Learning Econometrics with GAUSS

by

Ching-Fan Chung
Institute of Economics, Academia Sinica

L ERAVERCEY)

Contents

Introduction 1
1.1 Getting Started with GAUSS e 2
1.1.1 Executing DOS Commandsin GAUSS 3.
1.1.2 Some GAUSS Keystrokes e 3
1.1.3 ANoteonComputer Memory e 4
1.2 TheGAUSSEdItor e 4
1.3 GAUSS Statements e e e e 5.
1.3.1 SomeSyntaxRules 6.
1.3.2 TwoTypesofErrors e 6
Data Input and Output 9
2.1 ASCIIFiles e 9
2.1.1 ASCllDataFiles e 10
2.1.2 ASCIlOutputFiles 11
2.1.3 Other Commands Related to ASCII OutputFiles 12.
214 AnExample e 13
22 MatrixFiles L 15
Basic Algebraic Operations 17
3.1 ArithmeticOperators e 17
3.2 Element-by-Element Operations 17.
3.3 Other ArithmeticOperators e e 18
3.4 Priority of the Arithmetic Operators i 19
3.5 Matrix Concatenation and Indexing Matrices 20.
GAUSS Commands 23
4.1 Special Matrices. 23
4.2 Simple Statistical Commands e 23.
4.3 Simple Mathematical Commands e 24,
4.4 Matrix Manipulation e 24
4.5 BasicControlCommands 25
46 SomeExamples 26
4.7 Character Matricesand Strings e 34.
4.7.1 CharacterMatrices e 34
A4.7.2 SHINGS . . . e e 35
473 TheDataType 36
4.7.4 Three Useful GAUSS Commands v v, 36.
GAUSS Program for Linear Regression 41
5.1 ABriefReview e 41
5.1.1 The Ordinary Least Squares Estimation 41.
5.1.2 AnalysisofVariance 42
5.1.3 Durbin-Watson Test Statistic 43
5.2 TheProgram e e e e e A
53 Thebls"Command 48

10

CONTENTS

5.4 Linear Restrictions e 53
5.5 Chow Testfor Structural Changes, 55.
Relational Operators and Logic Operators 59
6.1 Relational Operators e 59
6.2 LOgiCOPperators o i 60
6.3 Conditional Statements 60
6.4 Row-Selectors: thesélif and ‘delif’Commands| 62
6.5 Dummy Variables in Linear RegressionModels 62.
6.5.1 BinaryDummy Variables. 62
6.5.2 ThePolychotomousCase., a7.
6.5.3 The Piecewise Linear RegressionModel 71.
Iteration with Do-Loops 75
7.1 Do-lo0pS e 75
7.2 Some Statistics Related to the OLS Estimation 80 .
7.2.1 The Heteroscedasticity Problem 80.
7.2.2 The Autocorrelation Problem o o oo 82
7.2.3 Structural Stability 85
GAUSS Procedures: Basics 87
8.1 Structural Programming e e e e e e e 92
8.2 Accessing Global VariablesDirectly 93
8.3 Calling Other ProceduresinaProcedure 94 .
8.4 String INputsS. 96
8.5 Functions: Simplified Procedures Q8.
8.6 Keywords: Specialized Procedures 99
GAUSS Procedures: The Library System and Compiling 101
9.1 Autoloadingandthe LibraryFiles o 0. 101
9.2 The GAUSS.LCG’ Library File for Extrinsic GAUSS Commands 102
9.3 The USER.LCG’ Library File for User-Defined Procedures 102
9.4 OtherLibraryFiles e 102
9.5 On-Line Help: Seeking Information as the Autoloader 1Q3.
9.6 Compiling e 103
9.7 The External and Declare Commands 104.
Nonlinear Optimization 107
10.1 Newton’'s Method e 107
10.1.1 The Computationof Gradients 108
10.1.2 The ComputationofHessian 109
10.1.3 Quasi-NewtonMethod 109
10.1.4 Newton's Method for Maximum Likelihood Estimation. 110
10.1.5 The Computation of the StepLength 111.
10.2 A GAUSS Program for Nonlinear Minimization: NLOPT 111
10.2.1 Changing Options 115

CONTENTS v

10.2.2 Analytic Gradients and AnalyticHessian 116
10.2.3 Imposing Restrictions 120
10.2.4 Additional Options 123
10.2.5 Run-Time Option Switching 123
10.2.6 Global Variable List 125
A Drawing Graphs for the Simple Linear Regression Model 300
B GAUSS Data Set (GDS) Files 311
B.1 Writing DatatoaNew GAUSSDataSet 311
B.2 Readingthe GAUSSDataSet. i 314.
B.2.1 UsingVariable Names e 315
B.3 Reading and Processing Data with Do-Loops 315.
B.3.1 The readr’ and the Writer’ Commands and Do-Loop 317
B.3.2 Theseekr’Command 318
B.4 GAUSS Commands That Are Relatedto GDS Files 318.
B.4.1 Sortingthe GDSFile 319
B.4.2 Thebls’Commandandthe GDSFile 319
B.5 RevisingGDSFiles e 320
B.6 Reading and Writing Small GDS Files, 320
B.7 The ATOG Program e e e e e e e e e e e e e 321

B.7.1 The Structure of the Source ASClIfile. 322

Vi

CONTENTS

Chapter

Introduction

GAUSS is a computer programming language. We use it to write programs, i.e., collections of commands.
Each command in a GAUSS program directs a computer to do one mathematical or statistical operation.
The main difference between the GAUSS language and the other statistics packages is that using GAUSS
requires us to know more about the mathematical derivation underlying each statistical procedure because
we have to translate it into GAUSS language. The advantage of using a programming language is the
maximum flexibility it allows for. There is virtually no limit in what we can do with GAUSS. The main
difference between GAUSS and other programming languages, such as Fortran, C, Pascal, etc. is that the
basic elements for mathematical operations in GAUSS are matrices. This is a powerful feature that can save
us from many programming details and allow us to concentrate more on statistics and econometrics.

Let’s use an example to explain this feature. Consider the following equation:

1 y = X*b + e; /* 1.1 %/

If we see equatiofi* 1.1*/in an econometrics class, then it is quite natural to associate it with the follow-
ing “handwritten” equation:
y=XB+e¢. (1.1

It is almost like our instinct to thinky” in equation/* 1.1 */ as a column vector, containing observations
on the dependent variabl& ‘a matrix, containing observations on some explanatory varialiles column
of parameters, andce* of course a column of error ternis.In other words, we will interpret equation
/* 1.1 */just like we interpret equation (1.1). The only difference is simply the style: equation (1.1) is in
a more elaborated font where Greek lejeis used, while equatiof* 1.1 */ is written in plain English
letters. Perhaps we are not so sure about why there is an astérigdtween X’ and ‘b’ in /* 1.1 */.
But we might just guess that it means matrix multiplication. We may also wonder wiy in1 */ there
is a semicolon aftere” and why the equation number is written in a strange way Jikel.1 */. These
and many other questions about styles will be explained fully in the next two chapters. But no matter how
strange we may feel about the expressiorinl.1 */, the important thing is that we can always guess
its meaning while those unusual details generally do not bother us very much. In fact, the interpretation
of /* 1.1 */ is so natural that we may wish computers can understand it just like we do. Fortunately,
computers do understand it, but only in GAUSS.

GAUSS is a computer language in which expressions are very close to their hand-written counterparts.
As aresult, GAUSS minimizes our effort to translate a handwritten mathematical expression to a form that
computers can understand. To appreciate how much trouble GAUSS has saved us from, we have to know
the nature of computers. Other than the capability of doing some basic arithmetic in high speed, computers
actually are very dumb. We have taken education for years to become what we are now. Computers never

Iwhenever elements of a GAUSS program, suchyasX’, ‘ b’, ‘ e’, appear in the text, they will be in a special font, that differs
from the standard text font, and enclosed by single quote ‘ and .

1

2 CHAPTER 1. INTRODUCTION

really “learn” anything. Just imagine how difficult it would be to explain things like vectors and matrices to

a kindergarten kid. By the same token, to explain the meaning of econometric equations in matrix form to
computers is not an easy job. For instance, computers need to be informed that a letiershiaild be
understood as a mathematical item called vector that follows certain rules. Nevertheless, GAUSS saves us
all these troubles. When we write equation 1.1 */in GAUSS, computers will understand it just like the

way we want them to.

This book is written for a person who has little knowledge about computer programming to get on with
GAUSS as quickly as possible. Every thing in GAUSS is explained from scratch. However, some knowledge
about DOS, the basic operation system of the IBM-compatible computers, is assumed. GAUSS has gone
through several editions. The edition we discuss here is GAUSS-386i version 3.2.

1.1 Getting Started with GAUSS

The procedure of using GAUSS is as follows: we first type our GAUSS program in a text file and then submit
this file to a personal computer for processing. Once the computer fully understands what we want to do
in the GAUSS program, the program is executed. This process is ¢alleve a computer run a GAUSS
program in the edit mode(There is an alternative way of running a GAUSS program called running it in
the command mode, which is seldom used when the GAUSS program contains more than five statements.)

To type the GAUSS program into a text file, we need a wordprocessor (e.g., WordPerfect, Word, AMI,
etc.) or an editor (e.g., the DOS editor, the GAUSS editor, etc.). No matter which wordprocessor or editor
we use, we have to make sure the file we create is a plain ASCII file withoubamgatting codesWord-
processor users are especially cautioned here. Almost all wordprocessors embed formatting codes in files
they create. These formatting codes explain why files created by one wordprocessor cannot be read directly
by other wordprocessors. However, almost all wordprocessors, under some special directions, can create
ASCII files. So we can use any wordprocessor to write GAUSS programs if we know how to get rid of
those formatting codes and leave a plain ASCII file. Editors work like scaled-down wordprocessors. But
in general the files created by editors are plain ASCII files. BlthDOS editoandthe GAUSS editcare
quite good for the purpose of typing GAUSS programs and each can be learned in less than half an hour. The
GAUSS editor will be briefly introduced in the next section. (However, for those people who do not want to
use the GAUSS editor, that section may be skipped without affecting the continuity of the discussion.)

Once we have finished typing the GAUSS program in an ASCII file with a file namepsayl, we
then submit it for execution. To do this, first we have to go itite GAUSS environmefrom the DOS
environmentThat is, under DOS, we type

1 gaussi

after the DOS prompt>* and press theEnter’ key. A few seconds later, some information about the
status of GAUSS, such as the size of usable memory, will appear on the screen and we are in the GAUSS
environment. The GAUSS promp#’ will show up on the screen waiting for us to type GAUSS commands.

In GAUSS terminology, the GAUSS environment we are in is referred to as the GAUSS command mode.
We can directly type GAUSS statements on the screen and execute them (a procedure that is called running
GAUSS in the command mode). But this is not most convenient way to use GAUSS. We should instead
type a GAUSS program in an ASCII file first and then submit it for execution in the edit mode, as briefly

1.1. GETTING STARTED WITH GAUSS 3

described at the beginning of this section. That is, when our GAUSS program in the filepsgys,is
ready, we type

1 run prg.l

and press theEhter’ key after the GAUSS prompt>’ . GAUSS will then start tacompile(translate it to
machine codes that computers really understand) thepfite. 1.” If there is no error in the program and the
compilation process gets through, then the program will be executed immediately after it is compiled. This
whole procedure is calledinning a GAUSS program in the edit mod&fter the program is executed, we

get either the result we want or some error messages on the screen. If the psogrameeds to be revised,

we can call up the wordprocessor or the editor from inside the GAUSS by preceding the usual command
with three additional lettersdbs’. For examples, if we use the DOS editor to revise the file, the standard
command under DOS is

1 edit prg.1

But if we are in the GAUSS command mode, then the command changes to

1 dos editor prg.1

after the prompt sigre>’.

1.1.1 Executing DOS Commands in GAUSS

We can access all the DOS commands from the GAUSS command mode. In fact, other than running GAUSS
programs, what we do in the command mode are mostly DOS related activities such as copying or deleting
files, making or changing directories, etc. To do these, we simply precede all the usual DOS commands with
"dos’. For example, to copy the filerg. 1 to another fileprg. 2, we type

1 dos copy prg.l prg.2

There is a big advantage in executing DOS commands in the command mode: all the commands will stay
on the screen so they can be revised or reused. You do not have to retype the entire command again and
again when the same command is to be repeated.

1.1.2 Some GAUSS Keystrokes

All the commands to be executed in the command mode need to be preceded by the GAUSS>prothpt
there is no GAUSS prompt on the screen, pres$dhieey to create one. There are some other useful keys
in the command mode:

e The four arrow keys: to move the cursor around the screen.

e The ‘Home’ keys: to go to the end of the line and then the end of the screen.

4 CHAPTER 1. INTRODUCTION

e The ‘Backspace’ key: to delete a character to the left.

e The Del’ key: to delete a character.

e The ‘Escape’ key: to exit form the command mode and go back to DOS.

e F1: to recall the previous screen.

e Citrl-F2: to execute the file that was last run.

e Ctrl-Enter (pressing theCtr1’ and ‘Enter’ keys simultaneously): to add a blank line.
e Ctrl-Home: to clear the screen.

e Ctrl-N: to add a blank line.

e Alt-D: to delete a line.

e Alt-H: to access the On-Line Help, which provides a fairly detailed description of all GAUSS com-
mands. The use of On-Line Help is quite self-explanatory. AfterHAk-pressed, a help screen will
be displayed. Pressing’‘again will give us the promptHelp On:’ at the bottom of the screen. Itis
from this prompt we can access all other On-Line Help information. More about On-Line Help will
be discussed in sections 4.5 and 9.5.

1.1.3 A Note on Computer Memory

GAUSS can automatically access all the memory in the computer. 4MB memory is the minimum require-
ment for GAUSS-386 version 3.2. Occasionally, the “insufficient memory” problem may occur. Other than
adding more memory chips to the computer, an easier remedy is use another version of GAUSS: GAUSS-386
VM. The letters “YM” means it can transform the hard disk spac¥ittual Memory- a kind of simulated
memory. The disadvantage of using virtual memory is that computation slows down considerably.

1.2 The GAUSS Editor

This section presents a brief explanation of the GAUSS editor. It is a part of the GAUSS that is used to
typed and revise the GAUSS program in an ASCII file. Although we may use a wordprocessor or some
other editor like the DOS editor for such tasks, the advantage of using GAUSS editor is that the GAUSS
program can be submitted for execution directly from inside the GAUSS editor. The commands described
here are not complete but will get almost all your editing jobs done. To use the GAUSS editor to edit an
ASCII file, say,prg.0 in the command mode, we type

1 edit prg.0

and press thethter’ key after the GAUSS prompt>’ . The content of the filegrg. 0’, if any, will appear

on the screen ready for editing. All the keys for the command mode described in the previous section still
work inside the GAUSS editor and there are many more. Let’s first consider an important feature of the
GAUSS editor — blocking. Multi-line text in a file can lidockedfor special uses. To block off a section

1.3. GAUSS STATEMENTS 5

of text, press Alt-L at both ends. The blocked text will then be highlighted. The blocked text can be copied
or moved to other places in the file. To do this, either press-thkey in the numeric keypad toopythe
blocked text to scrap (which is a temporary storage place outside the file), or preskineinh the numeric
keypad tomovethe blocked text to scrap. After the scrap is filled with some data, then move the cursor
to another place and press tHas’ key to retrieve the blocked text from the scrap. As such the blocked
text can be copied or moved to any place in the file. The blocked text can be further manipulated by the
following keystrokes:

e Alt-W: to copy the blocked text to another file.

e Ctrl-X: to execute the blocked text.

Alt-P: to print the blocked text.

e The Del’ key: to delete the blocked text.

Text can be searched and replaced using the GAUSS editor:
e F5: for searching.
e F6: for searching and replacing.
After we finish editing, there are three ways to exit the GAUSS editor and go back to the command mode:
e Alt-X: a menu of options will show up for selection.
e F1: to save the file and exit.
e F2: to save the file and then execute it.
While in the command mode after editing a file, there are several keys related to the GAUSS editor:
e Shift-F1: to directly go back to the last edited file for additional editing.
e Shift-F2: to execute the last edited file again automatically.
e Ctrl-F1: to edit the last run file automatically, given that a file has just been run.

e Ctrl-F3: to edit the last output file automatically, given that a file has just been run which produces an
output file.

These keystrokes may be difficult to remember at first. But just a few exercises can change such feeling
completely.

1.3 GAUSS Statements

Equation/* 1.1 */ in page 1 is a typical GAUSS statement which contains an equality sign. It is the
GAUSS counterpart of the handwritten equation (1.1). When we write down an equation like (1.1) on
scratch paper, the exact valuesypi, 8, ande do not really concern us. However, when we type equation

/* 1.1 */ina GAUSS program, we need to be very specific about the values in the magrices,“ b’,

and ‘e’ as to what exactly are contained in each matrix: how many variables, how many observations, the

6 CHAPTER 1. INTRODUCTION

format of the numbers as integers or as real numbers; etc. Because of this, almost all GAUSS programs start
with GAUSS statements that assign data to matrices which can be operated in the latter part of the program.
Here, it is important to know that whenever a new matrix is defined, the numbers of its column and row
should be firmly remembered. Operating on unconformable matrices with incompatible dimensions is the
most common mistake in writing GAUSS programs.

Suppose we have input data into the three matriXesti’, and ‘e, so that we know exactly the size of
each of these matrices. With this information, we should also know whether they are suitable for operations
like matrix multiplication *’ and matrix addition +'. If they are, then the operations on the right-hand side
of /* 1.1 */ should produce a result that can be equaytmh the left-hand side.

Now, instead of thinking the result from the right-hand sislequal tothe left-hand side matrixy’,
as the equality sign=" implies, we should interpret the equality sigel as anassignmentommand: y’
is assigned with the result of the right-hand side operation. The reason for having this new interpretation
is because it is how computers interpret the equality sign. We note this interpretation does not change the
fact that the contents of both sides of the equality sign are equal. Many GAUSS statements contain equality
signs and their interpretations should always be assignment.

1.3.1 Some Syntax Rules

Semicolons are used to end statements. Extra spaces can be inserted between itemsy’sueh as’,'

‘*’ ‘b, ‘+ and ‘e’ in equation/* 1.1 */, to make statements more legible. All extra spaces between
items are ignored. Empty lines between GAUSS statements are also allowed. More than one statement can
be typed in one line, though we usually leave one statement in one line to make a program more readable.
Also, at most 80 characters are allowed in each line. If a statement is too long to fit into one line, it can be
continued in the next line.

Another way to make GAUSS programs more legible is to vaiiement# the program. To distinguish
GAUSS statements, which can be executed by a computer, from comments, which is to be read by human
only and ought to be ignored by the computer, we enclose all comments betwee#i twdéetween /*’
and */’. For example, to number the equation we use the commiént’. 1 */’ which can also be written
as@1.1@. Itwill be ignored by the computer.

Uppercase and lowercase in GAUSS make no difference. For example, we can freely interchange the
uppercaseX’ in equation/* 1.1 */ with the lowercasex’. Symbols of variables can contain up to 32
characters (8 charaters prior to version 3.2) from 26 English letters, 0,, B, and underscore ",

1.3.2 Two Types of Errors

If syntax errorsare detected during the compilation process, GAUSS will immediately stop and report to
the computer screen. Syntax errors mean anything that we erroneously type and are not recognizable to
GAUSS. These errors are relatively easy d@bugging i.e., correcting. GAUSS usually gives us rather
clear error messages on the screen.

There is another type of errors, the so-callegic errors that are usually harder to spot. For example,
suppose the calculation we intend is

z= (x+ 10)y.

If in the GAUSS program we erroneously type

1.3. GAUSS STATEMENTS 7

1 z = (x + 10*y;

then GAUSS will spot the error of missing right parenthesis and stop the execution of this GAUSS command.
This is a syntax error. However, if what we type is

1 z = x + 10*y;

then there is no syntax error and what we have is a perfectly legitimate GAUSS statement. GAUSS wiill
execute it as
Z =X+ 10y,

and assignZ’ a value that is not really what we want, whichzs= (x + 10)y. This is a logic error. It is our
responsibility to make certain a GAUSS program is free from logic errors.

It is quite common that earlier logic errors cause some syntax errors later in the program. For example,
suppose the value of” if calculated correctly, is expected to be positive. So in the latter part of the program
we take square root ot*. When GAUSS tries to execute this command, a syntax error will resutvfas
not computed correctly early on and had a negative value. Debugging such syntax errors may take more
time because we have to trace back to the origin of the problem. However, the worst situation is that we
make some logic errors that do not contradict to anything else in the program. The program can run without
encountering any syntax errors but produce something we do not want. This is perhaps the worst thing that
can happen to a GAUSS program. So it is usually quite necessary to test a complicated but syntax error-free
GAUSS program with experimental data to guard against logic errors.

CHAPTER 1. INTRODUCTION

Chapter

Data Input and Output

Consider the definition of the error term in equation (1.1):
e=y—X8B. (2.1

Suppose we have data on the dependent vanehial a few explanatory variabls The parameter vector
B is also known to us. If we want to compute the error veetdhen we use the GAUSS command

. e =y - X*b; /¥ 2.1 %/

Let's assume the data consistifobservations and there ake explanatory variables. So the dimensions
of the matricey, X, andg aren x 1, n x k, andk x 1, respectively. Suppose these data are recorded on
a piece of paper, then the question is: how can we read these data into the matricésand ‘b’ in a
GAUSS program?

2.1 ASCII Files

The most straightforward way to read data into matrices is through the direct assignment statements as
follows:

1 y = {1, 3, 4.5, -4, 5},
2

3 X={1 4.2 6.1,

4 1 3.9 2.7,

5 1 2.4 0,

6 1 -7.35 3.2,

7 1 6.8 2.2};

8

9 b={2.1, 0.3, 2.2};

The numbers on the right-hand side are our hypothetical data. Note that we Baseandk = 3 here. (As
mentioned earlier, keeping these dimensions in mind is important in writing GAUSS programs.) From the
pattern the data is listed, it is easy to infer that commas separate rows, spaces separate columns, and all data
are enclosed in braces.

There is no difference between the second assignment statemeXitdod ‘the following one:

1 X={1 4.2 6.1, 1 3.9 2.7, 1 2.4 0,1-7.353.2, 1 6.8 2.2};

10 CHAPTER 2. DATA INPUT AND OUTPUT

since extra spaces between items are ignored in GAUSS.
There is an equivalent way to defing," X', and ‘b’ using the Tet’ command:

1 let y[5,1] =13 4.5 -4 5;
2 let X[5,3] =14.26.113.92.712.401-7.353.216.82.2;
3 Tet b[3,1] = 2.1 0.3 2.2;

Inthese 1et’ commands, the dimensions of matrices are explicitly specified and enclosed by brackets. Since
the dimensions of matrices are known, it becomes unnecessary to use commas or braces on the right-hand
side to separate data. Data will be assigned to a metwixby row This mechanism of feeding matrices
with datain rowsis typical in GAUSS. This convention is followed by many types of GAUSS operations as
will be seen later.

There are three more conventions, or the so-calkfdults associated with thelet’ command when
the ‘1et’ command is not completely specified. First, if the dimension is not given, then a column vector
will be assumed. For example, the statement

1 let a =2 3 8 10 4;

creates a 5 1 column vectora’. Secondly, if only one data entry is provided, then this single entry will
fill the entire matrix:

1 let a[3,8] = 0.7;

creates a X 8 matrix of 0.7. Thirdly, if no entry is given, then 0 is assumed:

1 let a[2,5];

creates a % 5 matrix of O.

2.1.1 ASCII Data Files

Although the previous two methods for data input seem straightforward enough, there is a more flexible
alternative. In this method, we first type the three sets of data in three different ASCII files with file names,
says,y.dat, x.dat, andb.dat, respectively, while data in these files are listed in a matrix format. For
example, in the ASCII fil.dat, we have:

1 1 4.2 6.1
2 1 3.9 2.7
3 1 2.4 0

4 1 -7.35 3.2
5 1 6.8 2.2

2.1. ASCII FILES 11

Note that no commas or braces are included. Given the three ASCII data files, we use the following three
GAUSS commands to read data from them:

1 Toad y[5,1] = y.dat;
2 load X[5,3] = x.dat;
3 load b[3,1] = b.dat;

Again, the dimensions of matrices need to be explicitly specified in tHead“commands. This data input
method is the most common one because we do not always type data ourselves but obtain some ASCII data
files from somewhere else.

In most ASCII data files, data are displayed just like those in the abodet example: different vari-
ables are listed in columns, which are separated by spaces, and observations are listed along rows. However,
as mentioned earlier, GAUSS has the automatic mechanism of feeding matrices in rows. So the data in the
ASCII file x.dat can actually be listed as

1 1 4.2 6.1 3.9
2 1 -7.35 3.2 1 6.8

As long as the dimension ok” in the ‘Toad’ command is correctly specified, data will be loaded intb *
correctly — one row by another.

2.1.2 ASCII Output Files

After data have been read into the matricgs“X’, and ‘b’, the assignment operation /* 2.1 */ can then be
executed to create the error vectet. ‘The question now is how we can access the resulting values,in *
either to read them or to store them for later uses. Consider the following GAUSS statements:

1 output file = residual.out on;
2 format /rd 10,4;
3 print e;

The ‘output file’ command in the first lin@pens(i.e., creates or retrieves) an ASCII file with the name
‘residual.out’, which can be any file name with extension that follows the standard rule for file names.
The file ‘residual.out’ can be a new file or an existing file. Irésidual.out’ is an existing file with
some data already in it, then the subcommasd tauses new data, which we are about to produce, to
be appended onto the end of this file without affecting those existing data. An alternative subcommand is
‘reset’ which resets the referred file so that all the existing data will be erased.

The “format’ command in the second line describes how the data should be listed in the output file. Its
second subcommangrd’ means the listed data are to be right-justified and the third subcomniandf *
means in total ten spaces are reserved for each entry which is rounded to four digits after the decimal point.
The ‘10,4’ subcommand may be changed to suit different needs. A common ofglisvhich means to
list the values as integer numbers (without decimal points) over six spaces.

Although there are seven other alternatives, ftré”subcommand is used most often. Another common
one is //re’, with which the value 0012345(= 1.2345x 10-?) will be listed as 1.2345E-2 (given the other

12 CHAPTER 2. DATA INPUT AND OUTPUT

subcommand is6',4"). If left-justified listing is desired, changer” in the above subcommands td''
To find out more about the other possibilities, press Alt-H and then timenat’. On-Line Help for the
‘format’ command will appear. (There we can find a third subcommand which is much less used.)

The ‘print’ command in the third line means to list all the elementsedf The results will be listed
both on the computer screen as well as in the output ASClIéideé dual . out using the format specified by
the ‘format’ command. Theprint’ command can be abbreviated as

1 e,

That is, we simply type the name of the matrix, followed by a semicolon. This simplified print command
will be used throughout this book.

A GAUSS program can contain more than one print command. All the printed matrices will be included
in the same output ASCII file and follow the format based on fleehat’ command that is last executed.

Once the output ASCII file is created with data printed into it, we can use a word processor or an editor
to view, revise, or print those data.

The data in the output ASCII file, like any ASCII data file, can also be read back into a matrix in a
GAUSS program using thelbad’ command as described earlier. For example, the entries listed in the
ASCII file residual.out can be loaded back to the matri¥ as follows:

1 Toad e[5,1] = residual.out;

Note that when an ASCII data file is loaded, we have to make sure the number of data entries in the ASCII
file matches the matrix size specified in tHedd’ command. Again, no matter how the data entries are
listed in the ASCII file, they will be read into the matrix row by row.

2.1.3 Other Commands Related to ASCII Output Files

Suppose we do not want the values énto be listed in any ASCII file and all we want is to read them on
the screen, then we just skip theitput file’ command.
If an output ASCII file is already opened, it can be ‘closed’ by

1 output off;

The output file can be reopened again to accept new output entries by

1 output on;

If we want to list results from several operations at several places in a long program, we can open an ASCI|
file at the beginning of the program and then close and reopen it as often as we want.

If an empty line is to be included in the output file between two printed matrices, then between the two
‘print’ commands type:

1 print;

2.1. ASCII FILES 13

or, simply,

By including many such commands, we can produce multiple empty lines. This is a useful technique which
makes the output ASCII file easier to read.

If other than numbers we also want a string of characters to appear in the output file (usually as the titles
of output entries or to give some explanations to the outputs), use the quotation command. For example, if
we want a line like “The residuals are” to appear before the values,df/pe

1 "The residuals are";
2 e,

Everything inside the quotation marks will appear in the output file. The semicolon after the quotation
command can be omitted. In such a case, the first elemeat will be listed immediately after the word
“are” in the same line.

If we only want to list the values ok’ in the output ASCII file and do not want them to appear on the
screen (this is sometimes needed to save time because printing on the screen can be time-consuming), we
can add the following command before the print command:

1 screen off;

To turn the screen on again, type

1 screen on;

2.1.4 An Example

In this example we demonstrate how to use GAUSS to deal with real data that are in the ASCII format.
The data are drawn from the monogralalernational Evidence on Consumption Patterns by Henri Thell,
Ching-Fan Chung, and James Séalkhey consist of per capita consumption on 10 categories (or aggregate
commaodities) in 1980 for 60 countries. The 10 categories are

1. Food;
2. Beverages and Tobacco;
3. Clothing and Footwear;

4. Gross Rent and Fuel;

International Evidence on Consumption Patterns, Henri Theil, Ching-Fan Chung, and James Seale, Greenwich, Connecticut:
JAI Press, 1989.

14 CHAPTER 2. DATA INPUT AND OUTPUT

House Furnishings and Operations;
Medical Care;
Transport and Communications;

Recreation;

© © N o O

Education; and

10. Other.

The data are in three ASCII files whose names aod ume’, ‘ share’, and ‘totalexp’, respectively.
Both ‘volume’ and ‘share’ files contain 60x 10 matrices. The 60 rows correspond to the observations on
the 60 countries and 10 columns for 10 categories.

The data in the filevolume’ are the volumes of per capita consumption (in terms of a set of stan-
dardized measurement units). These volumes can be consideredpstttities ¢, i = 1,...,10 and
c=1,...,60, of the 10 commaodities.

If in addition to these quantities, we also hauéces R, then we can define thexpenditure®n these
10 commodities simply by the produabg.q;c, from which we can also define thetal expenditures

10
Me=) Pclic. C=1,...,60.
i=1

The file ‘totalexp’ is a 60 x 1 vector which contains the data on the 60 countries’ total expenditgire
Note that a country’s total expenditung can also be referred to as it's income.
Finally, we note théudget sharesf the commodities are defined by
_ Piclic

Sc , i=1,...,10, c¢c=1,...,60.
mc

The file ‘share’ contains the 60 observations on 10 budget shares.

Suppose we want to read data from these three different ASCII files and then print them in a single ASCII
file calledal1.out with some description. We use the editor to type the following GAUSS commands in an
ASClII file, say,try.1:

1 Toad q[60,10] = a:\data\volume;

2 Toad s[60,10] = a:\data\share;

3 Toad m[60,1] = a:\data\totalexp;

4

5 output file = a:\all.out on;

6

7 "The Quantities of 10 Commodities from 60 Countries:";?;
8 format /rd 8,2;

9 3737357

10

11 "The Budget Shares of 10 Commodities from 60 Countries:";?;
12 373737

2.2. MATRIX FILES 15

13

14 "The Total Expenditure of 10 Commodities from 60 Countries:";?;
15 format /rd 15,0;
16 m:?2:2:7:

999
17

18 output off;

This is a simple GAUSS program in which we assume the three fitglame’, ‘ share’, and ‘totalexp’
are all located at the subdirectorfydata” of a diskette which is in driva. After the program filetry. 1 is
executed, the output filel1.out will also go to the same diskette in driae but in the root subdirectory.
We can use the editor to view the original ASCII data fileslume’, ‘ share’, and ‘totalexp’, as well as
the output fileal1.out and compare them.

The output in the output file11.out will be arranged in three blocks, separated by three empty lines.
Each block has one line of simple description on the top. The entries in the inpwiofilene’ contain one
digit after the decimal point, but there will be two digits after the decimal point in the output file, just like
those entries in the input filshare’. In contrast, the original entries in the input fileotalexp’ contain
two digits after the decimal point but they will appear as integers in the output file.

It is interesting to see what happen if you misspecify the dimensions of the input matrices as follows

1 Toad q[60,5] = a:\data\volume;
2 Toad s[20,10] = a:\data\share;
3 Toad m[1,60] = a:\data\totalexp;

1 Toad q[100,10] = a:\data\volume;
2 load s[600,1] = a:\data\share;
3 Toad m[60,10] = a:\data\totalexp;

Examining the error messages or the corresponding output file is informative. From these mistakes we learn
how syntax errors or logic errors can be generated. One possible logic error here (which is common and
potentially quite dangerous) is that the matrices we create may not contain the data we intend to have.

The three ASCII data filesybTume’, ‘ share’, and ‘totalexp’ will be used throughout this book as our
leading example.

2.2 Matrix Files

The ASCII data file we have described so far is one of the three types of data files used in GAUSS. The
second type of data files are referred tonaatrix fileswhile the third one is calleGAUSS data set files
Matrix filesare the easiest ones to handle and they will be introduced GéWISS data set filemre more
complicated and are designed for larger data sets. They will be discussed much later in appendix B.

If we are not immediately interested in viewing the values in the ma#fiand all we want is to save
them for later uses, then the best way to output the matrices is to use the following command

16 CHAPTER 2. DATA INPUT AND OUTPUT

1 save e;

The data in & will be saved as amatrix file with the file name é. fmt’, where the extension.fmt’ is
automatically attached to the matrix name. In the GAUSS program we do not need to specify the format or
dimension for matrix files. Data will be automatically stored with the maximum precision.

The disadvantage of storing data in matrix files is that they cannot be viewed with a word processor or
an editor. To find out what are inside a matrix file, we have to first load the matrix file back to a matrix in a
GAUSS program and then print it on the screen or in an ASCII file. However, to load a matrix file is quite
easy. For example, to load tkefmt file back, just type

1 load e;

It is possible to change the name of the matrix file when it is saved. For example, the command

1 save res = e;

will save data in the matrix filer'es.fmt’. The extension . fmt’ is again automatically attached. So when
we specify the file name in thedve’ command, no extension should be included. If theifds. fmt is to
be loaded back to a matrix with the namé type

1 load a = res;

Since it is not necessary to type the extensidimt’ or to specify the dimension of the matrix’; it is easier
than loading an ASCII data file.
Consider the following simple example:

Toad q[60,10] = a:\data\volume;
Toad s[60,10] = a:\data\share;
Toad m[60,1] = a:\data\totalexp;

save a:\data\volume = q,
a:\data\share = s,
a:\data\totalexp = m;

~ [=2] o e w N =

After these commands being executed, the directoydata\share will then contain three more files:
volume. fmt, share.fmt, andtotalexp.fmt. They are matrix files. They are different from the three orig-
inal ASCII data filesvolume’, ‘ share’, and ‘totalexp’, which do not have the.'fmt’ extension (although
the contents are the same).

Chapter

Basic Algebraic Operations

3.1 Arithmetic Operators

Arithmetic operators are the easiest part of the GAUSS language because their notation is similar to the
corresponding handwritten notation. The basic usage of the three arithmetic operafsusy), ‘-’ (sub-
traction), and *' (multiplication) for matrices are defined in the usual way. For example, in the following
program

1 let a[3,2] =1 2 3 4 5 6;

2 let b[3,2] =11 12 13 14 15 16;
3

4 c =a+t by

5 d=a - b;

The contents ofc¢’ and ‘d’ are easy to figure out. Also, we note that the two matriegéand ‘b’ cannot be
multiplied because they are not conformable: matrix multiplication requires the column number of the first
matrix to be equal to the row number of the second matrix. The following program is legitimate

let a[3,2] =1 2 3 4 5 6;
Tet b[2,5] 11 12 13 14 15 16 17 18 19 20;

e w N Ll

c = a*b;

The slash /’ is used formatrix division The interpretation of the notatioa /b’ depends on the sizes
of the two matricesd’ and ‘b’. If both of them are scalars, thea/b’ means a’ is divided by b’. If * a’ and
‘b’ are two matrices, thera/b’ is defined to be & - b~ in handwritten form. That is, the result o /b’ is
a matrix which is equal to the product of the matr& ‘and the inverted matrix5=". More about matrix
inversion will be discussed later.

3.2 Element-by-Element Operations

One important feature of the GAUSS language is that GAUSS has extended the functionality of the arith-
metic operatorst’, ‘ -’, * ** and ‘/.” Although typically two matrices should have the same dimensions when

a matrix is added to or subtracted from another matrix, in GAUSS a scalar (single number) can also be added
to or subtracted from a matrix. What GAUSS does is to replicate the scalar to a matrix of the same size as
the other matrix and then proceed with the usual calculation. GAUSS also allows a vector to be added to or
subtracted from a matrix so long as the dimension of the vector is the same as either column number or row

17

18 CHAPTER 3. BASIC ALGEBRAIC OPERATIONS

number of the other matrix. What GAUSS does again is to replicate the vector to a conformable matrix. For
example, supposa*is a 1 x 4 row vector andl’ is a 6 x 4 matrix. When computinga’ + b’, GAUSS
first replicatesd’ six times to form a 6x 4 matrix with six identical rows and then adds this matrixto *

There are two new operators* and ‘./’ (i.e., ‘**' and ‘/’ preceded by a dot) in GAUSS that are
referred to as element-by-element multiplication and element-by-element division, respectively. Given that
‘a’ and ‘b’ are two matrices of the same dimensions,*b’ means that each element af is multiplied by
the corresponding element ib'‘and ‘a. /b’ means that each element af is divided by the corresponding
elementinb’

Since the rule of element-by-element multiplication and element-by-element division about the dimen-
sion work is the same as matrix addition, it is also possible for the two matrices under the element-by-
element operation to have different dimensions: GAUSS simply expands the matrix of the smaller size
before operates on it.

If we are not sure about how the four basic arithmetic operators work, the best way to figure it out is to
go ahead to create some simple matrices in GAUSS and then play with them a little. For example,

let a[1,3]
let b[2,3]
C = a.*b;

as;? by?; c;

12 3;
111

22 2;

S w N L

Viewing results of such experiments should greatly help us understand element-by-element operations.

