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Chapter 1

Introduction

1.1 Summary

Two of the main goals of coding theory are to find and classify useful codes. In

this paper we examine the structure of one of the most famous of code families, the

Hamming codes. The central result derived in this paper is one of the strongest

and most sophisticated of the bounds restricting the sizes of codes, Delsarte’s linear

programming bound, developed in Delsarte’s thesis [3]. This bound is a result in

the theory of association schemes, so we include a brief introduction to association

schemes. We explore the application of the theory of association schemes to coding

theory, in particular to the Hamming codes.
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1.2 Motivation for Coding Theory

When data is transmitted over large distances or noisy channels, it becomes nec-

essary to ensure that the data sent is correctly delivered. How can someone on

the receiving end of a data channel be assured that the information they receive

is the data which was transmitted? And, if data is corrupted, can the correct in-

formation be reconstructed using what was received? The field of study known as

coding theory attempts to answer these questions. Special constructs called codes

enable the receiving party to determine if information has been correctly received

and, under certain circumstances, allow the receiver to fix information which has

been corrupted.

As an example, consider a scenario where a message using words {0, 1} is sent

across a noisy channel to a receiver. Suppose that there is a 1% chance that,

in transmission, an error is introduced that switches a 1 to a 0 or vice-versa.

If such a switch occurs, there is no way that the receiver can detect the error,

which is clearly undesirable. We can adapt to this by sending each bit twice. The

codewords in this new code are the strings of length 2 over the field of two elements

giving a code C1 = {00, 11}, out of the set of 4 possible words of length two.

This code allows the receiver to detect whether or not a single transmission error

has occurred. For example, if the word received is 01, which is not a codeword,

then the receiver knows that one of the elements has changed and can request
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retransmission. The difficulty is not completely resolved, however. Two errors can

occur which transform a codeword to another codeword, say 11 to 00, and such

an error cannot be detected. The odds of two errors occurring, though, are only

.01%, and this is clearly better than the original scheme. Note, however, that even

if an error is detected, the receiver cannot be sure of which bit has been switched.

The word sent could have been 00 or 11, and so although the receiver can request

retransmission, there is no way for the receiver to independently correct the error.

On the other hand, if the code used is C2 = {000, 111}, then the receiver could

use a “majority rules” decoding scheme where 111, 101, 011, and 110 would all be

decoded as 1, and 000, 001, 010, and 100 would all be decoded as 0. Notice that any

single error can not only be detected, the word which was sent can be recovered.

Decoding in this way is called nearest-neighbor decoding. The codewords are longer

in this coding scheme, and so information will take longer to transmit. One of the

main goals of coding theory is to determine a precise relationship between the

length of the code words and the ability to detect and correct a fixed number of

errors.

So good codes must have special properties: the codewords must be long enough

to make detecting errors possible but they should be short enough to ensure effi-

cient transmission. Bounds on the sizes of codes relative to code word length are

invaluable, and one of the strongest such bounds is the linear programming bound

developed by Phillipe Delsarte in 1973 [3]. The search for “optimal” codes has led
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to the development of a family of codes known as the Hamming codes, which have

some very beneficial encoding and decoding properties.

In this paper, we introduce the Hamming codes and examine them using the

algebraic structure of association schemes. It is in this framework that we prove

the linear programming bound, which gives us useful information about the re-

lationship between the size of a code and the length of the codewords needed to

achieve the desired error correction capacity. We begin with an overview of the

basic ideas of coding theory.
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Chapter 2

Hamming Codes

2.1 Foundations of Coding Theory

If X is a finite set, then a non-empty subset C of X is called a code. Often X is

the set of n-tuples from a finite alphabet K with q elements. The elements of X

are called words and the elements of C are called codewords. When K is a field,

X is an n-dimensional vector space over K. In this case, C is called a linear code

if C is a linear subspace of X. When K = Fq, the finite field of q elements, then q

will be a prime power and X will be denoted V (n, q).

Given an (un-encoded) source message, an encoded message can be produced

by breaking the source message into blocks of length m and encoding these blocks

as codewords of length n. Such a code is called a block code. Thus for each n
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symbols transmitted, only m symbols of the message are transmitted. We define

the transmission rate ρ of such a code C as

ρ(C) =
m

n
.

In the case of a linear code C, m is the dimension of C as a subspace of V (n, q).

Given a set X of words over a finite alphabet K, it is customary to assume

that K has at least the structure of an Abelian group. We use additive notation to

denote the group operation, so 0 will denote the identity of K. All operations on

X will be done entry-wise. The weight w(x), also called the Hamming weight, of a

word w ∈ X is the number of non-zero entries in w, and the distance d(w1,w2),

also called the Hamming metric, between two words w1,w2 in X is number of

positions in which w1 and w2 differ, denoted d(w1,w2). In other words, the

distance between two code words w1 and w2 will be the weight of w1 − w2. The

notion of nearest neighbor decoding refers to decoding a received word w ∈ X as

a nearest codeword in C relative to the Hamming metric. The following lemma

establishes that the Hamming metric is indeed a metric on X.

2.1.1 Lemma. The set X of n-tuples from a finite alphabet K along with the

Hamming metric is a metric space.

