Machine Learning
and
Applied Econometrics

Tree-Based Models
Machine Learning and Econometrics

• This introductory lecture is based on
Supervised Machine Learning

• Regression-based Methods
 – Generalized Linear Models
 • Linear Regression
 • Logistic Regression
 – Deep Learning (Neural Nets)

• Tree-based Ensemble Methods
 – Random Forest (Bagging: Bootstrap Aggregation)
 • Parallel ensemble to reduce variance
 – Gradient Boost Machine (Boosting)
 • Sequential ensemble to reduce bias
Tree-Based Models

• Random Forest (Bagging: Bootstrap Aggregation)
 • Parallel ensemble to reduce variance
• Gradient Boost Machine (Boosting)
 • Sequential ensemble to reduce bias
Trees

• **Classification Tree**

![Classification Tree Diagram](image1)

Figure 5-1. A classification tree: deciding whether to walk or catch a taxi

• **Regression Tree**

![Regression Tree Diagram](image2)

Figure 5-2. A regression tree: estimating how long a car journey will take
Random Forest

• Random Forest is a bagging (bootstrap aggregation) of trees.

• Given a set of data, each of these trees in the forest is a weak learner built on a subset of rows (data observations) and columns (features or variables).

• More trees will reduce the variance, which may be processed in parallel.
Random Forest
Random Forest Modeling with H2O

• Basic Model
 - \texttt{h2o.randomForest (x, y, training_frame, model_id = NULL, seed = -1, ...)}

• Model Specification Options
 - \texttt{ntrees = 50, max_depth = 20, mtries = -1,}
 - \texttt{sample_rate = 0.632,}
 - \texttt{sample_rate_per_class = NULL,}
 \texttt{col_sample_rate_change_per_level = 1,}
 \texttt{col_sample_rate_per_tree = 1,}
 - \texttt{min_rows = 1, nbins = 20,}
 - \texttt{nbins_top_level = 1024, nbins_cats = 1024,}
Random Forest Modeling with H2O

• Model Specification Options (Continued)

 – distribution = c("AUTO", "bernoulli", "multinomial", "gaussian", "poisson", "gamma", "tweedie", "laplace", "quantile", "huber"),
 – histogram_type = c("AUTO", "UniformAdaptive", "Random", "QuantilesGlobal", "RoundRobin"),
 – checkpoint = NULL,
Random Forest Modelling with H2O

• Cross-Validation Parameters
 - validation_frame = NULL,
 - nfolds = 0, seed = -1,
 - keep_cross_validation_models = TRUE,
 - keep_cross_validation_predictions = FALSE,
 - keep_cross_validation_fold_assignment = FALSE,
 - fold_assignment = c("AUTO", "Random", "Modulo", "Stratified"),
 - fold_column = NULL,
Random Forest Modeling with H2O

- **Early Stopping**
 - stopping_rounds = 0,
 - stopping_metric = c("AUTO", "deviance", "logloss", "MSE", "RMSE", "MAE", "RMSLE", "AUC", "lift_top_group", "misclassification", "mean_per_class_error", "custom", "custom_increasing"),
 - stopping_tolerance = 0.001,
 - max_runtime_secs = 0,
Random Forest Modeling with H2O

• Other Important Control Parameters
 - balance_classes = FALSE,
 - class_sampling_factors = NULL,
 - max_after_balance_size = 5,
 - max_hit_ratio_k = 0,
 - min_split_improvement = 1e-05
 - binomial_double_trees = FALSE,
 - col_sample_rate_change_per_level = 1,
 - col_sample_rate_per_tree = 1,
Gradient Boosting Machine

• Gradient Boosting Machine (GBM) is a forward learning ensemble method. It combines gradient-based optimization and boosting.
 – Gradient-based optimization uses gradient computations to minimize a model’s loss function in terms of the training data.
 – Boosting additively collects an ensemble of weak models to create a robust learning system for predictive tasks.
Boosting

\[Y_M(x) = \text{sign} \left(\sum_{m=1}^{M} \alpha_m y_m(x) \right) \]
Gradient Boosting Machine

Gradient Boosting (Simple Version) (For Regression Only)

\[S = \{ (x_i, y_i) \}_{i=1}^N \]
\[h(x) = h_1(x) + h_2(x) + \ldots + h_n(x) \]

Gradient Boosting (Full Version) (Instance of Functional Gradient Descent) (For Regression Only)

\[S = \{ (x_i, y_i) \}_{i=1}^N \]
\[h_{1:n}(x) = h_1(x) + \eta_2 h_2(x) + \ldots + \eta_n h_n(x) \]

See reference for how to set \(\eta \)

4/23/2019 Machine Learning and Econometrics
Gradient Boosting with H2O

• Basic Model
 - `h2o.gbm(x, y, training_frame, model_id = NULL, seed = -1, ...)`

• Model Specification Options
 - `ntrees = 50, max_depth = 5, min_rows = 10,`
 - `nbins = 20, nbins_top_level = 1024, nbins_cats = 1024,`
 - `learn_rate = 0.1, learn_rate_annealing = 1,`
 - `sample_rate = 1, sample_rate_per_class = NULL, col_sample_rate = 1, col_sample_rate_change_per_level = 1, col_sample_rate_per_tree = 1, max_abs_leaf, node_pred = Inf, ...)"
Gradient Boosting with H2O

- Model Specification Options (Continued)
 - `distribution = c("AUTO", "bernoulli", "quasibinomial", "multinomial", "gaussian", "poisson", "gamma", "tweedie", "laplace", "quantile", "huber"),`
 - `quantile_alpha = 0.5,`
 - `tweedie_power = 1.5,`
 - `huber_alpha = 0.9,`
 - `checkpoint = NULL`
Gradient Boosting with H2O

• Cross-Validation Parameters
 - validation_frame = NULL,
 - nfolds = 0, seed = -1,
 - keep_cross_validation_models = TRUE,
 - keep_cross_validation_predictions = FALSE,
 - keep_cross_validation_fold_assignment = FALSE,
 - fold_assignment = c("AUTO", "Random", "Modulo", "Stratified"),
 - fold_column = NULL,
Gradient Boosting with H2O

• Early Stopping
 - stopping_rounds = 0,
 - stopping_metric = c("AUTO", "deviance",
 "logloss", "MSE", "RMSE", "MAE", "RMSLE",
 "AUC", "lift_top_group", "misclassification",
 "mean_per_class_error", "custom",
 "custom_increasing"),
 - stopping_tolerance = 0.001,
 - max_runtime_secs = 0,
Gradient Boosting with H2O

• Other Important Control Parameters
 – `min_split_improvement = 1e-05`
 – `histogram_type = c("AUTO", "UniformAdaptive", "Random", "QuantilesGlobal", "RoundRobin")`