3.3 Other Arithmetic Operators

The operator for exponentiation i’ For example, “ 8 ” is written in GAUSS as

1 5°3;

If “a’ is a 4 x 6 matrix, then the expression

1 b=a"2;

creates a 4« 6 matrix ‘b’ whose elements are squares of the corresponding elements in the rmatrix *
Matrix transpose is'. For example, the GAUSS translation of &= x'x” is

Strictly speaking, the correct expression shouldXdéx’ in the above statement. However, GAUSS allows
the abbreviation of the double operatots’to simply *'".
Knonecker product such as = a® b” is expressed in GAUSS as

1 c = a.*.b;

3.4. PRIORITY OF THE ARITHMETIC OPERATORS 19

If the dimensions of the matrices’'and ‘b’ arem x n and p x g, respectively, then the resulting'‘is a
blocked matrix containingn x n blocks. The(i, j)-th block is a matrix of the dimensiop x g which is
the product of thdi, j)-th element in the matrixa® and the entire matrixti’. So the dimension ofc’ is
mp x nq.

3.4 Periority of the Arithmetic Operators

If more than one operator appear in the same expression, some operators will be performed prior to the
others. For example, matrix multiplication has higher priority than matrix additio#: 3 4 is equal to
2 + (3- 4) instead of(2 + 3) - 4. Also, [(a + b)c]? is different froma + b - ¢? because the priority of
exponentiation operation is higher than both multiplication and addition. Here, we note that parentheses and
brackets help to rearrange the priority of the operations. Generally speaking, the usual priority rule we learn
from high school algebra still applies to the GAUSS operation and it is not necessary to memorize any new
rule.

Note that the GAUSS expression for computig§ b)c]?is ‘ ((a + b)*c) 2. Since the brackets are
not used in GAUSS, we need two layers of parentheses here in the GAUSS expression. The best way to
avoid trouble when we are not sure about the priority of some operators is to use parentheses generously.

An Example Given data on quantitieg., budget shares., and incomem; of 10 commodities in the
ASCII files ‘volume’, ‘ share’, and ‘totalexp’, we can compute the expenditures and pricesp;c, where

€c = Piclic = Mc PicSic = McSe,
Me
from which we can also compute the prices
Pic = PicCic = i
Gic Gic

In the following GAUSS program we load the ASCII data files, compute the 10 expenditures and prices for
60 countries, and then print the results in an output file narmenp". out’:

a:\data\volume;

output file = comp.out reset;
format /rd 8,2;

1 load q[60,10] =

2 Toad s[60,10] = a:\data\share;

3 Toad m[60,1] = a:\data\totalexp;
4

5 = m.*s;

6 p=e./g;

,

8

9

[N
o

"The Expenditures of 10 Commodities:";?;
e:?:?:

9*9°*>

-
[

[
N

-
w

[
IS

"The Prices of 10 Commodities:";?;

20 CHAPTER 3. BASIC ALGEBRAIC OPERATIONS

15 3737,
16
17 output off;

18
19 save ¢, p, m;

The output ASCII filecomp.out from this simple program will contain two 69 10 matrices: the expen-
ditures and the prices of the 10 commaodities from 60 countries. The quantities, prices, and income are
also stored as matrix files with namefmt, p. fmt, andm. fmt, respectively. Because we do not explicitly
specify the subdirectory and drive names, all output files are located at the current subdirectory in drive
(which is the default).

Note that the 60< 10 matrices ¢’ and ‘p’ of expenditures and prices are computed using the element-
by-element multiplication and element-by-element division, respectively. In particular, we note'tisat *
only a 60x 1 column vector whiles’ is a 60 x 10 matrix. When they are multiplied, GAUSS first expands
‘m' to a 60 x 10 matrix with identical columns and then multiplies it, element by element, to the msitrix
These examples show how convenient the element-by-element operations are.

3.5 Matrix Concatenation and Indexing Matrices

One of the most useful features of GAUSS s it allows us to manipulate matrices almost anyway we want.
We can combine several matricesdmncatenatioror extract part of a matrix bindexing

If*a’is a 3 x 4 matrix and b’ is a 3 x 2 matrix, then they can be concatenated horizontally toxa63
matrix as follows:

1 c = ab;

The first four columns ofc¢’ come from ‘a’ and the last two columns come from'. Similarly, two matrices
‘d’ and ‘e’ with the same column numbers can be concatenated vertically as follows:

1 f = d|e;

If we want to extract the second and fourth rows of a matixd form a new matrix b’ of two rows,
then we type

1 b =a[2 4,.];

The two numbers in the brackets before the comma are row indices and the numbers, if any, after the comma
are column indices. In the above case, the column indices are replaced by andth means all columns

are selected. If we want to extract the third and fourth columns of a matria form a new matrix b’ of

two columns, then we type

1 b = a[.,3 4];

3.5. MATRIX CONCATENATION AND INDEXING MATRICES 21

If we want to extract the first, fourth and second rows, and the fifth column of a mattix forma 3x 1
matrix ‘b’, then we type

1 b =all4 2,5];

Note that the indices can be in any order so that we can rearrange the elements of a matrix in any order we
want.

Let's consider the problem of reading data to the matrigeand ‘X’ of the equatiory/* 2.1 */. Sup-
pose the datay’ and ‘X’ are stored together in a % 4 matrix format in the ASCII file 411.dat’, where
the first column of the matrix contains the data fgrand the last three columns are fof.' We use the
following statements to read the data ingoand ‘X’

load alldata[5,4] = all.dat;

= alldatal[.,1];
alldatal.,2:4];

A w NP
> <
|

When defining X', we use 2:4’ to denote the column indicef ‘3 4’. The colon mark can be used to
abbreviate consecutive indices.

An Example Suppose we are interested in the International Consumption data on Food and we want to
list quantities, prices, and budget shares, together with income in one ASClibditeout. Here we can
use the three matrix fileg. fmt, p. fmt, andy. fmt created earlier as the inputs.

lToad food q = q, food p = p, y;
food q = food q[.,1];

food p = food p[.,1];

food s = (food g.*food p)./y;

out = food q food p~food s7y;

© ~ (o2} (4] s w N =

output file = food.out reset;
format /rd 10,2;

[N
o

-
-

out;

[
N

-
w

output off;

[
I

Note that when we load the matrix fileg' ‘and ‘p’, we change their names tddod g’ and ‘food_p’,
respectively. Since Food data are in the first column of these matrices, the matrix indexing technique is
applied to pick these columns. We also note that the resulting column vectors for Food data are again
named asfood g’ and ‘food q’, respectively. Such reuse of the matrix names in assignment commands

22 CHAPTER 3. BASIC ALGEBRAIC OPERATIONS

is perfectly acceptable. However, we should know that after the execution of these commands, the original
60 x 10 matrices food g’ and ‘food g’ will no longer exist (in the computer memory) because they have
been completely replaced by 601 column vectors of the Food data. The main reason for adopting such
a trick is to economize the number of matrices. Since each matrix occupies some computer memory, it is
always desirable to get rid of those matrices which are no longer needed to release the computer memory
for other uses.

Another way to clear unwanted matrices is to directly set them to zero. For example, immediately after
the ‘out’ matrix is defined we can have the following expressions:

1 food q = 0;
2 food p = 0;
3 food s = 0;
4 y = 0;

Here are a few interesting questions about the above program:

e What is the size of the matrixtut'?
e What is the format of the print-out in the output fileood.out’?
e How can we modify the above program so that the output contains data for the first ten and the last

ten countries only?

The answer: first changédod q[.,1]" and ‘food p[.,1]" in the second and the third expressions
to ‘food q[1:15 46:60,1]" and ‘food p[1:15 46:60,1]", respectively, and then changg in the
fourth and fifth expressions tgyf1:15 46:60]". Note that, sincey’ is a column, its second index
can be omitted inside the brackets.

e How can we modify the above program to print out the results for a combined commodity of Food
and Beverages and Tobacco?
The answer: simply changédod q[.,1]" and ‘food p[.,1]" in the second and the third expres-
sions to food q[.,1] + food q[.,2]"and ‘food p[.,1] + food p[.,2]’, respectively.

e Isit possible to print the matrixout’ in a way that different columns have different formats?
The answer is no. To do this we need a special GAUSS command which will be discussed later.

Chapter

GAUSS Commands

The strength of GAUSS lies in more than a hundred GAUSS commands whose function covers almost all
basic mathematical and statistical operations. In this section we will list the most useful ones.

4.1 Special Matrices

GAUSS provides several special matrices that can be used as building blocks for matrix manipulation:

1 a = zeros(3,5); /* A 3 x 5 matrix of zeros. */
2 b = ones(2,4); /* A 2 x 4 matrix of ones. */
3 c = eye(4); /* A4 x 4 identity matrix. */
4 d = seqa(2.5,0.25,10); /* A 10 x 1 column of additive sequence with

5 2.5 as the first element and 0.25 as the

6 increment. So 2.75 = 2.5 + 0.25 is the

7 second element, 3 = 2.75 + 0.25 the third

8 element, etc. */
9 e = seqm(5,2,20); /* A 20 x 1 column of multiplicative sequence

10 with 5 as the first element and 2 as the

11 multiplication factor. So 10 = 5 x 2 is the

12 second element, 20 = 10 x 2 the third

13 element, etc. */

4.2 Simple Statistical Commands

GAUSS provides many powerful statistic operations:

1 al = sumc(x); /* The sum. */
2 a2 = prodc(x); /* The product. */
3 a3 = meanc(x); /* The mean. */
a ad = median(x); /* The median. */
5 ab = stdc(x); /* The standard deviation. */
6 a6 = maxc(x); /* The maximum. */
7 a7 = minc(x); /* The minimum. */

Each of these commands operates orkthelumns of theb x k input matricesx’ and produce & x 1
column vector. For example, the€anc’ command computes the mean of each ofklelumns of X’ and
lists the resulting means aka< 1 columnvector.

23

24 CHAPTER 4. GAUSS COMMANDS

4.3 Simple Mathematical Commands

common mathematical operations are also easy to performed in GAUSS:

1 bl = exp(x); /* The exponential function. */
2 b2 = Tn(x); /* The logarithmic function with the natural base. */
3 b3 = log(x); /* The logarithmic function with base 10. */
4 b4 = sqrt(x); /* The square root. */
5 b5 = abs(x); /* The absolute value. */
6

; b6 = pi; /* The pi value 3.14159... */
8 b7 = gamma(x); /* The gamma function. */
9

10 b8 = sin(x); /* The sine function of x which is in radians. */
1 b9 = cos(x); /* The cosine function of x which is in radians. */
12 b10 = tan(x); /* The tangent function of x which is in radians. */
13 b1l = arcsin(x); /* The inverse sine function. */
14 b12 = arccos(x); /* The inverse cosine function. */
15 b13 = atan(x); /* The inverse tangent function. */
16

17 bl4 = sortc(x,i); /* x is sorted based on the i-th column of x; i.e.,

18 the rows of x are rearranged in the ascending

19 order of the elements of the i-th column of x. */

The output matrices from these commands all have the same dimensions as their input matrices.

4.4 Matrix Manipulation

Many matrix operators are easy to implement in GAUSS:

1 r = rows(x); /* The row number of the matrix x. */
2 c = cols(x); /* The column number of the matrix x. */
3 d = det(x); /* The determinant of the square matrix x. */
4 g = diag(x); /* Extracting the diagonal elements of the square

5 matrix x as a column vector. */
6 k = rank(x); /* The rank of an arbitrary matrix x. */
7 v = rev(x); /* Reversing the order of rows of the matrix x */
8 /* Column by column. */
9 x1 = inv(x); /* The inverse of the nonsingular matrix x. */
10 x2 = invpd(x); /* The inverse of the positive definite matrix x. */
11 x3 = eig(x); /* The eigenvalues of a square matrix x. */
12 x4 = eigh(x); /* The eigenvalues of a square symmetric matrix x. */
13 {x5,x6} = eigv(x); /* x5 contains the eigenvalues of a square matrix x

14 and x6is a matrix whose columns are the

4.5. BASIC CONTROL COMMANDS 25

15 corresponding eigenvectors of x. */
16 {x7,x8} = eighv(x); /* x7 contains the eigenvalues of a square symmetric

17 matrix x and x8 is a matrix whose columns are the

18 corresponding eigenvectors of x. */
19 x9 = diagrv(x,a); /* x9 is the same as x except the diagonal elements

20 of x9 are replaced by the vector a. */

4.5 Basic Control Commands

The following important commands are not for algebraic operations but for managing the execution of the
GAUSS program. They are probably the most used GAUSS commands. In particulagittmommand is
always placed at the beginning of the program while #nd” command is always at the end of the program.

1 new; /* This command is placed at the very beginning of a GAUSS program.

2 It cleans up and prepares the computer memory for a new program.*/
3

4 end; /* This command is placed at the very end of a GAUSS program. Its

5 main function is to close all the opened files in the program.

6 However, it does not clear memory. So all the matrices defined

7 in the program are still in the computer memory after the

8 program terminates. These matrices can still be listed on the

9 screen for viewing, for example. */
10

1 #1ineson; /* This command attaches Tine number to a program so that if

12 errors occur, GAUSS will report the 1line numbers at which

13 errors occur. */
14

15 #linesoff; /* This command stop keeping track of the line number to a

16 program so that the execution of the program can be

17 speeded up. However, if errors occur during the

18 execution, the line numbers at which errors occur will

19 not be reported. However, the line numbers at which

20 syntax errors occur will always be reported. */
21

22 clear x, y, z; /* This command clears computer memory occupied by the

23 matrices x, y, z by setting the matrices x, y, z to

24 a scalar zero. */

As mentioned earlier, whenever we are unsure about the function of a GAUSS command, we can use
On-Line Help in the command mode by pressing Alt-H. For example, if we want to know more about the
GAUSS commandinvpd’, we press AltH to get a help screen and then press H again to get the prompt
‘Help On:’ at the bottom of the screen. If we typénvpd’, then the on-line help will display information
about the GAUSS commandirvpd’.

26 CHAPTER 4. GAUSS COMMANDS

4.6 Some Examples

It is possible to use GAUSS to verify many matrix algebra results and it is interesting to see how we can
write GAUSS programs to do that.

Given an arbitrary matrix, it is usually not easy to figure out its rank directly. The GAUSS command
‘rank’ is quite handy in this regard. Let’s use the following GAUSS program to demonstrate this point.

1 new,

2

3 let x[5,3] = 1 2 3 /* Defining a matrix arbitrarily. */
4 3 6 -1

5 -1 -2 5

6 2 4 7

7 12 24 0

8

9 " The row number of the matrix: " rows(x);

10 " The column number of the matrix: " cols(x);
1 " The rank of the matrix: " rank(x);

12

13 end;

In this very simple but complete GAUSS program, which starts with the standewtdcommand and ends
with the ‘end’ command, we first create a6 3 matrix and then print the row number, column number, and
the rank of this matrix on the screen. The outputs of this program on the screen are most likely to be

1 The row number of the matrix: 5.000000
2 The column number of the matrix: 3.000000
3 The rank of the matrix: 2.000000

Note that, since the first column and the second column of the matr@xeé proportional, the rank ok’ is
not 3 but 2; i.e., the matrixx does not have full column rank.
If we do not like seeing so many zero hanging after the decimal point and we know the results are integer
numbers, we can add one more commarfarmat /rd 5,0’ before the fow’ command so that no zero
will show up after the decimal point.
Another interesting result about the rank is that if the k matrix X has full column rank (so its row
numbern must be greater than its column numbrthen thek x k square matrixX’X has rankk and is
thus a nonsingular matrix (in fact, a positive matrix), while the n square matrixXX’ will also have rank
k and therefore imota nonsingular matrix. A simple GAUSS program can help verify these results.

new;

let x[5,3] = 1 2 3 /* Defining a matrix arbitrarily. */
5 6
7 8 9

(&) s w N =

4.6. SOME EXAMPLES 27

6 10 11 12

7 13 14 15;

8

9 format /rd 7,0;

10

11 " The matrix X'X is: "; x'x37?; /* Printing a 3 x 3 matrix. */
12 " The rank of X'X:" rank(x'x);?;7;7;

13

14 " The matrix XX' is: "; x*x';?; /* Printing a 5 x 5 matrix. */
15 " The rank of XX':" rank(x*x');

16

17 end;

Calculating the eigenvalues (and the corresponding eigenvectors) of a (symmetric) matrix is usually
difficult. But GAUSS can do it quite easily. Let’s first review a few facts about eigenvalues before we write
GAUSS programs to verify them. Supposg Ao, .. ., A, are the eigenvalues of a symmetric matix

1. The determinantA| = [T, A and the trace tA) = > ', Ai.

2. The eigenvalues of a nonsingular matrix are all nonzero, and the eigenvalues of a positive definite
matrix are all positive.

3. The eigenvalues oA ! are the inverse of the eigenvaluestof
The following GAUSS program helps verify the first result:

1 new;

2

3 let x[5,5] = 1 2 3 4 5 /* Defining a square matrix arbitrarily. */
4 2 3 4 5 6

5 34 5 6 7

6 4 5 6 7 8

7 0 1 2 3 4;

8

9 format /rd 7,0;

[
o

" The determinant of the matrix X is " det(x);
" The product of the eigenvalues of X is " prodc(eigh(x));?;?;

[N
[

-
N

[
w

The trace of the matrix X is " sumc(diag(x));
The sum of the eigenvalues of X is " sumc(eigh(x));

N
i

[
3]

[
o

end;

[
3

Recall that the trace of a square matrix is the sum of its diagonal elements. Also, it is all-right to put one
GAUSS command into another GAUSS command likemtc (diag(x))’ which produces the trace of the
square matrixx’.

28 CHAPTER 4. GAUSS COMMANDS

In the following program we will create a positive definite matrix using the fact thak thek matrix
X’X is always positive definite if the x k matrix X has full column rank.

1 new,

2

3 let x[5,3] = 1 2 3 /* Defining a matrix of full column rank. */
4 4 5 6

5 7 8 9

6 10 11 12

7 13 14 15;

8

9 format /rd 10,6;

[N
o

" The eigenvalues of the positive definite matrix X'X and its inverse, ";
" as well as the reciprocals of the latter:";

-
[

[N
N

-
w

[N
i

eigh(x'x) “eigh(invpd(x'x)) (1./eigh(invpd(x'x)));

-
3

end;

[N
o

Since we use harizontal concatenatiohto put together the three columns of results, a3 matrix will be
printed and it should confirm that all the eigenvaluesxdk’ are positive and that the eigenvalues »fX’
and ‘invpd(x'x)’ are reciprocal.
Note that the last column is the result of element-by-element dividiofeigh(invpd(x'x))’. The
reason for an additional pair of parentheses to encircle this expression is to prevent the possibility that the
concatenation™ may have higher priority in execution than the division, in which case the result would be
completely messed up. We should use parentheses generously to avoid any potential confusion of this kind.
Also note that we use thénvpd’ command, instead of theihv’ command, to invert the matrix" x’
because we knowx"x’ is positive definite. There are two advantages of using imepd’ command to
invert a positive definite matrices: First, thimvpd’ command can do the job more efficiently thamv’,
which is applicable to any nonsingular matrix. Secondly, if for whatever reason (€.goés not have
full column rank) X'x’ is not positive definite, GAUSS will not execute thinvpd(x'x)’ command and
complain about it. This is good for detecting any potential problem of the program.
We now consider two results on the partitioned matrices. The first one involves an important formula

for inversion: .
Ar BT X1 ~AI'BX;
C A | =ASCxy X |

X;=(A;—-BA'CO)™r and X,=(A,-CA!'B)?,

where

andA; andX; are two square matrices of the same dimensionsAarahd X, are two square matrices of
the same dimensions.

To write a GAUSS program to verify this result, we first define an arbitrary nonsinguab Snatrix
‘big_mac’, which consists of four blocksal’, ‘' b’, * ¢’, and‘a2’.

4.6. SOME EXAMPLES 29

1 new;

2 /* Defining the four blocks arbitrarily. */
3 let al[3,3] =1 2 3 1 3 5 1 -2 4;

4 let b[3,2] =-1 2-3 1 0 2;

5 let c[2,3] = 4 1 0-1-2 0

6 let a2[2,2] =3 -1 2 -1;

.

8 big mac = (al™b)|(c"a2); /* Combining the four blocks into one big

9 matrix. */
10 big mac = inv(big _mac);

11

12 x1 = inv(al - b*inv(a2)*c); /* The individual inverse formulas. */
13 x2 = inv(a2 - c*inv(al)*b);

14 y = -inv(al)*b*x2;

15 z = -inv(a2)*c*x1;

[
o

big inv = (x17y)|(z7x2); /* Combining the four inverses into one big
matrix. */

[
]

[N
©

format /rd 10,6;

[
©

N
o

N
[y

big mac;?;7?;
big inv;

N
N

N
W

end;

N
i

The definition of the blocksal’, ‘b’ ‘ ¢’, and‘a2’ are arbitrary. Their sizes and contents can be changed as
long as the resulting matrixnig-mac’ is nonsingular. The outputs of this program should be two identical
5 x 5 matrices.

If in this example we create a matrix which is too big to be shown in one screen, then it will be very hard
to visually compare the two resulting matrices. A better way to compare big matrices is as follows:

format /rd 15,12;

out = maxc(maxc(abs(big mac - big inv)));
outs;

s w N =

(Question: Why are there twamdxc’ commands?) The resulbit’ is expected to be zero but may not be
exactly equal to 0.000000000000: there may be some nonzero digits appearing at the end of the expression.
Such small discrepancy between two supposedly equal matrices illustrates the nature of the computer in that
all computations are conducted with certain degree of rounding errors. It should however be pointed out that
GAUSS is quite good in keeping a high precision level. It can achieve around 16 digits of accuracy which is
sufficient for producingorrectanswers to almost all econometric applications.

30 CHAPTER 4. GAUSS COMMANDS

Note that the above formula for the inverse of the partitioned matrix involves the inverses of the two
diagonal blocksA; andA,. It is sometimes possible that one of them may not be invertible,Agyin
which case we should replace the two sub-formilas= (A;— BA2*1C)‘1 and—Aglcxl by the equivalent
ATt + A'BX,CAL and—X,CAL Y, respectively.

Let’s now consider two formulas for the determinant of the partitioned matrix:

A

= |A,]-|A; — BA;IC| = |A4|-|A; — CATBJ.
C A

The corresponding GAUSS program for checking the first equality is

new;

let al[3,3] =1
let b[3,2] = -1
let c[2,3] = 4
let a2[2,2] = 3

one_det = det((al™b)|(c7a2));
two_det = det(a2)*det(al - b*inv(a2)*c);
out = abs(one det - two det);

© ~ (o2} (4] S w N =

=
o
]

-
[

[N
N

format /rd 15,12;
out;

-
w

[N
i

end;

-
13

The above formulas for the partitioned matrices are very useful when we need the inverse or the de-
terminant of a big matrix while the computer memory is not sufficient to handle it. These examples also
demonstrate an important trick in dealing with the problem of insufficient memory: we can and should break
the trouble-making matrix into smaller pieces and handle them piece by piece.

Let's now use the International Consumption Data to construct additional examples. Given quagtities
and budget shares. for the commaodityi in countryc, and the country c¢’s incoma,. for the 60 countries,
we can reordeg;; ands. according to their income, either in ascending or descending order:

new;
Toad q[60,10] = a:\data\volume; /* The quantities. */
Toad s[60,10] = a:\data\share; /* The budget shares. */
Toad m[60,1] = a:\data\totalexp; /* The total expenditure. */

sortc(m™q,1);
sortc(m™s,1);

© o N o o A W N B
wn QO
1}

4.6. SOME EXAMPLES 31

10 output file = order.out on;

1 format /rd 10,3;;

12

13 " The Ordered Income and Quantities (in Ascending Order):";

14 q;7?;

15 " The Ordered Income and Budget Shares (in Ascending Order):";
16 S37:7:7;

17

18 " The Ordered Income and Quantities (in Descending Order):";
19 rev(q);?;

20 " The Ordered Income and Budget Shares (in Descending Order):";
21 rev(s);

22

23 end;

Four 60x 11 matrices will be printed into the ASCII filefrder.out’. The first two matrices are ordered

in the ascending order of the first column, which is the column of income. The last two matrices are in
the descending order of the income. It is interesting to see that the Food budget share increases as income
decreases.

We can compute many summary statistics for the International Consumption Data. Specifically, we
can calculate the averages, sample medians, standard deviations, maxima, minima, and with a little more
algebra, the sample covariances and correlation coefficients.

Let's concentrate on the sample covariances and correlation coefficients betweed eacls., i =
1,...,10, which are

60

— 1 _ _ — (fav S, Mm
Cov(s,, m) = = D (se—S)m.—m) and Corr(s.m) = S, M)
c=1

JVar(s) - /Var(m)’

respectively, wherg; andm are the sample averages a/fﬁi(s) and\7§r(m) are the sample variances:
g 1 60 5 g 1 60 5
Var(s) = — ic — Si and Var(m) = — me — m)~.
s) 60;@”) (m) 60; o — M)

Supposesis the 60x 10 matrix of data o, andm is the 60x 1 vector of data om.. We can construct a

60 x 10 matrixSin which each column contains 60 identical numbers which are the sample averages of the
budget shares. Thus, tiiie c)-th element of the difference matrix = S — Sis preciselysc — 5. We can
similarly define a vectoa whose typical element is the differencg — m. Given these definitions, we then
have

(g, | [da]
d, dya
D’a:[dl d, --- dlo]/a:] a=) s

/ /
dio dipa

32 CHAPTER 4. GAUSS COMMANDS

which is a 10x 1 vector with thath element being the sample covariance betweemtthbudget sharg
and incomem:

60 60
d{a:ZdicaCZZ(sc—E)(mc—m), i=1,...,10.
c=1 c=1

This formula can be adopted for efficiently computing the sample covariances in GAUSS. Givesi that
denotesS and m’ denotesm in GAUSS, if we define

1 cov_sm = (s - meanc(s)"')"'(m - meanc(m))./60;

then ‘cov_sm’ is a 10 x 1 vector of sample covariances betwegnandm, fori = 1,...,10. Here, we

should note thatreanc(s)’ gives a 10x 1 vector of means and its dimension is not the sama&’aBut

‘s - meanc(s) " will correctly produce the matri0 = S— Sbecause the particular way GAUSS handles

subtraction of matrices of unequal sizes. This is a useful trick and it can be used in many occasions.
We can similarly compute the two sample variancesodndm, as follows:

1 varcov_s = (s - meanc(s)')'(s - meanc(s)')./60;

2 var_s = diag(varcov_s);

3 var m = (m - meanc(m)')'(m - meanc(m)')./60;

Note that Varcov_s’ is a 10 x 10 sample variance-covariance matrixspf, c = 1,2,...,10, and its

diagonal contains 10 sample variances. Also note that GAUSS provides us with a comsrgrmiavhich
computes the standard deviation (the square root of the sample variance). That is, the vectars *
should be equal tostdc(s)"2’, and ‘var_m’ should be equal tostdc(m) “2’. Therefore, the correlation
coefficients can be computed by either

1 corr_sm = cov_sm./sqrt(var_s.*var_m);

where var_s’ and ‘var_m’ are computed as above, or, equivalently,

1 corr_sm = cov_sm./(stdc(s).*stdc(m));

Note that the sizes of the matricesVv_sm’, *var_s’, ‘var_m’, and ‘corr_sm’ are all 10.
We now combine all these expressions in one GAUSS program to generate the basic summary statistics
for the International Consumption Data. Here, instead of looking at total expenditusge consider the
Inmg, the logarithmic transformation af;,. The GAUSS command for the natural log transformation is
‘Tn’.

new;

Toad q[60,10] = a:\data\volume;
Toad s[60,10] = a:\data\share;
Toad m[60,1] = a:\data\totalexp;

(&) s w N =

4.6. SOME EXAMPLES

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

a4

45

46

47

48

49

50

m = Tn(m); /* The log total expenditure.
p = (m.*s)./q; /* The prices.
mean_s = meanc(s); /* The averages.

mean_m = meanc(m);
mean_p = meanc(p);

std s = stdc(s); /* The standard deviations.
std m = stdc(m);
std p = stdc(p);

/* The sample covariances between shares and log total expenditure.
cov._sm = (s - mean_s')'(m - mean_m)./60;

/* The sample correlations between shares and log total expenditure.
corr_sm = cov_sm./(std _s.*std m);

/* The sample covariances between prices and log total expenditure.
cov.pm = (p - mean_p')'(m - mean_m)./60;

/* The sample correlations between prices and log total expenditure.
corr_pm = cov_pm./(std p.*std m);

/* Creating a vector of consecutive numbers from 1 to 10.
no = seqa(1,1,10);

out_s = no"mean_s~std s™maxc(s) minc(s) median(s) cov_sm corr_sm;
out p = no"mean _p~std p“maxc(p) minc(p) median(p) cov_pm~corr pm;
out m = mean_m~std m maxc(m) ‘minc(m) “median(m);

output file = summary on;

format /rd 7,3;

" The sample averages, standard deviations, maxima, minima, medians, "
" of shares; and the sample covariances and the sample correlations "
" between shares and log total expenditure:";

out s;?;7;

" The sample averages, standard deviations, maxima, minima, medians, "
" of prices; and the sample covariances and the sample correlations "
" between prices and log total expenditure:";

out p;?;7?;

*/
*/

*/

*/

*/

*/

*/

*/

34 CHAPTER 4. GAUSS COMMANDS

51 " The sample averages, standard deviations, maxima, minima, and medians "
52 " of the Tog total expenditure:";

53 out_m;

54

55 end;

The ‘no’ vector is constructed as a counting device to facilitate the reading of the outputs.

Finally, it should be pointed out that there are GAUSS commands(s)’ and ‘corrx(s)’ which
compute the 1 10 variance-covariance matrix and the correlation matrix, respectively, from tkel@0
data matrix §’. The diagonal terms ofvicx(s)’ are sample variances while the off-diagonal elements are
sample covariances. Also, the diagonal termscoftx(s)’ are all ones. The two matricesdv_sm’ and
‘corr_sm’ in the previous program will then be equal to the last columns (except the last elements) of the
resulting matrices fromvicx (s™m)’ and ‘corrx(s™m)’, respectively.

4.7 Character Matrices and Strings

Other than numeric data, GAUSS also allows character data which may be presented in two forms: character
matrices and strings.

4.7.1 Character Matrices

The most common form of the character matrix is the character vector, which are used mainly for storing a
vector of names for the purpose of identifying rows or columns of a numeric data matrix. For example, an

1 x k character row vector can be created and then concatenatec te Rmatrix of numbers so that each
column ofn numbers can be associated with a character name. Consider a more specific example: Suppose
the 60x 10 matrix ‘s’ contains 60 observations on 10 budget shares. We can store the names of the 10
commaodity into a Ix 10 character vector, saydrname’, and concatenate this row vertically to the numeric
matrix ‘s’ as follows:

1 let varname[1,10] = Food B T Cloth Rent House

2 Medic Trans Recre Ed Other;
3

4 sl = varname|s;

Here, s1’is a 61 x 10 mixed matrix in which the first row are characters and the rest are numbers.

From this simple example we know the way characters are stored in a vector is quite similar to that
of a numeric matrix. However, there are a few more rules for handling character vectors: each element
of a character vector can contain up to eight characters only. The contents of the above character vector
‘varname’ will all be uppercase, such ag00D’ instead of Food'. If the cases of the characters are to be
kept exactly as what they are typed, suchfasd’, then they need to be enclosed by quotation marks in the
‘Tet’ command as follows:

1 let varname[1,10] = "Food" "B T" "Cloth" "Rent" "House"
2 "Medic" "Trans" "Recre" "Ed" "Other";

4.7. CHARACTER MATRICES AND STRINGS 35

To print a character vector, we need to adidbefore the matrix name and this is quite different from
printing a numeric matrix. For example, to print the character vegtomame’, we type

1 $varname;

However, to print the mixed matrixs1’ which contains both numbers and characters, we need a special
GAUSS command which will be discussed shortly.

4.7.2 Strings

Other than character vectors, a long string of characters, whose number can be greater than eight (but fewer
than 256), may be stored as a single item. For example, we can store the®tH#g s fun’ literally in
a variable calleddutt’ as follows:

1 outt = "GAUSS is fun";

where the content of a string should always be enclosed in quotation marks. To print the content of this
string variable, we simply type

1 outt;

Note that no$’ is needed before the string variable naroett’. The result of the above command is a line
of string ‘GAUSS is fun’ on the screen.
Strings can be literally joined using the operatb¥’: For example, with the statements

1 outl = "Hello, ";
2 out2 = "how are you?";
3 out = outl $+ out2;

the content of the scalar variableut’ is then ‘Hello, how are you?’.
A string can also be literally joined (element-by-element) to each element of a character vector. For
example, given the previous example of the character veciename’, if we type

1 varnamel = varname $+ "z";

then the 10 elements of the new character vectardamel’ will all be attached with z’ and become
‘Foodz’, ‘B Tz’, ‘Clothz’, etc. It is important to note that the number of characters in each element still
needs to be kept fewer than or equal to eight as a general rule for character vectors.

Two character vectors of the same size can also be joined togethi¥ bif e type

36 CHAPTER 4. GAUSS COMMANDS

1 let a[3,1] = "GAUSS" "is" "fun";
2 let b[3,1] "So" "is" "Econ";

4 c =a $+ by

then ‘c’ is also a 3x 1 vector with the three element&AUSSSo, isis, andfunEcon.

4.7.3 The Data Type

It is important to understand that strings, as opposed to other data formats such as numeric matrices or
character vectors, are a very unigyee of data. As a matter of fact, all data in GAUSS can be broadly
classified as of eithestring typeor matrix type while both numeric matrices and character vectors belong

to the matrix type. The difference between the string type and the matrix type can be best illustrated in the
following problematic statement which invokes the error messageypt‘ Mismatch’

1 varname2 = "z" $+ varname;

where varname’is a 10 x 1 character vector as defined above. The problem results from a rule in GAUSS
that thetypeof the right-hand side operation is decided by tyyge of the first item. In the above example,

the first item 2z’ on the right-hand side is a string, so the joint operation is considered to be an operation
among strings and every item at the right-hand side is expected to be a string. But since the second item is
actually a matrix, the syntax error of mismatched type will show up. To fix this problem, we can adopt the
following trick:

1 varname2 = 0 $+ "z" $+ varname;

Here, the first item0’ on the right-hand side is a number, which is always of the matrix type. So the
entire operation on the right-hand side is considered a matrix operatioz’dadreated as a matrix with a
single element instead of a string (the usual element-by-element rule is then appliedjte dpefations).
After the characters are joined, the elements of the character veatoralme2’ become zFood’, ‘zB_T’,
‘zCToth’, etc. Note that the value 0 itself will not be a part of the characters.

4.7.4 Three Useful GAUSS Commands

A couple of problems may arise when we try to combine numeric matrices with character vectors:

1. In many occasions we may want to combine a character vector and a numeric vector to create another
character vector of which each entry mixes characters with numbers. But we note characters and
numbers are of different nature and we are not sure whether the character joint ogeratan ‘be
applied to combine characters and numbers.

2. When we print a character vector, we have to precede its variable name with a dolla§’ sigthe
print command. It is then unclear how to print a matrix that contains both numbers and characters.

4.7. CHARACTER MATRICES AND STRINGS 37

To solve the first problem of jointing numbers with characters or with strings, we use the commands
‘ftocv’ or * ftos’ to convert numbers to characters or to strings, respectively. As to the problem of printing
a mixed matrix containing both numbers and characters, we neegthetfm’ command. These three
commands will now be discussed in details.

1. The ‘ftocv’ command converts a numeric vector (or matrix) to a character vector. Given a vector
‘a’ of real numbers, if we want to convert it to a character vector with each element containing 7
characters in which 2 digits after the decimal point as well as the decimal point itself will all appear
as characters, we type

1 \ b = ftocv(a,7,2);
\

The ‘b’ vector now is a character vectayen though its contents look like numbensd can be joined

with any other character vector. If a number is not large enough to fill the space of 7 characters,
character 0 will be padded on the left. Also, if we do not want the decimal point and the digits after it
to be converted, we replace 2 in the third input of tfieo'cv’ command by 0.

Consider another example

\
1 \ name = 0 $+ "Var" $+ ftocv(seqa(0,1,21),1,0);
\

Here, a sequence of 21 consecutive integers starting from 1 are first generatedsley dlfe, 1,21)’
command and then converted to a1l character vector by thetocv’ command. This character
vector is then joined to the string ‘Var'. The resultingaie’ is a 21 x 1 character vector containing
the characters/arl’, ‘Var2’, ... Note that the trick of 0 $+ at the right-hand side is used to prevent
the ‘Type Mismatch’ problem (see the previous subsection).

2. The ‘ftos’ command converts a scalar to a string. Given a real numlagri we want to convert it
to a string of 15 characters in which 4 digits after the decimal point will be included, we type
\
1 | b= ftos(a,"%*.*1f",15,4);
\

In comparison with theftocv’ command, we note theftos’ command has four inputs. The defini-

tions of the first, third, and the fourth inputs are the same as the three inputs éttlee’‘command,
respectively. The second input should be a string enclosed in quotation marks. The specific string
‘%*.*1f" here will direct GAUSS to right-justify the characters. i is not large enough to fill the

space of 15 characters, space (instead of character 0) will be padded on the left. Another common
specification is%-*.*1f", which left-justifies the characters. Moreover, there is a simple way to add
other characters literally before and after the character representation of the number: we put these
characters inside the quotation marks before and/or &fter1f’. For example, if the value of’ is
1234.567890123 and we type

\
1 \ b = ftos(a,"This Trial Produces %*.*1f, Which Are Characters.",12,4);

38

CHAPTER 4. GAUSS COMMANDS

then b’ will be a string with the content:

\
1 \ This Trial Produces 1234.5678, Which Are Characters.

. The ‘printfm’ command provides us with the full control on how to print data in a matrix where

some columns are numbers and some are characters. In particular, different columns can be printed in
different formats. Suppose we want to print anx® matrix x’ in which the first column contains
characters and the rest all numbers, then we type:

1 indx = zeros(10,1) ones{10,4);
2

3 let c[5,3] = "x.*s" 10 10
4 Hx 1" 12 4
5 "H* <Tf" 8 2
6 "g-® xXTf" 10 3
7 "G-* KT 6 0y
8

9 ok = printfm(x,indx,c);

Here, the matrixindx’ has the same dimension as and contains 1 and 0 only. When an element of
‘x’ is a number, then the corresponding element in imelx’ matrix must be the number 1, but if the
element of X’ is a character, then the corresponding element inthéx’ matrix must be the number

0. It is possible to makeihdx’ a 1 x 5 row vector containing the five numbers 0, 1, 1, 1, and 1. In
such a case, the usual element-by-element operation will be applied.