Proof: To verify that the Hamming metric d : X × X → R+ is a metric, we

must show that
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1. d(w,v) = 0 if and only if w = v,

2. d(w,v) = d(v,w), and

3. d(u,w) ≤ d(u,v) + d(v,w) for all u,v,w ∈ X.

Clearly, a word w differs from itself in 0 places, and so d(w,w) = 0. Also, if

d(w,v) = 0, then each entry in w is equal to the corresponding entry in v, and

so w = v. It is obvious that d(w,v) = d(v,w) for all w and v. To see that

d(u,w) ≤ d(u,v) + d(v,w) for all u, v, and w in X, note that for each position

where u differs from w, v must differ from at least one of w or u. So for each

position where u and w differ, and thus a 1 is contributed to d(u,w), a 1 will

be contributed to at least one of d(u,v) or d(v,w). Thus the triangle inequality

holds, and so X, along with the Hamming metric, is a metric space. Done.

Given a code C, the diameter ∆ of a code is the maximum distance between

any two codewords in C. The minimum distance δ = δ(C) of a code C is the

smallest distance between distinct codewords, and the minimum weight ω = ω(C)

is the smallest weight of a nonzero codeword. If C is a linear code with dimension

m and minimum distance δ in the space V (n, q), it is called a q-ary (n, m, δ)-code.

Sometimes the notation [n, δ]-code is used, as when the dimension is irrelevant or

not applicable.

The minimum distance of a code is of particular interest in coding theory, as
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this quantity determines how many errors that code can detect or correct. In

particular, we have the following.

2.1.2 Lemma. Suppose X is the set of n-tuples from a finite alphabet K. Assume

that K has the structure of an Abelian group and let d(x,y) denote the Hamming

metric on X. If the minimum distance δ of a code C satisfies δ ≥ 2r + 1 for some

r ∈ N, then nearest-neighbor decoding can correct transmission errors involving

t ≤ r entries.

Proof: Suppose a codeword c is transmitted and the word w is received with

t ≤ r errors occurring, that is d(w, c) = t ≤ r. To show that C is r-error correcting,

we must show that d(c′,w) > r for all c′ 6= c in C. The received word w differs

from c in exactly t places, and so

d(w, c′) ≥ d(c′, c) − d(w, c)

≥ 2r + 1 − r

≥ r + 1

> r

Thus w is distance at most r from exactly one codeword, namely c, and so nearest-

neighbor decoding will correct up to r transmission errors. Done.

The advantage of working with linear codes involves computational considera-

tions. If a code C is non-linear, then all
(
|C|
2

)
distances between distinct codewords
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of C must be checked to determine the minimum distance δ(C). If C is a lin-

ear code, however, δ(C) equals the minimum weight ω(C) of the code. Finding

ω(C) only involves |C| − 1 calculations, one for each non-zero codeword, and so

is much faster. This is because, when C is linear, the difference between any

two codewords is again a codeword, and so the distances d(c1, c2) become weights

w(c1 − c2), where c1 − c2 6= 0.

A code C ⊆ X is said to cover X with radius r if for all words x ∈ X there is a

codeword c in C with d(x, c) ≤ r. A code C is said to be r-perfect if each word in

X is distance less than r from exactly one codeword. Such codes are occasionally

referred to as perfect r-codes. As an example, consider the code C2 = {000, 111}

from the introduction as a linear code in V (3, 2). Any other word in V (3, 2) is

distance one from exactly one of 000 or 111, and so C2 = {000, 111} is a perfect

1-code.

Given a particular space X, a natural question is how large a code can be

defined on X with minimum distance δ? One of the more well known bounds on

such a code is the Hamming bound or sphere packing bound.

2.1.3 Theorem. (Hamming Bound) Let X be the set of n-tuples over a finite

alphabet K with q elements. Assume as above that K has the structure of an

Abelian group. If C is a code in X with minimum distance δ ≥ 2r + 1 for some
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r ≥ 0, then

|C|

r∑

i=0

(
n

i

)
(q − 1)i ≤ qn (2.1)

Proof: Note that |X| = qn. Now let c be a codeword in C. Then for a word

in X to be at distance i from c it must differ from c in exactly i places. There are

(
n
i

)
choices for which i of the n entries are different and for each of these i entries

there are q − 1 letters different from the one in c. Thus for each distance i there

are
(

n
i

)
(q − 1)i words at distance i from c. So the sum on the left of (2.1) counts

the number of words in a ball Br(c) of radius r centered at a codeword c. Since

δ ≥ 2r + 1, these balls are disjoint as c ranges over the code C, so

| ∪c∈C B(c)| = |C|
r∑

i=0

(
n

i

)
(q − 1)i. (2.2)

But clearly | ∪c∈C Br(c)| ≤ |X|, and so (2.1) follows. Done.

2.1.4 Corollary. Equality holds in Theorem 2.1.3 if and only if C is a perfect

(δ − 1)/2-code.

