B2SLS and RGMM and ORGMM estimators calculated from the robust variance
formula are in square brackets.

5. The LM test statistic (via MLE) is 18.506 and the LM test statistic (via GMME) is 18.557.
6. The Hausman-type test statistic with MLE vs B2SLSE is 0.054 and the Hausman-type test

statistic with MLE vs RGMME is 18.315.
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