As to the matrix t’, its row number must be the same as twumnnumber of the data matrix®.
This is because thieth row in ‘c’ specifies the format for thi-th column of X’. The first element
in each row of the¢’ matrix is a string. Its content usually is one &f*. *1f", ‘ %-* *1f", ‘ &* *s’,
‘%-*.*s’, where the first two are exactly the same as the second input off the’*command and
their interpretations are also the same. Note that*1f’ can be abbreviated a3 f’. As to the last
two commands that contain the charactérthey are for character printing.

The second and the third elements in each row of¢hmatrix specify the number of spaces reserved
for printing and the number of digits after the decimal point, respectively. They work like what the
second and the third inputs of thtbcv’ command.

It is possible for some column of the"‘matrix to have both numbers and characters at the same time.
In such cases the corresponding rows in ttienatrix should still be either%*.*1f" or *%-*.*1f".

When characters are encountered in printing the column, GAUSS will print them appropriately (as
long as the 0-1 specifications in the second input matridx’ are correct).

The output of theprintfm’ command bk’ is either 1 or 0, depending on whether printing is success-
ful or not. If this information is not needed, we can type

\
1| call printfm(x,indx,c);

4.7. CHARACTER MATRICES AND STRINGS 39

Note that the commanc {’ should be included after the above command. Otherwise, the next thing
to be printed will immediately follow the last line of”, instead of starting from a new line.

40

CHAPTER 4. GAUSS COMMANDS

Chapter

GAUSS Program for Linear Regression

In this chapter we will write a GAUSS program for the Ordinary Least Squares (OLS) estimation of a linear
regression model after a brief review of the linear regression theory. A full discussion of such a theory can
be found in any intermediate econometrics textbook.

5.1 A Brief Review

Givenn observations on the dependent variaplandk explanatory variables (regressoxs), . . ., Xxi, we
consider the following linear regression model

Vi = BiXai + BoXa + -+ + BuXki + &, i=1,...,n,

which can be expressed compactly in matrix form:

Y1 X11 Xo1 o X B1 £1

Y1 X2 X2 -0 Xe2 B2 €2
Y=X B + ¢ or = + ’
nx1l nxkkx1 hx1 . : : : : :

Yn Xin Xon -+ Xkn Bx &n

wheregs, Ba, . . ., Bk arek regression coefficients amgare the random disturbance terms. Four assumptions

are usually made about the disturbance terms (&) E 0; (2) Var(e) = o?l,,, wherel,, is ann x n identity

matrix; (3)e; is normally distributed; and (4 is nonstochastic and is of full column rank, i.e., ré&Xk= k.

Note that the second assumption implies the disturbance terms are homoscedastic and unautocorrelated. It
is also common to assume that one of the explanatory variables is a constant term. So one column of the
matrix X (usually the first column) is a column of ones.

5.1.1 The Ordinary Least Squares Estimation

The OLS estimator of the paramejgis defined as
b= (X'X)"Xy, (5.1)

whereX’X is invertible (and positive definite) becausés assumed to be of full column rank. It can also be
shown that the OLS estimatbris the BLUE (best linear unbiased estimator) énd & (8, o?(X’X)™).
The result thab is normally distributed is due to the normality assumption on the disturbance terms.
Given the residuals
e=y — Xb, (5.2

41

42 CHAPTER 5. GAUSS PROGRAM FOR LINEAR REGRESSION

the unbiased estimator of the disturbance variarfcis

s° = ge. (5.3)

The variance-covariance matrix of the OLS estimatorWae o2(X'X) 1 can be estimated by
Var(b) = s?(X'X)~1. (5.4)

The square root of thg-th diagonal element of (5.4)

se(b) =,/s2XX); for j=1,... k., (5.5)

is the standard errors of thjeth OLS estimatob; and the corresponding t-ratio is

R
' se))’

(5.6)

If the true value of8; is zero, thert; has a t-distribution witln — k degrees of freedom. This result can be
used to test the hypothesis
Ho: Bj =0 against Hi: B #0,

and to construct the confidence interval bgrat« level which is
bj £ ty/2(n — K) x s.e(b)), (5.7)

wheret,»(n — K) is thew /2 level critical value from the t-distribution with — k degrees of freedom.

5.1.2 Analysis of Variance

The total sample variations in the dependent variable is usually measured by the Total Sum of Squares
(TSS):

TSS=Y (% =9’ = —¥-1)'(y — V-1n). (5.8)
i=1

where 1, is ann-dimensional column of ones. We note that TSS is simply the sample variange of
multiplied by the sample size. Based on the linear regression model we can decompose the TSS into two
parts: the part of variations that can pedictedor explainedby a linear combination of explanatory
variables is called the Explained Sum of Squares (ESS), while the other part is called the Residual Sum
of Squares (RSS). The RSS is generally easier to compute because it equals

RSS=) & =¢e (5.9)
i=1

which measures the variations in the residuals. ESS can be calculated by subtraction:
ESS= TSS— RSS (5.10

A little more algebra can yield some other expressions for ESS. Here, let's concentrate on its interpretation.

5.1. A BRIEF REVIEW 43

The linear regression model is based on the idea that the variations in the dependent yadiefpéads
linearly on those of explanatory variableg, x;, ..., Xki. Hence, the performance of a linear regression
model can be measured by the proportion of the variations in the dependent variables thaixgdaibedy
the variations in the linear combination of explanatory variables. Such a proportion is called the coefficient
of determination or simply R

. _ESS_, _RSS

~ TSS TSS
It is the most common measure of the goodness-of-fit of a linear regression model. Its value lies between 0
and 1 and the larger its value the better. However, there is a problem wittf tine&sure: its value can be
increased superficially by including even the most irrelevant explanatory variable into the model. To avoid
this problem, we can modify Ry making the number of explanatory variables as a counterweight. More
precisely, we have the following definition of the adjusted R

(5.1

R_1 RSS/(n—k)_1 n—-1

_ _ B =Y
TSSY(n—-1) n— k(l R, (5.12)

whose value can decrease when we add into the model an explanatory variable that has very little contribu-
tion in explaining the dependent variable.

Based on ESS and RSS, let’s define the following two ratios which are called Explained Mean Square
(EMS) and Residual Mean Square (RMS):

1 1
EMS= ——ESS and RMS= ——RSS
k-1 n—k
Note that RMS is the same a$defined in(5.3).

Given the normality assumption (the third assumption) on the disturbance terms, it can be shown that
the RSS#? has ay? distribution withn — k degrees of freedom. Furthermore, when the first explanatory
variable is a constant term, then the ESShas ay? distribution withk — 1 degrees of freedom, and is
independent of the RS&7 if the coefficientsss, .. ., Bk are all zero. As a result, the ratio

EMS

S 5.13
RMS 619

has anF-distribution withk — 1 andn — k degrees of freedom and can be used to test the hypothesis
Ho: B2=0, ---, Bk=0 against Hi: B2#0, ---, B #0.

We can present all these results in a table:

5.1.3 Durbin-Watson Test Statistic

As mentioned earlier, the third assumption underlying the linear regression model implies the absence of
autocorrelation among the disturbance terms. But for time-series data this assumption usually fails to hold
and it is quite common that the disturbance terms follow a first-order autoregressive, or the AR(1), process,
which is defined by

& = péi-1+ U,

44 CHAPTER 5. GAUSS PROGRAM FOR LINEAR REGRESSION

Table 5.1: Analysis of Variance

Source Sum of Squares d.f. Mean Square
Explained yY-vy-1)(y-Vy-1,) —€e k—1 EMS
Residual €e n—k RMS
Total Y-YL)(y-y1) n—1
whereu;,i = 1, ..., n, are assumed to be uncorrelated and have zero mean. Note thapwhdh then

&i = U;j, which implies the absence of autocorrelation. So when we deal with time-series data, we need to
test the hypothesis:

Ho: p=0 against Hjp: p #0.
The standard test for such a hypothesis is based on the Durbin-Watson statistic
Y6 —a_1)°
Yiae

whereg are residuals calculated from (5.2). Giveis then x 1 residual vector, supposg, ande, are two
(n — 1) x 1 subvectors oé with its first and its last element, respectively, deleted, thean be computed
by the formula

d

4o e — eml'lew — em]
ge '

(5.19

5.2 The Program

The International Consumption Data can be used tth&tEngel curve modeh which consumption is
regarded as a function of the income. One useful specification for the Engel curve model is the so-called
Working-Leser model where the budget share of a commodity is a linear function of the log income:

Sc = a + B-Inmc + &jc, c=1...,600 and i=1,...,10 (5.15)

whereg;. is the disturbance term. Although the dependent variable is not the quantity consumed but the
budget share while the independent variable is not income but log income (here, total expenditure and
income are considered synonymous), the equation is an well-defined Engel curve model that is linear (in the
parameters).

To write a GAUSS program for the estimation of the Working-Leser Engel curve model, we should first
match its notation to that of the standard linear regression model as follows:

S1 1 Inm;
S2 1 Inm o
y =) , X = . ‘ , and B = .
: : : B
S.60 1 In Meo

5.2. THE PROGRAM 45

In the following GAUSS program the Food consumption data are used to estimate the Working-Leser
Engel curve model. The first section of the program illustrates how the Food consumption data can be
loaded into the appropriate matrices for computation. This GAUSS program produces standard output for
the linear regression estimation. Generally, we need to change the first four statements only and the rest can
be left as they are.

1 new;

/***

4 * Reading and Organizing the Data Set *
***/

7 Toad share[60,10]

= a:\data\share;
8 Toad totalexp[60,1] =

a:\data\totalexp;

10 y = share[.,1]; /* Forming the vector of the dependent

1 variable which contains the budget share

12 for Food. */
13

14 x = ones(60,1) "In(totalexp); /* Forming the matrix for the two

15 explanatory variables: the constant term

16 and Tog income. */
17

18 clear share, totalexp; /* Clearing the matrices that are no longer

19 needed. */
20

2 output file = ols.out reset; /* Defining the output file name as ols.out.*/

22

23 /**

24 * Regression Estimation *
25 **/

26

27 n = rows(y); /* The sample size. */
28 k = cols(x); /* The number of explanatory variables. */
29

30 b = invpd(x'x)*x'y; /* (5.1) */
a1 e =y - X*b; /* (5.2) */
2 s2 = e'e/(n-k); /* (5.3) */
33 vb = s2.*invpd(x'x); /* (5.4) */
34 seb = sqrt(diag(vb)); /* (5.5) */
35 tb = b./seb; /* (5.6) */
36

37 tss = (y - meanc(y))'(y - meanc(y)); /* (5.8) */
38 rss = e'e; /* (5.9) */
39 ess = tss - rss; /* (5.10) */

46 CHAPTER 5. GAUSS PROGRAM FOR LINEAR REGRESSION

40 r2 = ess/tss; /* (5.11) */
a ar2 =1 - (rss/(n-k))/(tss/(n-1)); /* (5.12) */
42 f = (ess/(k-1))/(rss/(n-k)); /* (5.13) */
43 d = (e[l:(n-1),1] - e[2:n,1])"'(e[1l:(n-1),1] - e[2:n,1])/(e'e); /* (5.14) */
j: /***

46 * Printing the Main Estimation Results *

47 ***/
48 name = 0 $+ "BETA" $+ ftocv(seqa(0,1,k),1,0); /* A character vector of

49 parameter names:

50 BETAO, BETAL, ... */
51 result = name™b”seb"tb; /* Combining the computation results together. */
52

53 " REGRESSION ESTIMATION";

54 R e R e e "5

55 " PARAMETER ESTIMATE S.E. T-RATIO";

56 R R e "5

57 call printfm(result,0 ones(1,3),"s""1778|"1f""1474|"1f""1274|"1f""1274);

L I e ;

59 format /rd 9,4;

60 ! SIGMA SQUARE " s2;

61 ! R SQUARE "or2;

62 " ADJ. R SQUARE " ar2;

63 " DW STATISTIC " d;

64 S e han et e T 3757

65

66 /***

67 * Analysis of Variance *

68 ***/
60 essout = ess”(k-1)"(ess/(k-1))"f;

70 rssout = rss”(n-k) " (rss/(n-k));

7 tssout = tss”(n-1);

72 " ANALYSIS OF VARIANCE";

73 e T "

74 ! SOURCE SS df MS F's

75 e "

76 " EXPLAINED";;

7 call printfm(essout,ones(1,4),"1f""1174|"1f""770|"1f""1574|"1f""1274);7?;

78 " RESIDUAL ";;

79 call printfm(rssout,ones(1,3),"1f""1174|"1f""770|"1f""1574);7;

80 B e e e "

81 " TOTAL ";;

82 call printfm(tssout,ones(1,2),"1f""1174|"1f""770);7?;

83 e e L L E L e "57:7;

5.2. THE PROGRAM a7

s | end; |
\ |

The estimation results will be printed on the screen and into the ASClbfike. but’. Since there are more
than one screenful of the results, we have to use the editor to go into the outmltsfilut to view the
complete results.

An important feature of the above GAUSS program is that the OLS estimation is conducted in a way that
is independent of the data it processes. In other words, all we have to do for different applications is to load
the appropriate data into the matricgsand ‘x’, while the main body of the program can be used repeatedly
without any modification. This structure of the program demonstrates the power of GAUSS programming.
Once a program proves to work well, all the future applications can be made with minimum revisions. To
illustrate this point, let’s consider another OLS estimation based on the International Consumption Data, in
which we extend the Engel curve model by including price terms to get the folladgngand model

Sc = Pr1+ B2Inme + BzIn pic + - - - + B12In Proc + sic, c=1...,60 (5.16)

where Inpic, i = 1,..., 10, are the log prices of the 10 commodities. In such a linear demand model the
matrix X includes 12 columns of data: the constant term, the log income, and the 10 log prices. The vector
B contains 12 regression coefficients.

1 Inmg Inpy -+ Inpios B1

1 Inmy Inpp -+ Inpp2 B2
X = and B =

1 Inmgy INpreo --- Inpigeo P12

To estimate such a linear regression model, all we have to do is to rewrite the first part of the above program
as follows:

1 Toad q[60,10] = a:\data\volume;
2 Toad s[60,10] = a:\data\share;
3 Toad m[60,1] = a:\data\totalexp;

5 p = (m.*s)./q; /* Deriving the prices. */
6 y = sl.,1];
7 x = ones(60,1) Tn(m) In(p);

These estimations of the Engel curve model and the demand model should demonstrate the flexibility and
power of the GAUSS programming.

There is a question about the above program we might ask: except the print-out in the ASCII output file,
the program does not seem to save any of the resulting matrices. Obviously, a potentially useful modification
of the program is to save some matrices, such as the regression coefficient estimiatesdtrix files using
the ‘save’ command.

One of reasons for saving the regression coefficient estimates is that we may want to run the program
repeatedly for all 10 commodities and then compare the 10 sets of regression coefficient estimates. Such a

48 CHAPTER 5. GAUSS PROGRAM FOR LINEAR REGRESSION

comparison is particularly interesting because in a system of 10 demand equations we expect the following
results: the sum of the 10 intercept estimatg3 is equal to one, the sum of the 10 slope estimates for the

log income is zero, and the sum of the 10 slope estimates for every price is also zero. (Why?) If we save the
regression coefficient estimates for all 10 commodities (be sure that they are 10 matrix files with different
file names), then it is easy to write a small GAUSS program to verify the above results.

Another reason for saving the regression coefficient estimates stems from the fact that the goal of demand
estimation is to obtain estimates of the income and price elasticities. Due to the particular functional form
of the demand equation, we cannot read those elasticities directly from the regression coefficimtse
additional computation using GAUSS is necessary. Recall that the definition of the income elasticity is

_dlng m 9q
~9lnm g am’

n

whereq is the quantity demanded for a particular commodity emi$ income. The regression coefficient
B of the log income term in our demand equation has the following partial derivative interpretation:

g, — 05 _ dp-a/m)
2T 3Inm_ alnm
wheres is the budget share arglis the price. With a little algebra we can show that
B2
=14 —=.
n + S

Note that in deriving this formula the prigeis considered exogenous and thus is not a function of income.

Suppose the regression coefficient estimates for Food {én the previous program) has been saved
as the matrix filefood est.fmt in the root subdirectory, the GAUSS program for the income elasticity
computation is

1 new,;

3 load share[60,10] = a:\data\share;
4 Toad b = a:\food est;
5 eta = 1 + b[2]./share[.,1];

7 " The income elasticity estimates for 60 countries: "; eta;?;7?;
8 " The average income elasticity estimate: "; meanc(eta);

9

10 end;

The computation results are only shown on the screen and not saved. Note that care must be taken about the
indexing of b’ and ‘share’ in the definition of ‘eta’. A similar program can also be written for the price
elasticity and it is left as an exercise.

5.3 The ‘ols’ Command

Although it is really quite straightforward to write a program for the OLS estimation, GAUSS also has a
command — thedls’ command — for it (so the program we wrote earlier is in fact superfluous). In this
subsection we will examine what thel's’ command does.

5.3. THE 0LS’ COMMAND 49

We will again use the demand estimation based on the International Consumption Data as the example.
Itis important to note that, unlike the previous program, we do not include a column of onessinrtrarix
here. The whole process of applying tlhés’ command is shown as follows:

new;

Toad q[60,10] = volume;
Toad s[60,10] = share;
Toad m[60,1] = totalexp;

(s.*m)./q;
s[.,1];
Tn(m) " 1n(p);

© ® N o ¢ A w N B
X < ©
mnm o mnn

[
o

output file = ols.out reset;
__altnam = "Cnst"|"Ln_m"|"Food"|"Bev_tob"|"Clothing"|"Rent"|"HouseFur" |
"Medicare"|"Transpt"|"Recreatn"|"Educatn"|"Other"|"Food S";

[N
[N

[
N

[
w

i
IS

call o1s(0,y,x);

[
3]

[
o

end;

[
3

The ‘o1s” command takes three inputs. The first input was set 0 here and it can be kept as it is in most
applications. (Its meaning will be explained in appendix B.) The second and the third inputs of the *
command are the data matrices for the dependent variables and the explanatory variables, respectively. As
mentioned above, the data matrix for the explanatory variables does not contain the constant term although
the estimation still includes it. We also see a strange new Ii2character vector ‘ altnam’ has been
placed before theols’ command. We will explain its meaning later. An ASCII filel's.out’ is opened
right beforecalling the ‘o1s’ command since we want all outputs of thed §’ command to be printed in this
ASCII file. The print-out in the ASCII output file is shown in the next page.

Explanations of this computer print-out are as follows:

1. Most numbers on top of the table and the first four columns in the table are quite self-explanatory. For
example, Std error of est’is 62; ‘Rbar-squared’ is the adjusted R etc. Asto F(11,48)’, itis
the F test statistic with the degrees of freedom 1= 12— 1 =11 andn — k = 60— 12 = 48.

2. '‘Probability of F’and the fifth columnin the table are the so-called p-values for the corresponding
F test and t test statistics, respectively. We now present the definition of the p-values for the t test
statisticst; = bj/s.e(b;). Recall that this statistic is used to test the null hypothéks g; =
0. Given a computed t test statistit, instead of comparing it with the critical values from the t
distribution table, we can compute its p-valpeand then compare the p-value with the size of the
test (usually one half of the 5% or 1% in a two-tail test). The definition of p-value(i Br |t}|)
whereT is a random variable of the t distribution (with the- k degrees of freedom). That is, the
p-value is the probability for a t random variabileto be greater than the (absolute) valug;jofThe
null hypothesis will be rejected ip is smaller than the given size of the test. For example, the p-
value 0.001 for theTn_m’ is smaller than either 2.5% or 0.5% so that the null hypothesis of about

50

© e} ~ [=2] (& S w N [

I I R Y L O - O
P © © ® N o o A~ W N B O

N
N

CHAPTER 5. GAUSS PROGRAM FOR LINEAR REGRESSION

Valid cases: 60 Dependent variable: Food_S
Missing cases: 0 Deletion method: None
Total SS: 10706.924 Degrees of freedom: 48
R-squared: 0.766 Rbar-squared: 0.712
Residual SS: 2505.546 Std error of est: 7.225
F(11,48): 14,283 Probability of F: 0.000

Standard Prob Standardized Cor with
Variable Estimate Error t-value >|t| Estimate Dep Var
Cnst 50.848501 10.763414 4.724198 0.000 --- ---
Ln_m -8.797151 2.566394 -3.427826 0.001 -1.626372 -0.292045
Food 1.686658 5.044760 0.334339 0.740 0.277730 0.075971
Bev_tob 5.236882 3.612661 1.449591 0.154 0.828485 0.173129
Clothing 1.507999 3.872228 0.389440 0.699 0.251680 0.060411
Rent 0.926101 2.551713 0.362933 0.718 0.153014 0.087702
HouseFur 4.350814 3.660329 1.188640 0.240 0.738807 0.014162
Medicare -1.606652 3.176194 -0.505842 0.615 -0.276045 0.002089
Transpt -4.483241 3.197497 -1.402110 0.167 -0.745650 0.069922
Recreatn 6.517217 3.680082 1.770943 0.083 1.075507 0.078659
Educatn -3.036182 3.312132 -0.916685 0.364 -0.533106 -0.144056
Other -1.396618 4.391565 -0.318023 0.752 -0.224140 0.094973

5.3. THE 0LS’ COMMAND 51

the regression coefficient for the log income will be rejected in a two-tail test (i.e., the effect of log
income is significant). The definition and the use of the p-value for the F test are similar.

There are a number of GAUSS commands which can also be used to evaluate the p-values for the
various test statistic with different distributions. For example, to evaluate the p-values of an F test
statistic 14.283 computed from the previous program, we use

\
1 | p_value = cdffc(14.283,11,48);

In this ‘cdffc’ command, the first input is the computed F-test statistic, the second and the third inputs
are the two degrees of freedom. The more precise definition ottifeéf¢’ command is that it gives

one minus the value of the cumulative F distribution function at 14.283. Other than F-distribution, we
have the following GAUSS command for other distributions:

1 p = cdfnc(z); /* For the normal distribution. */
2 p = cdftc(t,df); /* For the t distribution. The second input is
3 the degree of freedom. */
4 p = cdfchic(t,df); /* For the chi-square distribution. The second
5 input is the degree of freedom. */

Obviously, if we apply theddftc’ command to the absolute value of the t-ratio for log income: -
3.427826: i.e.,¢dftc(3.427876,48)’, the resulting p-value should be 0.001, as shown in the fifth
column of the above table.

3. The numbers in the last two columns of the table are two new statistics we haven’t considered yet. The
last column gives the estimated correlation coefficient between the dependent vériandeeach of
the explanatory variableX;;, which is defined as
(i = YD (Xji = X))
I =2 (X X)?

Given the OLS estimatb; for the j-th regression coefficient, the standardized estimate in the sixth
column is defined by

b i (Xii = X))
YL (Yi =)2
4. The above tabulated estimation results are not the only output fronoilséprocedure. In fact,

eleven additional output matrices are also produced. They are suppressed in the above examples, but
can be retrieved if we type

\
1 \ {vnam,mmt,b,stb,vb,seb,s2,cor,r2,e,d} = ols(0,y,x);

52

CHAPTER 5. GAUSS PROGRAM FOR LINEAR REGRESSION

Here in front of the 61s’ command we have 11 matrix names enclosed in braces and an equality sign.
Besides the printed results in the output ASCII file, those 11 output matrices are also the computation
outputs of thed1s’ command.

Among the 11 output matrices the following seven are something we are familiar withe OLS
estimate), ‘vb’ (the estimated variance-covariance matriodf‘ seb’ (the standard errors df), ‘s2’

(?), ‘r2’ (R?), ‘e’ (the residuak = y — Xb), and ‘d’ (the Durbin-Watson statistic). The output vector

‘stb’ contains the standardized OLS estimates for those non-constant explanatory variables which has
just been defined above. The output vectorin’ contains the variable names, including those for the
constant term (the first element) and the dependent variable (the last element). Thenm&tgives

the cross-product (i.e.,d y]'[X y]) and ‘cor’ contains the correlation coefficient matrix for the
non-constant explanatory variables and the dependent variable (which is included as the last variable).
In general the residual vectog'‘and the scalard’ for the Durbin-Watson statistic are 0 unless we
reset theswitch‘ _olsres’ from its default value O to 1 before executing thd §’ command. The
explanation oswitchwill be given below.

Besides the print-out in the output ASCII file, why do we need those 11 output matrices? The reason
is that we may use those matrices for additional computation. For example, the residual #ector *
may be used to compute additional test statistics. This computation can proceed directly after the
‘01s’ command in the same program.

. We now go back to the explanation of the new expressiomaltnam’ in the program. Thedls”

command offers siswitchegtheir formal names arglobal variableswhich will be discussed more

fully in section 8.2) with which we can control some aspects of the OLS estimation. These switches
are simply matrix variables whose values are to be set by us. dlis8 command will check the
values of these switches before implementing its calculation. These switches all have default values
which can usually be left as they are. Nevertheless, we can easily change those aspectsl of the
command that are controlled by the switches by assigning different values to the switches. Here, we
will discuss three switches only: the matrix variablescon’, * __altnam’, and ‘ olsres’. Note that

the names of the first two variables are prefixed with two underlines. This unique form distinguishes
them from other variable names. Let’s now consider the meanings of these two switches:

(1) The switch' con’:
If we do not want to include the constant term in the OLS estimation, then we should set the
switch *__con’ to O before calling thed1s’ procedure. The default value of ‘con’ is 1, with
which the constant term will be included in the OLS estimation. In the above program the
redefinition of the switch * con’ is not included, so the estimation will include the constant
term (even if the data matrix’ does not contain a column for the constant term.)

(2) The switch' altnam’

If we want to give specific names to the explanatory variables and the dependent variable, we
need to assign a character vector of names to the swit@ai tnam’, where the first one should
always be the name for the constant term if it is included and the last one should be the name
for the dependent variable. This is exactly how we did in the above program. So the name
for the constant term i€hst’, the name for the log income variable isn' m’, etc. The name

for the dependent variable, specified as the last characténdd 'S’. Note that the size of the

‘ _altnam’ vectoris 13x 1. If the switch ' altnam’is not included in the program, then the

default names for the explanatory variables &@®STANT’, * X1’, * X2, * X3', ...

5.4. LINEAR RESTRICTIONS 53

(3) The switch ‘' olsres’:

As mentioned above, the residual vecter and the scalard’ for the Durbin-Watson statis-
tic in the command{vnam,mmt,b,stb,vb,seb,s2,cor,r2,e,d} = ols(0,y,x)’ aresetatO
unless the switch olsres’ is altered from its default value 0 to 1.

5.4 Linear Restrictions

Given the standard linear regression model X8 + ¢, if the parametep is subject taJ linear restrictions
which can be expressed as

RB =aq.

whereR is aJ x k matrix of full row rank,q is aJ x 1 vector, and both are known matrices, then the
restricted OLS estimator ¢ is

b* =b — (X'X)R[RX'X)"IRT1(Rb — q),
whereb is the usual unrestricted OLS estimator. The corresponding restricted residual is
€ =y—Xb*=y—Xb+X(b—-b*)=e+ X(b-b"),
wheree is the usual unrestricted residual. Sinte = 0, we have
e’e" = de+ (b — b*)X'X(b — b*) = €e+ (Rb — q)[R(X’X) R 1(Rb — q).
Recall that the OLS estimatbris distributed asV (B, o?(X’X)™1). So if the linear restrictionRS = q is
true, then

(Rb — q/[RXX)'RT'(Rb—q) _e'e —¢e

o2 o2

has ay? distribution withJ degrees of freedom and is independent of

€e (n—kys?

o2 o2

El

which also has &? distribution withn — k degrees of freedom. Recall treg is referred to as RSS (residual
sum of squares) before. We can dengte* as RSS. Consequently, if the linear restrictioR$8 = q is
true, then the ratio

(Rb— q)[RX'X)"'R1"*(Rb—q)/J (RSS —RSY/J
s? ~ RSY(n-k

(5.17)
has an F-distribution witld andn — k degrees of freedom, a fact that can be used to test the hypothesis

Ho: RB=(Q against Hi: RB #4a.

Although the left-hand side expression of (5.17) may appear straightforward to compute, the right-hand side
expression is more readily to generalize as can be seen in section 5.5.

54 CHAPTER 5. GAUSS PROGRAM FOR LINEAR REGRESSION

An Example The difference between an Engel curve model (5.15) and a demand model (5.16) is that the
latter includes prices. Which of the two models is more suitable for the International Consumption Data
depends on how important the price effects are. The F test is needed to decide whether the price effects are
jointly significant. To conduct such a test, we start with the demand model which can be represented by the
general notatioy = X8 + &, with X including a constant term, log income, and ten log prices. Among the
twelve elements oB, what we try to decide is whether the last ten (the coefficients for the log prices) are
equal to zero or not. In other words, the hypothesis is whether the ten price coefficients are equal to zero
or not. Formally, this null hypothesis can be expressed as a set of ten linear restrictions on the regression
coefficient vectoiB as follows:

0100 0 p1 B3
10---0 B2 Pa

RB=| 0 0 0 0 1 --- 0 Bz | =[0 0 Ip]-B=]| Ps | =0.
000OTO0:.--1 B12 B2

wherel g is a 10x 10 identity matrix and is a 10x 1 vector of zeros. Given this setup, then it is fairly
straightforward to write a program to test the significance of the price effects:

new;
Toad q[60,10] = volume;

load s[60,10] = share;
Toad m[60,1] = totalexp;

p = (m.*s)./q;

© o] ~ o O e w N [l

=s[.,1];
ones(60,1) "In(m™p);
= rows(y);
= cols(y);

e e =
w Nk O

X S X <
1]

[N

i

@D
|

=y - x*invpd(x'x)*x'y;

= e'e/(n-k);

zeros(10,2) "eye(10);

f = (r*b) "invpd(r*invpd(x'x)*r')*r*b/(10*s2);
pv = cdffc(f,10,n-k);

T
© N o o
- un
N
I}

[
©

output file = test.out on;
format /rd 8,4;
" The F test statistic is " f;;" with a p-value " pv;

N
o

N
[

N
N

N
W

end;

N
i

5.5. CHOW TEST FOR STRUCTURAL CHANGES 55

5.5 Chow Test for Structural Changes

One important implicit assumption about the linear regression mpeelX g + ¢ is that the parametg

is constant over the entire sample so that it can be estimated uniquely by the OLS estimation. However, in
many applications the sample may contain structural changes which can cause the true values of some or
all elements of thg8 vector to vary. As a result, we have to estimate more than one gkt ©his can be
accomplished by dividing the sample into subsamples and assuming that the vAligeaainstant in each

of these subsamples but different across subsamples. Here, we only consider the simplest case where there
is a single structural change so that the true values of some or all elementspofrtintor for the firsin,
observations are different from those for the mnest n; observations. More specifically, we consider the
following two specifications:

Case 1: only the intercept differs across the two subsamples so that the regression model becomes

Y1 1, 0 X Pa
= B B | + &,
0 1L, X
Y2 2 2 B,

where11 and1l, are two vectors of ones whose dimensionsrare 1 and(n — n;) x 1, respectively; and

X1 and X, aren; x (k — 1) and(n — n1) x (k — 1) matrices, respectively, containing observations on

the explanatory variables excluding the constant tefig.and 81, are two intercepts that reflect the effect

of the structural change, while thig — 1) x 1 vectorB, contains the parameters that are not affected by

the structural change and remain the same across the two subsamples. The number of parameters in this
extended model ik + 1 because an additional intercept.

Case 2: all k parameters i differ across the two subsamples so that the regression model becomes

Y1 Xy O [51}
= —}—8’
Y2 O X ﬂZ

whereX; andX; aren; x k and(n —n;) x k matrices, respectively, argl andB, are two sets of parameter
vectors that reflect the effect of the structural change. The number of parametebeis2ise there are two
full sets of 8.

Given the two generalized models in case 1 and case 2, the original model is irrdaticted model
which is based on the hypothesis that there is no structural change and there is only one set of prameter

Y1 L X Y1 X1
y=XB+e or = B+e or = B+e.

y2 L X Yo X5

Here, the number of parameterkias usual. We note the numbers of parameters in case 1 and ¢asd 2:
and X, respectively, are both greater thgrreflecting the original model is indeed a restricted model with
fewer parameters.

56 CHAPTER 5. GAUSS PROGRAM FOR LINEAR REGRESSION

We can fit the model of no structural change, as opposed to case 1 and case 2 structural changes, into the
framework of the general linear restrictions. Given the case 1 structural changeréisérictedparameter
vector containgia, f1n, andB,, while theR matrix corresponding to the restricted model of no structural
changeis a Xk (k 4+ 1) vector [1—1 0], whereQis ak x 1 vector of zeros. So the restricti®pB = g can
be written as

51&1
[1 1 U] B | =0.
B>

Similarly, in case 2 the restricted model of no structural change imposes the following restriction on the

parameter vector:
[Ik —|k] {ﬁl} -0
B

2

wherel is ak x k identity matrix.

The above expressions of tRematrix can be used to formulate statistics for testing the null hypothesis
of no structural change against the alternative hypothesis of case 1 and case 2, respectively. However, an
easier way to construct the test statistics is based on residuals and the corresponding RSS from each of the
three models. Let RSS be the residual sum of squares from the restricted model (i.e., the original model)
and RSgand RS$ from the case 1 model and the case 2 model, respectively.

1. The F-test statistic against case 1 structural change is

_ (RSS—RSS)/1

Fi= RSS/(n—k—1)’

with degrees of freedom 1 amd— k — 1.

2. The F-test statistic against case 2 structural change is

_ (RSS—-RSS$)/k
27 "RSS/(N—2k)

with degrees of freedokandn — 2k.

3. Finally, we note case 1 is in fact a special case of case 2. So we can test case 1 against case 2 using
the following test statistic:

_ (RS§ —RS9)/(k—-1)
- RSS/(n—2k)
The degrees of freedom ake- 1 andn — 2k.

These F-tests, particularky,, are usually referred to as the Chow test. The GAUSS program for Chow
tests is quite straightforward. What needs to be done is simply the calculation of three types of residuals and
the corresponding RSS, as well as the degrees of freedom. From equations (5.2) and (5.9) we know RSS is
defined by

RSS= €e = (y — Xb)'(y — Xb) = y'y — yX(X'X)"*Xy.

5.5. CHOW TEST FOR STRUCTURAL CHANGES 57

Also, each RSS is associated with a particular degree of freedom, which is equal to the sample size (i.e., the
row number of theX matrix) minus the number of parameters (i.e., the column number of timatrix).
Furthermore, by a closer inspection of each of the Chow test statistics, we find that the denominator is
an RSS divided by its associated degree of freedom, while the numerator is the difference between two
RSS’s, divided by the difference between the two associated degrees of freedom. This general pattern helps
simplifying the GAUSS program.

Given then x k matrix of the explanatory variables’ from the original model (i.e., the restricted
model), in which the firstril’ observations belong to the first subsample and the nest h1’ observations
belong to the second subsample, we have to carefully organizextti& + 1) andn x 2k matrices X1’ and
‘x2’ for the two unrestricted models — case 1 and case 2, respectively. Once the three matrices of explanatory
variables for the three models are defined, then we can use the same formulas to compute the RSS and the
associated degrees of freedom for the three models, followed by the corresponding Chow test stétistics, *
“f2’, and ‘f’. The p-values of these test statistics can also be computed easily.

1 /* The expanded matrix of explanatory variables for the case 1 model. */
2 x1 = (ones(nl,1) zeros(nl,1) x[1:n1,2:k])|

3 (zeros(n-nl1,1) ones(n-n1,1) "x[(nl+l):n,2:k]);

4

5 /* The expanded matrix of explanatory variables for the case 2 model. */
6 x2 = (x[1:nl,.] zeros(nl,k))|(zeros(n-nl,k) " x[(n1+1):n,.]);

,

8 rss = y'y - y'x*¥invpd(x'x)*x'y; /* RSS from the restricted model. */
9 df = rows(x) - cols(x); /* The degree of freedom of 'rss'. */
10

1 rssl = y'y - y'x1*invpd(x1'x1)*x1'y; /* RSS from the case 1 model. */
12 dfl = rows(x1l) - cols(x1l); /* The degree of freedom of 'rssl'. */

[
w

/* The F test statistic for testing case 1 against the restricted model. */
fl = ((rss - rssl)/(dfl - df)/(rssl/dfl);

/* The p-value of the test statistic. */

pvl = cdffc(fl,df1-df,df1);

[
IS

[
13

[N
o

[
3

[N
e

rss2 = y'y - y'x2%invpd(x2'x2)*x2'y; /* RSS from the case 2 model. */
df2 = rows(x2) - cols(x2); /* The degree of freedom of 'rss2'. */
f2 = ((rss - rss2)/(df2 - df)/(rss2/df2);

pv2 = cdffc(f2,df2-df,df2);

[
©

N
o

N
[y

N
N

N
w

[N}
i

/* The F test statistic for testing case 2 against case 1. */
f = ((rssl - rss2)/(df2 - df1l)/(rss2/df2);
pv = cdffc(f,df2-df1,df2);

N
3]

N
o

Recall that the null hypothesis will be rejected if the p-value is smaller than the designated size (usually
5% or 1%). The most interesting feature of the above program is the similarity among the three sets of
commands for computing the three test statistics.

58

CHAPTER 5.

GAUSS PROGRAM FOR LINEAR REGRESSION

Chapter

Relational Operators and Logic Operators

Other than the usual arithmetic operators, there are relational and logic operators in GAUSS which produce
results that can have only two values: either “true” (recorded as the number 1) or “false” (recorded as the
number 0).

6.1 Relational Operators
In GAUSS there are six relational operators. Each of these relational operators has two equivalent notation:

1. ‘<’ (or ‘1t’), which means “smaller than”.
. ‘<=" (or *1¢’), which means “smaller than or equal to”.

. ‘==" (or ‘eq’), which means “equal to”.

2
3
4.'/=" (or ‘ne’), which means “not equal to”.
5. > (or ‘gt’), which means “greater than”.
6

. '>=" (or ‘ge’), which means “greater than or equal to”.

Consider the example:

1 a=(x/=y);

If “x” and ‘y’ are two scalar variables with different values, then the right-hand side relational operation will
be true and the value od*will be ‘ 1'. If * X’ and 'y’ have the same values, then the result on the right-hand
side relational operation is false and the valueadtwill be ‘ 0. Note that the relational operator for “equal
to” consists of two equal signs=’, which is very different in meaning from the single equal sigh

If the relational operators are preceded by a datien they become element-by-element operators. For
example, if X’ and 'y’ are twon x 1 vectors and

1 a=(x./=y);

then ‘a’ will be an n x 1 vector of 0 and 1, representing the resultm o€lational operations between the
n corresponding elements of' ‘and ‘y’. Also, if the dimensions ofX’ and ‘y’ are not the same, then the
usual rule for element-by-element operations will apply.