Proof: Let r := (δ − 1)/2. Note that by the definition of r, the balls around

distinct codewords are disjoint. If C is a perfect r-code, then the balls of radius

r centered at the codewords of C partition X, and so equality holds. If C is not

perfect, then the balls of radius (δ − 1)/2 centered at the words of C do not cover

X and so strict inequality must hold. Done.
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2.2 Generating and Parity Check Matrices

Let C denote a linear code in V (n, q). Let G be a matrix whose rows generate

(span) C. The matrix G is called a generating matrix of C. The dual code of C,

denoted C⊥, is defined to be the set

C⊥ = {x ∈ V (n, q) : 〈x, c〉 = 0 ∀ c ∈ C} (2.3)

where 〈u,v〉 := u1v1 + u2v2 + · · ·unvn. Note that C⊥ is clearly also a linear code,

and thus has a generating matrix H. By the definition of C⊥, it can be seen that

C = {c ∈ V (n, q) : cH t = 0}. (2.4)

The matrix H is called a parity check matrix for C. If a word w is received, then

it can be verified that w is a codeword simply by checking that wH t = 0.

2.3 The Binary Hamming Code

In this section we introduce the “classical” Hamming code which is a linear code

in V (n, 2) for some n ≥ 2. We refer to such a code as a binary Hamming code.

Let F2 denote the field of two elements and let H be the matrix whose columns

are all the non-zero vectors of length k over F2, for some k ∈ N. Note that there

will be 2k − 1 of these. Clearly any two columns of H are linearly independent, as

different columns will have 1’s in different places. We define the binary Hamming
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code as follows:

2.3.1 Definition. Fix k ≥ 2 and let n = 2k − 1. Let H denote the k × n matrix

defined above. The (binary) Hamming code Ham2(n) is the linear subspace of

V (n, 2) consisting of the set of all vectors orthogonal to all the rows of H. That

is,

Ham2(n) = {v ∈ V (n, 2) : v H t = 0}. (2.5)

2.3.2 Proposition. The binary Hamming code Ham2(n) with k× (2k −1) parity

check matrix H is a (2k − 1, 2k − k − 1, 3)-code.

Proof: That the length of the vectors in Ham2(n) is 2k − 1 is clear. The code

Ham2(n) is defined to be the subspace of V (n, 2) orthogonal to the rowspace of

H, which has dimension k, and so the dimension of Ham2(n) will be 2k − k− 1 by

the rank-nullity theorem. By definition, no two columns of H are dependent, but

since the vectors u = 〈1, 0, . . . , 0〉t, v = 〈0, 1, 0, . . . , 0〉t, and w = 〈1, 1, 0, . . . , 0〉t

are among the columns of H, there exist three columns in H which are linearly

dependent. This implies that the code generated will have minimum distance 3.

To see this, recall that for a linear code, the minimum distance is equivalent to

the minimum weight of a codeword. Suppose columns i, j, and k of H are linearly

dependent. Then some linear combination of those three columns with non-zero

coefficients will equal zero, and since the vectors are taken over F2, the coefficients
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must be 1. So the vector with 1’s in the i, j, and k position is in Ham2(n), and so

the minimum weight of the code is at most 3. It cannot be less than 3, or else some

linear combination of two columns of H would be zero, which we have ruled out.

Thus H will be the parity check matrix for a (2k − 1, 2k − k − 1, 3)-code. Done.

From the definition of transmission rate, we have the following corollary:

2.3.3 Corollary. Let n = 2k − 1 for some k ≥ 2. Then the binary Hamming code

Ham2(n) is a perfect 1-code and has transmission rate

ρ(Ham2(n)) =
2k − k − 1

2k − 1
(2.6)

Proof: Ham2(n) is a perfect 1-code by Corollary 2.1.4, and the transmission

rate is immediate from the definition of Ham2(n). Done.

2.4 The q-ary Hamming Code

In this section we consider the natural generalization of the binary Hamming code

to an arbitrary finite field. For any positive integer m and prime p, let Fq denote

the finite field with q = pm.

In the previous section we constructed the binary Hamming code in V (n, 2) us-

ing a matrix whose columns were all the non-zero vectors in V (n, 2). Because the
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field of scalars was F2, this implied that the columns were pairwise independent.

To construct the Hamming code over an arbitrary finite field Fq, we must mod-

ify this construction, since the non-zero vectors over Fq are not pairwise linearly

independent. We begin with the following lemma.

2.4.1 Lemma. Let k ∈ N with k ≥ 2, and let q be a prime power. Consider

the vector space V (k, q) over the finite field Fq. Let n = qk−1
q−1

. Then the following

hold:

1. The number of 1-dimensional subspaces of V (k, q) is n.

2. There exists a k × n matrix over Fq whose columns are pairwise linearly

independent.

Proof: To show (1), we note that the number of non-zero vectors in V (k, q) is

qk − 1. However, for each non-zero vector v, any of the q − 1 non-zero multiples

of v is also a non-zero vector and lies in the same one-dimensional subspace as

v. Thus qk−1
q−1

counts each one-dimensional subspace of V (k, q). By selecting one

non-zero vector from each of the 1-dimensional subspaces of V (n, q) and taking

these vectors to be the columns of k × n matrix, we see that claim (2) follows

immediately from claim (1). Done.

We construct the q-ary Hamming code as follows: For k ≥ 2 and prime power

q, let n = (qk − 1)/(q − 1). We construct the q-ary Hamming code by finding a
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k×n matrix H with entries in Fq whose columns are pairwise linearly independent.

2.4.2 Definition. Let n = (qk − 1)/(q − 1) for some k ≥ 2 and a prime power

q. The q-ary Hamming code Hamq(n) with parity check matrix H is the set of

vectors in V (n, q) orthogonal to H. That is,

Hamq(n) = {v ∈ V (n, q) : v H t = 0} (2.7)

The following theorem characterizes the q-ary Hamming codes.

2.4.3 Theorem. Fix any positive integer k ≥ 2 and prime power q. Let n =

qk−1
q−1

. The q-ary Hamming code Hamq(n) with k × n parity check matrix H is an

(n, n − k, 3)-code.

Proof: By defining n as we have above, we have included in the columns of

H a representative from each one-dimensional subspace of V (n, q), by Lemma 2.4.

So by picking the columns of H to be n pairwise linearly independent vectors, we

have chosen a maximal set of pairwise linearly independent vectors. In particular,

if we take the sum of any two vectors, say v and w, which are columns of H, their

sum must be in the span of one of the columns of H. Otherwise the maximality of

the set of column vectors of H would be violated. Thus we can find three column

vectors in H which are linearly dependent, and so the minimum distance of this

code must be 3. Among the columns of H we must include a representative from

17



the one-dimensional space spanned by each of the usual basis vectors 〈1, 0, . . . , 0〉,

〈0, 1, . . . , 0〉, 〈0, 0, . . . , 1〉, and so the rows of H will be linearly independent. Thus

the rowspace of H has dimension k, and so Hamq(n) will have dimension n − k.

Done.

We also have the following corollary, analogous to Corollary 2.3.3, for q-ary

Hamming codes.

2.4.4 Corollary. The q-ary Hamming code Hamq(n) with k × n parity check

matrix H will be a perfect 1-code with transmission rate

ρ(Hamq(n)) =
qk − k − 1

qk − 1
. (2.8)

Proof: That Hamq(n) is a perfect 1-code is obvious from Corollary 2.1.4, and

the rate of Hamq(n) is immediate from the definition of Hamq(n). Done.

Note that the transmission rate of a q-ary Hamming code approaches 1 as

k → ∞. Thus for large message blocks, the Hamming codes are economical in

their encoding of the source message. Note also that as q → ∞, the rate of the

code increases. So using larger fields results in a larger transmission rate. The

minimum distance, however, remains 3 for any k and q.

2.4.5 Example. Ternary Hamming code of length 4. For a ternary code, q = 3,

and we pick k = 2 so that n = 32−1
3−1

= 4. We may take the following as a parity

18



check matrix

H =




2 1 1 0

2 2 0 1


 (2.9)

and so we see that

Ham3(4) ={(0, 0, 0, 0), (0, 1, 1, 2), (0, 2, 2, 1), (1, 0, 1, 1),

(1, 1, 2, 0), (1, 2, 0, 2), (2, 0, 2, 2), (2, 1, 0, 1), (2, 2, 1, 0)}

is a (4,2,3)-code in V (4, 3). Since the minimum distance of Ham3(4) is 3, this code

can correct single errors. The transmission rate of Ham3(4) is 22−2−1
22−1

= 5
7
.

To explore the relative strengths and weaknesses of the Hamming codes, we

must place them in a broader context. In next chapter we introduce the theory

of association schemes and how they relate to the Hamming codes. For more

information on the Hamming codes, see [5] or [7].
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Chapter 3

Association Schemes

3.1 Introduction to Association Schemes

While we can say much about codes without talking about association schemes,

the algebraic structure they provide gives us a more complete picture of how codes

interact with the set they are in. Delsarte used this structure to give what is one of

the strongest bounds on code size to date. What is remarkable about this bound is

that is applies not only to linear codes, but to any code, and indeed to any subset

of an association scheme.

In its most general sense, an association scheme is defined as follows:

3.1.1 Definition. An association scheme A = {X,R} is finite set X and a set
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of relations R = {R0, R1, . . . , Rd} on X such that the Ri satisfy

1. R0 = {(x, x) : x ∈ X}

2. For each Ri ∈ R, the relation R−1
i = {(y, x) : (x, y) ∈ Ri} is also in R.

3. R partitions X × X.

4. For any h, i, j ∈ [0, d] there exists a nonnegative integer ph
i,j such that for all

(x, y) in Rh

|{z ∈ X : (x, z) ∈ Ri and (z, y) ∈ Rj}| = ph
i,j. (3.1)

5. ph
i,j = ph

j,i for all h, i, j ∈ [0, d].

The numbers ph
i,j are sometimes called the parameters of the scheme and d is called

the diameter of the scheme. If condition 2 is strengthened to require that Ri = R−1
i

for all i, then the association scheme is called symmetric. In this case, property 5

can be omitted, as it follows from the other conditions.

The particular scheme that we are interested in is the Hamming scheme, which

is defined as follows:

3.1.2 Definition. Let K be a finite Abelian group with q elements and X be

the set of all n-tuples with entries from K. Define a set R of relations Ri on X

by (x,y) ∈ Ri whenever d(x,y) = i, where d denotes the Hamming metric. Then
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A = (X,R) is a symmetric association scheme referred to as the Hamming scheme.

The Hamming scheme is denoted H(n, q).

To see that H(n, q) is indeed a symmetric association scheme, observe that the

Hamming metric is symmetric, and so the Hamming scheme will be symmetric.