The relational operators, particularly=" and ‘/=", can also be applied to character vectors or strings
with each operator preceded /. For example,

59

60 CHAPTER 6. RELATIONAL OPERATORS AND LOGIC OPERATORS

1 a = ("old" $/= "young");
(region .$== "SOUTH");

N
o
1}

The value of &’ is 1 since the relation on the right-hand side is always true. The dimensidn wflf be
the same as that of the character vectegion’. Whether the value of an element af is 1 or O depends
on whether the corresponding elementitadion’ contains characterSOUTH' or not.

6.2 Logic Operators

There are five logic operators in GAUSSnd’, ‘or’, ‘not’, ‘ xor’, and ‘eqv’. Among them the first three
are used most often.

1 a = (x and y);
2 b= (xory);
3 c = not Xx;

4 e = (x eqv y);
5 f = (x xor y);

Here, the values in both scalars and ‘y’ must be either 0 and 1; that is, they themselves may be the
true/false results of some relational or logical operations. The valug & 1 when both X’ and 'y’ are 1;
‘a’is O for all other cases. The value df ‘is 0 when both X’ and 'y’ are O; ‘b’ is 1 for all other cases. The
value of ‘¢’ is just opposite to that ofX’: if * x" is 1, then ¢’ is 0; and vice versa. The value af ‘is 1 when
‘x’and 'y’ are both 1 or both 0. The value of"is 1 when X’ and ‘y’ have opposite values. The logical
operators can also be made as element-by-element operators if they are preceded hy @adatahd’,
“.or’, '.not’, ‘.eqv’, and ‘.xor’ are all element-by-element logical operators.

6.3 Conditional Statements

The true/false results of relational or logic operations are usually used as conditions for determining whether
to execute a set of commands through the following design:

if (true/false statement A);
expressions I;

endif;

expressions II;

S w N L

If the ‘true/false statement A’ is true, then é&xpressions I' will be executed, followed by
‘expressions II' after the ‘endif’ expression. If the true/false statement A’ is false, then
‘expressions I’ will be skipped and onlyéxpressions II'will be executed. Eachi‘f’ command must
be paired with anéndif’ command. Here is a simple example:

6.3. CONDITIONAL STATEMENTS 61

1 if a <= 03

2 "a is not positive";
3 end;

4 endif;

5 b = sqrt(a);

The i f...endif’ statement here can be regarded as a safety device to avoid taking a square root of a non-
positive number. If the conditiora* <= 0’ holds, then the program will print a messageis not posi-
tive’ and terminate immediately. Otherwise, it will move on to the expression afteethié f* command
and take square root of the value of.

The ‘i f...endif' command can be extended to include a fewseif’ commands and/or &'1se’ in
between for more options as follows:

1 if (true/false statement A);

2 (expressions I)

3 elseif (true/false statement B);
4 (expressions II)

5 else;

6 (expressions III)

7 endif;

8 (expressions 1IV)

If the ‘true/false statement A’ is true, then é&xpressions I' will be executed, followed by
‘expressions IV’ after the ‘endif’ expression. If thetrue/false statement A’ is false and true/
false statement B’is true, then éxpressions II' will be executed, followed byéxpressions IV'. If
both ‘true/false statement’ ‘A’ and ‘B’ are false, thenéxpressions III’ will be executed, followed
by ‘expressions IV’

Let’s consider an example:

1 if a < 0;

2 X =13

3 elseif a == 0;

4 X = 2;

5 elseif a >0 .and a < 1;
6 X = 33

7 else;

8 X = 4,

9 endif;

The value of X’ is 1 if *a’ is a negative numberyx’ is 2 if * a’ is zero; X’ is 3 if * a’ lies between 0 and 1,
and %’ is 4 for all other values ofd’.

62 CHAPTER 6. RELATIONAL OPERATORS AND LOGIC OPERATORS

6.4 Row-Selectors: theselif’ and ‘delif’ Commands

A useful technigue for data rearrangement is to select rows (observations) from a data matrix based on the
values of the corresponding elements of a column vector. For example, given<fi€ &atrix ‘s’ of budget

share data on 10 commaodities for 60 countries, we want to select those observations with the Food budget
share (the first column) lying between 0.3 and 0.8. In other words, the process of selecting observations is
based on a relational operation on the single variable — the Food budget share. Situations like this can be
easily handled using the powerfule1i f’ or ‘delif’ commands:

1 e = (s[.,1] .»>= 0.3 .and s[.,1] .<= 0.8);
2 sl = selif(s,e);

Here, e’ is a 60 x 1 vector of 1 and 0, representing the results of element-by-element relational operations.
The ‘selif’ command will pick those rows of thes* matrix which correspond to all the “1” in thee’

vector, delete those rows of the matrix which correspond to all the “0” in thee* vector, and then form a
smaller matrix §1'. A similar command is

1 f=(s[.,1] .< 0.3 .or s[.,1] .> 0.8);
2 s2 = delif(s,f);

where f’ is again a 60x 1 vector of 1 and 0, representing the results of element-by-element relational
operations which are exactly opposite to thievector before. Thedelif’ command will delete those rows
of the ‘s’ matrix which correspond to all the “1” in thee* vector, and then form the resulting2’ matrix.
Obviously, the two resulting matricesl’ and ‘s2’ are identical.

The two arguments of theé1if” and ‘delif commands should have the same row humber while the
second argument must be a column vector of 0 and 1, which usually are the results of element-by-element
relational operations.

6.5 Dummy Variables in Linear Regression Models
In this section we will first review how dummy variables work in a simple linear regression model:
Yi = o+ BX + i,
we then suggest how dummy variables can be constructed in GAUSS. We will find that the element-by-
element relational operators and logical operators are very useful in generating dummy variables.

6.5.1 Binary Dummy Variables

A dummy variable, sayd, is used to characterize two mutually exclusive categories. Based on which of
the two categories an observatibibelongs to, we assign a value, either O or 1, to the dummy variable

di. Including a dummy variable in a linear regression model allows us to examine how the difference
between the two categories may affect the dependent variable. For example, the sampled countries of the
International Consumption Data can be divided into two categories: North American/European and the

6.5. DUMMY VARIABLES IN LINEAR REGRESSION MODELS 63

others. The North American/European countries can be broadly referred to as the developed countries while
all the others the developing countries. When we estimate the Engel curve model using the International

Consumption Data, we may wonder the consumption behavior of the richer developed countries may differ

from that of the developing countries. To incorporate this idea into the estimation, we need to characterize

the developed/developing difference by a dummy variable and include it in the Engel curve model. Such a

dummy variable can be defined as follows:

1, if the ith country is developed,
-

0, if the ith country is developing.

The way we assign the two values 0 and 1 to the two categories is arbitrary and it can be changed.
There are two approaches to incorporating a dummy variable into the simple linear regression model:

1. The constant-slope casthe two categories (the developed countries and the developing countries)
are assumed to have different intercepts but the same glope

(a@+y)+ BX + e, ifd =1,
Yi =+ Bx +yd +8i,={
o+ BX + &, if d =0,

where the parametercharacterizes the difference in the intercepts for the two categories of countries.
For example, if the coefficient has a positive value, then the intercept, whiclxig- y for those
countries whose dummy variable value is 1 (i.e., the developed countries) will be larger than the
intercept, which is only, of other countries. We note that in this formulation the slope estimates are
necessarily the same for both categories of countries.

2. The varying-slope casg¢he two categories are assumed to have different slopes as well as different
intercepts:

(@+y)+B+Ox +e&, ifd=1,
Yi = o+ BX +yd +xd + ¢, =
a + BX + &, if d =0,

where aninteraction term- the product of the dummy variable and the explanatory variable — is
included. The parameterrepresents the difference in the intercepts whitepresents the difference
in the slopes.

We should note that this specification is almost the same as running two completely different linear
regression models for the two categories separately, except that in the present dummy variable for-
mulation the variance of the error term is assumed to be the same for both categories of observations
(there will be two error variances if two completely separate regression models are estimated).

Dummy variables in the 0-1 form usually need to be constructed from the original data where variables
may take various numeric and character forms. For example,

1. The International Consumption Data contains a variable, says, ‘ctt’ which indicates whether a country
belongs to one of the five continents: Africa (AF), Asia (AS), North America (NA), South and Central
America (SA), and Europe (EU). The codes AF, AS, NA, SA, and EU are characters.

64

CHAPTER 6. RELATIONAL OPERATORS AND LOGIC OPERATORS

. The variable like ‘gender’ in many data sets is usually coded in characters ‘Male’ and ‘Female’,

instead of 0 and 1.

. The two categories of marital status — single and married — need to be derived from a more detailed

coded variable ‘Marital Status’ which may have four numeric values: O for ‘Never Married, 1 for
‘Married,’ 2 for ‘Divorced,” and 3 for ‘Widowed.

. The two periods of time — before the World War Il (WW II) and after — need to be derived from a

numeric variable ‘calendar year.’

. The two categories — having college education and not having college education — need to be derived

from the variable ‘the Years of Schooling’ which may have values from 0 to 22 or more.

. The two categories — households without children and households with children — need to be derived

from the variable ‘Number of Children’ which may have values ranging from 0 to 10.

So it is generally necessary to transform the original variables to the format of dummy variables before

they can be included in the linear regression model. Let’s consider the above six examples and assume that
the names of the six original variables in GAUSS aret’, ‘ gender’, ‘marital’, ‘year’, ‘school’, and
‘child_no’, respectively. The GAUSS statements for deriving the corresponding dummy variables from
these six variables are as follows:

© o] ~ o a e w N [

P e e L O <
© ©® N o o A~ W N B O

N
o

duml = (ctt .$== "NA" .or ctt .§== "EU");
/* duml = 1, for developed countries;
0, for developing countries. */
dum2 = (gender .$== "female"); /* dum2 = 1, for female;
0, for male. */
dum3 = (marital .== 1); /* dum3 = 1, for married persons;
0, otherwise. */
dum4 = (year .> 1945); /* dumd = 1, for after WW II;
0, otherwise. */
dumb = (school .> 12 .and school .<= 16);
/* dum5 = 1, for college graduates;
0, otherwise. */
dumé = (child no ./= 0); /* dumé = 1, for families with children
0, otherwise. */

Some remarks:

1. We exploit the element-by-element relational operations to define dummy variables. Recall that the

result of a relational operation is either O or 1, depending on whether the result is false or true.

6.5. DUMMY VARIABLES IN LINEAR REGRESSION MODELS 65

2. All the operations are element-by-element so that the resulting dummy variable has the same dimen-
sion as that of the original variable.

3. As in the first and the fifth example, it is often necessary to have logic operatorsdiké# and ‘.or’
when defining dummy variables.

4. When original variables are recorded in characters, all relational operators need to be precéded by

5. The parentheses on the right-hand side of the equality sign are not really necessary. They are there to
help us to read the expressions more clearly.

6. Numeric categorical variables likedrital’ in their original forms cannot be included in the linear
regression model directly. This is because the particular codes of these variables may imply metrics
for different categories that do not make sense. For example, including the vamiatied1’ directly
in a simple linear regression model implies the following specification:

o+ BX + ¢, for the ‘Never Married,

(a4 1y) + BX + ¢, for the ‘Married,
Vi =a+ BX +y X marital + ¢, =
(o« +2y) + BXi + &, for the ‘Divorced,’

(¢ 4+ 3y) + BX + ¢, for the ‘Widowed.’

so that the difference in intercept between the ‘Never Married’ and the ‘Married,’ is the same as that
between the ‘Married’ and the ‘Divorced, a result that does not make much sense in any application.

An Example Let's go back to the analysis of International Consumption Data. To examine how the
consumption behavior of the richer developed countries differs from that of the poorer developing countries
in the Engel curve model, we include a dummy variable as follows:

Sc =a + BlInme + yd; + sic, c=12...,60

Given such an extended Engel curve model, the matrix of explanatory varklimetudes 3 columns: the
constant term, the log income, and the dummy variable. The regression coefficient fexiatains 3
elements.

1 Inmg dy

1 Inmy do

x
Il
)
)
a
=
Il
R ™ R

1 Inmgy deg

In writing a GAUSS program for estimating this extended Engel curve model the key is the construction
of the dummy variable. In addition to the three data sets on budget shares, volumes, and total expenditure,
the International Consumption Data also include an ASCII fileuhtry’ with two columns of charac-

ters indicating the country names (the first column) and the continent each country belongs to (the second
column). As mentioned earlier, the continent indicator can be used to define the dummy variable for devel-
oped/developing countries. The five continent codes ffre(for Africa), * AS’ (for Asia), ‘NA’ (for North

66 CHAPTER 6. RELATIONAL OPERATORS AND LOGIC OPERATORS

America), SA’ (for South America), andEU’ (for Europe). Countries with codedlA’ and ‘EU’ will be
defined as the developed countries and the rest developing countries.

1 new;
2

3 load s[60,10] = share;

4 Toad m[60,1] = totalexp;

5 Toad c[60,2] = country;

6

7 d = (c[.,2] ./= "NA" .and c[.,2] ./= "EU");

8

o y = sl.,1];

10 x = ones(60,1) " 1Tn(m) d; /* or x = 1In(m)7d; */

[
[

output file = dummy.out reset;
__altnam = "Cnst"|"Ln_m"|"Dummy"|"Share";
call o1s(0,y,x);

[y
N

[
w

[N
i

[
3]

end;

[N
o

In the above definition of dummy variablé’ ‘the values are 1 for the developing countries and are 0 for

the developed countries. From the estimation results in the outputufitey.out we should be able to

tell whether the consumption difference between the developed countries and the developing countries is
statistically significant based on the coefficient estimates for the dummy variable.

The above analysis of the dummy variable is the so-called constant-slope approach since the slope
coefficients are the same for both types of countries. We can also consider the varying-slope approach,
where both the intercept and the slopg of the Engel curve model are allowed to be different between the
two types of countries. The key to this new approach is the inclusion of the interaction term, which is the
product of the log income and the dummy variable:

Sc=a+ﬁ|nmc+ydc+8(|nmcXdc)+8|c, C=1,2,,6O

In this general Engel curve model the matkixincludes 4 columns: the constant term, the log income, the
dummy variable, and the interaction term. The ve@aontains 4 regression coefficients.

1 In ms d]_ (In my X dl)

1 Inmp do (In my X dz)
X=1 ‘ ' _ and B=

> R ™ R

1 Inmﬁo deo (lnmeoxdso)

The GAUSS program for estimating this model is
\ |

1| new; |

2| |

6.5. DUMMY VARIABLES IN LINEAR REGRESSION MODELS 67

load s[60,10] = share;

3

4 Toad m[60,1] = totalexp;

5 load c[60,2] = country;

6

7 d = (c[.,2] ./= "NA" .and c[.,2] ./= "EU");
8

° y = sl.,1];

10 x = ones(60,1) In(m)"d”(1n(m).*d);

11

12 output file = dummy.out on;

13 altnam = "Cnst"|"Ln_m"|"Dummy"|"Interact"|"Share";

" call o1s(0,y,x);
15
16 end;

Note that the construction of the interaction tedn*1n(m)’ in the data matrix X’ is quite easy because of
element-by-element multiplication.

6.5.2 The Polychotomous Case

Variables like ttt’ and ‘marital’ are referred to as polychotomous categorical variables because they have
more than two possible values. The way we have handled them is to construct dummy variables from them.
However, information in these variables is usually more than what a single dummy variable can convey. To
fully reflect the information in a polychotomous categorical variable, we need to construct a set of dummy
variables. Furthermore, it is sometimes possible to derive a set of dummy variables from “continuous”
variables like year, * school,”and ‘child no’.

Generalizing from the two approaches in the single dummy variable case, we have the following two
approaches to including multiple dummy variables into a simple linear regression model:

1. The constant-slope cask is very important to know that only — 1 dummy variables are needed for
the J categories when the intercept term is included in the linear regression model. The specification
of the model is as follows:

J-1

Yi=a+ 8%+ ydi+a,
=1

(a+yj) + BX + &, if dj =1andd; =0, forallk # j,andj =1,...,J -1,
o+ BX + &, ifdji=0,f0rallj,
where the category with all; = O is considered as thiease y; indicates the difference in the

intercept between the base category and the category speciftgdbyl anddy; = 0O, for allk # j.

Consider the example of the four-categangrital’ variable. three dummy variables are needed to
carry all the information inmarital’ and they can be defined in GAUSS as follows:

68

CHAPTER 6. RELATIONAL OPERATORS AND LOGIC OPERATORS

m duml = (marital .==1
B (marital .== 2);
m dum3 = (marital .== 3

N
3
o
c
3
N
I

Here, we note a variablen‘dum0’ which may be defined by(marital .== 0)’ is deliberately
missed because the category of the ‘Never Married’ is chosen as the base. For the ‘Never Married’ the
values of the three dummy variables duml’, ‘m_dum2’, and ‘m_dum3’ are all 0. As to the ‘Married,

the value of the dummy variable ‘duml’ is 1 and the other two are 0. The specifications for other
categories are similar to that of the ‘Married.’

Itis possible to use a single GAUSS statement to define:ai® matrix that includes all four dummy
variablesh_duml’, ‘m_dum?2’, and ‘m_dum3’:

\
1 | m_dum = (marital .== (17273));
\

The resulting matrixm_dum’ is equivalent to the horizontal concatenation of the four columns of
‘m_duml’, ‘m_dum2’, and ‘m_dum3’ in the previous definition.

Let's now consider another example of generating multiple dummy variables fromotitgnuous

variable school’. Suppose we want to create four dummy variables for the five categories: (1) some
high school education; (2) high school graduates; (3) some college education; (4) college graduates;
and (5) some postgraduate education; where the second category of high school graduates is taken as
the base. The GAUSS statements are

1 i ed duml = (school .<= 11);
2 \ ed dum3 = ((12 .< school) .and (school .<= 15));
s | ed_dum4 = ((15 .< school) .and (school .<= 16));
4 ed_dum5 = (16 .< school);

\

There seems no simple relational operations to createad matrix that contains all four dummy
variables at one stroke. But there is a GAUSS command designed specifically for this purpose:

\
1 |y = dummydn(x,e,j);
\

What this command does is following:

(1) Using elementsy, e, .. ., of the second input’, which must be & x 1 column of numbers in
ascending order, to partition the real line iktg- 1 open-closed intervalg—oo, €], (61, €],
oo (&1, &), (-1, o0

(2) Evaluating each element in the first input, ‘which is ann x 1 column, to determine which of
the abovek + 1 open-closed intervals this element belongs to;

6.5. DUMMY VARIABLES IN LINEAR REGRESSION MODELS 69

(3) Creating am x (k 4+ 1) temporary matrix, sayz’, of dummy variables, each row contains a 1
andk 0’'s. Among thek + 1 element of the-th row of ‘z’, which element is 1 depends on which
of the abovek 4 1 open-closed intervals contains the value ofittie element of X'.

(4) The third input §’, which must be an integer between 1 dnd- 1, specifies the column to be
deleted from then x (k 4+ 1) matrix ‘z’ in order to produce th@ x k output matrix ¥’. The
deleted column corresponds to the category that is designated as the base.

So in our example we should type

\

1 e =11|12|15]16;

2 \ ed dum = dummydn(school,e,2);
\

The resultingh x 4 matrix ‘ed_dum’ is equivalent to the horizontal concatenation of the four columns
‘ed_duml’, ‘ed_dum3’, ‘ed_dum4’, and ‘ed_dumb’ in the earlier definition. Obviously, with the four
break points in the second inpw ‘it is possible to create five categories from the inpuithoo1’,
while the third input of thedummydn’ command, which is 2 in our example, indicates which among
the five categories is designated as the base so that the corresponding column will be deleted.

2. The varying-slope casédgain, J — 1 dummy variables are needed fércategories and the model

becomes
J-1 J-1
Vi = a+ BX +Z)/jdji +Z<ijidji + &,
j=1 j=1
(a+yj)+(,3+5j)xi + &, if dji = 1 andd; :0,foral|k7é j,andj =1 ...,J-1,
a+ BX + ¢, if djj =0, forall j,

where the category with all;; = 0 is considered the basg; indicates the difference in the intercept
and$; indicates the difference in the slope between the base category and the categaty with
anddy; = 0, forallk # j.

In the previous example about the variatdeHool’ we have created an x 4 matrix ‘ed_dum’ of
dummy variables. Now suppose we have a column of déXaon the single continuous explanatory
variablex;, then the new data matrix™of all explanatory variables for the present varying-slope case
is formed by

\
1 | x = ones(n,1) x07ed_dum™ (x0.*ed_dum);
\

The dimension of the matrix'is n x 10.

As demonstrated by the example of generating multiple dummy variables froootiti@uousvariable
‘school’, we note essentially any continuous variable can be transformed to a set of dummy variables.
Doing so may be necessary in some applications because we are not always certain about whether the

70 CHAPTER 6. RELATIONAL OPERATORS AND LOGIC OPERATORS

regression coefficients of those continuous explanatory variables are constant over their entire ranges. In the
next subsection, we will explore another approach to the problem of non-constant regression coefficients
which is based on another kind of categorization of the information from the continuous variables.

An Example Extending from the previous simple dummy variable analysis for the International Con-
sumption data, we now study how the consumption behavior differs among the developed countries and the
three groups — the African, Asian, and South American countries — of the developing countries. That is, we
are going to divide the 60 sampled countries into four categories. For four categories we need three dummy
variables, sayd;, d,, d3, whose exact definitions will depend on the choice of the base category. Here, we
arbitrarily choose the developed countries as the base. The specific definitions of the dummy variables are
as follows: For the developed countries the values of the three dummy variables are all zeros. The values of
di, dp, andds for the African countries are 1, 0, and 0, respectively. For the Asian countries, the values are
0, 1, and 0, respectively; and for the South American countries, the values are 0, 0, and 1, respectively.

We include the three dummy variables in the Engel curve model as follows:

Sc = o + BInme + y1dic + Yoo + y3sc + &ic, c=12...,60

In writing a GAUSS program for estimating this extended Engel curve model, the key is again the construc-
tion of the dummy variable.

1 new,

3 Toad s[60,10] = share;
4 Toad m[60,1] = totalexp;

5 Toad c[60,2] = country;

6

7 d = (c[.,2] .== "AF"""AS"7"SA");

8

9 y =s[.,1];

10 x = ones(60,1) 1Tn(m) d;

11

12 output file = dummy.out reset;

13 altnam = "Cnst"|"Ln_m"|"Africa"|"Asia"|"S. Amer."|"Share";

14 EH 015(0,y,X);
15
16 end;

We should note that!’ here is not a column but a 60 3 matrix containing the 60 observations for the three
dummy variablesl;, d,, andds.

From the estimation results in the output filenmy.out we should be able to test the significance of
the consumption difference between the base countries (i.e., the developed countries) and each group of the
developing countries, based on the coefficient estimates for the three dummy variables. However, to infer the
consumption difference between, says, African countries and Asian countries, we must get the difference
between the coefficient estimates dif andd,. That is, the coefficient estimates for the three dummy
variables only show the differences between the base countries and each group of developing countries.

6.5. DUMMY VARIABLES IN LINEAR REGRESSION MODELS 71

A more difficult question is about how to test the significance of consumption difference between African
countries and Asian countries. Subtracting the coefficient estimates of the corresponding dummy variables
only gives us the coefficient difference. We need a standard error for this difference in order to conduct the
significance test. Obviously, additional computation is needed to answer the question. However, a short-cut
answer can be come by given that we are able to do the OLS estimation easily. To find out whether African
countries are significantly different from Asian countries, we can simply change the base category from
the developed countries to the African countries, redefine the three dummy variables, and then rerun the
program. The coefficient estimates from this new setup can then answer our question directly.

Let’s now turn to the varying-slope case for four categories of countries, we need three additional inter-
action terms:

Sc = o + BInme + y1dic + Yoo + y30sc
+ s1(Inm)(dic) + S2(Inm)(dye) + S3(In M) (dse) + sic, c=12...,60

In this general Engel curve model the matkixincludes 8 columns: the constant term, the log income, the
three dummy variables, and the three interaction terms. The v@contains 8 regression coefficients. The
GAUSS program for estimating such a model is

1 new,

3 load s[60,10] = share;
4 Toad m[60,1] = totalexp;

5 Toad c[60,2] = country;

6

7 d - (C[.,Z] ,== |IAFII~I|AS"~IISA|I);

8

° y = s[.,1];

10 x = ones(60,1) " In(m)"d”(1n(m).*d);

11

12 output file = dummy.out on;

13

14 __altnam = "Cnst"|"Ln_m"|"Africa"|"Asia"|"S. Amer."|
15 "AFxLn_m"|"ASxLn_m"|"SAxLn m"|"Share";

16 call ols(0,y,x);
17
18 end;

The interaction termd.*1n(m)’ is a 60 x 3 matrix after element-by-element multiplication.

6.5.3 The Piecewise Linear Regression Model

In the piecewise linear regression model, we assume the regression line can be broles ihjmeces at
the J break pointx = ¢, j = 1,...,J, wherec; < ¢; < ... < ¢;. Thatis, the slope of the regression
line is not constant but changes at thdskreak points.

72 CHAPTER 6. RELATIONAL OPERATORS AND LOGIC OPERATORS

To construct a piecewise linear regression model, we need to detinenmy variables as follows:

1, for j <k,
dj = if Cc<X <Cy1, for k=0,...,J,
0, for j > Kk,
wherecy = —oo andcj,; = <.

Given a column vector of data0’ on the single explanatory variable and a column vectorc’ of J
break points, the x J matrix containing alll dummy variablesl;, dy, . . ., d;;i can be created quite easily
in GAUSS as follows:

1 dum = (x0 .>=c');

Here, if thei-th element of the vectox0’ is greater than thg-th element but not greater than the- 1-th
element of the vector’ , then the firstj elements in thé-th row of the matrix dum’ are all 1's and the last
J — j elements are all O’s.

1. If we assume the piecewise regression line is continuous, then

J
Vi = a+ BX +ZJ/](Xi —cpdji +¢i,
j=1

a + BX + &, if xi <cy,
= k k
(Ot —Zyl‘Cj> + <,3+Z)/j> Xi + &, if oy < X < Ck+1, fork=1,...,J.
i=1 =1
Given the matrix dum’ containing theJ dummy variablegdy;, dz, ..., dji, the matrix X’ of all

explanatory variables for the present case is defined to be:
\

1 | x =ones(n,1)"x07((x0 - c').*dum);
\

which is ann x (J + 2) matrix.

2. If we allow the piecewise regression line to be disconnected at thdiseak points, then

3 3
Yi=a+ 8%+ Y v —cpdii +) _8d;i +ei,
j=1 j=1

a+ BX + &, if Xi <cq,
K

K K
(a—ZVjCj +Z(S,—)+(,3+Zyj>xi + &, if o <X <G, fork=1,...,7,
=1 =1 =1

=

where the paramete¥; indicates the distance between the adjacent two pieces at the break point
X = ¢j. Given the matrixdum’, the matrix x’ of all explanatory variables for the present case is

6.5. DUMMY VARIABLES IN LINEAR REGRESSION MODELS

73

\
1 \ x = ones(n,1) " x07((x0 - c').*dum) "dum;
\

which is ann x (2J + 2) matrix.

74

CHAPTER 6. RELATIONAL OPERATORS AND LOGIC OPERATORS

Chapter

Iteration with Do-Loops

When we implement econometric methods in GAUSS programming, a very common situation is that we

need to repeat similar computation with almost identical sets of GAUSS commands. The process of iterating
the same set of commands can be done by a mechanism called do-loop in GAUSS. We will explain the
concept of a do-loop through a simple example.

7.1 Do-loops

Consider the product of two column-vectors, sags,and ‘b’, both with 5 elements. It is defined to be
the sum of the five products of the corresponding elements’iard ‘b’. Suppose we want to use this
definitional formula to compute the product bf two vectors, then the most straightforward way to do it is

1 c = a[l]*b[1] + a[2]*b[2] + a[3]*b[3] + a[4]*b[4] + a[5]*b[5];

This computation involves adding terms repeatedly with a sequential indices running from 1 to 5. This kind
of arithmetic can always be written inracursivefashion as follows:

1 c = 0;

2 c =c + a[l]*b[1];
3 c =c+ a[2]*b[2];
4 c =c + a[3]*b[3];
5 c =c+ a[4]*b[4];
6 c = c + a[5]*b[5];

We note that the last five expressions are identical except the indices running from 1 to 5. In GAUSS any
group of recursive expressions can be replaced by a do-loop.

A do-loop starts with the commandd until’, followed by a condition (the so-calledo-loop con-
dition), then a set of commands to be repeated, and then ends witkrtth® command. The GAUSS
statements between théo' until’ command and theendo’ command will be executed repeatedly. After
each iteration the do-loop condition will be checked to decide whether to continue another round of iteration
or to stop. lIteration will be continued as long as the do-loop conditamt satisfied. For the previous
example, we can use the following do-loop representation:

o +
e |
. do until i > 5; |
| c =c+ a[i]l*b[i]; |

e w N [

75

76 CHAPTER 7. ITERATION WITH DO-LOOPS

5 | =i+ |
6 ‘ endo; ‘
| |

There is another kind of do-loops that start with the commaiodwhile’. Though the basic structure
is the same as that of théo until’ command, the GAUSS statements between thewhile’ command
and the &ndo’ command will be executed repeatedly as long as the do-loop condtgiiti satisfied. With
this command, the previous example can be written as

1 c = 0;

2 i=1;

3 do while i <= 5;

4 c =c + a[i]*b[i];
5 i=19+1;

6 endo;

Generally speaking, there are two kinds of do-loop conditions: one involves an index, suchnas
the previous examples, whose value has to be initiated before the do-loop and will change sequentially
inside the do-loop. Iteration will stop when the index attains a prescribed value. The second type of do-loop
conditions involve the computation result directly from each iteration, in which case iteration will stop when
the computation result satisfies a prescribed criterion. For example, the iteration terminates when a result
inside the do-loop becomes smaller than 0.00001.

Do-loops can be nested; i.e., a do-loop can be placed inside another do-loop. Let's consider the example
of multiplying a matrix with a vectorAb = c, whereA is ann x m matrix,b anm x 1 column vector, and
the resulic is ann x 1 column vector. If we want to conduct this computation with do-loops, then nested
do-loops are needed. Other than computing the sum pfoducts for each row oA which requires one
do-loop (the inner do-loop), we need another layer of do-loop (the outer do-loop) flordwes ofA. Given
the matrix a’ and the vectorb’, we compute the vector' as follows:

1 ¢ = zeros(n,1);

2 i=1;

3 do until i > n;

a j=1;

5 do until j > m;

6 c[i] = c[i] + a[i,j1*b[il;
7 J=i+ 1

8 endo;

9 i=19+1;

10 endo;

It is important to note that in the very first statement we define the dimension aof thector to “reserve”

the space for the iteration results. Such a technique is needed whenever we need to retain results from each
iteration. An alternative way of retaining results from each iteration, without the knowledge of how much
space to be reserved, is as follows:

7.1. DO-LOOPS 77

1 c =0;

2 i=1;

3 do until i > n;

4 j=1

5 temp = 0;

6 do until j > m;
7 temp = temp + al[i,j]*b[j];
8 J=J+1

9 endo;

10 c = c|temp;

11 i=1i+1;

12 endo;

13 ¢ = c[2:rows(c)];

Here, a scalarc’ is initiated with the value 0 right before the do-loop. We use thigs a base and we will

attach the result form each iteration to it. Each time the inner do-loop for computing the samprofiucts

is completed, the result is attached t. ‘ After all n computations are finished, we havéra+ 1) x 1

column vector ¢’ whose first element needs to be deleted as is done in the statement right afterdtie
command. Note that if the result from each iteration is a vector (instead of a scalar as in the above example),
then a vector has to be initiated before the do-loop so that the resulting vector from each iteration can be
properly attached to this initial vector.

A General Principle in Using Do-loop Do-loop is a useful tool in many situations. As a matter of fact, all

the matrix operations, such as matrix multiplication in the previous examples, can be replaced by do-loops.
However, in most matrix operations we should use the matrix operators instead of do-loops. This is because
matrix operators are easier to use and are executed with much more efficiency. A general principle for
GAUSS programming is thalhe use of do-loops should be avoided unless there is absolutely no alternative
Replacing do-loops with ingenious matrix operations, if possible, always save us tremendous amount of
computing time.

An Example Our previous program for the demand estimation can deal with one commodity only. We
need to rerun that program ten times for the ten commodities of the International Consumption Data. Here,
by using do-loops we can easily conduct the estimations for all ten commodities in one program. In such a
program it is then straightforward to collect all the regression coefficient estimates and perform additional
computations with them. In particular, we can compute income elasticities for all ten commodities and for
all 60 countries in one stroke. We can also check whether the sum of the ten intercept estimates is equal to
one and whether the sums of the ten sets of all other coefficient estimates are equal to zero.

1 new,

3 Toad q[60,10] = volume;
4 load s[60,10] = share;
5 Toad m[60,1] = totalexp;

78 CHAPTER 7. ITERATION WITH DO-LOOPS

6

7 p = (s.™m)./q;

8 x = In(m)"In(p);

9

10 output file = all.out reset;

11

12 __altnam = "Cnst"|"Ln_m"|"Food"|"Bev_tob"|"Clothing"|"Rent"|"HouseFur" |

13 "Medicare"|"Transpt"|"Recreatn"|"Educatn"|"Other"|"Food S";

14

15 bout = zeros(1,12); /* Initializing a row vector to which all the

16 regression coefficient estimates from the

17 do-Toop can attach. */
18

19 eout = zeros(60,1); /* Initializing a column vector to which all

20 the elasticities estimates from the do-loop

21 can attach. */
22

2 i=1; /* Initializing an index for counting. */
24 do until i > 10; /* Do-loop will run ten times. */
25

26 y = s[.,i]; /* The index i picks one commodity in turn. */
27 {vnam,mmt,b,stb,vb,seb,s2,cor,r2,e,d} = ols(0,y,x);

28 eta = 1 + b[2]./s[.,i]; /* The computation of the elasticities. */
20 bout = bout|b'; /* Collecting the regression estimates row by row. */
30 eout = eout”eta; /* Collecting the elasticity estimates column by

a1 column. */
32 i=1+1;

33 endo;

34 bout = bout[2:rows(bout),.]; /* Deleting unwanted first row. */
35 eout = eout[.,2:cols(eout)]; /* Deleting unwanted first column. */
36

37 eout = seqa(1,1,60) eout; /* Attaching a column of counters. */
38

39 " The income elasticities for the ten commodities and 60 countries:";?;

40 call printfm(eout,ones(1,11),"*.*1f"7470| (ones(10,1) .*("*.*1f"7673));?;7;

41

42 " The sum of ten sets of regression coefficient estimates:";?;

43 format /rd 15,8; sumc(bout);

44

45 end;

Note that after theeout’ matrix is generated toward the end of the program, a column of 60 consecutive
numbers 1,2, .,60, which serve as counters are generated and attached twthérhatrix to facilitate its
reading. We then print these counters in the first columrait’ as integers while the rest 60 10 matrix

of elasticity estimates as real numbers. Because different columasuif ‘are to be printed differently, we

7.1. DO-LOOPS 79

must use aprintfm’ command, in which the second argument, a row of 11 ones, indicates all 11 columns
of ‘eout’ are numbers (instead of characters). The third argument ofpthient fm’ command is a 11x 3
formatting matrix. The first row of the formatting matrix, *.*Ifi~0’, is associated with the first column of
‘eout’, which contains the counters, and the other 10 rows are all identically equéd.td “673)" since

the last ten columns otbut’ are to be printed in the same format. Note that the way we construct the last
ten rows of the formatting matrix is based on an element-by-element trick for duplication. This trick can be
quite useful in many occasions.

Breaking Away from Do-loop Sometimes we need to break away from the do-loop before the do-loop
condition is satisfied by using a supplementary GAUSS staterheedk’. For a trivial example, if we only
want to add the first three product terms from the original 5-iteration do-loop condition, then we pdit an *
statement inside the loop as follows:

1 c = 0;

2 i=1;

3 do until i > 5;

a4 if i > 3;

5 break;

6 endif;

7 c =c + a[i]*b[i];
8 i=1i+1;

9 endo;

When the i f’ condition is satisfied (i.e., after three iterations are completed and the inde&comes 4),
then the break’ statement is executed and the program will jump out of the loop and go to the statement
immediately after theendo’ statement.

There is another supplementary GAUSS statement —thet i nue’ statement — that help bypass some
of the statements inside the do-loop but still continue the do-loop iteration as illustrated by the following
example in which the third product term is to be skipped from the summation:

1 cC = 0;

2 i=1;

3 do until i > 5;

4 if i == 33

5 continue;

6 endif;

7 c =c + a[i]*b[i];
8 i=1+1;

9 endo;

When the i f’ condition is satisfied (i.e., after two iterations are completed and the indéetomes 3) so

that the tontinue’ statement is executed, the program will skip the rest of the statements inside the loop
and jump to the top of the loop to evaluate the do-loop condition to decide whether to continue the iteration.
The above program is equivalent to

80 CHAPTER 7. ITERATION WITH DO-LOOPS

1 c = a[l]*b[1] + a[2]*b[2] + a[4]*b[4] + a[5]*b[5];

where the third product is omitted.

7.2 Some Statistics Related to the OLS Estimation

In this section we briefly introduce a few estimators and test statistics that are used to deal with some com-

mon problems with the OLS Estimation when data cannot really satisfy the standard assumptions required

by the linear regression model. We then present GAUSS programs for those estimators and test statistics. In
particular, we demonstrate how do-loops are necessary in many of these programs.

7.2.1 The Heteroscedasticity Problem

Heteroscedasticity is a problem with a linear regression mpedelX g + ¢ in that Vary;) = Var(s) = o
are not constant acrosso that

o2 0 -~ 0
0 o2 -~ 0

Var(e) = =X.
0 0 - o2

Heteroscedasticity usually occurs to the cross-section data.