For any v in V (n, q), d(v, v) = 0 and so R0 = {(v, v)} as required. The relations

Ri clearly partition V (n, q) × V (n, q). Determining the ph
i,j’s is not difficult, but

it can be time consuming. It is made easier by the fact that if one of h, i, or j

is larger than the sum of the other two, then ph
i,j = 0. This is a direct result of

the triangle inequality. The following combinatorial expression for the ph
i,j of the

Hamming scheme is H(n, q) derived in [1].

ph
i,j =

bi+j−h/2c∑

δ=0

(q − 2)i+j−h−2δ

(
h

j − δ

)(
j − δ

h − i + δ

)(
n − h

(i + j − w)/2

)
. (3.2)

We illustrate the Hamming schemes with an example.

3.1.3 Example. The Hamming scheme H(3,2)

Consider the set X of 3-tuples with entries in F2 = {0, 1}. The scheme H(3, 2)

can be represented as a graph with vertex set X and an edge between two ver-

tices if and only if they differ by exactly one entry (see figure 3.1). The distance

between vertices, i.e.- the length of the shortest edge path connecting them, will

then indicate which relation they are contained in.
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Figure 3.1: The 3-dimensional binary Hamming cube.

The Hamming code Ham2(3) is the code C2 = {000, 111} given in the introduc-

tion. Notice that the codewords 000 and 111 are at distance 3 from each other in

the above graph, and that every other vertex in the graph is distance 1 from exactly

one of 000 or 111. So Ham2(3) is a perfect 1-code. It follows that Ham2(3) has the

property that it can correct exactly 1 transmission error. For more information on

graph theory and it’s applications to coding theory, see [4]

3.2 Associate Matrices and the Bose Mesner Al-

gebra

Assume A = {X,R} is a symmetric association scheme. There is a useful repre-

sentation for each Ri as a symmetric zero-one matrix Ai in MatX(C). For each i,
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0 ≤ i ≤ d, the matrix Ai is defined as

(Ai)u,v =





1 (u, v) ∈ Ri

0 (u, v) /∈ Ri.

(3.3)

The Ai’s are known as the associate matrices, and they have the following well-

known properties, which follow directly from the axioms of a symmetric association

scheme above

1. A0 = I

2.
∑d

i=0 Ai = J

3. AjAi =
∑d

h=0 ph
i,jAh ∀ 0 ≤ i, j ≤ d

Since the associate matrices are zero-one matrices, Property 2 above implies

that the matrices Ai are linearly independent. Property 3 above shows that the

product of matrices in the span of the Ai’s is again in the span of the Ai’s, and so

the set {A0, A1, . . . , Ad} forms a basis for an algebra M ⊆ MatX(C), known as

the Bose-Mesner Algebra. Since the Ai’s are all symmetric, M is commutative.
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For Example 3.1.3, the associate matrices are as follows:

A0 =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




A1 =




0 1 1 0 1 0 0 0

1 0 0 1 0 1 0 0

1 0 0 1 0 0 1 0

0 1 1 0 0 0 0 1

1 0 0 0 0 1 1 0

0 1 0 0 1 0 0 1

0 0 1 0 1 0 0 1

0 0 0 1 0 1 1 0




A2 =




0 0 0 1 0 1 1 0

0 0 1 0 1 0 0 1

0 1 0 0 1 0 0 1

1 0 0 0 0 1 1 0

0 1 1 0 0 0 0 1

1 0 0 1 0 0 1 0

1 0 0 1 0 1 0 0

0 1 1 0 1 0 0 0




A3 =




0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0




The diameter of the corresponding graph, Figure (3.1) above, is 3, and so we

should have 4 relations, and hence 4 associate matrices. Their sum should be the

all-ones matrix, and so a 1 should occur in the (i, j) position in exactly one matrix.

Both these properties are satisfied by inspection of the above matrices.
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3.3 Orthogonal Idempotents and Properties

The Bose-Mesner algebra of a symmetric association scheme has, as a second basis,

a set of mutually orthogonal primitive idempotent matrices. To see this, note

that the matrices Ai have real entries and are symmetric (because our scheme is

symmetric) and so satisfy Ai = At
i. Therefore by the spectral theorem of linear

algebra there exist symmetric matrices E0, E1, . . . , Ed in M satisfying the following

properties:

1. EiEj =





0 i 6= j

Ei i = j

∀ 0 ≤ i, j ≤ d ,

2. A =
∑d

i=0 λiEi,

3.
∑d

i=0 Ei = I,

4. AEi = λiEi ∀ 0 ≤ i, j ≤ d,

where the {λi}
d
i=0 are the d + 1 distinct eigenvalues of A. Each Ei is constructible

as follows: For each Ai, let u
(i)
0 , u

(i)
1 , . . . , u

(i)
k be the k eigenvectors of Ai. Then

Ei =
(
u

(i)
0 |u

(i)
1 | . . . |u

(i)
k

)(
u

(i)
0 |u

(i)
1 | . . . |u

(i)
k

)t

(3.4)
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3.4 The Eigenmatrices P and Q

Let A be an association scheme with associate matrices A0, A1, . . . , Ad and or-

thogonal idempotents E0, E1, . . . , Ed. The first eigenmatrix P is defined to be the

matrix such that

(A0, A1, . . . , Ad) = (E0, E1, . . . , Ed)P. (3.5)

From this definition, it is clear that the entries in the jth column of P are the

eigenvalues of Aj. The second eigenmatrix Q is defined to be the matrix such that

(E0, E1, . . . , Ed) = |X|−1(A0, A1, . . . , Ad)Q. (3.6)

From these definitions, and the relations between the Ai’s and Ei’s, we have that

PQ = |X|I (3.7)

The eigenmatrices of the Hamming scheme H(3, 2) from example (3.1.3) are

P =




1 3 3 1

1 1 −1 −1

1 −1 −1 1

1 −3 3 −1




(3.8)

and

Q =




1 3 3 1

1 1 −1 −1

1 −1 −1 1

1 −3 3 −1




(3.9)
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The matrix Q is central to the formulation of the linear programming bound we

wish to establish, and so explicit formulas for the matrices P and Q for an arbitrary

Hamming scheme H(n, q) will be derived in the next section.

3.5 The Eigenmatrices of the Hamming Scheme

The calculation of the P and Q matrices for a particular scheme is non-trivial.

Delsarte [3] showed that the entries of the eigenmatrix Q for the Hamming scheme

H(n, q) can be found using the Krawtchouk polynomials

Kk(x) =

k∑

i=1

(
x

i

)(
n − x

k − i

)
(−1)i(q − 1)k−i. (3.10)

This is particularly helpful for the Hamming schemes, which are self dual, and so

satisfy Q = P [10]. As a preliminary to the development of the matrix Q for the

Hamming schemes, we must first discuss inner products in Abelian groups.

Let F denote a finite Abelian group. It is well known (see [6], for example) that

F is isomorphic to a multiplicative group of complex characters, homomorphisms

from F to C. For each a ∈ F , let ϕa denote the corresponding character. Thus we

can define the inner product 〈 , 〉∗ : F × F → C by

〈a, b〉∗ = ϕa(b) (3.11)

By its definition, 〈 , 〉∗ has the following properties (see [6]):
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1. 〈a, b〉∗ = 〈b, a〉∗ for all a, b in F

2. 〈a, b〉∗〈a, c〉∗ = 〈a, b + c〉∗ for all a, b, c in F

3. If 〈a, b〉∗ = 〈a, c〉∗ for all a in F , then b = c

Delsarte showed that this inner product has some very useful properties. A

preliminary lemma makes these clear.

3.5.1 Lemma. Let F be an Abelian group and let G be a subgroup of F . Define

the dual subgroup G0 of G by

G0 = {a ∈ F : 〈a, b〉∗ = 1 for all b ∈ G}. (3.12)

Then the inner product 〈 , 〉∗ defined above satisfies

∑

a∈G

〈b, a〉∗ =





|G| b ∈ G0

0 else

(3.13)

Proof: Suppose b ∈ G0. Then each of the terms in the sum on the left side of

(3.13) is 1 by the definition of G0, and since the sum is taken over all elements of

G, we get |G|. If b /∈ G0, then let c ∈ G. By the properties of the inner product

29



〈 , 〉∗, we have that

〈b, c〉∗
∑

a∈G

〈b, a〉∗ =
∑

a∈G

〈b, c〉∗〈b, a〉∗ (3.14)

=
∑

a∈G

〈b, a + c〉∗ (3.15)

=
∑

d∈G

〈b, d〉∗. (3.16)

Suppose the sum in (3.13) was not zero. Then we would have that 〈b, c〉∗ = 1 =

〈0, c〉∗ for all c ∈ G, and so b = 0 by the properties of 〈, 〉∗. Thus b ∈ G0, which is

the case already considered. Thus the lemma holds. Done.

From this lemma we have the following corollary.

3.5.2 Corollary. If F is a field of order q, then

∑

b∈F∗

〈a, b〉∗ =





q − 1 for a = 0,

−1 for a 6= 0,

(3.17)

where F ∗ is the set of non-zero elements of F .

Proof: Referring to Lemma 3.5.1, we take G to be F , and so G0 = {0}. Then

since 〈a, 0〉 = 1 for all a ∈ F , the result follows immediately from Lemma 3.5.1.

Done.

Now let X be the set of n-tuples with entries from the finite Abelian group F .

The inner product on F can be extended to an inner product 〈x,y〉 on X = F n
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which inherits the properties 1-3 above by taking

〈x,y〉 =
n∏

i=1

〈xi, yi〉∗. (3.18)

This inner product on X can be used to define an orthogonal matrix as follows.

3.5.3 Corollary. Let S ∈ MatX(C) be defined as

Sx,x′ = 〈x,x′〉. (3.19)

Then S is an orthogonal matrix. That is, it satisfies SS̃ = |X|I.

Proof: As in the previous corollary, we take G = F and so G0 = {0}. Then

the result follows immediately from matrix multiplication and the properties of the

inner product on X. Done.

Given a finite dimensional vector space X over a field F , we define the weight

partition of X as follows.

3.5.4 Definition. If X is a finite dimensional vector space over a field F we define

the ith weight partition Xi of X to be the set of all vectors in X with precisely i

non-zero entries. In the language of coding theory, this amounts to a word having

weight i. The collection of all such Xi’s is the weight partition of X.