White's Estimator: The main problem with the OLS estimatbrunder heteroscedasticity is that its
variance-covariance matrix becomes more complicated:

Var(b) = (X'X)"IX'EX(X'X)™t = (X'X)! (Z 02X, x{) X'X)™ 1,
i=1

wherex; is theith row of then x k matrix X. However, the above expression can be consistently estimated
by the so-called White’s heteroscedasticity-consistent estimator:

Var(b) = (X'X)™1 (Z exi x{) (X'X)™ 1,
i=1

whereg are the OLS residuals.
Given then x k data matrix X’ of the explanatory variables and timevector of OLS residualse’,
White’s heteroscedasticity-consistent estimator can be calculated by the GAUSS statement:

1 w_vb = invpd(x'x)*x'diagrv(eye(n),e)*x*invpd(x'x);

7.2. SOME STATISTICS RELATED TO THE OLS ESTIMATION 81

where the GAUSS commandiagrv’ takes two inputs — the first input is a square matrix and the second
one is a column vector — and produces a square matrix that is the same as the first input except the diagonal
elements are those of the second input. Recall that the GAUSS commaid)’ gives ann x n identity
matrix.

It is easy to verify that, given ang x 1 column vector 8’ and n x n matrix ‘b’, the expression
‘a.*b’ yields the same result as that afiagrv(eye(n),a)*b’. Consequently, White's heteroscedasticity-
consistent estimator can be calculated by the following alternative GAUSS program:

1 w_vb = invpd(x'x)*x'(e.*x)*invpd(x'x);

White's Test for Heteroscedasticity Given R of the special regression of the squared OLS residefals
on all the explanatory variables and their squared and cross product terms, White's Test is based on the
statistic

Sw=n-R?

wheren is the sample size. Suppose the number of the explanatory variables in such a regrésstbeims
the test statistic Shas ay2(k, — 2) distribution under the null hypothesis o6 heteroscedasticity.
The GAUSS program for calculating White's test statistic is somewhat complicated. Given the sample
size n’, the n x k data matrix X’ of the explanatory variables including the constant term, anchitector
of OLS residualsé’, we use

=1

do until j > k;
x0 = x07(x[.,3].*x[.,3:k1);
j=3+1;

endo;

y0 = e72;

e0 = y0 - x0*invpd(x0'x0)*x0'y0;

tss0 = (y0 - meanc(y0))'(y0 - meanc(y0));
rss0 = e0'e0;

r2 = (tss0 - rss0)/tss0;

© o] ~ o S w N L

PR B
N B O

[
w

S W = n*rZ;

Here, a do-loop is necessary in the construction of W9 rmatrix which contains the data on all the ex-
planatory variables inx’ and their squared and cross product terms. The five statements after the do-loop
represent the standard procedure to compétetiere the particular dependent variakyj@'‘in this compu-

tation is the squared OLS residw@dl White's test statistic is ins' w'. If the computed value of White’s test
statistic is greater than th@& — «)% critical point from they?(k, — 2) distribution, where, is the column
number of X0’, then the null hypothesis afo heteroscedasticity will be rejected.

82 CHAPTER 7. ITERATION WITH DO-LOOPS

Breusch-Pagan'’s Test for Heteroscedasticity If heteroscedasticity follows the form
aiz = az-h(zi/y),

for some known functiorn of some vectog; of p observable variables which includes the constant term
and can overlap witly;, then Breusch-Pagan’s test statistic is

L W-1)Z@Z2) 7w - 1)

S W —1)'(Ww—15)/n

wherel, is n dimensional vector of ones; andZ are then x 1 vector and the x p matrix containing all
the observations af; andz, respectively. Herey; are normalized squared residuals

¢

Wy = 5v—F 5

S
T jo1€

S, has thex?(p — 1) distribution under the null hypothesis and the normality assumption.

Given then x k data matrix X’ of the explanatory variables, thex p data matrix z' of the variables
z;, and then-vector of OLS residuals’, the GAUSS program for calculating Breusch-Pagan'’s test statistic
is

1 w = e"2./meanc(e"2);
2 s bp = (w-1)'z*invpd(z'z)*z'(w - 1)/((w - 1)"(w - 1)/n);

We note that althouglw' is an n-dimensional vector, we can still subtract a scalar 1 from it since GAUSS
will automatically expand 1 to an-vector of ones which becomes conformablewo *

7.2.2 The Autocorrelation Problem

In a linear regression model for time-series data (here, we change the subscriptdroto emphasize the
nature of data is time series):

Ve=xB+e, t=1,...,n,

we usually expect nonzero covariances of the disturbances across time
Cov(ys, Vi) = Cov(es, &) = Cst Z O, forsomes, t=1,2,...,n.

Because of these nonzero covariances the OLS estimation has the problem that the variance of the OLS
estimatotb changes from the formula?(X’'X)~* to

Var(b) = (X'X) ™ (Z > cstxsx;> XX

s=1 t=1

wherex; is thetth row of then x k matrix X.

7.2. SOME STATISTICS RELATED TO THE OLS ESTIMATION 83

Newey-West's Estimator: Similar to White’s estimator of Vdb) which is used in the presence of het-
eroscedasticity of an unknown form, we use the follwoing Newey-West's estitifatovar(b) when we
believe covariances of the disturbances across time are not zero and do not have any specific forms:

n m n
vamm::OCX)l{E:q&mp+§: z:zmqa_ﬂmﬂr+n_mg}OCX){
t=1 j=1t=j+1

wherew; are weights defined by; = j/(m+1), j =1, 2, ..., m, for a given numbem, which is usually
a small integer but can be increased as the samplesikgeases.

Given an integern’ (which represents the numbem” in the above definition), the x k data matrix
‘x’ of the explanatory variables, and thevector of OLS residuals’, the GAUSS program for calculating
Newey-West's estimator is

1 nw = 0;

2 Jj=1;

3 do until j > m;

4 t=3+1;

5 do until t > n;

6 nw = nw + ((j/(m+1))*e[t]*e[t-31).*(x[t,.]'x[t-3,.] + x[t-3,.]1'x[t,.]);
7 t=t+1;

8 endo;

9 j=J+1

10 endo;

11

12 nw = invpd(x'x)*(x'(e.*x)+ nw)*invpd(x'x);

We should note that the particular matrix indexindt, .]’ gives thetth row of the data matrixx’; i.e., it
yields the row vectox;.

We now consider some tests for the null hypothesis of no autocorrelation against some unspecified
alternative forms of autocorrelation.

Breusch-Godfrey’s Test for Autocorrelation: Given R of the special regression ef onx;, &_1, ...,
€_m for some integem, Breusch-Godfrey’s test statistic is

S)g = n‘RZ.

The test statistic has & distribution withm degree of freedom under the null hypothesis of no autocorre-
lation?

170 ensure the consistency of Newey-West's estimator we have to make certain assumptions about those coyari@nees
particularlly important assumption is as follows:

cst — O, as |t —s| — oo,

which means the covariance betwegrandst becomes increasingly smaller as the difference between the two time pgaads
t gets larger.

2The alternative hypothesis Breusch-Godfrey’s test considers is in fact autocorrelated disturbances of aither AM(m)
form.

84 CHAPTER 7. ITERATION WITH DO-LOOPS

Given the sample sizen”, the n x k data matrix X’ of the explanatory variables, and tievector of
OLS residualsé’, the GAUSS program for calculating Breusch-Godfrey’s test statistic is

x0 = x“shiftr(ones(m,1)*e',seqa(1,m),0)";
y0 = e;

e0 = y0 - x0*invpd(x0'x0)*x0'y0;

tss0 = (y0 - meanc(y0))'(y0 - meanc(y0));
rss0 = e0'e0;

r2 = (tss0 - rss0)/tss0;

© o] ~ o S w N L

S W = n*r2;

The most interesting part of the program is in the first line wherentlre(k + m) matrix of explanatory
variables is constructed. There we use a new GAUSS commandlitr’ which takes three inputs: the first
input is anm x n matrix, say, a’, the second input is am x 1 column vector, sayp’, and the third input

is either amtm x 1 column vector or a scalar, say,.' What the commandshi ftr’ does is to shift the rows

of the matrix a’ horizontally. The number of steps shifted in each row is determined by the value in the
corresponding element in the vectot.If the number is positive, then the shift is to the right. Otherwise,
the shift is to the left. For example, if the third elementbiis 5, then the third row ofd’ is shifted five
steps to the right so that the last five numbers in that row will be lost while the first five numbers are all the
number in the third element of the third input vectot. ‘Going back to the above program, we see that the
first input for the commandshiftr’ is an m x n matrix with the identical rowé’ and the second input

is a column vector of sequential integers from Irio The output of that command is @am x n matrix as
follows:

0 & & & €n ©my1 emy2 c G-
0O O e & -+ en-1 €n ©emy1 -+ €2
0 0 0 e €n-2 €n-1 ©€n -+ 63
O 0 0 0 -+ g € € - Ei-m

The first row is shifted to the right by one step (so that the last elemédatpushed off) while thenth row
is shifted to the right byn steps. All the spaces left are filled with zero (which is specfied in the third input
of the ‘shiftr’ command.

Finally, we note that the output of the commarsthiftr’ is transposed to an x m matrix before
concatenated horizontally to tlmex k matrix ‘x’. It should be emphasized that the operation of transpose
has higher priority than the operation of concatenation so that it is not necessary to add parentheses around
‘shiftr(ones(m,1)*e',seqa(1,m),0)"".

7.2. SOME STATISTICS RELATED TO THE OLS ESTIMATION 85

Q Tests for Autocorrelation: Given thejth order sample autocorrelations from the OLS residuals:

we have the following two test statistics for a given integer

1. Box-Pierce Q Statistic:
m
Qi=n Z Pl
=1

2. Ljung-Box Q Statistic:
~2
P

n—j

Q=n+2)
j=1

Both statistics have @2 distribution withm degree of freedom under the null hypothesis of no autocorrela-
tion.

Given the sample sizex”, an integer i, and then-vector of OLS residualse’, the GAUSS program
for calculating Q test statistics is

1 rho = (shiftr(ones(m,1)*e',seqa(1l,m),0)*e)./(e'e);
2 ql = n*(rho'rho);
3 g2 = n*(n + 2)*(rho'(rho./(n - seqa(1l,m))));

7.2.3 Structural Stability

When we use Chow tests for structural changes, one basic assumption is that we know exactly when the
structural changes occur so that we can divide the sample accordingly. But in many applicatiotisngsing
series datave may not know whether there are structural changes and, if there are, when they occur. In
other words we are not certain about the structural stability, or the constancy of the regression coefficients
B, over time. To test structural stability of a linear regression mgdelXg + ¢, we use the CUSUM test

which is based on thene-step ahead prediction errors

€ = Yt — Xbr_1, t=k+1,k+2,...,n,

wherey; andx; are thet-th observation on the dependent variable anckthegressors, respectively. Here
x;bt_1 can be considered apeedictorof y; based on the previous- 1 observations with;_, being defined
by

bi_1 = (X{_1Xt—1) X[_1Yi-1.

wherey;_; is a(t — 1) x 1 vector containing the firgt— 1 observations on the dependent variable while
Xi—1isa(t — 1) x k matrix containing the first — 1 observations on the explanatory variables: Obviously,
b;_, is feasible only when the rank &f; _; is equal to the number of explanatory varialkege., when its

86 CHAPTER 7. ITERATION WITH DO-LOOPS

row number is no less than So we can computk;_;, and therefore the recursive residuglsonly for
t=k+1Lk+2,...,n.
Let's also define theescaled one-step ahead prediction errors:

t = e?
J1+MOQ4XF04M

and their sample variance:

w , t=k+1,k+2,...,n,

1 n
S$=——"—=) (w-w?
n—k—1 t—Xk-;l
wherew = (n — k)1 Z?:Hl wy. The CUSUM test is based on the fact that, under the null hypothesis that
the regression coefficiengare stable, the distribution of tme— k statistics
i
Ci=> 2 j=k+Llk+2...n

e
can be derived. In particular, we know the 90 %, 95 %, and 99 % critical values (denatggsas o 025 and
Yo.00s respectively) of this distribution are 0.850, 0.948, and 1.143, respectively. To conduct the CUSUM
test at the(1l —)% significance level, we check whether each p@jntC;) lies inside the corresponding
confidence bound which is delimited by two straight lines that are symmetrical with respect to the horizontal
axis: one is the line connecting the two poinfk; v.,2+/n —k) and(n, 3y,/2+/n —K). The other is the
line connecting the two pointgk, —,,2+/n — k) and(n, —3v,,2+/n — k). The null hypothesis is rejected
if any of C; lies outside the corresponding confidence interval.

Before writing a GAUSS program for calculating the CUSUM test statistics, we note that the computa-
tion repeatedly involves increasing matriges; andX;_; and is hard to do in one stroke based on matrix
algebra technique only. So using do-loops appears the only way for the task. Now, given thabgezva-
tions on the dependent variable and kiregressors have been loaded intoand ‘x’, respectively, then the
n — k CUSUM test statisticE; can be computed by the following simple GAUSS program:

w = zeros(n-k,1);

t = k+1;

do until t > n;
e = y[t] - x[t,.J*invpd(x[1:t-1,.]"'x[1:t-1,.])*x[1:t-1,.]"'y[1:t-1];
wlt-k] = e/sqrt(l + x[t,.]*invpd(x[1:t-1,.]"'x[1:t-1,.])*x[t,.]"');
t=1t+1;

endo;

s2 = (w - meanc(w))'(w - meanc(w))/(n-k-1);

c = cumsumc(w./sqrt(s2));

© o] ~ [=2] o e w N Ll

‘c’isan(n — k) x 1 vector containing the CUSUM test statistlCs, for j =k+ 1, k+2,...,n.

In the above program we have used a new GAUSS commamdumc’. It takes one input which is
an(n — k) x 1 vector (of rescaled one-step ahead prediction eirgrand produced another vector of the
same size whose elements are the cumulative sums of the elements of the input vector. A similar GAUSS
command is¢umprodc’ which does cumulative products.

Finally, we note that to complete the testing procedure, we have to draw a graph for the confidence
bound, which we will not do here.

Chapter

GAUSS Procedures: Basics

Recall in section 5.5, the three parts of the GAUSS program for computing the three Chow test statistics
are almost identical. Each begins with the computation of two RSS (one for the restricted model and the
other for the unrestricted model) and their respective degrees of freedom, then the test statistic and the
corresponding p-value. The only difference in these computations is the data that are used. We may wonder
whether there is a way in GAUSS to exploit the similarity in computations to save our programming chore.
The answer is yes and the tool used for this purpose is called a procedure.

A procedure can be described in short as a group of GAUSS statements that is a self-contained unit
residing in the program that accepts inputs and produces outputs. Once a procedure is defined inside a pro-
gram, it can be used or, in GAUSS terminologglledrepeatedly with different inputs to produce different
outputs. For example, the part of the program for each of the three Chow test statistics can be made as a
procedure. The inputs of such a procedure are three matrices: the vector of dependent variable, denoted as
‘y’, the matrix of explanatory variables from the restricted model, denotedrsand the one from the
unrestricted model, denoted asi*. The output is the p-value of the Chow test statistic. The procedure can
be formally written as follows:

proc (1) = chow(y,xr,xu);
Tocal rss r, rss u, df r, df u, f, p value;

rss r=y'y - y'xr*invpd(xr'xr)*xr'y;
df r = rows(xr) - cols(xr);

rss u =y'y - y'xu*invpd(xu'xu)*xu'y;
df u = rows(xu) - cols(xu);

© o] ~ o a B w N [

[N
o

[
[

f=((rss_r - rss u)/(df r - df u))/
(rss_u/df u);

[y
N

[
w

p_value = cdffc(f,df r-df u,df u);

N
i

[
3]

retp(p_value);
endp;

=
o

[
]

Let's take a look at the structure of this procedure, which can be broken into five components:

1. The first component starts with the GAUSS commanat’ which initiates the definition of a proce-
dure. The number in the first pair of parentheses indicates how many output matrices will be produced
by this procedure. In our example there is one output — the p-value which is a scalar. The letters after

87

88 CHAPTER 8. GAUSS PROCEDURES: BASICS

the equality sign, such asHow’, give the name of the procedure which follows the same naming rule
for variables. Whenever the procedure is needed, it will be called by this name. The arguments inside
the second pair of parentheses are inputs. In our example, there are threeyinpyts and ‘xu’.

2. The second component starts with the GAUSS commaech’ followed by a list of variable names.
All the variables used inside the procedure, except those input variables specifiedprottiestate-
ment (e.g., the three matriceg, ‘ xr’, and ‘xu’ in our example), are referred to as local variables
and should be listed in thid 6cal’ statement. In generagll the variables that appear on the left-
hand side of the GAUSS statements inside a procedure are local varidiblesr example, six local
variables have been defined. The local statement may be omitted if no local variables are needed.

In contrast to the local variables inside a procedure, all variables defined and used outside procedures
are said to be global. The conceptual difference between local variables and global variables is quite
important and it will be elaborated further in section 8.2.

3. The third component is the main body of the procedure, which may contain any number of GAUSS
expressions that define the procedure. There are six expressions in our example.

4. The fourth component of the procedure is tiretp’ command that “returns” the output variables
created by the procedure. Multiple output variables are possible and require multiple arguments in the
parentheses. If there is no output variable to be returnedy#te”command may be omitted.

5. The last component is simply ther'dp’ command that formally ends the definition of the procedures.

To use, or to call, the above procedure, we type the following command in the main program:

1 pv = chow(y,x1,x2);

where X1’ and ‘x2’ are the matrices of explanatory variables from the restricted model and the unrestricted
model, respectively. Both of them and the vector of dependent varigitdbould have been defined earlier
in the main program.

The output is stored in the new matrix (here, it is a scalar), which is the p-value for the Chow test
statistic. Note that the names of the input and output variables here are different from those used inside the
procedure. As a matter of fact, all local variables used inside a procedure are completely independent of
the global variables used outside the procedure. Furthermore, the local names used inside a procedure can
be the same as some global names outside the procedure. GAUSS will understand they represent different
variables. Also, all the global variables defined in a GAUSS program will remain in the maewenyafter
the execution of the program is finishéglit the local variables used inside a procedure will be erased from
the memoryas soon as the execution of this procedure is completed

It is possible for a procedure to have no output variable at all. In such a case the number inside the
first pair of parentheses in thproc’ command is 0’ and there is no need for the parentheses in té¢p’
command. What this kind of procedures usually do is to make some computation and/or to print something
on the screen (or into an ASCII output file). For example, the goal of the previous procetowéis to
compute the p-value of the Chow test statistic. The reason for deriving such a p-value is to eventually print it
so that we can judge whether it is smaller than the designated size of the test, say, 5%, in which case the null

89

hypothesis of no structural change will be rejected. But we note GAUSS can also make such a judgment.
What we really want is actually not the p-value per se but a decision of whether to reject the null. So we can
rewrite the procedure in a way that it does not produce any matrix output but prints the testing decision.

proc (0) = chow_a(y,xr,xu);
local rss r, rss u, df r, df u, f, p_value;

rss r=y'y - y'xr*invpd(xr'xr)*xr'y;
df r = rows(xr) - cols(xr);

rss u =y'y - y'xu*invpd(xu'xu)*xu'y;
df u = rows(xu) - cols(xu);

© o] ~ (=2} [&] S w N =

[N
o

-
[

f = ((rss_r - rss_u)/(df r - df u))/
(rss_u/df u);

[N
N

-
w

p_value = cdffc(f,df r-df _u,df u);

[N
i

-
13

[N
o

if p_value < 0.05;

"The Null Hypothesis of No Structural Change Is Rejected!";
else;

"The Null Hypothesis of No Structural Change cannot be Rejected!";
endif;

[
S

[N
e

[
©

N
o

N
=

N
N

endp;

Here, anif...else...endif’ command is used to determine which testing result to be printed. Since
there is no output variables, the number of output specified inpthec* command is set at 0, while the
‘retp’ command is omitted. When such a procedure is needed, it is called by

1 call chow_a(y,x1,x2);

Let's consider the case where the number of output variables is more than one. In such a case the calling
statement is a little different. Suppose in the origirailow’ procedure, besides the p-value, we also want
to output the test statistid™ and the two corresponding degrees of freedom, then we need the following
version of the procedure that has four output variables:

proc (4) = chow b(y,xr,xu);
Tocal rss r, rss u, df r, df u, f, p_value;

rss r=y'y - y'xr*invpd(xr'xr)*xr'y;
df r = rows(xr) - cols(xr);

[=2] o e w N Ll

90 CHAPTER 8. GAUSS PROCEDURES: BASICS

8 rss u =y'y - y'xu*invpd(xu'xu)*xu'y;
9 df u = rows(xu) - cols(xu);

10
1 f = ((rss_r - rss u)/(df r - df u))/
12 (rss_u/df _u);

13 p_value = cdffc(f,df r-df u,df u);

14
15 retp(f,df r-df u,df u,p value);
16 endp;

The number of output specified in theroc’ command is 4 and, correspondingly, there are four arguments

in the ‘retp’ command, among which we note the second argument itself is an expression. That is, the
arguments of theretp’ command can take the form of algebraic expressions. This extra flexibility helps
cut the number of local variables needed in the procedure. To call the above procedure, we type

1 {t,df1,df2,pv} = chow b(y,x1,x2);

Note that the four output variablet’; ‘ df1’, * df2’, and ‘pv’ are enclosed by a pair of braces. The structure
of this statement is quite unique in GAUSS. It has more than one vanalile left-hand sidef the equality
sign.

Let's now present a full example. Suppose in the estimation of the Engel curve model we are interested
in the difference between the developed and the developing countries. Since the data are not grouped into
developed and developing countries as the framework of the Chow test requires, we must rearrange the
data first. The original data needed are in the three ASCII filgsare’, ‘ totalexp’, and ‘country’. In
particular, in the file ¢ountry’ there are two columns of characters: the first column contains the countries’
names and the second one the continent codé&s(for Africa), ‘ AS’ (for Asia), ‘NA’ (for North America),

‘SA’ (for South America), andEU’ (for Europe). The continent codes are used to separate the developed
countries from the developing ones.

1 new,

2

3 load s[60,10] = share;

4 Toad m[60,1] = totalexp;

5 Toad c[60,2] = country;

6

7 y = s[.,1];

8 x = ones(60,1) 1Tn(m);

9

10 /* Constructing an indicator for the developed countries. */
1 ind = (c[.,2] .== "NA" .or c[.,2] .== "EU");

[
N

/* Reorganizing the data matrices 'y' and 'x' with the data for the
developed countries first, followed by the data for the developing

[
w

[
IS

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

a4

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

countries. */
y = selif(y,ind)|delif(y,ind);
x = selif(x,ind) |delif(x,ind);

/* The number of the developed countries (the number of 1's in the
indicator.) */
nl = sumc(ind);

/* The expanded matrix of explanatory variables for the case 1 model. */
x1 = (ones(nl,1) zeros(nl,1)"x[1:n1,2])|

(zeros(n-nl1,1) ones(n-n1,1) "x[(n1+1):n,2]);
/* The expanded matrix of explanatory variables for the case 2 model. */
x2 = (x[1l:nl,.] zeros(nl,2))|(zeros(n-n1,2)"x[(nl+1):n,.]);

format /rd 6,3;

{test,dfl,df2,pv} = chow b(y,x,x1);

" The Chow test statistic for testing the null hypothesis of";
" no structural change against the case 1 model is " test;

" The degrees of freedom are " dfl;; " and " df2;

" The corresponding p-value is " pv;

{test,dfl,df2,pv} = chow b(y,x,x2);

" The Chow test statistic for testing the null hypothesis of";
" no structural change against the case 2 model is " test;

" The degrees of freedom are " dfl;; " and " df2;

" The corresponding p-value is " pv;

{test,dfl,df2,pv} = chow b(y,x1,x2);

" The Chow test statistic for testing the null hypothesis of";
" the case 1 model against the case 2 model is " test;

" The degrees of freedom are " dfl;; " and " df2;

" The corresponding p-value is " pv;

/***
* The Definition of the Procedure 'chow b'. *
***/

proc (4) = chow b(y,xr,xu);

Tocal rss r, rss u, df r, df u, f, p_value;

rss r=y'y - y'xr*invpd(xr'xr)*xr'y;
df r = rows(xr) - cols(xr);

rss u =y'y - y'xu*invpd(xu'xu)*xu'y;

91

92 CHAPTER 8. GAUSS PROCEDURES: BASICS

60 df u = rows(xu) - cols(xu);
61 f = ((rss_r - rss u)/(df r - df u))/
62 (rss_u/df u);

63 p_value = cdffc(f,df_r-df_u,df u);
64
65 retp(f,df r-df u,df u,p value);
66 endp;

67 /***/
68

69 end;

Note that the definition of the procedure can be placed anywhere in the main program. Moreover, in chapter
9 we will also see how to store the procedure definitions in files different from the main program (it is just

a matter of letting GAUSS know where to find the procedure definitions). The possibility of separating
the main program from procedure definitions is quite useful. Just imagine the situation where there is a
procedure containing some commonly used expressions which are needed by many different programs. If
we must store the procedure definition in the same file with the main program, then each program that needs
this procedure will have to include the procedure definition. This repetition bloats the program file and can
be rather annoying.

8.1 Structural Programming

By using procedures we are able to shorten a program considerably. But reducing the size of a program
is only part of the reason for using procedures. A more important purpose procedures serve is to make a
program more “structural”. That is, procedures help to break a program into several relatively independent
units so that we can have a cleaner and broader vision of how the entire program works. For example,
from the structure of the previous Chow test procedure we clearly see the fact that the routine of conducting
various Chow tests is independent of the data' xr’, and ‘xu’ it process. By including the computation in

a self-contained procedure and specifying the data matrices outside the procedure, we provide the program
with a structure that is easy to debug and more readily for future revision.

As a matter of a fact, the GAUSS language itself is built on several hundred of procedures. All the

GAUSS commands that take input matrices (suchzasds’, ‘ones’, ‘eye’, ‘seqga’, ‘sumc’, ‘meanc’,
‘maxc’, ‘minc’, ‘ols’, etc.) are procedures. Whenever these commands are called, what GAUSS does is
to find the corresponding procedure definitions and then execute them. (Although the definitions of these
commands/procedures are not included in the program, GAUSS knows where to find them. We will explain
how GAUSS does it in chapter 9.

There is another simple GAUSS command that also helps to make a long program more structural and
less formidable. A program can be physically divided into more than one piece. Suppose a long program is
divided into two parts and placed in two different files, sagrt.1’ and ‘part.2’. To run such a program,
we can submit thepart .1’ file with the following command added at the end of the file:

1 #include part.2;

or, alternatively, submit thepart.?2’ file with the following command added at the beginning of the file:

8.2. ACCESSING GLOBAL VARIABLES DIRECTLY 93

1 #include part.1;

When a file is included’, it is literally plugged into the place where it i$ricluded’. With this technique,
it becomes possible to divide a long program into a few logically separable components anichtfiade’
them back into one program.

8.2 Accessing Global Variables Directly

Earlier when we discussed thkocal’ statement, we mentioned that variables used inside the procedure
definition were either inputs specified in theroc’ statement or local variables declared by thecal’
statement. However, this statement is not exactly accurate. There is an important exception: all the global
variables defined in the main program, but before the procedure is called, can be referred to and used inside
the procedure definitions, given that the names of global variables do not conflict with any of the local
variables.

For example, when we defineliow b’ procedure, we do not really need to list the vector of dependent
variable ¥’ in the ‘proc’ command. That is, the following expression in that example

1 proc (4) = chow b(y,xr,xu);

can be simplified to

1 proc (4) = chow b(xr,xu);

The program will still work as long as the global variabje is properly defined before calling this new
version of the procedure. That is, the global varialyfecan be referenced inside this new version of
‘chow_b’ just like the input variables or local variables. However, it should be emphasized that#s not
been suitably defined before the procedure is called, then an error message will ensue.

The possibility of accessing global variables directly from inside a procedure helps to reduce the number
of input variables necessarily specified in thedc’ statement. But we should also note that such a practice
makes a procedure less self-contained and therefore causes potential problems. Unlike the inputs or the local
variables, which are explicitly specified in therbc’ and the Tocal’ statements, the use of global variables
usually is not clearly indicated in the procedure definition. So it is very easy to forget defining those global
variables properly before calling the procedure. It is not hard to imagine how much trouble may happen to
a long program containing hundreds of global variables and dozens of procedures trying to access various
global variables. Nevertheless, in section 9.7 we will see there are some advanced commands in GAUSS
(the ‘external’ and ‘decTare’ commands) that help alleviate this difficulty.

Earlier when we discussed thel's’ command in section 5.3, we mentioned the concept of “switches”
and presented three of them: ton’,* _altnam’, and ‘ olsres’. We also indicated that theo1s’ com-
mand, like many other GAUSS commands, was in fact a procedure. What we have been saying in this
section is that all the procedures, certainly including tHies* command, can access global variables. What
we called “switches” earlier are nothing but global variables which are accessed from inside the definition

94 CHAPTER 8. GAUSS PROCEDURES: BASICS

of the ‘o1s’ procedure. The function of these global variables is, as mentioned before, to control some
aspect of the OLS computation. These global variables have their default values, but can be redefined before
calling the o1s’ procedure.

Here a technical question arises: as we indicated before, the global variables must be prepared properly
and explicitly before calling the procedure which accesses those global variables. But we also said that we
do not really need to include the explicit definitions of the global variables, such asn®, * _altnam’,
and ‘ olsres’, before we call thed1s’ procedure. How can this omission be allowed? Moreover, how are
the default values of those global variables are defined? These questions will be answered in section 9.7 .

The above analysis of the global variables for thés’ command should also demonstrate why the
ability of procedures to access the global variables is useful. If all those global variables, which allow us
to conveniently control the execution of thel s’ procedure, need to be defined as the input variables and
listed in the proc’ statement, then every time we call th&l §' command, we have to specify all of them
explicitly even though most of the time their values do not need to be changed. Repeatedly doing so can be
quite annoying and prone to mistakes.

8.3 Calling Other Procedures in a Procedure

It is quite conceivable that the definition of a procedure may get too long to be comprehensible. So there
may be a need to make part of a long procedure another self-contained procedure. Dealing with this kind
of multi-level procedures actually is quite easy in GAUSS. All we have to do is in the first procedure to (1)
include the name of the second procedure in pve¢’ statement; and (2) declare this name as a procedure

in the ‘Tocal’ statement. With these minor modification in the first procedure and no special treatment at
all in the second procedure, we can call the second procedure from inside the first procedure just like calling
the first procedure from the main program.

Let's go back to the program of the three Chow tests. We will try to rewrite that program to demonstrate
how the multi-level procedures can be used (although this change does not help simplify the program and
appears unnecessary). Specifically, we will make the second part of that program a self-contained procedure,
with the name testing’, which calls the original procedurehow b’. That is, the main program, which
becomes quite short, will call the procedutesting’, while the proceduretesting’ will call the second
procedure ¢how_b'.

new;

load s[60,10] = share;
Toad m[60,1] = totalexp;
Toad c[60,2] = country;

© o] ~ o O e w N [

y = s[.,1];
x = ones(60,1) Tn(m);
10 ind = (c[.,2] .== "NA" .or c[.,2] .== "EU");

nl = sumc(ind);

[
[

-
N

y = selif(y,ind) |delif(y,ind);

[
w

8.3. CALLING OTHER PROCEDURES IN A PROCEDURE

14 x = selif(x,ind)|delif(x,ind);
15
16 x1 = (ones(nl,1) zeros(nl,1) x[1:n1,2])|

17 (zeros(n-nl,1) ones(n-nl1,1) "x[(nl+1):n,2]);

18 x2 = (x[1l:nl,.] zeros(n1,2))|(zeros(n-n1,2) "x[(nl+1):n,.]);
19
20 call testing(y,x,x1,x2,chow_b);

21

2 /***

23 * The Definition of the Procedure 'testing'. *
24 ***/
25 proc (0) = testing(y,x,x1,x2,chowprg);

26
27 local test, dfl, df2, pv, chowprg:proc;
28

20 format /rd 6,3;
30 {test,df1,df2,pv} = chowprg(y,x,x1);

31 " The Chow test statistic for testing the null hypothesis of";
32 " no structural change against the case 1 model is " test;

33 " The degrees of freedom are " dfl;; " and " df2;

34 " The corresponding p-value is " pv;

35

36 {test,df1l,df2,pv} = chowprg(y,x,x2);

37 " The Chow test statistic for testing the null hypothesis of";
38 "' no structural change against the case 2 model is " test;

39 " The degrees of freedom are " dfl;; " and " df2;

40 " The corresponding p-value is " pv;

41

2 {test,df1,df2,pv} = chowprg(y,x1,x2);

43 " The Chow test statistic for testing the null hypothesis of";
44 " the case 1 model against the case 2 model is " test;

45 " The degrees of freedom are " dfl;; " and " df2;

46 " The corresponding p-value is " pv;

47

48 endp;

49

50 /***

51 * The Definition of the Procedure 'chow b'. *
50 ***/
53 proc (4) = chow b(y,xr,xu);

54

55 Tocal rss r, rss u, df r, df u, f, p_value;

56

57 rss r=y'y - y'xr*invpd(xr'xr)*xr'y;

58 df r = rows(xr) - cols(xr);

95

96 CHAPTER 8. GAUSS PROCEDURES: BASICS

59

60 rss u=y'y - y'xu*invpd(xu'xu)*xu'y;
61 df u = rows(xu) - cols(xu);

62 f=((rss_r - rss u)/(df r - df u))/
63 (rss_u/df u);

64 p_value = cdffc(f,df_r-df_u,df u);
65
66 retp(f,df r-df u,df u,p value);
67 endp;

68
69 end;

Obviously, what the proceduréésting’ does is simply calling the second proceducadw b’ (using the
local name thowprg’) three times and printing the testing results. What the main program does is to prepare
the four data matricey’, ‘ x’, ‘ x1’, and ‘x2".

Note that the definition of the procedurehbw_b’ is not changed at all. Also, the way the second
procedure ¢how_b’ is referred to in the proceduréésting’ is somewhat strange. Three points need to be
discussed:

1. We have substituted another namtdwprg’ for the procedure namehow_b’ everywhere inside the
proceduretesting’. This name change is not necessary. But it underlines the important fact that the
procedure name itself is nothing but a local reference inside the definition of the procesiiriny’.

What is important is when the procedutesting’ is called for execution, then the calling command
has to correctly provide the procedure name, whichkew _b’, for the local name ¢howprg’, as is
done by the fifth input of the calling commanca11 testing(y,x,x1,x2,chow b);"in the main
program.

2. From point 1, we then understand why in the procedtiest ing’ the name of the second procedure,
designated bychowprg’, must be listed in theproc’ command just like any other input matrices. It
is because the proceduresting’ will have to input this information from the main program.

3. Since chowprg’ listed in the proc’ command is not an ordinary matrix input but a procedure name,
we need to explicitly indicate this fact in thédcal’ statement with the subcommancbrg’ follow-
ing the procedure name. (This rule is a bit unusual because we may be inclined to thihéctile *
statement is for declaring the local variables only and should have nothing to do with the inputs listed
in the ‘proc’ statement.)

8.4 String Inputs

In the previous section we have seen that, other than the matrices (both numeric and character ones), pro-
cedure hames can also be the inputs listed inghec’ command. In this section we will consider another
type of inputs, the string inputs, and discuss why we need string inputs in a procedure.

Suppose in the previous program for the Chow tests we want to print the testing results in an ASCII
output file and we intend to do it inside the proceduresting’. We could add the following command
immediately after thel'ocal’ command in the proceduréésting’

8.4. STRING INPUTS 97

1 output file = test.out on;

But after a couple of trials we will notice the problem that no matter which data set we use for testing, all
the results will be printed into the same ASCII fileeSt . out’ and there is no control over the file name in

the main program. To solve this problem, we have to consider a new device in procedure definitions. Let'’s
rewrite the first three expressions of the previotesting’ procedure as follows:

1 proc (0) = testing(y,x,x1,x2,chowprg,outname);
3 local test, dfl, df2, pv, chowprg:proc;
5 output file = “outname on;

7 format /rd 6,3;

The input list in the proc’ command is increased by an additional itemtname’, which also appears as
the name of the ASCII output file, following a caret sign *

It is important to know that™outname’ in the ‘output file’ command is not the name of the output
file. Instead, butname’ is the name of a string variable that stores a string in it. It isstiieig contenbf the
string variable 6utname’ that defines the name of the output file. The exact content of the string variable
‘outname’ is provided by the main program so that the right to name the ASCII output file lies in the main
program.

The way the main program calls thiesting’ procedure is as follows:

1 filename = "food s.out";
2 call testing(y,x,x1,x2,chow b, filename);

Here, filename’ is a string variable. It contains a strinidod_s.out’ which will be adopted as the name
of the ASCII output file when the procedureesting’ is executed. The above expressions can be simplified
further as

1 call testing(y,x,x1,x2,chow_b,"food s.out");

The key to the use of the string variables in procedure definitions is the caret stggfore the string
variable. We may interpret the caret sign as a reminder which says “Here Is a String Variable and Don't
Confuse the Variable Name with Its String Contents.”

Other common uses of the caret sign technique in procedure definitions include storing the string of path
used with theToad’ and ‘save’ commands in string variables. For example, suppose in the above procedure
of Chow tests we want to save the testing restdst’ in a matrix file (instead of in an ASCII file), then we

98 CHAPTER 8. GAUSS PROCEDURES: BASICS

need to use asave’ command followed by the name of the matrix file. Again, the name, as well as the path,
of the matrix file can be specified by a string variable, sat file’. In such a procedure we may have the
following command:

1 save “outfile = test;

while ‘outfile’, like * outname’ in the previous example, should also be listed in hec’ command such
as

1 proc (0) = testing(y,x,x1,x2,chowprg,outfile);

To call this procedure in the main program, we need the commands

1 filespec = "c:\\mydir\\exp\\chow";
2 call testing(y,x,x1,x2,chow b,filespec);

After the program is executed, the computed Chow test statistic will be save as the mattiovilémt in
the subdirectory : \mydir\exp. Note that in the specification of the string contents each backs|astust
be written as a double-backslash. The use of the string variable withdhe¢' ‘command is similar.

From the above discussions of the caret sign technique, we may arrive a conclusion that it is mainly
used to specify the source and the destination of data input/output inside a procedure. We will see other
applications of this technique later.

8.5 Functions: Simplified Procedures

“Functions” in GAUSS can be viewed as a special kind of procedures in which the definition can be written
in a single expression and there is only one output variable. Unlike a procedure definition which starts with
the somewhat complicatedroc () =" command, the function definition starts with the simple command
“fn’. Also, the function definition does not needetp’ and ‘endp’ commands to conclude the definition
simply because the definition involves only one expression.

For example, in the previous sections the RSS has been computed many times while the computation
involves a single expression only. So it is possible to make the RSS computation as a function:

1 fnorss(y,x) = y'y - y'x*invpd(x'x)*x'y;

This definition should be placed anywhere before tsa” function is called. The way of calling a function
is exactly the same as calling a procedure. In the following use ofrge function, we call the function
inside a procedure definition. It is another possible version ofdhev’ procedure:

fnorss(y,x) = y'y - y'x*invpd(x'x)*x'y;

|
L
2|
s | proc (1) = chow_c(y,xr,xu);

8.6. KEYWORDS: SPECIALIZED PROCEDURES* 99

4

5 Tocal rss r, rss u, df r, df u, f, p_value;
6

7 df r = rows(xr) - cols(xr);

8 df u = rows(xu) - cols(xu);

9

10 f = ((rss(y,xr) - rss(y,xu))/(df r - df u))/
1 (rss(y,xu)/df u);

12
13 p_value = cdffc(f,df r-df u,df u);
14
15 retp(pv);
16 endp;

8.6 Keywords: Specialized Procedures

In section 1.1.1 we mentioned that all the DOS commands can be accessed even under the GAUSS command
mode by using thedos’ command. The example we used there was to copy aptlg.1l’ to another file
‘prg.2’, which was achieved by the command

1 dos copy prg.l prg.2;

Now we have a challenging question: How do we write a procedure that can save us from typing the
somewhat annoying commando’s’. A possible procedure may look like the following one where the
technique of string variables is employed:

proc (0) = copy(string);
string = "copy " $+ string;
dos “string;

endp;

e w N =

Here, we also use thésign with the string variablestring’ after the ‘dos’ command. What this expres-
sion does is to execute a DOS command which is specified byothtentof the string variablestring’.
To call the above procedure we need to type

1 call copy("prg.1l prg.2");

So the use of the procedure makes the matter worse. The conclusion seems to be that it is impossible to use
procedures to simplify some tasks that are already quite simple but still not simple enough for frequent uses.
Keywords come to the rescue in such situations.

Keywords are special procedures that accept only one input, which must be a string variable, and return
no output. The keyword definition corresponding to the above example is as follows:

100 CHAPTER 8. GAUSS PROCEDURES: BASICS

keyword copy(string);
string = "copy " $+ string;
dos “string;

endp;

e w N [

Except that the first statement starts wikleyword’, the whole definition is identical to the corresponding
procedure. The power of the keywords lies in the way how they are called. To call the above keyword, we

type

1 copy prg.l prg.2;

where we do not need to typeal1’, the parentheses, and the quotation marks as in the procedure case. This
is because all characteafier the keyword (i.e.copy’) and before the semicolon at the end of the statement
are considered the string input for the corresponding keyword.

GAUSS itself provides keyword definitions for some frequently used DOS commands like ‘copy’,
‘xcopy’, and ‘dir’. These keywords help us avoid typing the wodds’ and make the execution of these
three commands exactly the same as under DOS. Since these DOS commands are used so often that being
able to avoid typing the wordlbs’ is indeed a blessing. The same technique can be used to simplify every
DOS command.

Let’s consider another example. The DOS commadfor changing directory is also used quite often
though it is not made by GAUSS as a keyword yet. We can makex'keyword by the following definition:

keyword cd(string);
string = "cd " $+ string;
dos “string;

endp;

S w N =

Chapter

GAUSS Procedures: The Library System and
Compiling

As mentioned before, GAUSS commands are nothing but ready-made procedures. To further analyze this
feature of GAUSS commands, we divide GAUSS commands into two categories: intrinsic and extrinsic
GAUSS command.

The intrinsic GAUSS commands are those which are writtemachine codesThey are not recogniz-
able to us but can be executed much faster than the ordinary procedures written in GAUSS. Intrinsic GAUSS
commands are intrinsically bundled with the GAUSS language itself.

As to the extrinsic GAUSS commands, they are simply procedures that are written in GAUSS and can
be understood by anyone who knows GAUSS. All extrinsic GAUSS commands are defined and contained
in about 81 ASCII files, each of these files consists of the definitions of several procedures that perform
similar functions. GAUSS gives each of these files a name with thec' extension and stores it in the
‘c:\gauss\src’ subdirectory.

9.1 Autoloading and the Library Files

To execute extrinsic GAUSS commands or any procedures whose definitions are not defined in the main
program, GAUSS will follow a specific guideline to search for files in which the procedures are expected to
reside. This feature of GAUSS is called “autoloading”. Whenever GAUSS spots a new name that has not
yet been defined earlier in the program, GAUSS will immediately consider it as a procedure name and start
the autoloading process. To fully understand how GAUSS searches for the appropriate files for procedure
definitions, we need to learn another feature of GAUSS: the library system.

A library in GAUSS means an ASCII file that contains a list of file names and each file name is followed
by a list of indented procedure names as follows:

c:\dirl\filel.src
pcnamell : proc
pcnamel? : proc

c:\dir2\file2.src
pcname2l : proc

~ [=2] o e w N =

where pcnamell’, ‘pcnamel?’, ‘pcname2l’, ..., are the names of some procedures. In the above listing
these procedure names are all indented and followed by the descriptprot’, which indicates the listed
names are procedures. (Information about function and keyword definitions, like that of procedures, can
also be recorded in such library files. The descriptions will then:lfe"*and ‘: keyword’, respectively.)

101

102 CHAPTER 9. GAUSS PROCEDURES: THE LIBRARY SYSTEM AND COMPILING

The above listing implies that the proceduresnamell’, ‘pcnamel?’, ..., are contained in the file
‘filel.src’ while procedurespgcname?l’, ‘pcname2?2’, ..., are contained in the filefile2.src’, etc.
Obviously, one file can contain more than one procedure definition. A library file in GAUSS works just like
a library: it provides information about the locations of procedures.

9.2 The ‘GAUSS.LCG’ Library File for Extrinsic GAUSS Commands

All library files must have the extensionTcg’ and must be stored in the {\gauss\itemb’ subdirectory.

There is a special library filegauss.1cg’ that contains the file names of all 81src’ files where
the definitions of all the extrinsic GAUSS commands are located. So this special library file has all the
information for GAUSS to find the definitions of extrinsic GAUSS commands. In other words, when we
run a program that contains extrinsic GAUSS commands , the “autoloader” (which executes the autoloading
process) will search through the library filgauss.1cg’ to get the location information about the extrinsic
GAUSS commands.

9.3 The ‘USER.LCG’ Library File for User-Defined Procedures

Once we understand how autoloading works for extrinsic GAUSS commands, it seems natural to raise the
question that whether we can write our own procedures, store them in some ASCII files, and make them
work just like extrinsic GAUSS commands. The answer is yes. To do this, we just write procedures in a
file and then catalog the file name in the special library file calledr.1cg’. That is, if our program calls
procedures which are not defined in the same program but whose locations are specifiedsiarthieg’
library file, then autoloader will find the procedure definitions.

To apply this new method to the Chow test example in section 8.3, we can include the procedure defini-
tions of the two proceduresésting’ and ‘chow_b’ in afile, say, chowfile.1l’, put this file in a subdirec-
tory ‘c:\gauss\proc’, and then create the ASCII filaser.1cg’ in the ‘c:\gauss\itemb’ subdirectory to
include the following two lines:

1 c:\gauss\proc\chowfile.1l
2 testing : proc
3 chow b : proc

These steps may be conveniently referred to as the catalog process. Once such a catalog process is com-
pleted, the definitions of thetésting’ and ‘chow_b’ procedures can be deleted from the main program

and we have a much shorter and cleaner program. During the execution of this program, when GAUSS
spots the nametesting’ which is not defined anywhere inside the program, then GAUSS will interpret
‘testing’ as a procedure name and start the autoloading process. Eventually, the autoloader will get the
location information from the library fileuser.1cg’ and find the definition of thetesting’ procedure in

the file ‘chowfile.l’.

9.4 Other Library Files

It is possible to give a library file a name other thasér.Tcg’, so long as the extension isTcg’ and
the library file is in the ¢:\gauss\itemb’ subdirectory. If we want to use different library file, then it is

9.5. ON-LINE HELP: SEEKING INFORMATION AS THE AUTOLOADER 103

necessary to indicate the name of the new library file in our program or, in GAUSS terminology, to activate
the library file.

For example, if the name of the library file is, sayy:1cg’, then our main program should include the
following line before the corresponding procedures are called:

1 library my;

The purpose of thelibrary’ command is to activate the library files for autoloader. Note that the extension
“.1cg’ of the library file ‘my.1cg’ is not needed in thel‘ibrary’ command:

9.5 On-Line Help: Seeking Information as the Autoloader

Earlier in section 1.1 we mentioned it is possible to access on-line help by prédsiriy When a help

screen is displayed, pressiHgagain will give us the promptielp On:’ at the bottom of the screen. It

is from this prompt we are able to get all On-Line Help information by typing the topic or the command
name. In particular, On-Line Help also allows us to view the definitions of all extrinsic commands and
some accompanying documentation. So in principle we ought to be able to learn all GAUSS commands
through On-Line Help, especially after we have already learned all the basics about GAUSS. Moreover, all
those procedure definitions we create (the so-called user-defined procedures) can also be accessed through
On-Line Help just like the way we access the help on GAUSS commands, given that the autoloader knows
where to find them. The searching path that On-Line Help follows is exactly the same as the path autoloader
uses to execute them in a program.

9.6 Compiling*

Recall that one reason for using procedures is to make programs more structural. Each procedure performs
a particular function that is more or less independent of the rest of the program. When a program consists of
many procedures, then our life will be easier if we can compile each procedure separately for syntax errors
before running the whole program.

To compile procedures individually, we have to place these procedures in separate files. Let's consider
the earlier example of thehow_b’ procedure:

proc (4) = chow b(y,xr,xu);

retp(f,df r-df u,df u,p value);
endp;

o S w N =

Suppose this procedure definition alone is placed in thedilewfile.2’ and we execute the command

1A “1ibrary’ command is used in the graph-drawing program presented in the appendix A. There the name of the library file is
‘pgraph.1cg’ which contains the location information about all graph-drawing procedures.

104 CHAPTER 9. GAUSS PROCEDURES: THE LIBRARY SYSTEM AND COMPILING

1 compile chowfile.2 cpd_chow

then the linear regression procedure in the ASCII fileoWwfile.2’ will be compiled into machine codes
and saved in the filechd_chow.gcg’. The second file name, i.e.¢pd_chow’, in the ‘compile’ command
should not have extension because the extensigey’ will be automatically added. Also, the second file
name can be omitted, in which case the compiled file will have the same rmaowf i 1e’ as the source file
but with the extension.?’ replaced by “gcg’.

The compiled procedures stored iytg’ files can be executed much faster when they are called. Also,
compiling procedures offers a way to hide the source codes from users to protect the copyright.

When a file is compiled, everything in the memory will be saved along with the compiled file, irrespec-
tive whether those things are relevant to the compiled file or not. To prevent these extraneous things being
saved, add thenew’ command at the beginning of the source file. Also, if line numbers for debugging are
not needed, add thétinesoff’ command at the beginning of the source file. Without line numbers the
size of the compiled file can be reduced, sometimes substantially.

To call a compiled procedure, which is saved in the file, sayl ‘chow.gcg’, we add the tse’ com-
mand at the top of the calling program (the main program who calls these procedures). For example,

use cpd_chow;

call chow b(y,x1,x2);

e w N Ll

Upon a compiled procedure igsed’, all previous variables and procedures existing in the memory will
be erased. So itis generally necessary to placeu® command at the very top of the program.

9.7 The External and Declare Commands

As has been mentioned earlier, it is possible for a procedure to directly access global variables from the
main program. But if a procedure used global variables, then it cannot be compiled independently from the
main program without causing the “undefined symbol” syntax error. This is because global variables are
defined by the main program and exist only when the main program is also compiled. To solve this problem,
we need to “externalize” those global variables from the procedure definition bgxherhal’ command
and then provide them with some temporary values (just for the compiling purpose) througbdhere’
command.

Let's go back to thechow b’ procedure again. Suppose the original input variaplés now deleted
from the input list in theproc’ statement so that it is considered a global variable in the procedure. If we try
to compile the file thowfile.2’ that contains such a procedure, the error message of “undefined symbol”
will result because the variablg’‘is used but has not been properly defined first. To avoid such a problem,
we should add two more statements before the procedure definition:

\ \
1| external matrix y; |

2 | declare matrix y != 0; |

9.7. THE EXTERNAL AND DECLARE COMMANDS 105

4 proc (4) = chow b(xr,xu);

8 retp(f,df_r-df u,df _u,p _value);
9 endp;

The ‘external’ command is used to remind the GAUSS compiler of the variables that have been used
but are neither the input variables (specified in fhet’ statement) nor the local variables (specified by the
‘Tocal’ statement). Theexternal’ command is certainly a useful reminder to ourselves, too.

The ‘declare’ command is used to provide a global variable with an initial value for the compiling
purpose. This initial value is in fact temporary because it will usually be modified by the main program.
Every variable that appears in trexternal’ command should be initialized by a correspondidecTare’
command.

The special notation!=’ in the ‘decTare’ statement means the initial value of the global variable is
allowed to be modified by the main program. (The exclamation mHrknay be omitted there.) There
are two alternatives which are less frequently used’ will result in an error message of “redefinition”
whenever the main program tries to reset the value of the corresponding global vafiabdiee's not allow
the initial value to be reset at all by the main program. Finally, we note all three forms of the equality sign
have to be followed by a constant, either a number or a string in quotation marks. No expressions or variable
names are permitted after these equality signs.

Other than global matrices, thexXternal’ and ‘declare’ commands can also be used for global strings.
Let's consider an alternative version of the$ting’ procedure where an ASCII output file is opened inside
the procedure with the file name defined bglabal string variable 6utname’:

1 proc (0) = testing(y,x,x1,x2,chowprg);
4 output file = “outname reset;

7 endp;

Then before compiling the above procedure, the followigternal’ and ‘declare’ commands must be
added before the procedure definition:

1 external string outname;
2 declare string outname != "test.out";

4 proc (0) = testing(y,x,x1,x2,chowprg);

106 CHAPTER 9. GAUSS PROCEDURES: THE LIBRARY SYSTEM AND COMPILING

8 l endp;

where the string variablettname’ for the name of the output file becomes global.

If there a large numbe of global matrices and strings used in procedure definitions, it is better to place
all the ‘external’ commands in a separate file with a file name having thext’ extension and all the
‘declare’ commands in another file with a file name having theec’ extension. When the corresponding
procedure is to be compiled, we cam¢lude’ the ‘.ext’ file before the procedure. Thedec’ file needs
not be included’. It can be recorded in a library file so that they can be accessed just like the procedure
definitions are.

Let's consider thechow b’ procedure again. Suppose the followirgxternal’ commands are in the
file ‘chowfile.ext’:

1 external matrix y;

and the following declare’ commands are in the filechowfile.dec’”

1 declare matrix y != 0;

then we add the#include’ command at the beginning of thelHowfile.2’ file where the linear regression
procedure ¢how_b’ is defined:

#include chowfile.ext;

proc (4) = chow b(xu.xr);

retp(f,df r-df u,df u,p value);
endp;

o] ~ o e w N [

while the library file user.1cg’ should include the following information about the location of the file
‘chowfile.dec’:

1 chowfile.dec
2 y: matrix

Note that the second statement should be indented. Also, the descnigttorix’ for * y’ is new. The other
possible descriptions wergroc’, fn’, ‘ keyword’, and ‘string’.

Let's summarize the main points in this subsection: To compile an individual procedure, all the global
variables used in the procedure definitions should be listed inettinal’ command and initialized by
the ‘declare’ command. Theéxternal’ command must go with, or should at least bacluded’ with,
the procedure definition. But thedécTare’ command can be placed in other file, as long as the autoloader
can find it.

e 1O

Nonlinear Optimization

One of the most important tasks that computers can do well is nonlinear optimization; that is, given a real-
valued nonlinear objective functioh(@) of a k-vector of independent variabl@s computer can be used to
numerically search for the value éfthat optimizes, either maximizes or minimizes, the functigfl). We

can confine our discussions to the case of minimization without loss of generality since maxif{@ing

is equivalent to minimizing its negative f (8). In this chapter we first discuss some common numerical
algorithms for nonlinear minimization and then introduce a ready-made GAUSS program that implements
these algorithms.

10.1 Newton’s Method

Most algorithms for nonlinear minimization are based on iterations; that is, we start with an initiabgalue
and try to reach the optimal value through a step-by-step iterative procedure. In each step we generate a new
valued ;1 by adding a term to the old val#g from the previous step:

0j+1=9j—|-8j-dj, j=0,1,2,... (10.1)

where the modification term consists of two parts: the vedjagives thestep directiorand the scalas; is
thestep length

To facilitate the analysis of (10.1), let us assume the objective function is twice-differentiable and con-
sider the first-order Taylor expansion of the objective functi@@ ;.) aroundd;:

f@j11) ~ T(0))+90;)Oj+1—0;) = (@) +s;-96))dj,
where
9t (0)

90) = 90

is thek-vector of the first-order derivatives ¢f(@) with respect to th&-vectord, which is frequently called
the gradient off (6). If we rewrite the above approximation as follows:

f(0j11) — f(0)) ~s;-96))dj,

then it is readily seen that an easy way to make the right-hand side term negative is talgefiia 6 ;)
for somek x k negative-definite matriA. This is because in such a case the right-hand side term becomes
g(6)'A-g(8;) and it is a negative scalar. In other words, the iteration (10.1) should be specified as

0j+1=9j+sj-A-g(9j), j =012 ... (102)

The problem now is to find a godd x k negative-definite matriA. To this aim, let us examine the
first-order conditiorg(@) = 0 for the minimization off (9). If the new valued ;. is close to the optimum

107

108 CHAPTER 10. NONLINEAR OPTIMIZATION

so that it satisfies the first-order condition, then we have the following first-order Taylor expansion of the
gradientg(f 1) aroundd;:

901 ~ 9@ +H@B;)(Oj1—6)) =0, (10.3)

where
990) 32f(0)
0 36006’

is thek x k matrix of the second-order derivatives bfé) with respect to th&-vectord, which is frequently
called Hessian of (8). We note that(8) is necessarily positive definite whén is sufficiently close to
the optimum. From (10.3) we solve f85.1 = 6; —H(6;)"1g(8;), which suggests a possible specification
for (10.2) withs; = 1 andA = —H(@;)~. If in (10.2) we allow a general step lengshand set the step
directiond,; as—H(oj)‘lg(ej), then the iteration formula becomes

H@®) =

0i1=0;—s;-H®O) 90, j=0,12,..., (10.4)

which is the basic formula foewton’s Method Obviously, to implement Newton’s method, we have to
repeatedly compute the gradigyi®), the inverted Hessia (6) 1, as well as the step lengs). We shall
discuss these computation problems in details shortly.

When applying Newton’s method to solve a nonlinear minimization problem, we iterate the formula
(10.4) until convergence is reached. Convergence is usually based on one or more of the following three
criteria:

1. When the absolute value of the difference between successive rg@plis— 6|l is smaller than a
desired level (such as 10);

2. When the absolute value of the difference between successive functional Mal@gs,) — f (8;)| is
smaller than a desired level;

3. When the absolute value of the gradieiig$d ;1) || is smaller than a desired level.

10.1.1 The Computation of Gradients

It is quite often that deriving analytic gradients, i.e., the explicit mathematical expressig@iois fairly
difficult and prone to errors, in which cases we need computers to numerically approximate the gradients.
Suchnumerical gradientan be computed based on two operational formulas for derivatives:

1. The forward-difference approximatiotheith element of the gradient vectg(@;) is approximated
by

f(Gj +e-t) — f(0,-)
c s

gi6)) ~ i=12,...,k

wheret; is ak-dimensional vector of zeros except that theelement is one, while is a very small
scalar, such as 18. It should be pointed out that, given the valuefa®;), the calculation of the
entirek-dimensional gradient vectgr(é ;) requiresk evaluations of the objective function(@; +e«;),
fori=1,2,...,k

10.1. NEWTON’S METHOD 109

2. The central-difference approximatiotheith element of the gradient vectg@;) is approximated

by
G 4i) — (0] — €y
g~ Oite) 16 —et) g,
2¢
Given the value off (8;), using this formula to calculate the gradient vead@® ;) requires R eval-
uations of the objective functiof (8; + €-¢) and f(@; — €-¢;), fori = 1,2,..., k. Hence, the

central-difference approximation requires two times computation time than the forward-difference
approximation does. However, the central-difference approximation can only achieve slightly better
accuracy.

Numerical gradients generally take much longer computation time than evaluating analytic gradients.
Thus, it is usually advisable to provide the computer program with the analytic gradients when they are
available.

10.1.2 The Computation of Hessian

Other than analytically deriving Hessian, we can also apply the same idea for numerical gradients to ap-
proximate Hessian. For example, based on the forward-difference approximation we can use the following
formula for the(p, q)th element of the Hessian matrix:

fO;+etptetg) —FO)+etp) — (O +e1q)+ F(0))

hpq(8) ~ o2

(10.5)

forp>q =12, ...,k Given the value off (§), the calculation of numerical Hessi&h#;), which is

a symmetric matrix, requires at ledgk + 1)/2 evaluations of the objective function@; + €t + €-tq)

as well ask evaluations off (6; + €-¢;), for p,q = 1, 2,..., k. Obviously, such computation, as well as

the inversion of the resulting Hessian which is needed in Newton’s formula (10.4), take considerable time.
Moreover, the desired level of accuracy is usually hard to maintained with (10.5). If analytic gragénts

are available, then we can use a more accurate approximation as follows:

O0p(@j +€-tq) — 9p(6)

hpq() ~ .

(10.6)
forp>q=12,...,k. Such calculation requirdgk + 1) /2 evaluations of the gradient functions and can
produce more accurate results than (10.5).

Since deriving analytic Hessian is generally quite cumbersome and evaluating numerical Hessian is
extremely time-consuming, other approaches have been suggested. For example, it is possible to consider
an abridged numerical Hessian in which all off-diagonal elements are set tohgg(8;) = 0, for p # q.

This special case of Newton’s method, which requires &myaluations of the gradient functions, is referred
to as thesteepest descent algorithiim the next subsection we consider another class of algorithms, the so-
calledQuasi-Newton Methagdhat circumvent almost all Hessian computation.

10.1.3 Quasi-Newton Method

The main idea of Quasi-Newton method is to avoid the tedious evaluations of Hessian and directly modify
(or update) the successive inverted Hessian using gradients only. Specifically, we construct the new value
of inverted Hessian at thg + 1)th step, denoted as;l, by modifying the previous value;! at the jth

110 CHAPTER 10. NONLINEAR OPTIMIZATION

step using gradientg(;) andg(@;.1). To see this, let us first define two vectars= —H_g(6;) and
v =g(0;11) — 9g(@;). Two versions of updating formulas have been propdsed.

1. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) update is:

1 =1,y /g —1 V/HO_lV 1 1 /
(HO VU 4+ uvH,)+—-uu +m-uu.

Hil=H1- —
! V'u (V'u)2

]

2. The Davidon-Fletcher-Powell (DFP) update is

1 1
-1 _ g-1_ H-Ln/H-1 = aur
H™=H, VH-1y H_“wWH, +v/u uu’.

These two formulas can be further modified by multiplying the first three right-hand side terms of the
BFGS update and the first two right-hand side terms of the DFP update, respectivély/Wii-1v. The
resulting formulas are referred to as $wled BFGS updatend thescaled DFP updaterespectively.

10.1.4 Newton’s Method for Maximum Likelihood Estimation

In econometrics applications the need for nonlinear optimization is perhaps most apparent in deriving the
maximum likelihood estimator (MLE). Given the samplg x», ..., X, which are assumed to be inde-
pendently distributed with respective density functioiéx;|@), where@ is an unknownk-dimensional
parameter and the density functiofismay not be identical, the MLE oB is derived by maximizing the
log-likelihood function with respect t6:

INL©®) = In fi(x16).
i=1

This maximization is equivalent to minimizing the negative log-likelihood functidn L (8).

Since the second-order derivative of the log-density funcifon f; (x;|9)/9096’, as a function of the
random variablex;, is a random variable, the law of large numbers implies that, under certain regularity
conditions, we have

2 2 n 2 (v 2 (Y-
19%InL@) 1E[a InL(O)]_ 12{8 In f.(X.|0)_E[8 In f.(X.le)]} ELNEY

n 9690° n | 0096 | ni< | 0606 9606’
as the sample size goes to infinity. Consequently, the Hessian matrix in (10.4), which in the present
case is—9°InL(#)/3636’', can be approximated by its expectation (which in the MLE theory is called the
information matrix):

(10.7)

2 .
H®) ~ —E[—a '”L“’J)].

0606’

Newton’s method with such an approximate Hessian is callednégtbod of scoringlts usefulness lies on
the fact that taking expectation usually helps simplify the expression of Hessian.

1Both of these formulas foHI1 satisfy the equalit;HIlv = u or, equivalently,g@;) — g(@j;+1) = Hnglg(Bj). This
condition can be motivated by the following first-order Taylor expansion of gradi@nt aroundéj1: g9@j) = 9(0j41) +
H1(0j — 641, while from (10.4) we havé | — 01 = Hglg(oj) (where the step lengt) is set to one).

10.2. A GAUSS PROGRAM FOR NONLINEAR MINIMIZATION: NLOPT 111

There is one more approximation to the Hessian matrix of the log-likelihood function that is based on
the equality

E 9%In fi(x10)] £ aln fi(xi|6) aln fi(x|0)
3006’ B 30 00’ '
Again, the law of large numbers implies that, under certain regularity conditions, we have

19°%InL(O) 12”:8Infi(xi|0)alnfi(xi|0) D
— . —_—

n 9006 n 30 30’

0,

i=1

as the sample sizegoes to infinity. As a result, we have another approximation to the Hessian matrix:

H(OJ) ~ Xn: dIn fi(Xi|0j).a|n fi(Xi|0j)‘

10.8
00 06’ ()

i=1
Newton’s method with such an approximate Hessian is referred to as the Berndt-Hall-Hall-Hausman (BHHH)
method.

Asymptotic Standard Errors for MLE: The asymptotic theory for the MLE indicates that for the MLE

0, we have)
A A 3%InL@®))
i % (o [e[Tmue])).

Hence, if we apply the method of scoring or the BHHH method, then the inverse of the Hessian matrix (10.7)
or (10.8) after convergence is reached can be readily used as an approximate variance-covariance matrix for
the MLE (so that the square roots of its diagonal elements are standard errors). In other words, no further
computation is needed to obtain the standard errors of the MLE.

Finally, we should note that when quasi-Newton method is used to derive the MLE, the inverse of the
approximate Hessian, constructed either by the BFGS formula or by the DFP forranlagtbe used
as an approximate variance-covariance matrix for the MLE. Hence, after convergence is arrived, it is still
necessary to go one step further to numerically evaluate Hessian based on (10.5), (10.6), (10.7), or (10.8).

10.1.5 The Computation of the Step Length

Once the gradierg(@;) and Hessiatd (@) (or its approximation) for the new step direction in (10.4) are
obtained, the value of the objective function can be viewed as a function of the step s$gmgtly. The
determination of; then becomes a one-dimensional minimization problem (which is sometimes called a
line search problem). There are two popular line search method&atirack algorithmand thegolden
search algorithm Each method involves a particular trial-and-error search scheme. Here, without going
into details, we only point out that the backtrack algorithm requires less computation while the golden
search algorithm is more effective in finding a better step length. Finally, we note that spttiagl
indiscriminately usually worsens instead improves the value of the objective function.

10.2 A GAUSS Program for Nonlinear Minimization: NLOPT

NLOPT is a self-contained GAUSS procedure for nonlinear minimization. Once the procedure is properly
installed, all a user needs to do is to write the (differentiable) objective function as a function of a vector of
independent variables in the format of GAUSS procedure.

112 CHAPTER 10. NONLINEAR OPTIMIZATION

The source codes of the procedeOPT are stored in the fileNLOPT.GCG". To use it, simply add the
commanduise nlopt;’ atthe beginning of the file where you type your program and placeNtte®T . GCG’
file in the same subdirectory as your program file.

Consider a simple example of minimizing the following function of a single variable:

f(0) = —30%7".

To solve this problem, we write a short program to call the proceNWw®PT :

new;
use nlopt;

proc ofn(t);
local f;
f = -3*(t"2)*exp(-t~3);
retp(f);

endp;

© ~ (2] (&) s w N =

start = 1;

[N
o

-
[

{parout,vof,gout,retcode} = nlopt(&ofn,start);

[
N

-
w

i
I

end;

The first part of the program after thes'e nlopt;’ command is the definition of procedurefn’ which
takes one inputt’ and yields one outputf’. It is the place where we write the definition of the objective
function f (). The input is of course the vector of independent variables §))end the output is the value
of the objective function (i.e.f). In the above example there is only one independent variable and the value
of the objective function is also a scalar.

It should be pointed out that in cases where there are more than one independent variable in the vector
an important consideration in setting up the definition of tHf@* procedure is that the values of independent
variables should be made about the same magnitude. For example, suppose we are considering a function
of two independent variablek(6,, 6,). If the optimal value ob; is 1234567890 while that ob, is 0.9876,
then we should redefine the function &§6100006;, 6,) so that the function will be minimized with the
solution 1234567890 and.0876 ford, andd,, respectively. Doing this helps smoothing the convergence
of the iterations and increasing the accuracy of the solution.

Immediately after the procedure definition is the specification of the column vadtort’ (which is a
scalar in the above example). This vector contains the initial values of the independent anglhieh are
needed to start Newton’s iteration formula (10.4). Initial values are usually set by the user subjectively.

The procedurdNLOPT is called by thenlopt’ command which takes two inputs and produces four
outputs. The two inputs are respectively the procedoife’ ‘and the vectorstart’ which have just been
defined. Among the four outputs, the column vect@rout’ contains the solution; the scalardf’ gives
the minimized function value evaluated attout’; the column vectordout’ is the gradient evaluated at
‘parout’; and ‘retcode’ is a returned code indicating the program execution status. Returned codes are
explained in Table 1.

10.2. A GAUSS PROGRAM FOR NONLINEAR MINIMIZATION: NLOPT 113

Table 1

Code Explanations

o

Convergence is achieved;

Computation is terminated manually;

The preset number of iterations 100,000 is exceeded without convergence;
Function evaluation fails;

Gradient calculation fails;

Hessian calculation fails;

Step length calculation fails;

Function cannot be evaluated at initial values;

The dimension of the initial vectostart’ differs from the dimension of the gradient vec-
tor;

9 Gradient returns a column vector rather than the required row vector;
10 Quasi-Newton method fails;
20 Hessian is singular.

0o NOoO 0o WN PR

* The preset number of iterations is set by the global variakl&i ter’.

During the execution of thBILOPT procedure, intermediate results &npand the correspondingl-
ative gradienty(@;)-0;/f (6;) from each iteration will be shown on the computer scredvioreover, the
NLOPT procedure will check the percentage changeg;iafter each iteration to see if they are all smaller
than 10° (which is set by the global variable ¢fxchk’). If they are, then theNLOPT procedure will
further check whether the absolute values of the gradients are all smaller th@mi&hether the absolute
values of the relative gradients are all smaller than®1@vhich is set by the global variable ¢fgchk’).
If either condition is met, then convergence is deemed achieved atNLIDET procedure will terminate
after printing the final results, together with the intermediate results from the first five steps, into the ASCII
file ‘output.out’.

In Table 2 we present the contents of thatput.out’ file from the previous example. The interme-
diate results from each of the first five steps include the computation time, the method for Hessian evalua-
tion (HESSIAN: BFGS), the method for step length calculatic8TEP: STEPBT which means the backtrack
algorithm) in the first line. The resulting function value, step length, and the number of trials when imple-
menting the backtrack algorithm are shown in the second line. The final results are as follows: the solution
is 0.873580, five iterations have been performed, the entire computation tékesdéconds (this figure
depends on the speed of the computer), the minimized function valué.i5432, and the sum of the
absolute values of all relative gradients is less thar' 10

We make two final points: First, the four outputs of tieOPT procedure can be further processed in
the same program. That is, we can add additional GAUSS statements that utilize these outputs, the vector

2|f on the computer screen a lot of strange symbols are mingled with intermediate results, then you need to insert the following
line into theCONFIG.SYS file in the root subdirectory:

DEVICE = C:\WINDOWS\COMMAND\ANSI.SYS

114

CHAPTER 10. NONLINEAR OPTIMIZATION

‘parout’ in particular, after thenTopt’ command. Secondly, we should understand there is no guarantee
that the result we obtain from tiMLOPT procedure is always trgdobal minimum of the objective function.

To guard against the possibility of getting a local minimum, all we can do is to try different starting values
and see whether we always reach the same solution. If there are more than one solution, we wish to get the
global one among those local solutions.

10.2.1 Changing Options

In the previous example, tiéLOPT procedure is executed in its standard form. The computation methods
used there consist of the forward-difference approximation for numerical gradients, the BFGS version of
guasi-Newton method for Hessian updates (where the identity matrix is used as the initial value for Hessian),
and the backtrack algorithm for the step length. Each of these specifications can be changed and many
alternative options are available. To make changes, we simply assign one or more of the following global
variables (switches) with different values before callingMeOPT procedure?

1. The global variable ‘cfgdmd’ determines the algorithm for calculating numerical gradients. Possible
values are:

0:
1:
2:

The central-difference approximation;
The forward-difference approximation (the default);
The Richardson extrapolation method.

2. The global variable ‘cfhsmd’ determines Hessian updating algorithm. Possible values are:

g B W N =

6:

Quasi-Newton method — the BFGS algorithm (the default);
Quasi-Newton method — the scaled BFGS algorithm;
Quasi-Newton method — the DFP algorithm;
Quasi-Newton method — the scaled DFP algorithm;

Newton’s method with numerical/analytic Hessian (Hessian is evaluated either numerically by
the forward-difference approximation or analytically by user’s definition);

The steepest descent algorithm;

3. The global variable ‘cfstep’ determines the algorithm for calculating the step length. Possible
values are:

B W N =

The step length is fixed at one;

The backtrack method (the default);
The golden search method,;

The Brent method.

3Besides the various computation methods for numerical gradients, Hessian, and step length that have been described in the
previous section, we note that there is one more method for numerical gradients: the Richardson extrapolation method, and one
more for the step length: the Brent method. However, both methods are rarely used and will note be discussed here.

10.2. A GAUSS PROGRAM FOR NONLINEAR MINIMIZATION: NLOPT 115

Table 2: The Contents of treutput.out File

kkhkkkhkkkhkkhkkhkkhkkhkkhkkhkhkhhkhhkhkkhhhkkhkkhkkhhkhkkhhkhhkhhkhkhkhhkkhkkhkkhkkhkkhkkhkkhkhkhkhkkkkhkkxk

ITER:1 TIME:0.00 SEC. HESSIAN: BFGS STEP: STEPBT
FUNCTION: -1.103638 STEP LENGTH: 0.000 BACKSTEPS: 0

R R Rk o R Rk S R Rk S e R R S R R Rk S R R S R R R S R R R ok S R R Rk e R R Rk S R R R o S R Rk S R Rk S R R o e

1 1.00000 1.000000
R R Rk R R R Sk R R Rk S e R R ok S e R Rk S R R Rk S e R Rk S R R ok S Rk kS R R Rk S R Rk Sk S R Rk Sk R R Rk Sk S R Rk o
ITER:2 TIME:0.00 SEC. HESSIAN: BFGS STEP: STEPBT
FUNCTION: -1.106689 STEP LENGTH: 0.250 BACKSTEPS: 1

kkhkkhhhkkkhkhhhkkkhkhhhkkhkhhhkhkhkhhhkhkhhhhkhkhhhhkhkhhhhkhkhhhhkhkhhhhkkhkhhhkkhkhkhhkkhkhkhkkkhkkhkkxkx**%

1 0.75000 0.734375
kkhkkhhhkkkhkhhhkkhkhhhkkhkhhhkhkhkhhhkhkkhhhhkhkhhhhkhkhhhhkhkhhhhkhkhhhhkhkhhrhkkhkhkhhkkhkhkhkhkkhkhkhrkkx**%
ITER:3 TIME:0.00 SEC. HESSIAN: BFGS STEP: STEPBT
FUNCTION: -1.175431 STEP LENGTH: 1.000 BACKSTEPS: 0

khhrrkkhhrhkhkkhhhhhkhhhhhkhdhhhhkhhhhhkhhhhhkhdhhhhkhhhhkhhdhhhkhkhdhhhkhkhdhhkkhkhdhkxkk,dkxx**%

1 0.87386 0.001898
St ko kR o ko R o R R o ok ok kR ko ok ok ok Rk ok Rk ok ok
ITER:4 TIME:0.00 SEC. HESSIAN: BFGS STEP: STEPBT
FUNCTION: -1.175432 STEP LENGTH: 1.000 BACKSTEPS: 0

RO R Rk ok R Rk Sk R R R ok e Rk ok SR e R Rk S R Rk ok S e R Rk R e R R ok S Rk R S R R R S R R R Sk S R Rk Sk R R Rk Sk R R Rk o

1 0.87357 0.000102
Kk Rk Kk Rk kR ko kR ko kR kR koo kR kR ok ok k ok ok ko kR ok ko k ok ok ok kR ok ok kR Rk ok kR Rk ok ok ok ok
ITER:5 TIME:0.00 SEC. HESSIAN: BFGS STEP: STEPBT
FUNCTION: -1.175432 STEP LENGTH: 1.000 BACKSTEPS: 0

khAhERRkkhkhrrhhkkhdhhhkkhhhhkhkhkhhhkhkhdhhhkhkhhhhkhkhhhhkhkhhhhkhkhdhhhkhkhhhhkhkhhhkkhkhkhkhkkhkkhrkkx**%

1 0.87358 0.000000

KAKERKRKKRRKRKRIIARKRRIRRRK AR RR IR hhkhdhhhkhkhdhhhkhkhhhhkhkhdhhhkhkhhhkhkhkhhhkkhkhkhhkkhkkhrkkx**%

© o] ~ [=2] (& e w N Ll

NNNNNNN R R R R R Rl p
® 0 5 W N B O © ® N o O A~ W N B O

N
i

R R Rk ok R R R Sk R Rk e e R R ok S e R R R S R R Rk S e R Rk R R ok S Rk kS R R Rk S R Rk Sk S R Rk ok R R Rk Sk S R Rk o

N
5]

29 PARAMETER ESTIMATE PARAMETER ESTIMATE
30 RO R R Rk ok R R Rk Sk e R R ok e R R ok SR e R Rk S R Rk ok S e R Rk R e Rk ok S R Ak R S R R R R S R R R ok S R Rk ok R R Rk R R R R o
31 PAR. 01 0.873580

KAKEKKKRERKRKRKRERERKRKRRRERKRKRRRRRIRRRhhhhhhkhdhrhhhhhhhkhhhhhkhkhhrhhkhkhkhhkkhkhkhkkkhkhkhhkkk*k

w
N

w
w

NORMAL CONVERGENCE IS ACHIEVED

w
R

w
al

FINAL RESULTS
khIERRKhkhrhhkhdhrhhkhkhdhhhkhkhhhhkhkhdhhhkhkhhhhkkhkhkhrhkkhkhkhhkkk,*
ITERATION: 5
TIME: 0.22 SECONDS
FUNCTION: -1.175432
REL. GRAD.: 0.0000000

kkhkhkhkkkkhkhhhkkkhkhhhkhkkhhhhkhkhkhhhkhkhkhhhkhkhkhhhkkhkhkhrhkkkhkhkkkk,*

w
o

w
J

w
[+

w
©

N
o

N
g

N
N

116 CHAPTER 10. NONLINEAR OPTIMIZATION

4. The global variable ‘cfhess0’ determines the initial Hessian. Possible values are:

0: Using the identity matrix as the initial Hessian (the default);

1: Using the numerical Hessian or the analytic Hessian, evaluated at the starting value given by the
vector ‘start’, as the initial Hessian;

There is one more possibility for the specification of fhess0’: assigning it with a user-defined
inverted Hessian matrix.