3.5.5 Lemma. Let X be the set of n-tuples with entries from the finite Abelian

group F with |F | = q where q is a prime power, and let F ∗ denote the set of

non-zero elements in F . The Krawtchouk polynomials, given in (3.10), and the
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inner product defined above are related in the following fashion.

∑

x′∈Xk

〈x,x′〉 = Kk(u) ∀ x ∈ Xu (3.20)

Proof: Let J be a subset of {1, 2, . . . , n} with |J | = k. There are (q − 1)k

words x′ in X with x′
i 6= 0 for all i in J , and the product 〈x,x′〉 for each of those

x′ can be expressed, using equation (3.18) as

∏

i∈J

〈xi, x
′
i〉∗, (3.21)

since when i /∈ J , x′
i = 0 and so the factor 〈xi, x

′
i〉 in the product in (3.18) would

be 1. This can be expressed as

∏

i∈J

(
∑

b∈F ∗

〈xi, b〉∗

)
(3.22)

since, in multiplying all sums together, we are combining the entries in x, corre-

sponding to non-zero entries in x′, with all non-zero elements in F .

Using equation (3.17), each of the sums in (3.22) is equal to -1 or q−1, depend-

ing on whether xi is zero or not. Thus if we denote by j the number of non-zero

entries xj in x where x′
j is also not zero, the product in (3.22) becomes

(−1)j(q − 1)k−j. (3.23)

We will get such a term for each choice of J , and there are
(

u
j

)(
n−u
k−j

)
such terms.

This is because, of the u non-zero elements in x, we choose j of these for x and
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x′ to have in common, and then choose k − j more entries from the n − u entries

remaining in x′ to give x′ a weight of k. Done.

3.5.6 Theorem. For the Hamming scheme H(n, q),

Qi,k = Kk(i) (3.24)

for i, k = 0, 1, . . . , d, where Kk(x) is the Krawtchouk polynomial of degree k.

Proof: Let X be a finite dimensional vector space over the finite field F and

let W = {X0, X1, . . . , Xn} be the weight partition of X. That is, Xk is the set of

all words in X with weight k. Let F ∗ denote the set of non-zero elements of F .

Define a matrix S ∈ C(X, X) by Sx,x′ := 〈x,x′〉 =
∏n

i=1〈xi, x
′
i〉. For each k, let

Sk be the n × |Xk| submatrix of S consisting of the columns of S corresponding

to the vectors in Xk. Then the x,y-entry of SkS̃k, where Ã denotes the conjugate

transpose of A, is given by

(
SkS̃k

)
x,y

=
∑

x′∈Xk

(Sk)x,x′(S̃k)x′,y

=
∑

x′∈Xk

〈x,x′〉〈−y,x′〉

=
∑

x′∈Xk

〈x − y,x′〉

= Kk(ω(x − y)).

By the definition of the Hamming scheme, two vectors x and y are in the ith

relation if and only if they differ by i entries, and this number is given by ω(x−y).
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The associate matrices represent these relations, and so ω(x − y) = i if and only

if (Ai)x,y = 1. So the product SkS̃k is given by

SkS̃k =
d∑

i=0

Kk(i)Ai. (3.25)

Since the matrix S is an orthogonal matrix, the matrices given by |X|−1SkS̃k are

mutually orthogonal idempotents, which by equation (3.25) are in the Bose-Mesner

algebra of X. Thus they are equal to the Ei’s defined above, and so we have that

Ei = |X|−1

d∑

i=0

Kk(i)Ai, (3.26)

which is precisely how the entries in the second eigenmatrix Q were defined. Thus

the i, k-entry in Q is given by Kk(i). Done.
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Chapter 4

The Linear Programming Bound

4.1 Distribution vectors

If (X,R) is an association scheme and Y is a subset of X, then we can define the

distribution vector and distribution matrix of Y as follows.

The distribution vector of Y is the vector a whose ith entry is given by

ai =
|(Y × Y ) ∩ Ri|

|Y |
. (4.1)

The ai’s can be thought of as the average number of elements in Y at distance i

from some other element of Y . Note also that

d∑

i=0

ai = |Y | (4.2)

As an example, recall the Hamming scheme H(3, 2). If we take the set Ham2(3) =
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{000, 111} as our subset Y , then the distribution vector for Y is 〈1, 0, 0, 1〉.

4.2 The Linear Programming Bound

The linear programming bound, presented by Phillipe Delsarte in 1973, improved

significantly upon the Hamming bound given in Theorem 2.1.3. It is essentially

an algebraic bound, owing little to combinatorial arguments, and this is perhaps

why it succeeds so well.

4.2.1 Theorem. If a is the distribution vector of a subset Y of an association

scheme (X,R) with dual eigenmatrix Q, then aQ ≥ 0.

Proof: Let y be the characteristic vector of Y . Then the ith entry of a is given

by

ai =
yAiy

t

|Y |
. (4.3)

Then, since the Ei’s are idempotent and symmetric,

0 ≤||yEk||
2

=(yEk)(yEk)
t

=yEky
t.
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Using equations (3.6) and (4.3), this can be expressed as

0 ≤
1

|X|
y

(
d∑

j=0

Qj,kAj

)
yt

=
1

|X|

(
d∑

j=0

Qj,kyAjy
t

)

=
|Y |

|X|

(
d∑

j=0

ajQj,k

)
.