The default forward-difference approximation is the most efficient algorithm for numerical gradients and it
can generally produce quite accurate results. So it is seldom necessary to change it. As to the step length
calculation, the default backtrack method is also quite effective so that again it is rarely necessary to change
it. Besides, if the backtrack method cannot find an acceptable step length in 15 trials (which is set by the
global variable ‘ cfbktks’), the golden search method will be automatically launched.

Here we offer some suggestions regarding the choice of the Hessian updating algorithms. Choosing
numerical/analytic Hessian (i.e.,.cfhsmd = 5’) requires the objective function to be smooth (twice differ-
entiable), while quasi-Newton methods generally demand less stringent functional requirements. Moreover,
comparing with quasi-Newton methodS, using numerical Hessian (iecfhsmd = 5%) help reducING the
number of iterations while take much longer time for each iteration.

As to the various versions of quasi-Newton method, the default BFGS algorithm appears to be the best.
The DFP algorithm could be more stable but requires more iterations and takes longer time to reach con-
vergence. The steepest descent algorithm is best used as the starting method when initial values may be
inadequately set. It will begin to perform poorly when approaching the optimum. Also, in using quasi-
Newton methods the relative gradients may sometimes bog down without much improvement across iter-
ations. When this happens, a few iterations with numerical/analytic Hessian can usually get the relative
gradients going. These discussions all point to a need that we choose one algorithm (e.g., the steepest
descent method) before calling thee OPT procedure but change it (to, say, the BFGS algorithm or the
numerical Hessian method) in the middle of the procedure execution. This process is the so-called run-time
option switching and it is possible when using tReEOPT procedure. We will come back to this issue
shortly.

10.2.2 Analytic Gradients and Analytic Hessian

Although theNLOPT procedure can compute gradients and Hessian numerically, a user should always
consider including the analytic gradients and/or analytic Hessian in the program whenever possible. This is
because using analytic gradients and/or analytic Hessian can substantially reduce the computation time and
in many cases increase computation accuracy.

Similar to the definition of the objective function, the definitions of the analytic gradient and analytic
Hessian, if included, are placed in two separate procedgreslofn’ and ‘hessofn’. Furthermore, we
should change two global variables accordingly: if the analytic gradient is included, then set
‘ cfgdofn = &gradofn’; if analytic Hessian is included, then setfhsofn = &hessofn’.

For the example of the objective functidnd) = —362%e%°, we have the following analytic gradient
and analytic Hessian, respectively,

g@) = —302—- 3% and h@®) = —3(2— 183+ %% e’

If the analytic gradient is included, then the program is expanded as follows:

10.2. A GAUSS PROGRAM FOR NONLINEAR MINIMIZATION: NLOPT 117

new;
use nlopt;

proc ofn(t);
local f;
f = =3*(t"2)*exp(-t~3);
retp(f);

endp;

© e} ~ [=2] (& e w N [

start = 1;

[N
o

[N
[

proc gradofn(t);
local g;
g = =3*t*(2 - 3*t"3)*exp(-t~3);
retp(g);

endp;

-
N

[
w

N
i

[
3]

[
o

[
]

[N
©

_cfgdofn = &gradofn;

[
©

N
o

{parout,vof,gout,retcode} = nlopt(&ofn,start);

N
[y

end;

N
N

Note that the global variable ¢ fgdofn’ is presented before tiéLOPT procedure is called.

There is an important requirement in the definition of tieadofn’ procedure which is unfortunately
not clearly illustrated in the above example. Recall that the gradient of a function with respect to the vector
of independent variables is usually expressed as a column vector in hand-written form. But the gradient
vector (‘g’ in the above example) returned byetp’ command must nevertheless be a row vector. The
above example does not show this requirement in the specification afrthéofn’ procedure since there
is only one independent variable. We will come back to this issue in the next chapter where more examples
are presented.

The computation results from this program is almost identical to those in Table 2 (even the intermediate
results are all very similar) so that they are omitted here.

To further include the analytic Hessian, we write

new;
use nlopt;

proc ofn(t);
local f;
f = -3*(t"2)*exp(-t~3);
retp(f);

endp;

[ee] ~ [=2] (&) e w N Ll

118 CHAPTER 10. NONLINEAR OPTIMIZATION

9

10 start = 1;

11

12 proc gradofn(t);

13 local g;

14 g = =3*t*(2 - 3*t"3)*exp(-t~3);
15 retp(g);

16 endp;

17

18 _cfgdofn = &gradofn;

19

20 proc hessofn(t);

21 local g;

22 g = -3*(2- 18*t"3 + 9*t"6)*exp(-t~3);
23 retp(g);

24 endp;

25

2 _cfhsofn = &hessofn;

27 _cfhsmd = 5;

28

20 {parout,vof,gout,retcode} = nlopt(&ofn,start);
30

31 end;

In addition to the procedure gradofn’ and the global variable ‘cfgdofn’, we present the procedure
‘_hessofn’ and the global variable ‘cfhsofn’ before calling theNLOPT procedure. We also change the

value of the global variable tfhsmd’ in order to pick Newton’s method so that the analytic Hessian defined

in the *_hessofn’ procedure can be fully utilized. The output file are shown in Table 3. The final results
are the same as in Table 2 but the intermediate results are not. In particular, the function values, the variable
values, and the corresponding relative gradients in steps 3 and 4 are quite different.

Deriving analytic gradients and including them as a part of the program are strongly encouraged. But
in many cases trying to do the same for analytic Hessian can be much more difficult, if not completely in-
tractable. So the best strategy in most applications appears to be including analytic gradients in the program
and then applying one of the quasi-Newton methods that use gradients to approximate the inverted Hessian.

This strategy is also applicable to most MLE applications. As mentioned in subsection 10.1.4, in addition
to the MLE themselves we often need to compute the corresponding asymptotic variance-covariance matrix,
which can be approximated by the inverted Hessian. But the approximated inverted Hessian generated by the
quasi-Newton method cannot be used for this purpose. So it is necessary to go one step further to evaluate
Hessian numerically using the formula (10.6). To do this, we simply change the value of the global variable
‘ cfmlese’ to 1 by the following statement before calling theeOPT procedure:

1 _cfmlese = 1;

10.2. A GAUSS PROGRAM FOR NONLINEAR MINIMIZATION: NLOPT 119

Table 3: The Contents of treutput.out File

kkhkkkhkkkhkkhkkhkkhkkhkkhkkhkhkhhkhhkhkkhhhkkhkkhkkhhkhkkhhkhhkhhkhkhkhhkkhkkhkkhkkhkkhkkhkkhkhkhkhkkkkhkkxk

ITER:1 TIME:0.00 SEC. HESSIAN: N-R STEP: STEPBT
FUNCTION: -1.103638 STEP LENGTH: 0.000 BACKSTEPS: 0

R R Rk o R Rk S R Rk S e R R S R R Rk S R R S R R R S R R R ok S R R Rk e R R Rk S R R R o S R Rk S R Rk S R R o e

1 1.00000 1.000000
R R Rk R R R Sk R R Rk S e R R ok S e R Rk S R R Rk S e R Rk S R R ok S Rk kS R R Rk S R Rk Sk S R Rk Sk R R Rk Sk S R Rk o
ITER:2 TIME:0.00 SEC. HESSIAN: N-R STEP: STEPBT
FUNCTION: -1.106690 STEP LENGTH: 0.250 BACKSTEPS: 1

kkhkkhhhkkkhkhhhkkkhkhhhkkhkhhhkhkhkhhhkhkhhhhkhkhhhhkhkhhhhkhkhhhhkhkhhhhkkhkhhhkkhkhkhhkkhkhkhkkkhkkhkkxkx**%

1 0.75000 0.734375
kkhkkhhhkkkhkhhhkkhkhhhkkhkhhhkhkhkhhhkhkkhhhhkhkhhhhkhkhhhhkhkhhhhkhkhhhhkhkhhrhkkhkhkhhkkhkhkhkhkkhkhkhrkkx**%
ITER:3 TIME:0.00 SEC. HESSIAN: N-R STEP: STEPBT
FUNCTION: -1.174475 STEP LENGTH: 1.000 BACKSTEPS: 0

khhrrkkhhrhkhkkhhhhhkhhhhhkhdhhhhkhhhhhkhhhhhkhdhhhhkhhhhkhhdhhhkhkhdhhhkhkhdhhkkhkhdhkxkk,dkxx**%

1 0.88797 0.100491
St ko kR o ko R o R R o ok ok kR ko ok ok ok Rk ok Rk ok ok
ITER:4 TIME:0.06 SEC. HESSIAN: N-R STEP: STEPBT
FUNCTION: -1.175432 STEP LENGTH: 1.000 BACKSTEPS: 0

RO R Rk ok R Rk Sk R R R ok e Rk ok SR e R Rk S R Rk ok S e R Rk R e R R ok S Rk R S R R R S R R R Sk S R Rk Sk R R Rk Sk R R Rk o

1 0.87356 0.000144
Kk Rk Kk Rk kR ko kR ko kR kR koo kR kR ok ok k ok ok ko kR ok ko k ok ok ok kR ok ok kR Rk ok kR Rk ok ok ok ok
ITER:5 TIME:0.05 SEC. HESSIAN: N-R STEP: STEPBT
FUNCTION: -1.175432 STEP LENGTH: 1.000 BACKSTEPS: 0

khAhERRkkhkhrrhhkkhdhhhkkhhhhkhkhkhhhkhkhdhhhkhkhhhhkhkhhhhkhkhhhhkhkhdhhhkhkhhhhkhkhhhkkhkhkhkhkkhkkhrkkx**%

1 0.87358 0.000000

KAKERKRKKRRKRKRIIARKRRIRRRK AR RR IR hhkhdhhhkhkhdhhhkhkhhhhkhkhdhhhkhkhhhkhkhkhhhkkhkhkhhkkhkkhrkkx**%

© o] ~ [=2] (& e w N Ll

NNNNNNN R R R R R Rl p
® 0 5 W N B O © ® N o O A~ W N B O

N
i

R R Rk ok R R R Sk R Rk e e R R ok S e R R R S R R Rk S e R Rk R R ok S Rk kS R R Rk S R Rk Sk S R Rk ok R R Rk Sk S R Rk o

N
5]

29 PARAMETER ESTIMATE PARAMETER ESTIMATE
30 RO R R Rk ok R R Rk Sk e R R ok e R R ok SR e R Rk S R Rk ok S e R Rk R e Rk ok S R Ak R S R R R R S R R R ok S R Rk ok R R Rk R R R R o
31 PAR. 01 0.873580

KAKEKKKRERKRKRKRERERKRKRRRERKRKRRRRRIRRRhhhhhhkhdhrhhhhhhhkhhhhhkhkhhrhhkhkhkhhkkhkhkhkkkhkhkhhkkk*k

w
N

w
w

NORMAL CONVERGENCE IS ACHIEVED

w
R

w
al

FINAL RESULTS
khIERRKhkhrhhkhdhrhhkhkhdhhhkhkhhhhkhkhdhhhkhkhhhhkkhkhkhrhkkhkhkhhkkk,*
ITERATION: 5
TIME: 0.22 SECONDS
FUNCTION: -1.175432
REL. GRAD.: 0.0000000

kkhkhkhkkkkhkhhhkkkhkhhhkhkkhhhhkhkhkhhhkhkhkhhhkhkhkhhhkkhkhkhrhkkkhkhkkkk,*

w
o

w
J

w
[+

w
©

N
o

N
g

N
N

120 CHAPTER 10. NONLINEAR OPTIMIZATION

The resulting inverse of the numerical Hes$iwiill go to the the global variable tfhess1’ which can then

be further processed. For example, after setting the global variatfielese’ to 1 and calling theNLOPT
procedure to calculate the MLE, the standard errors of the resulting MLE can be computed (and assigned to
variable se’) by the following statement:

1 se = sqrt(diag(_cfhessl));

10.2.3 Imposing Restrictions

In this subsection we explain how to impose some common restrictions on the value of an independent
variable, say9; when using thd&NLOPT procedure to minimize the objective functidrio,, 6,), wheref,
is the subvector of other variables. We consider three types of restriétions:

1. 6, € (0, 00);
2. 0, € (0, 1),
3. 01 € (-1, 1).

The approach we adopt here is based on a transformation of the original variable under restriction to some
unrestricted new variable. The idea is to change the restricted minimization problem to an unrestricted one
so that we can apply thdLOPT procedure as usual.

In the first case where the value of the independent varighierestricted to be positive, we consider
the following one-to-one transformation from the original varialaléo the new oné:

6, = k() = € € (0, 00). (10.9)

We note that the new variable = In 6, is completely unrestricted. In the second case where the value
of the independent variablg is restricted to be between 0 and 1, we consider the following one-to-one
transformation:

o =K (8) = € 0, 1), (10.10)

ed+1
whereé = In[6;/(1 — 61)] can assume any value and is therefore unrestricted. In the third case where

the value of the independent varialsleis restricted to be betweenl and 1, we consider the following
one-to-one transformation:

e+1

whereé = In[(1 + 6,)/(1 — 61)] is necessarily unrestricted. We note that in each of these three cases, we
can rewrite the objective functiofi(61, 81) of trle original variable as a function of the unrestricted new
variable. For example, for the first case we hdvé, 8,) = f[k(a), 02].

1 = K'(8) = e (-1, 1), (10.11)

4If the analytic gradient is not included in the program, then the formula (10.5) will be used. In such a case the computation will
take substantially more time and generate much less accurate results.

5The upper bound of the second type of restriction as well as the absolute value of the two bounds of the third type of restriction
can be extended from 1 to any positive number.

10.2. A GAUSS PROGRAM FOR NONLINEAR MINIMIZATION: NLOPT 121

Let us now consider an example of the restricted minimization of the following function
f(0) =—6"(1—0)*4, for 6 € (0, 1).

Using the transformation (10.10), we rewrite the above function as

B) 1 7 e,g 4
o= o= () (2

which becomes a function of the unrestricted variagbl&€he GAUSS program for unrestricted minimization
of this transformed function is

new;
use nlopt;

proc ofn(d);
local t, f;
t = 1/(exp(-d)+1);
f = -t"7*%(1-t)"4;
retp(f);

endp;

© o] ~ [=2] (&) e w N Ll

[
o

start = 0;

[y
[

[
N

{parout,vof,gout,retcode} = nlopt(&ofn,start);

[N
w

i
~

[
13

theta = 1/(exp(-parout)+1);

[N
o

format /rd 10,6;
theta;

[
J

[
o

[
©

N
o

end;

The objective function in theo'fn’ procedure is defined as a function df,'which represents the unrestricted
variables. The solution t@ is 0.636364. It is printed in the default output file.

If we intend to include analytic gradients in the program, then we must be careful about the relationship
between the gradient with respect to the original variable and the gradient with respect to the new variable.
Specifically, we have

0 f~(8, 0-) of (61,05) 001 30, ok($)
Y; 20, Y 01(61, 62) 55 01[K(5), 2] 5

whereg; (01, 8,) is the first element of the gradiegtd) with respect to the original variables. For the three
transformation®; = k(§) in (10.9),0; = K'(8) in (10.10), and¥; = k”(§) in (10.11), the corresponding
derivativesi6, /9§ are, respectively,

01(8,02) =

k(s
% =& =k(@) =6,

122 CHAPTER 10. NONLINEAR OPTIMIZATION

ok’ (8 1 1
©®) _ <) — K®)[1-K)] = 6u(1— 6r),

38 ed+1\" e’d+1
and
ak’(8) 1 e -1 -1\ 1 , voeq 1
53 _5(1+§:E)(L—§:E)_EU+k@ﬂh—k(&]_§a+@x1—my

In the above example, the gradient with respect to the original variable is
9(6) = —6°(1 - 0)*(7 - 119),
while the gradient with respect to the new variable is

o) = g[k’<5>]~% = —0°(1—6)°(7 - 119)-6(1 - 0) = —0"(1 - 0)*(7 — 119)

1V 1 * 1
- — 1-— 711
ed+1 ed 41 ed 41

If we include the analytic gradient in the program, then we have

new;
use nlopt;

proc ofn(d);
local t, f;
t = 1/(exp(-d)+1);
f = -t 7%(1-t)"4;
retp(f);

endp;

© e} ~ [=2] (& e w N [

[N
o

start = 0;

[N
[

-
N

proc gradofn(d);
local t, g;
t = 1/(exp(-d)+1);
g = -t77*((1-t)"4)*(7-11%t);
retp(g);
endp;

[
w

N
~

[
13

P
o

[
]

[N
©

[
©

n
o

_cfgdofn = &gradofn;

N
-

{parout,vof,gout,retcode} = nlopt(&ofn,start);

N
N

N
&)

theta = 1/(exp(-parout)+1);

N
i

N
&

N
o

format /rd 10,6;

10.2. A GAUSS PROGRAM FOR NONLINEAR MINIMIZATION: NLOPT 123

If we also want to include analytic Hessian in the program, then we must first examine the relationship
between the Hessian with respect to the original variable and the Hessian with respect to the new variable.
These analyses, which are somewhat cumbersome, will be omitted here.

10.2.4 Additional Options

The file name of the output file can be changed from the defautiput .out’ to, say, ‘trial.lst’ by the
following standard GAUSS command for ASCII output:

1 output file = trial.lst reset;

The printing of the computation results can be controlled by the global variatdetput’, whose possible
values are

0: Only the final results will go to screen and the output file;

1: Ilteration number, time, function and relative gradient values, step length, step methods, Hessian
algorithm, and the final results will go to both the screen and the output file;

2: Besides those of the choice 1, all intermediate variable values and the corresponding relative gra-
dients will go to the screen; those from the first five iterations will also go to the output file (the
default).

If we want to specify the variable hames in the final printouts (the defaultPaRre ‘01’, ‘ PAR. 02’,

‘PAR. 03’, ...), we can assign the global variablefvarnm’ with a character vector of the desired variable
names.

If for some reasons the program is terminated before reaching convergence, then it may be useful to
retain those intermediate variable values and the corresponding inverted Hessian right before the program
stops. Inspecting these intermediate results might help determine why the program is abnormally termi-
nated. They can also be used as the initial values (i.e., by assigning them to the global vastati€s
and ' cfhess0’, respectively) to restart the program. TNEOPT procedure always keeps the latest in-
termediate variable values and the corresponding inverted Hessian in the global variebiesvv’ and
‘ cfhess1’, respectively.

10.2.5 Run-Time Option Switching

Many options can be changed while tREOPT procedure is running. In Table 4 we list the key commands
for all run-time option switching. Th&ILOPT procedure will respond to these key commands at the end
of each iteration. For example, no matter which algorithm for step length calculation is set in the program,

124

CHAPTER 10. NONLINEAR OPTIMIZATION

Table 4. Run-Time Option Switching

Key Effect Explanation
1. ALT 1 Set_cfhsmd = 1 Quasi-Newton method — the BFGS update
2. ALT 2 Set_cfhsmd = 2 Quasi-Newton method — the scaled BFGS update
3. ALT 3 Set _cfhsmd = 3 Quasi-Newton method — the DFP update
4. ALT 4 Set _cfhsmd = 4 Quasi-Newton method — the scaled DFP update
5. ALT 5 Set_cfhsmd = 5 Numerical/analytic Hessian
6. ALT 6 Set _cfhsmd = 6 The steepest descent method
7. SFT 1 Set cfstep = 1 Step length fixed at 1
8. SFT 2 Set_cfstep = 2 The backtrack method
9. SFT 3 Set_cfstep = 3 The golden search method
10. SFT 4 Set_cfstep = 4 The Brent method
11. 0 Set__output = 0 Output control: option O
12. 1 Set_ output =1 Output control: option 1
13. 2 Set_ output = 2 Output control: option 2
14. ALT C Force Convergence Exit program immediately
15. ALT G Change cfgdmd Change gradient method
16. ALT N Change cfmlese ~ Whether to evaluate final inverted Hessian
17. ALT V Change cfgchk Change gradient convergence criterion
18. ALT M Set_cfbktks Change the number of trials allowed in step length search
19. ALT I Compute Hessian immediately
20. ALT E Edit variable values
21. <PgUp> Print the previous 54 paramet#rs
22. <PgDn> Print the next 54 parametéts

* PressingALT E’ brings the program into an interactive mode under which we can alter variable values.

** When the number of variables is greater than 54 so that not all intermediate results can be shown on one

screen, then using:PgUp>’ and ‘<PgDn>’ keys can control which 54 variables to show.

pressing SFT 3’ (i.e., pressingShift’ and ‘3’ simultaneously) while the program is running switches the

algorithm to the golden search metHod.

Running NLOPT Recursively: The proceduresOFN’, ‘ GRADOFN’, ‘ HESSOFN’ themselves can call the

NLOPT procedure. The number of nested levels is limited only by the amount of computer memaory. Each

61f the program is taking too many iterations using the default backtrack method, trying golden search for a few iterations this

way (and then pressingFT 2’ to switch back to the backtrack method) may help speed up convergence.

"When we pressALT E' and enter into an interactive modeare, then the top two lines on the screen will list current variable

values one at a time that is ready for changes. We can then do one of the following: (1)CPRS€8 ‘UP’ and ‘CURSOR DOWN’ to

move along the variable list back and forth; (2) Pré@§ ER’ to select the variable for editing, type the new value, and then press
‘ENTER’; (3) Press Q' or ‘ g’ to quit. As soon as a variable value is changed, Hessian will be reset to the identity matrix if any of the

guasi-Newton methods is being used.

10.2. A GAUSS PROGRAM FOR NONLINEAR MINIMIZATION: NLOPT 125

level contains its own set of global variables. However, the run-time option switches can be used only at one
level of theNLOPT procedure, where the value of the corresponding global variabfertos’ should be
1 (the default) while those for other levels should all be 0.

10.2.6 Global Variable List

We summarize the global variables used byXhe€@PT procedure in Tables 5 and 6. Each of these global
variables controls one aspect of the procedure and can be changed before calNih@®€ procedure.
Those in Table 5 are the ones that have been discussed in the previous subsections.

There are still a few control variables that are less important and have not yet been discussed. They are
presented in Table 6.

The global variable ‘cfusrch’ needs some explanations. It allows us to set the step length manually
during the run-time. Setting the value of the global variablefusrch’ to 1 before calling theNLOPT
procedure causes the program to enter into an interactive mode if all methods for calculating step length fail.
Under such an interactive mode, lines 6 to lines 25 on the screen show the initial function value as well as
a new function value with a step length of 1. A numbet listed as Stepsize Change’ will also appear.

This is a value to be used as an increment for changing the value of current step length. We can do one of
the following:

e PressCURSOR UP’ to raise the Stepsize Change’ 10 times;
e PressCURSOR DOWN’ to reduce theStepsize Change’ 10 times;

e Press +' to increase the step length by the amount $fepsize Change’ and to recompute the
function value;

e Press ‘' to decrease the step length by the amountSaiepsize Change’ and to recompute the
function value.

After pressing +' or ‘ -’, a new function value will be computed based on the new step length. The differ-
ence between this new function value and the initial one, together with the corresponding new step length,
will be listed in light white color if the new function value is lower than the initial one, and in dark gray
color otherwise. Step lengths can be repeatedly tried and 20 trial results will be shown on the screen simul-
taneously for comparisons. When a step length with a lower function value occurs (i.e. a light white color
appears on the screen), pre@sto exit the interactive mode. The last step length used will be accepted by
theNLOPT procedure as a hew step length and the iteration will continue.

126

CHAPTER 10. NONLINEAR OPTIMIZATION

Table 5. The List of Global Variables

Variable | Default Explanation
1.| cfgdmd 1 Switch for numerical gradient evaluation algorithms. It can be changed
during the run time by pressingLT G'.
2. | cfhsmd 1 Switch for Hessian evaluation algorithms. It can be changed during the run
time by pressingALT 1 -- 5'.
3.| cfstep 2 Switch for step length evaluation algorithms. It can be changed during the
run time by pressingSFT 1 -- 4.
4.| cfgdofn 0 Switch for analytic gradients.
5.| cfhsofn 0 Switch for analytic Hessian.
6. | cfhess0 0 Switch for initial Hessian.
7.| cfhessl 0 Storage for the final inverted Hessian.
8. | _cfintvv 0 Storage for the final variable values.
9.| cfmlese 0 Switch for the inverted Hessian after reaching convergence. It can be
changed during the run time by pressidgT N'.
10.| cfvarnm Storage for variable names.
11.| output Switch for output printing. It can be changed during the run time by press-
ing ‘0’, ‘1", or*2".
12.| cfxchk 10~% | Convergence criterion for the changes in successive variable values.
13.| cfgchk 107 | Convergence criterion for the relative gradients. It can be changed during
the run time by pressind\LT V.
14.| cfbktks 15 Maximum number of trials allowed in searching for step length using the
backtrack, golden search, and Brent methods. It can be changed during the
run time by pressingALT M.
15.| cfrtos 1 Switch for the run-time option switching. The value 0 turns this feature
off while 1 turns it on. If theNLOPT procedure is being run recursively,
(i.e., theNLOPT procedure is being called inside of anoth&rtOPT pro-
cedure), then the run-time switch feature should be turned off for the inner
version of theNLOPT procedure so that the outer version can retain|the
control.

10.2. A GAUSS PROGRAM FOR NONLINEAR MINIMIZATION: NLOPT

Table 6. The List of Additional Global Variable

and if all other step length search methods fail, therNh®PT procedure
will enter into an interactive mode under which the user can select

127

Variable | Default Explanation
_cfiter 10> | Maximum number of iterations allowed for computation.
_cftime 10° | Maximum time in minutes allowed for computation.
_cfsltry 100 | Maximum number of trials allowed in computing step length based on the
golden search and Brent methods.
4. | grdh 0 Increment used in computing numeric gradients. If it is set to zero, then
the increment will be computed automatically.
5.| cfeiglb| 0.1 | Lower bound for Hessian eigenvalues when Hessian is evaluated.| The
eigenvalues of the Hessian matrix will be forced to be greater than this
value. Ifitis set to zero, then such a constraint will be disabled.
6. | cfradus 0 Radius of random direction. When it is set to a nonzero valug%(1say)
and all other step length search methods fail, then a random direction with
radius determined bycfradus will be tried without further search for step
length based on the previous direction. If it is set to the default value 0,/then
this random direction generating mechanism will not start on its own.
7. | cfusrch 1 Switch for user-controlled step length search. If it is set to a nonzero value

step

length directly.

128 CHAPTER 10. NONLINEAR OPTIMIZATION

Appendix

Drawing Graphs for the Simple Linear
Regression Model

In this appendix we discuss a GAUSS program that contains the most commonly used commands for draw-
ing graphs. We demonstrate, in the case of the simple regression model, how to put sample points into a
graph and draw the corresponding regression line. The usage of each command in the program is briefly
explained in the comment that follows.

The basic structure of this program is to specify a number of “feature commands” (commands started
with the two letters ‘p’) before the main command

1 xy (X,y) s

which appears as the very last command in the program. Each of those feature commands defines one aspect,
such as the size, color, line type, legends, messages, etc. of the graph.

The main body of the graph is either a bunch points or a curve that connects these points, yihe
coordinates of these points are specified by the two inguand ‘y’ in the ‘xy(x,y)’ command. The
common row number ofx’ and 'y’ tells us the number of points on the graph, while their column number
indicates the number of different sets of points or the number of different curves. If oreasid ‘y’ is a
single column vector while the other is a matrix, then the single column will be expanded automatically to
match the other matrix (the usual element-by-element operation).

The order of the feature commands in the program is not important. If a particular feature is not needed,
then the corresponding feature command can be omitted and its default value will be adopted by GAUSS. If
n sets of points on curves are drawn, many of the feature commands will then conteawsof specifica-
tions: eachrow specifies the feature of the corresponding set of points or curve.

There are six relatively independent components of the graphs:

[ERN

. The general specifications about graph title, axis system, and some miscellaneous details.
2. The specification of the main curves.

3. The specification of the legends which help identify different curves.

4. The specification of auxiliary lines or curves besides the main curves.

5. The specification of messages.

6. The specifications of auxiliary arrows and symbols.

Auxiliary lines, messages, arrows, and symbols are used to highlight certain part of the graph to make it
easier to understand.

300

301

The kind of graphs we create with they'(x,y)’ command in the following program is called the ‘XY’
graph. GAUSS can make other graphs such as bar charts, histograms, contours, and 3-dimensional graphs.
Once we are familiar with the following program for the ‘XY’ graph, exploring other types of graphs will
be fairly straightforward.

If the version of GAUSS used is 2.2 or lower, then before this graph drawing program can be executed
we need to configure GAUSS as follows: the prograuip’ in the subdirectory \GAUSS’ has to be run
once to inform GAUSS the specifications of the computer and the printer. This program will create a file
with the name ¢onfig.gpc’, which is generally to be stored in th§GAUSS’ subdirectory. We also need to
add the following line to the filedutoexec.bat’ which is in the root subdirectory.

1 set gpc=c:\gauss

The ‘autoexec.bat’ file is an ASCII file. If the version of GAUSS used is 3.0 or higher, then we only need
to configure GAUSS by modifying the ASCII fileggrun.cfg’ in the ‘\GAUSS’ subdirectory to specify the
computer and the printer we use.

Before using the following program, we must run the linear regression program for the Engel Curve
model in chapter 5 with the following command added at the end of that program (beforndheom-
mand):

1 x = x[.,2]; /* We do not need the constant term. */

3 save x, y, b, e, seb, s2, r2;

Similarly, if the ‘o1s’ command is used, then the following commands should be part of the program:

_olsres = 1;

{vnam,mmt,b,stb,vb,seb,s2,cor,r2,e,d} = 0ls(0,y,x);

(&) A W N =

save X, y, b, e, seb, s2, r2;

These commands save seven matrices from the estimation in the matrix file format. These matrix data will
then be loaded in the following graph program.

1 new,;

2 /***
3 * Drawing Graph for the Simple Regression Model *
4 ****~k******~k***~k******~k***~k******~k***~k***********************************/
5 library pgraph; /* Calling the graph program. */
6 graphset; /* Resetting graphics globals to default values. */
7 /* These commands are discussed in chapter 9. */
8

9

lToad x, y, b, seb, s2, r2; /* These six matrices must have been

302 APPENDIX A. DRAWING GRAPHS FOR THE SIMPLE LINEAR REGRESSION MODEL

10 produced and saved earlier. */
11

12 _pframe = 0|1;

13 /***
14 * Row 1 -- 0: frame off, Row 2 -- 0: tick marks off, *
15 * 1: frame on, 1: tick marks on. *

16 ***/

17

18 _pbox = 0;

19 /***
20 * 0: box off, *
21 * n: box on, with desired color. *

22 ***/

23

24 _pgrid = 0|2;

25 /***
26 * Row 1 -- 0: no grid, 2: fine dotted grid, *
27 * 1: dotted grid, 3: solid grid, *
28 * Row 2 -- 0: no subdivision, 2: tick marks only at subdivisions. *
29 * 1: dotted Tine at subdivisions, *

30 ***/
31
32 fonts("simplex complex");
33 /***
34 * The input of the 'fonts' commands is a string between the quotation
marks. The contents of this string may include up to four font

types which control the style of the letters in the graph. The four

fonts are

35
36
37
38
Simplex, (standard san serif font),
Simgrma (math notation and Greek letters),
Microb (bold face font),

Complex (standard serif font).

39
40
41
42
43
A simple way to find out how these character printed by your

printer is to try out all the keyboard keys (94 keys in total,
except the arrows keys and the function keys) in all four fonts. Any
number of these four fonts may be included in the FONT STRING of the
above 'fonts' command. The order of font names in the FONT STRING
defines the FONT INDICATORS that will be referenced Tater whenever
fonts is needed. The FONT INDICATORS in order are '\201', '\202',
'\203', and '\204'. The first font specified will be used for the
axes numbers. If the 'fonts' command is not used, the SIMPLEX font

53 is used by default. *
***/

*
*
*
*
*
*
*
*
*
*
44 *
45 *
46 *
47 *
48 *
49 *
50 *
51 *
*

52

b R L S T T . . S S S R N . .

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

if b[1,1] >= 0 /* This section of codes */
stl = ftos(b[1,1],"Y = %*.*1f ",1,3); /* constructs a self- */
st4 = ftos(seb[1,1]," (%*.*1f) ",1,3); /* explanatory three-line */
else; /* title for the graph */
stl = ftos(-b[1,1],"Y = - %*.*1f ",1,3); /* that summarizes the */
st4 = ftos(seb[1,1]," (%*.*1F) ",1,3); /* estimation results of */
endif; /* a simple linear */
/* regression model. */

if b[2,1] >= 0;
st2 = ftos(b[2,1],"+ %*.*1f X",1,3);

else;
st2 = ftos(-b[2,1],"- %*.*1f X",1,3);

endif;

st3 = ftos(r2," R[2] = %*.*1f",1,3);

stb = ftos(seb[2,1],"(%*.*1f) ",1,3);

st6 = ftos(s2," s[2] = %*.*1f",1,3);

title("\202A Simple Regression Model\1" /* The title string is */
$+ stl $+ st2 $+ st3 §+ "\1 " /* concatenation of 8 */
$+ std $+ st5 $+ st6); /* strings defined above. */

/***

* The input of TITLE command is a string which may contain up to 3 *
* Tlines of titles up to 180 characters: *
* *
* 1. Title string starts with one of the 4 font indicators \201, *
* \202, \203 or \204, which are defined by the 'fonts' command. *
* Fonts can be altered in the middle of the string by changing *
* font indicators. *
* *
* 2. The multi-Tine title is separated by \1. For example: *
* TITLE("\201LINE 1\T LINE 2\1 LINE 3"); *
* *
* 3. Some basic formats: *
* la[subscript a, *
* [a] superscript a, *
* la[[b] subscript a and superscript b. *
* *
* 4. Embedding numbers in the string: We first use the 'ftos' command *
* to transform numbers to a string, and then concatenate the *
*

result to the title string: "\20?...." §+ string $+ "...."; *

***/

_ptitlht = 0.15;

303

304

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

144

APPENDIX A. DRAWING GRAPHS FOR THE SIMPLE LINEAR REGRESSION MODEL

/***

* The size of the title in inches (0: default, 0.13). *

***/

paxes = 1;
/***

* 0: axes off, 1: axes on. *
***/

_pcross = 03
/***
* 0: axes intersect at corner, *

* 1: axes intersect at (0,0). *
***/

xTabel("\202Log Income");
ylabel("\202Budget Share for Food");

/***

* The inputs for 'xlabel' and 'ylabel' commands are strings whose *
* formats follows the same rule as the title string does. These two *
* commands determine the labels for the X axis and the Y axis. *

***/

_paxht = 0;
/***
* The size of axes Tabels in inches (0: default, 0.13). *

***/

_pnum = 2;

/***
* 0: no ticks marks and numbers on axes, *
* 1: vertically-oriented numbers on Y axis, *
* 2: horizontally-oriented numbers on Y axis. *

***/

_pnumht = 0;
/***
* The height of axis numbers in inches (0: default, 0.13). *

***/

_pxpmax = 33 _pypmax = 3;

/***

* The numbers of decimal points of the Y and Y axes numbers. *
***/

145

146

147

148

149

150

151

152

153

154

156

157

158

159

160

161

162

163

164

165

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

189

/* xtics(min,max,step,div);
ytics(min,max,step,div); */

/***

* To define scaling, axes numbering and tick marks for X and Y axes:

min: the minimum value,

max: the maximum value,

step: the value between major tics,

div: the number of subdivisions. *
***/

*
*
*
*

* % F ok

asclabel(0,0);
/***
* To set up character Tabels for the X and Y axes. It requires two
character vectors as inputs. If any input is 0, then character
labels will not be used for that axis.

input 1: labels for the tick marks on the X axis,

input 2: labels for the tick marks on the Y axis. *
***/

*
*
*
*

*
*
*
*

/************************* —— MAIN CURVES _— ****************************/

_plctrl = -1;
/***
* Line control (may contain multiple rows and one row for each curve)

0: Tine only (default),

n: (>0) line and symbols at every n points,

n: (< 0) symbols only at every n points,

-1: symbols only at every point. *
***/

*
*
*
*

b

_pltype = 03
/***
* Line type (one row for each line) *
* 0: default, *
* 1: dashed, 3: short dashed, 5: dots and dashes, *
* 2: dotted, 4. densed dots, 6: solid. *

***/

plwidth = 0;

/***

* Line thickness: 0 (normal) or greater, one row for each Tine *
***/

psymsiz = 3;
/***

305

306

190
191
192
193
194
195
196
197
198

199

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

234

APPENDIX A. DRAWING GRAPHS FOR THE SIMPLE LINEAR REGRESSION MODEL

* Symbol size: 1-9 (may have decimals) (if 0, default 5 is used) *

***/

_pstype = 1;

/***

* Symbol type (one row for each line) *
* 1: circle, 6: reverse triangle, 11: solid plus, *
* 2: square, 7: star, 12: solid diamond, *
* 3: triangle, 8: solid circle, 13: solid reverse triangle, *
* 4: plus, 9: solid square, 14: solid star, *
* 5: diamond, 10: solid triangle, 0: default. *

***/

_pcolor = 4;
/***
* Line color (one row for each Tine)

0: black, 4: red, 8: grey, 12: Tight red,

1: blue, 5: Magenta, 9: light blue, 13: Tight magenta,

2: green, 6: brown, 10: Tight green, 14: yellow,

3: cyan, 7: white, 11: 1ight cyan, 15: bright white. *

***/

* % F 3k

* ok kK

pmcolor = 15;
/***

* A row of nine numbers to define color for: *
* row 1: axes, row 4: y axis label, row 7: box, *
* row 2: axes numbers, row 5: z axis label, row 8: date, *
* row 3: x axis label, row 6: title, row 9: background. *
* If scalar, then it will be expanded to a 9x1 vector. *

***/

/************************** - LEGEND _— *******************************/

_plegstr = "";
/***
* Multiple legend strings are separated by \000 *
* _plegstr = "\20?1egend1\0001egend2\0001egend3"; *
* See title string for other formatting possibilities. *

***/

_plegctl = 03
/***
* Legend control can a scalar, or 4 element vector. *
* 1. Scalar: 0 -- no legend (default), *

* 1 -- a legend will be created based on plegstr. The *

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

legend box will be placed in the lTower right-hand
corner just inside the axes area.
2. 4 element vector:
row 1: 1 -- in plot coordinates,
2 -- in inches (9.0 x 6.855),
3 -- in pixels (3120 x 4096),
row 2: font size -- 1-9, can have decimals (5 default),
row 3: x location of the lower left corner of legend box,

row 4: y location of the Tower left corner of legend box. *
***/

EIE I T . I T
E R S R

/*************************** _ MESSAGES — ****************************/

_pmsgstr = "'
/***
* Multiple massage strings are separated by \000 *
* _msgstr = "\20?MASSAGE1\000MASSAGE2\00OMASSAGE3"; *
* See title string for other format considerations. *

***/

pmsgctl = 0;

/***

* Massage control: one row for each message *
* column 1: x location of Tower left corner, *
* column 2: y location of Tower left corner, *
* column 3: massage height in inches, *
* column 4: rotation in degrees, *
* column 5: 1 -- plot coordinates; 2 -- inches, *
* column 6: color, *
* column 7: font thickness, 0 (normal) or greater. *

***/

/*********************** - AUXILIARY LINES - *************************/

_pline = 176~ /* The fitted regression */
minc(x[.,2]) " (b[1]+minc(x[.,2])*b[2])" /* 1ine is drawn on top */
maxc(x[.,2]) " (b[1]+maxc(x[.,2])*b[2])" /* of the sampled points.*/
171470,

/***

* Line definitions: one row for each line *
* column 1: 1 -- Tine in plot coordinates, *
* 2 -- line in inches (9.0x6.855), *
* 3 -- line in pixel(3120x4096), *
* 4 -~ circle in plot coordinates, *
* *

5 -- circle in inches (9.0x6.855),

307

308

280
281
282
283
284
285
286
287
288

289

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

324

b I R T S S R I .