=
|Y |

|X|
(aQ)k

Thus we have the desired inequality. Done.

The utility of Theorem 4.2.1 may not be immediately apparent, and so we give

the following corollary.

4.2.2 Corollary. [9] Let A be an association scheme with dual eigenmatrix Q,

diameter d, and distribution vector a = 〈a0, a1, . . . , ad〉. Then any code C with

minimum distance r in A satisfies

|C| ≤ max

(
d∑

i=0

ai

)
(4.4)

where the maximum is taken over all {a0, . . . , ad} where the ai’s satisfy

1. a0 = 1,

2. ai = 0 for 1 ≤ i ≤ r,

3. ai ≥ 0 ∀ i, and
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4. aQ ≥ 0.

Proof: Immediate from Theorem 4.2.1. Done.

When constructing a code C with a particular minimum distance, Theorem

4.2.1 gives a restriction on the distribution vector of C. The first element of a

will be 1, and if we want to restrict our bound to codes of minimum distance r,

the entries a1 through ar−1 should all be zero and the remaining entries should be

non-negative. So we wish to maximize the sum

1 + ar + ar+1 + . . . + ad (4.5)

subject to the restrictions

ai ≥ 0 ∀ i (4.6)

and

aQ ≥ 0. (4.7)

The linear programming bound gives us this last relationship, and so the solution

to this linear program will be an upper bound on the size of our code. Note that

Theorem 4.2.1 did not use any properties of codes, and so this bound applies to

all subsets of an association scheme. In [3] Delsarte used the linear programming

bound to establish the Hamming bound, and so the linear programming bound

is always at least as strong as the Hamming bound. This has some important

ramifications, as we see in the next section.
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4.3 Bound Comparison

The following table is a modification of one which appears in [10], and compares

the bounds produced by the sphere packing bound (Theorem 2.1.3) and the linear

programming bound (Theorem 4.2.1) for a binary [n, d]-code in the Hamming

scheme:

n δ Hamming Bound Linear Programming Bound

11 3 170.7 170.7

11 5 30.6 24

11 7 8.8 4

12 3 315.1 292.6

12 5 51.9 40

12 7 13.7 5.3

13 3 585.1 512

13 5 89.0 64

13 7 21.7 8

14 3 1092.3 1024

14 5 154.6 128

14 7 34.9 16

15 3 2048 2048

15 5 270.8 256

15 7 56.9 32

Table 4.1: Hamming and Linear Programming bounds for q = 2
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There is a Hamming code with word length 15 which has 2048 codewords, and

so that bound is realizable. Note that for larger minimum distances, the Linear

Programming bound is approximately twice as strong as the Hamming bound.

The same parameters were used to construct the following table for a ternary

[n, d]-code in the Hamming scheme.

n δ Hamming Bound Linear Programming Bound

11 3 7702.0 7029.6

11 5 729 729

11 7 113.3 63

12 3 21257.6 19683

12 5 1838.9 1562.14

12 7 259.4 138.6

13 3 59049 59049

13 5 4703.0 4217.8

13 7 606.9 363.3

14 3 164930.0 153527

14 5 12170.4 10736.2

14 7 1447.2 836.0

15 3 462868.0 434815

15 5 31815.8 29524.5

15 7 3507.4 2268.6

Table 4.2: Hamming and Linear Programming bounds for q = 3.
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The same sort of relationship between the Hamming bound and Linear Pro-

gramming bound seen in Table 4.1 is seen in this table. The Linear Programming

bound is always stronger than the Hamming bound, but the difference is greater

for larger minimum distances. There is a Hamming [13,3]-code with 59049 words,

so that bound is realized. The interesting entry is the (11,5) entry where the two

bounds agree and produce a whole number bound. This is strong evidence that

such a code exists. The above tables also tell us the bounds on the size of codes

of larger minimum distance than the Hamming codes in the Hamming scheme.

Perfect codes are remarkable structures, and so one would expect them to be

relatively rare. In Corollary 2.1.4 we showed that a code achieves the Hamming

bound if and only if it is perfect. Since the linear programming bound is generally

lower than the Hamming bound, this implies that perfect codes are not abundant.

The bound given by the (11,5) entry in Table 4.2 is realized by a particular perfect

code known as the ternary Golay code.

The Hamming codes can be used to construct codes with larger minimum

distances, such as the famous Golay codes (See [8]). Thus bounds on code sizes in

the proximity of Hamming codes are useful. The linear programming bound also

has applications outside of coding theory, as in the work of Henry Cohn and Noam

Elkies in sphere packing and harmonic analysis [2].
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4.4 Conclusion

We have developed two of the main goals in coding theory: Classifying codes

and determining when codes of a certain type exist. The Hamming codes, while

interesting for their pedagogical purposes, are also practically useful. The codes

with shorter word length are economical in their encoding and easy to decode. The

codes with longer word length can be used to construct new codes, often increasing

their minimum distance and thus their ability to detect and correct transmission

errors. The linear programming bound aids in this search for new codes by limiting

the number of possible codes of a particular kind a set can contain.
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