***/

APPENDIX A. DRAWING GRAPHS FOR THE SIMPLE LINEAR REGRESSION MODEL

column
column
column
column
column
column
column
column
If 0, no

00O NOYO1l B WM

6 -- radius in plot coordinates,
7 -- radius in inches (9.0x6.855),

: Tine type (see above),
: x location of the starting point,
: y location of the starting point,

x Tocation of the end point,
y location of the end point,

: 0 -- continuation; 1 -- new,
: color,
9:

Tine thickness, 0 (normal) or greater.
1ine will be drawn.

/*********************** - AUXILIARY SYMBOLS —

_psym = 03

/***

*

b R T .

***********************/

Extra symbol definitions: one row for each symbol
x location of the center of the symbol,

column
column
column
column
column
column
column

1:
: y Tocation of the center of the symbol,

S OB W N

7:

***/

symbol type,

symbol size -- 1-9, can have decimals (5 default),

symbol color,

1 -- inches; 2 -- plot coordinates,
Tine thickness, 0 (normal) or greater.

/************************ - AUXILIARY ARROWS ——

parrow = 0;
/***

*

b T I . S S N N .

Arrow definitions: one row for each arrow

column
column
column
column
column
column
column

1:
: y location of the starting point,
: x location of the end point,

: y location of the end point,

: ratio of the arrow head Tength to
: size of arrow head in inches,

: fn -- type of arrow head,

N O o B W N

x Tocation of the starting point,

f is for form:

0 -- solid,
1 -- empty,
2 -- open,

3 -- closed,

***********************/

its half width,

L R R R

*

Lo T S

*

LR R R R R N

309

n is for number:
0 -- none,
1 -- at the final end,
2 -- at both ends,
column 8: color,
column 9: 1 -- in plot coordinates,
2 -- in inches (9.0x6.855),
3 -- in pixels (3120x4096),
column 10: Tine type (see above),
column 11: Tine thickness, 0 (normal) or greater.

335 If 0, no arrow will be drawn. *
***/

325

326

327

328

329

330

331

332

333

L R R R R

334

b I S S S T R N

336

337

338

339 /************************* — MAIN COMMAND —_— ***************************/

340

3a1 _pdate = "";

342 /***

343 * A small Tabel on the top left corner (default: \201GAUSS). *

344 * If the string is "", then nothing will be printed. *
g s g p

345 ***/

346

347 _ptek = "food_s.tkf";

348 /***
349 * TKF output file's name with .TKF extension. The file can be *
350 * transported and saved for later printing. no graphics file will be *
351 * produced if "" is set. Default is GRAPHIC.TKF. *

352 ***/

353

as4 xy(x,y);

355 /***

356 * This command directs GAUSS to draw the two dimensional graph. The *
357 * two inputs are data on X and Y variables. If data on X and Y *
358 * variables are multiple columns, then multiple curves will be drawn. *

359 ***/

360
361 end H

After succeeding in creating a graph on the screen, we can press the ‘space bar’ to get printing selections on
the screen. These choices are self-explanatory.

Let’s consider another example where we show how to draw the scatter diagram for the residuals as
opposed to the log income, which is the explanatory variable of the Engel curve model. Such a diagram
is interesting because we often want to know whether there is a relationship between the residual and the
explanatory variable in a linear regression model. If there is, then some modification of the OLS estimation
may be needed. Here we only present seven commands that are required to be modified from the previous

310 APPENDIX A. DRAWING GRAPHS FOR THE SIMPLE LINEAR REGRESSION MODEL

program;

load x, e;

title("\202 The Scatter Diagram for Residuals");
_pcross = 1;

ylabel("\202Residuals");

_ptek = "residual.tkf";

_pline = 0;

xy(x[.,2],e);

~ o O S w N Ll

Also, the i f...else...endif statements before theitle’ command can all be deleted.

The GAUSS graph drawing capability is powerful and flexible. But with many user-friendly and even
more powerful graphic softwares available in the market, we must say that the quality of the GAUSS graphs
is not particularly outstanding. Sometimes it seems to be a good idea to use GAUSS to draw a sketchy draft
and then export the data to some other graphic softwares for the final version of the graph.

Appendix

GAUSS Data Set (GDS) Files

We have introduced two types of data files in chapter 2, ASCII data files and matrix files. We have also
learned that they are mainly for smaller data sets. To store large data sets in GAUSS, we may need the third
type of data files — the GAUSS data set (GDS) files. In this section we explain how to use the GDS files.
Here let’s first briefly list the main features of the GDS files:

1. GDS files are formulated in matrices: rows for observations and columns for variables.

2. It is possible to assign a name, the variable name, to each column and store these “variable names”
along with data. The column number of a GDS file is limited only by the size of computer memory,
while the row number is limited only by the size of the hard disk.

3. Each GDS is stored in a pair of files with the same file name but different extensi@tsand ‘dht’.
The file with the extension.dht’ is called the header file, in which the variable names are stored.

4. Data can be stored in three levels of precision: 2 (integer precision), 4 (single precision), or 8 (double
precision) bytes per number. The precision level of 2 bytes per number is ideal for integers while the
double precision is used for most real numbers. Note that matrix files are always stored in double
precision, which can sometimes be wasteful in terms of disk storage. For example, a 3000
matrix of integers requires 4,000,000 bytes, or 4 MB, of disk space if it is stored as a matrix file. But
it can be stored as a GDS file at the integer precision with only 1 MB of memory.

B.1 Writing Data to a New GAUSS Data Set

We can create a GDS file using the trio: theeate...with’, the ‘writer’, and the tlose’ commands.

For example, suppose we have a set of data in axLBOnatrix ‘xx’ left in the memory. We want to create

a GDS file with the file nameout1” to store those 100 observations on 5 variables at the single precision
level, using the names d’, ‘name’, * age’, ‘varl’, and ‘region’, respectively. To do this, we first put the 5
variable names in a character vectoarname’:

1 let varname = id name age varl region;

and then type the following commands:

1 create fout = outl with “varname,5,4;
2 checkl = writer(fout,xx);
3 check?2 = close(fout);

We now explain these three commands in detail:

311

312
1. The

(1)

(2)

®3)

(4)

APPENDIX B. GAUSS DATA SET (GDS) FILES

‘create...with’ command:

Both ‘fout’ and ‘out1’ on the two sides of the equality sign are file names for the same output
file to be created. The nameutl’ to the right of the equality sign can be regarded as an
“external” file name because it is the file name recorded in the hard disk but is never referred to
inside the GAUSS program. The nanfeut’ to the left of the equality sign can be considered

as the “internal” file name because it is used as a reference label exclusively inside the program.
‘fout’ is also calledfile handle

We can use the technique of the carétsign plus the string variable to specify the file name.
For example, the following statement assigns a string to the variablername’

|
1 | filename = "c:\\example\\data\\out1";

The content of the variablefilename’ is a long string that specifies the external output file
name with drive and subdirectory information. Note that, as mentioned before, the backslash
“\’ should be replaced by a double backslas\i everywhere in the string. The string variable
‘filename’ can be used in thecreate...with’ command as follows:

\
1 | create fout = “filename with “varname,5,4;

The caret sign means thdti‘Tename’ itself is not the external file name. Instead, it is the content
of the variable filename’ that specifies the file name.

The names of variables are in the character veetorriame’ which is included after thewith’
subcommand. We notedrname’ is preceded by the caret sigh, which again informs GAUSS

the namevarname’ itself is not the variable name but a character vector that contains the vari-
able names.

The first number that followsvarname’ (and a comma) indicates the number of variables that
are going to be created.

We may wonder why we need to tell GAUSS explicitly the number of variables while it is
already obvious from the % 1 character vectorvarname’ that there are five variables. The
reason for such an extra effort is that the number of variables to be created may not be the same
as the number of variable names in the character vegtomame’. If the specified variable
number, say 3, is smaller than the number of namesamname’, then only the first three
variable names will be used. If the specified variable number, say 10, is larger, then the last
variable name invarname’, i.e., ‘region’, will be duplicated and the last 6 of the 10 variables
will have the sequential namesegionl’, ‘region2’, ..., ‘region6’, respectively. So if we
have the following ¢reate...with’ command:
1 i create fout = outl with Y,15,8;

\

then the GDS filedut1’ will contain 11 variables, whose names ak@1’, ‘ Y02', ..., ‘Y15’
respectively. Note that the label’‘is not preceded by the caret sign so thétitself is the
variable name.

B.1. WRITING DATA TO A NEW GAUSS DATA SET 313

(5) The last number in thecreate. . .with’ command indicates the precision level, which can be 2
(integer), 4 (single precision), or 8 (double precision). Double precision must be adopted if data
contain characters.

(6) Multiple ‘create...with’ commands can be used in the same program so that data may be
written into different GDS files in the same program.

2. The ‘writer’ command;:

(1) The ‘writer’ command writes the data in the matrixx’, row by row, to the GDS file, which is
referred to by the namef6ut’ (instead outl’).

(2) After the values in thexx’ are completely written intofout’, a scalar theckl’ is produced to
indicate the total number of rows that have just been written.

(3) The column number of the matrix&’ must be the same as the variable number specified in the
‘create...with’ command.

(4) Multiple ‘writer’ commands can be used after the sameeate...with’ command. In such
a case, data will be written consecutively into the same output file.

(5) If the precision level is set at 2 and the source matxi tontains missing values, which are
usually denoted by a dot”in GAUSS, then these missing values will all change to the value
—32768 automatically. At other levels of precision, missing values will be recorded as missing
values.

3. The ‘close’ command closes the filefbut’ and creates a scalatieck?’ to indicate whether the file
is successfully closed: 0 for success artifor failure.

The ‘cTose’ command can be skipped since tlead’ command, which is usually placed at the very

end of the program, will close all the created files. The advantage of usinge’ command imme-
diately after the file creation is that we can close the file as early as possible. If a file is not closed and
the program is terminated abnormally due to, say, power failure, then the data in the file will be lost.

A related command is

\
1 | closeall;

which closes all files. A list of internal file names (file handles) can also follow ¢heseall’
command, in which case only the listed files will be closed. So

\
1 | check2 = close(fout);
\
and
\
1 | closeall fout;
\

have the same effect.

314 APPENDIX B. GAUSS DATA SET (GDS) FILES

In the above discussions we find thréate. . .with’ command is the most complicated one that spec-
ifies a lot of information. Sometimes it is easier to first put all information in a separate (ASCII) file and
then refer to it. To do this, we use the following GAUSS command:

1 create fout = outl using varspec;

Here, instead of thew'ith’ subcommand, we have thesing’ subcommand and all the information spec-
ified after with’ in the ‘create...with’ command is now contained in an ASCII file whose file name is
‘varspec’.

There are usually two commands inside the ASCII file suclvasspec’

1 numvar 12 vv;
2 outtype 4;

where the humvar’ command specifies the number of the variables and their names. In the above example,
twelve variable names will be createdvv01’, ‘vv02', ..., ‘vv12’. So ‘vv'in the ‘numvar’ command
indicates the prefix of variable names which will be followed by consecutive numbers. olibieype’
command specifies the precision level which can be 2, 4, or 8. If we want to define exact variable names,
then we should use thedtvar’ command, instead of thetmvar’ command:

1 outvar id name age varl region;
2 outtype 4;

Here, five different variable names are specified.

B.2 Reading the GAUSS Data Set

We can read a GDS file using the trigpen’, ‘ readr’, and ‘close’ commands. For example, suppose we
want to read a GDS file with the file nameutl.dat” which contains 100 observations on 5 variables,
whose names araéd’, ‘ name’, ‘ age’, ‘ varl’, and ‘region’, respectively, we type

1 open fin = outl;
2 xx = readr(fin,100);
3 checkl = close(fin);

The ‘open’ command specifies the GDS filedt1.dat’ to be read. The specification of file name is similar

to that of the treate...with’ command, the one on the right-hand side of the equality sighl’ is the
external file name ofodutl.dat’ (without the extension.dat’) which is used by DOS to store it in the

disk, while the one on the left-hand side is the internal file name (or the file harfidéwhich is used by
GAUSS within the program. Also, as explained by the item 1 (2) in the previous subsection, the external file
name can be stored as a string in a variable and then be referred to using the “caret” technique.

B.3. READING AND PROCESSING DATA WITH DO-LOOPS 315

The ‘readr’ command reads rows of data from the specified file. It requires two inputs: the internal
name of the file and the number of rows in the file to be read. The output is a matrix whose row number
should of course be the same as the row number as is specified inettte-” command. The column
number is decided by the number of variables contained in the source GDS files. In the above example, the
output matrix xx’ will be a 100 x 5 matrix. Note that even though there are 100 rows in the original GDS
files, we do not have to read them all. We may specify 50, for example, in the atead>r* command. In
such a case only the first 50 rows will be read into the matrix.

The ‘close’ command closes the opened file and indicates whether the closing is successful. See item
3 in the previous subsection for more details.

B.2.1 Using Variable Names

Since the GDS file records variable names, it is possible to refer to each column of the output matrix by the
corresponding variable name. In the above example, we know the five columns of the output xwatrix
are observations on the five variabléd’; ‘ name’, ‘ age’, ‘varl’, and ‘region’, respectively. We can then

refer to the five columns ofkX’ by ‘iid’, “ iname’, ‘ iage’, ‘ivarl’, and ‘iregion’, respectively. Here, we

note these variable names are all prefixed 9y These variable names are useful when we want to select
some columns fromxx’ for some manipulation. To use this feature of the GDS file, we should add the
‘varindxi’ subcommand at the end of thepen’ command. For example,

open fin = outl varindxi;

xx = readr(fin,100);

checkl = close(fin);

x1 = xx[.,iname iregion iage];
x2 = xx[.,2 5 3];

(& e w N Ll

With the ‘varindxi’ subcommand, we then have a better idea about the contents of the 3@80bmatrix
‘x1’. It contains observations on the three variablesne’, ‘ region’, and ‘age’ (in that order). We note the
submatrix X2’ is identical to x1'. The creation of X2’ is based on the equivalent but less appealing method
of indexing.

If we forget the names of the variables in a GDS file, we can usegtmame’ command to retrieve the
variable names. For example, to get the variable names from the GD&ufilE,'we use

1 name = getname("outl");
2 $name;

Here, we note the external file name of the GDS is put inside the quotation marks. The oatputill
be a character vector containing the variable names. They are printed for viewing.

B.3 Reading and Processing Data with Do-Loops

Since the GDS file is mostly used to store a large number of data, trying to read all data from a large GDS
file into a matrix often causes the insufficient memory problem. We note each scalar requires 8 bytes of

316 APPENDIX B. GAUSS DATA SET (GDS) FILES

memory. If a GDS file contains 10,000 observations on 50 variables, then we need 4 million bytes (4,000
KB or 4 MB) memory to create such a 1008050 matrix. In a PC that is equipped with 4 MB memory,
the chances are that there is only several hundred KB memory left to run GAUSS programs so that it is not
possible to read all data into one big matrix. But this does not mean that the GDS files is of little use in
GAUSS programming because in most GAUSS applications we do not really need to read all data in one
huge matrix before we can process them. We are usually able to partition the data of the GDS file, read each
portion of the data into a smaller matrix, and then work on one matrix at a time. The following example
illustrates this point.

Suppose we have a GDS fileource.dat’ that stores 30,000 observations on 25 variables. We want
to compute the OLS estimate in a linear regression model with the last variable as the dependent variable
and the first 24 variables as the non-constant explanatory variables. To accomplish this job with limited
amount of memory, we need to reexamine the OLS forrbuta (X’ X)~1X’y where in the present example
X is 30,000 x 25 matrix containing 30,000 observations on a constant term and 24 explanatory variables,
whiley is 30000 x 1 vector of the dependent variable. Let’s partition bstandy vertically into, say, 100
submatrices, each of which contains 300 rows:

X1 Y1

X5 Y2
X = ' and y=

X100 Y100

Then we note

100 ~1 /100

b=XX)"Xy= (Z X/kxk) (Z X[(yk) .
k=1 k=1

Here, Xy andyy are 300x 25 and 300x 1 matrices, respectively. Their cross produ¥{s<x and X,y

are 25x 25 and 25x 1 matrices, respectively. The sizes of these four matrices are moderate and they

require 68 KB memory in total. Based on this formula, we can then comXj{e andX, yx separately and

repeatedly, and eventually obtain the OLS estinfietgthout demanding too much memory. This idea can

be implemented as follows:

open ff = source;

k=1
XX
Xy

]
O O v

do until k > 100;

© o] ~ o O e w N [

dat = readr(ff,300);

x = ones(300,1) dat[.,1:24];
y = dat[.,25];

XX = XX + x'X;

Xy = xy +x'y;

[
o

[
[

-
N

[
w

B.3. READING AND PROCESSING DATA WITH DO-LOOPS 317

14 k = k + 1;
15
16 endo;

17 check = close(ff);
18
19 b = invpd(xx)*xy;

The key idea here is the use of a do-loop.

Although the logic of such a do-loop is straightforward, we may have the question: how doesatihe ‘
command works inside the do-loop? To answer this question, we have to know an important concept in using
the ‘readr’ command.

B.3.1 The readr’ and the ‘writer’ Commands and Do-Loop

After each row of the GDS file is read, GAUSS always prepares to read the next row or, we might say,
GAUSS places a reading pointer at the next row for the next reading. So after the first iteration of the above
do-loop and one hundred rows of the GDS fifé€*(or ‘ source.dat’) are read into the output matrixdat’,

GAUSS places the reading pointer at the 101-th row of the GDS file even though that row is notimmediately
read. After the first cycle is completed and GAUSS is prepared to executedin* command for the
second time, GAUSS will then follow the reading pointer and read the 101-th row of the GDS file.

In the above example the decision of partitioning the GDS file into 100 parts is somewhat arbitrary. We
note the computation time of a do-loop is directly proportional to the number of cycles to be iterated. If the
number of cycles is large, then the execution of the do-loop can be quite time consuming and inefficient. So
it is sometimes necessary to experiment with different partitions of the GDS file and we should always push
toward the limit of memory by minimizing the number of partitions. For example, if we have more than 136
KB of memory, then we can cut the computation time in half by reducing the partition of the GDEffile *
to 50 parts, in which case eal will be a 200x 25 matrix.

Suppose after some further experiments we find it is possible to increase the row number of the submatrix
Xk to 450. But in such a case the corresponding number of partition is 67 while the last submatrix contains
300 rows only which is different from that of other 66 submatrices. Nevertheless, the do-loop can still be
used as usual. It should be noted that in the last iteration, the mddtix as well as X’ and ‘y’, will contain
300 rows only. Here, we will be using a special feature of tieadr’ command: it automatically terminates
when the reading pointer passes over the last row of the GDS file *

The above program can be somewhat simplified by a new GAUSS comreafidthe command line
that starts the do-loop:

1 do until k > 100;

can be replaced by

1 do until eof(ff);

The commandéof’ indicates whether the reading pointer passes the end of GDS filef not. When it
does, then theeof (ff)’ returns the value 1 and the do-loop terminates.

318 APPENDIX B. GAUSS DATA SET (GDS) FILES

All the above discussions on how theeadr’ command interacts with do-loop can be extended to the
‘writer’ command.

B.3.2 The ‘seekr’ Command

There is a GAUSS commandéekr’ that allows us to move the reading pointer to any row of the GDS file

we want. This command is useful when we want to read a part of the GDS file more than once or when we
want to skip some part of the GDS file. For example, given the above GDSdilece.dat’, we need the

first 100 and the last 100 observations on the first variable, and the first 200 observations on the last variable,
then the GAUSS program for retrieving these data is as follows:

open ff = source;

dat = readr(ff,100);
x1 = dat[.,1];

rnl = seekr(ff,29900);
dat = readr(ff,100);
x1 = x1|dat[.,1];

© o] ~ [=2] o e w N Ll

rn2 = seekr(ff,1);
dat = readr(ff,200);
x3 = dat[.,25];

=
o
1l

[N
[N

-
N

After the first ‘readr’ command, the reading pointer is placed at the 101-th row of the GDS fileBut the
‘seekr’ command moves the reading pointer to the 29,900-th row of the GDSffileso that the last 100
rows can then be read directly. There is an output from ¢kekr’ command which indicates the location
of the reading point after thaéekr’ command is executed. It is usually the same as the second input of the
‘seekr’ command, so the value ofhl’ should be 29,900. Note that the secondekr’ command moves
the reading pointer back to the first row of the GDS fil€'‘and the value ofn2’ is 1.

Note that if the seekr’ command is specified asn3 = seekr(ff,0)’, then the reading pointer is
movedafter the last row of the GDS filef'f’ and the value offn3’ is 30,001.

B.4 GAUSS Commands That Are Related to GDS Files

Given that a GDS file is opened and is assigned an internal file name (file haffdJehén we can use the
following GAUSS commands:

1 rn = rowsf(ff); /* The number of rows of the file 'ff'. */
2 cn = colsf(ff); /* The number of columns of the file 'ff'. */
3

4 pl = typef(ff); /* The value of 'pl' is either 2, 4, or 8, which is

5 the precision level of the data in the file 'ff'.*/

B.4. GAUSS COMMANDS THAT ARE RELATED TO GDS FILES 319

If we want to get the variable names from a GDS file without first opening it, we can use

1 vname = getname("source");

The input of this command is a string containing the name of GDS file and the output is a character vector
of the variable names.

B.4.1 Sorting the GDS File

In subsection 8.3 we mentioned the GAUSS commadtc’ that sorts a matrix (rearrange the order of
the rows) according the values of one of its column. If we want to sort a GDS file directly, then use

1 sortd("source","sortout","VAR11",-1);

Here, the first input indicates the GDS file that is to be sorted. The sorted file will be another GDS file whose
name is given by the second input. The third input specifies the column number or the variable name whose
values will be used as the “key” for ordering. Note that the first three inputs are all included in quotation
marks so that they are all strings. If the third input is the column number, then it can be a scalar (a number
not inside quotation marks). The last input can take four possible values: +anttan the values of the

key variable are numeric, while 1 (-1) causes the rows to be the sorted in ascending (descending) order;
2 and—2 mean the key is a character variable, while 2 (-2) causes the rows to be the sorted in ascending
(descending) order. Note that thevttd’ command does not have matrix output.

B.4.2 The ols’ Command and the GDS File

When we first discussed thel's’ command in subsection 16.8, we mentioned it took three inputs while
there we set the first input to 0 without explanation. Now with the knowledge of GDS files, we are ready for
more discussions on thel's’ command. We can directly use the data in a GDS file for the OLS estimation.
Suppose the GDS file we want to usedsurce.dat’ again. Let's assume the 25 variables in this data set
have the variable name®%AR01’, ‘ VAR02', ..., ‘VAR25’, respectively. If we want to run an OLS estimation
with ‘VARO7’ as the dependent variable arithR12’, * VAR06’, * VAR21’, * VAR17’, and ‘VARO1’ as regressors,

then the GAUSS commands are

1 rgssor = {"VAR12","VARO6","VAR21","VAR17","VARO1"};
2 {vham,mmt,b,stb,vb,seb,s2,cor,r2,e,d} = ols("source","VARO7",rgssor);

or, equivalently,

1 rgssor = {12, 6, 21, 17, 1};
2 {vnam,mmt,b,stb,vb,seb,s2,cor,r2,e,d} = ols("source",7,rgssor);

320 APPENDIX B. GAUSS DATA SET (GDS) FILES

That is, when the first input is a string that shows the name of the GDS file to be used, then the second
input is either a string containing the name of the dependent variable or a scalar indicating the index of the
dependent variable, while the third input is either a character vector containing the variable names of the
regressors or a numeric vector indicating the indices of the regressors. Note that it is possible to set the
second input and the third input to O: if the second input is 0, then the last variable in the GDS file is the
dependent variable. If the third input is 0, then all variables in the GDS file, except the one that has been
designated as the dependent variable, will be used as the regressors.

There are two more issues when tlés’ command is applied to a GDS file. Since the GDS file is
usually very large, theol1s’ command will automatically use a do-loop to process the data during the OLS
estimation and the way the data set being partitioned is determined by the size of memory. Occasionally,
the insufficient memory problem may still occur. In such a situation, we may need to manually decide how
many rows to be processed in each cycle of the do-loop execution. Such a row number will then be assigned
to the global variable * row’ before the execution of the1s’ command.

Finally, we note it is quite common for a large GDS file to have missing values. dllsé command
can not process a GDS file with missing value unless we specifically tell GAUSS how to deal with missing
values using the global variable miss’ (whose default is 0). If we set ‘ miss’ to 1, then all of those
rows with missing values will be dropped from the estimation. But if we setiss’ to 2, then all missing
values will be replaced by 0 before the computation and no row will be dropped.

B.5 Revising GDS Files

If we want to modify an existing GDS file, then we have to specifically indicate that when we open this GDS
file by adding a subcommand in thepen’ command. For example, the command

1 open ff = source for update;

will open the GDS file $ource.dat’ and place the reading pointer at the first row. We can then use either
the ‘readr’ command to read data from the file or theriter’ command to write data into it. If we only
want to add some data at the end of an existing GDS file, then we use

1 open ff = source for append;

then the GDS filesource.dat’ is opened but the reading pointer is placed after the last row of the file so
that new data may be directly written to the end of the file with the ter’ command. Note that in this
case the GDS file cannot be read and tteatr’ command is not applicable.

B.6 Reading and Writing Small GDS Files

If the GDS file ‘source.dat’ is small enough to be included in one matrix without causing insufficient
memory problem, we can read it into a matrix directly using

1 dat = loadd("source");

B.7. THE ATOG PROGRAM* 321

Since we do not need “open” the file first, this command is much simpler than the standard way of reading
the GDS file.

Similarly, if we want to store an existing matrix, sajat’ which a 500x 5 matrix, into a GDS file
‘ggout.dat’ and assign some variable names to the five columns of the matrix, then we type

‘ \
1 \ check = saved(dat,"ggout","VAR"); ‘
‘ |

The firstinput is the name of the matrix to be stored. The second input is a string specifying the output GDS
file name. The third input can be 0, a string (as in the above example), or a character vector. If it is 0, then
the five variable names will b&1’, * X2’, ..., ‘X5". In the above example, the five variable names will be
‘VARY’, *VAR2’, ..., ‘VARS'. If a five specific variable names are to be adopted, then they should be included
in character vector and plugged as the third input of teéd’ command. (The way variable names are
assigned is similar to that in thereate...with’ command.)

The output theck’ is a scalar. Itis 1 if the saving process is successful and is 0 otherwise. Also, the
precision level of the resulting GDS file is double precision.

B.7 The ATOG Program*

Most large-scale socio-economic and financial data downloaded from mainframe computers are stored in
ASCII files. Observations are usually arranged in rows and variables are separated (delimited) either by
space or by commas. It is also common to find, in some “packed” ASCII files, variables are not delimited
and can be identified only based on their column positions. These ASCII data files are usually so large that
they can be accessed by GAUSS only as the GDS files. Therefore, the first thing we need is a utility program
to convert those ASCII data files to GDS files. The name of such a program is “ATOG.EXE” (ATOG means
“ASCII filesto Gauss data set files.”)

To use the ATOG program, we have to first create a small ASCII file, which is called the command file,
to describe the structure of the source ASCII data file as well as how we want the output GDS file arranged.
The name of this command file usually has the extensiond’.

Suppose the source ASCII filejemodata’, contains data on 6 variables: Age, Sex, Income, Marital
[Status], School[ing Years], and Region, among which Sex, Marital, and Region are character variables
and the other three are numeric variables. Observations are stored in rows. That is, each row contains an
observation on each of these six variables which are delimited by spaces. Note that in an ASCII file different
rows are separated by hidden codes called carriage returns or CR. So we may say observations are delimited
by CR. We want to create a GDS file that only contains data on Age, School, and Income at the double
precision level of 8 bytes per number. To do these, we type the command filejesay, ¢md’, as follows:

input a:\demodata;

output a:\outl;

invar # age $ sex # income § marital # school $ region;
outvar age school income;

outtyp d;

(4] S w N =

322 APPENDIX B. GAUSS DATA SET (GDS) FILES

The “input’ command specifies the name and the location of the source ASCII file, which in the present
example contains 6 columns of data. Thetput’ command specifies the name of the output GDS files,
which causes two fileoutl.dat’ and ‘outl.dht’ to be created.

The ‘invar’ command specifies the names and the types (character or numeric) of the variables in the
source ASCII file. Note that the variable names are not part of the source ASCII file but arbitrarily assigned
by us here in the command file. Variable names are preceded by ditloer # depending on whether the
variable is character or numeric. The indicatdrsaind ‘#’ can be omitted, in which case the type of variable
is the same as the previous one. If none of the indicator is specified at all, then all variables are considered
numeric.

The ‘outvar’ command specifies the variables to be included in the output GDS files and the output
variables can be in any designated order. TduEtyp’ command specifies the precision level of the output
GDS. Three options are availablat’ for double precision, f' for single precision (which is the default),
and 4’ for integer precision.

Ifinthe “invar’and ‘outvar’ commands the variable names are in sequence, such as the seven variables
‘rec01’, ‘rec02’, ..., ‘rec07’, then these sequential variable names can be abbreviateddg]’. Also,
three sequential variable names liket4’, * xx5', and ‘xx6’ can be abbreviated agsx[4:6]".

To execute the ATOG program in the GAUSS command mode, we type

1 atog demo;

Note that the file extension ¢md’ is not needed in the above command. But if the name of the command
file has an extension different fromcmd’, then the extension needs to be fully specified.

B.7.1 The Structure of the Source ASCII file

Because the data in the source ASCII file may be arranged in a variety of formats, we will have to provide all
the necessary information to the ATOG program through thedr’ command. More specifically, variables

in the source ASCII file can be delimited in three different ways so that the correspomnlirag™command

has three basic formats:

1. If the variables in the source ASCII file are delimited by spaces, commas, or CR, then we only need a
simple ‘invar’ command that specifies variable names together with their types (# for numeric values
and & for characters). The above example illustrates such a case.

(1) Strictly speaking, observations do not have to be listed in rows and delimited by CR. For exam-
ple, in the above example each row may contain 18, instead of 6, values. With 6 variable names
being specified in theinvar’ command, the ATOG program will treat the 18 values in each row
as three sets of observations. That is, different observations do not have to be delimited by CR
so that they appear in different rows. Spaces that separate values are treated just the same as the
CR that separate rows and vice versa.

(2) Multiple spaces or commas with no data in between will be ignored and considered as a single
space or comma.

(3) Missing values should be recorded as a period *

B.7. THE ATOG PROGRAM* 323

2. If the variables in the source ASCII file are delimited by some characters (which are called the delim-
iter and can be any printable characters including commas), then we aditheit’ subcommand
immediately after thei'nvar’ command to inform the ATOG program what character is used as the
delimiter. When thedelimit’ subcommand is used, then any pair of delimiters with no values in
between imply a missing value which is equivalent to a periottetween the pair of delimiters.

The ‘delimit’ subcommand allows two inputs. Let’s consider the following examples.

(1) If the delimiter is %" and we expect one delimiter after every variable, then we type

\
1 ‘ invar delimit(;n) zz[5];

Here, the first input;” of the ‘deTimit’ subcommand specifies the delimiter. The second input

‘n’ of the ‘deTimit’ subcommand indicates one delimiter after every variable. So there is a
delimiter even after the last variable in each row. In the above example where five variables are
specified in thefnvar’ command, five ¢’ are expected in each row. If a row contains less than
five ‘5, then that row is considered incomplete and witlt be included in the output GDS file.

(2) If the delimiter is *’ and we do not expect a delimiter after the last variables, then we type

\
1| invar delimit(*) zz[5];

\
Here, the first input*’ of the ‘delimit’ subcommand specifies the delimiter. There is no
second input for thedelimit’ subcommand, which implies that there is a delimiter between
two variables but no delimiter is expected after the last variable. So with five variables specified
in the “invar’ command, only four delimiters are expected in each row.

(3) Ifthe delimiter is *,” and we do not expect a delimiter after the last variables, then we type

\
1 | invar delimit zz[5];

Here, there is no input for thelé1imit’ subcommand since the charactgrhappens to be the
default delimiter. Also, with five variables specified in thavar’ command, only four commas
are expected in each row.

(4) If each row only contains one value onlile blank rows are considered missing, then we give
the ‘delimit’ subcommand the special inpun’:

1 invar delimit(\n) zz[5];

(5) There is another special inpir* for the ‘deTimit’ subcommand:

1 invar delimit(\r) zz[5];

which specifies the following: there are five values in each row, the delimiter is copinaad
no comma after the last variable is expected.

324

APPENDIX B. GAUSS DATA SET (GDS) FILES

3. We need add therecord’ subcommand immediately after thinvar’ command if the source ASCII

file is packed; that is, all rows in the source ASCII file have the same number of characters and the
variables in each row are not delimited by any delimiter and can only be specified by the column
position in each row.

The use of therecord’ subcommand can be best explained through an example. Suppose the length
of each row is 45, i.e., the total number of characters in each row is 45. The typical row looks as
follows:

3656510970892837 92800ADEF GLKAMXZ02 84555790<CR>

|
1
2 | I e O e e A e R
s | position: 1 5 10 15 20 25 30 35 40 45 46
\

Note that there is a carriage return (CR) after the 45-th character.
A possible invar’ command with therecord’ subcommand is

\
1 \ invar record = 46 #(35,2.0) varl $(28,4) vard $(23,4) varlO #(5,7.3)
2 | var2;

\

The length of the row, including the carriage return (sometime the formatting code for “line feed”, if
any, may also need to be counted as another character), is indicated after the subcomouvade’;

which is then followed by a list of variable names, preceded by their respective specifications. The
value of the variablevarl’ is numeric and starts at the 35-th position, with 2 digits and 0 after the
decimal point, i.e., its value is ‘2'. The value of the variabler4’ is character and starts at the 28-th
position, with the 4 character6LKA’. The value of the variablevarl0’ is character and starts at the
23-rd position, with the 4 characte®DEF’. The value of the variablevar?2’ is numeric and starts at

the 5-th position, with 7 digits and 3 after the decimal point, i.e., its value is ‘'5109.708’. As the output
variables are fully specified by thegcord’ subcommand, theoutvar’ command is not needed in

the present case.

Consider another example

FGLPWSDFG890345 5678 2890 9089475 ASEDPPGFHVVC 233490856<CR><LF>

i

2 I e R s R I R R B A
| Cols:1 5 10 15 20 25 30 35 40 45 50 55 60 61 62
|

and

vr[2] $(*,2) pl p3 #(51,3.2) a b c;

\
1 ‘ invar record = 62 $(1,3) c[3] #(30,3.1) n[2] #(*,1,0) x $(38,4)
2

\

Here, the length of the row is 62, including ‘CR’ and the formatting code for line feed LF. The
values of the variables!1’, c2’, and ‘c3’ are ‘FGL’, ‘ PWS’, and ‘DFG’, respectively, since the same

B.7. THE ATOG PROGRAM* 325

specification $(1,3)’ will be applied to all ‘c[3]’. Similarly, the values of the variableal’ and

‘n2’ are ‘90.8’ and ‘94.7’, respectively. The asterisk in the next specificatti¢i, 1,0)’ indicates the
starting position is right next to the last position for the previous variable, which is the 36-th position
in the present case. So the value of the variaklés'5. With the same rule, we can find the values

of ‘vrl’, “vr2’, ‘pl’, ‘p3’, ‘a’, ‘'b’, and ‘c’ are ‘ASED’, ‘ PPGF’, ‘HV’, *VC’, '23.3’, ‘49.0’, and ‘85.6/,
respectively.

There are two more commands in the command file that may be useful. The command

1 append;

instructs the ATOG program to append the data to an existing GDS file without erasing the data already
there. The command

1 msym &;

defines the characte§’*as the missing value character. Note that the dois'the default.

