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Abstract

Given a graph G, we construct T (G), called the tree graph of G. The

vertices of T (G) are the spanning trees of G, with edges between vertices

when their respective spanning trees differ only by a single edge. In this

paper we detail many new results concerning tree graphs, involving topics

such as clique decomposition, planarity, and automorphism groups. We

also investigate and present a number of new results on orthogonal tree

decompositions of complete graphs.
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1 Introduction

1.1 Overview

Given a graph G, we can construct a new graph T (G), called the tree graph of G.

The vertices of T (G) are the spanning trees of G. We place an edge between vertices

x and y in T (G) when their respective spanning trees differ only by a single edge.

Tree graphs have been studied since at least 1966, when Cummins [4] wrote an in-

fluential paper defining tree graphs and showing that they are hamiltonian. Although

this original paper was published in an IEEE engineering journal, graph theorists soon

took interest in the objects and additional papers found their way into mathematics

journals. Some were motivated to study tree graphs because of their possible use as

topologies for networks [26].

The first wave of tree graph results emerged from the late 1960s through the mid

1970s. These papers continued to investigate properties of tree graphs relating to

hamiltonicity [10, 13] as well as the connection between tree graphs and the broader

category of mathematical objects called matroid basis graphs [20, 21].

Interest in tree graphs was renewed by additional papers published from the late

1980s through the early 2000s. This second wave of research concerned itself with

graph properties such as connectivity [1, 16] and chromatic number [26]. Variants of

tree graphs were also considered during this time [24, 25].

While many papers about tree graphs have been published over the last half-

century, there is still much that remains to be considered, including many classic graph

parameters, such as the clique number and independence number. Other standard

graph theoretic concepts such as planarity, decomposition, and regularity, as well as

more algebraic topics, like automorphism groups, vertex-transitivity, and integrality,

are likewise ripe for exploration.
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When a new mathematical object is defined, many questions immediately arise.

What properties does this object have? What is the relationship between this object

and other known objects? In this way, research into tree graphs is similar to research

into line graphs. Given a graph G, there is a deterministic construction (given in

Section 4.8) one can follow to produce its line graph, L(G). Line graphs have been

defined since at least the early 1930s, and have proven to be a very fruitful area

of graph-theoretic research. We can answer questions about relationships between

properties of a graph and properties of its line graph. We can predict the structure of

line graphs and determine when a graph is a line graph. These same lines of inquiry

can be extended to tree graphs, and, as mentioned earlier, many important questions

are still open.

This dissertation aims to make a significant contribution to the study of tree

graphs by filling in many of the missing pieces in our understanding of these objects.

We have several novel results and many conjectures that are likely to lead to further

proofs. For example, we have discovered a structural property of tree graphs that may

lead toward a characterization, based on their relationship to matroid basis graphs.

We have also found an infinite family of integral tree graphs, which is of importance

to graph theory even outside of the realm of tree graphs. This research will help paint

a more accurate picture of an object that has already been given considerable, and

well-deserved, attention.

1.2 Organization

Chapter 2 provides a background on spanning trees and tree graphs, with definitions,

examples, and preliminary results. The heart of this paper is broken down into three

main explorations: Chapter 3 will look at the tree graph construction as a function
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from the set of graphs to itself. Here we consider questions of injectivity, surjectivity,

fixed points, and other functional properties. We also investigate relationships found

between graphs and their tree graphs. Specifically, in what ways can we relate pa-

rameters of graphs to parameters of their tree graphs? In Chapter 4 we will consider

tree graphs as a family and describe properties that they all share. We will attempt

to provide a classification of tree graphs, and discuss special classes, such as regular

tree graphs. In Chapter 5, we investigate spanning tree decompositions of complete

graphs. In particular, we explore the Brualdi-Hollingsworth conjecture which states

that every 1-factorization of K2n has a full set of n disjoint orthogonal spanning trees.

Appendix A contains some of the algorithms used in the course of this research. In

Appendix B we illustrate many of the common graph families which appear in this

paper. Appendix C is a collection of spectrum data for a particular family of tree

graphs. Appendix D is a partial catalog of data collected on tree graphs generated

for this research, while Appendix E contains data relevant to specific 1-factorizations

from the last chapter. Each chapter will contain relevant previous work from the

literature as well as novel results. Many conjectures and open problems will be given

as well.

3



2 Background

2.1 Graph Terminology

A graph G = (V,E) is a set V of vertices together with a multiset E of edges, which

is made up of unordered pairs of vertices from V . Edges are said to connect vertices,

and if two vertices x and y are connected by an edge they are said to be adjacent,

which we denote by x ∼ y. We can also refer to the edge xy. The degree of a vertex

is the number of edges incident to it. If there is an edge from a vertex to itself, that

edge is called a loop. If there are no repeated edges or loops in E, G is called a simple

graph. Unless stated otherwise, all graphs discussed in this paper will be assumed to

be simple and have a finite number of vertices.

The complete graph Kn has n vertices, all of which are adjacent to each other.

Complete graphs are also called cliques. A 3-clique is sometimes called a triangle.

Complete multipartite graphs, such as Ka,b and Ka,b,c, partition their vertices into the

sizes given by their subscripts, where two vertices are adjacent if and only if they

are in different cells of the partition. A path of length n is an alternating sequence

of vertices and edges v1, e1, v2, e2, . . . , vn, en, vn+1 such that each edge ei joins vi and

vi+1 and no two vertices are the same. A cycle of length n is a path of length n,

but where the first and last vertices are the same. Cycles must contain at least three

edges. Figure 1 shows examples of some of these graphs.

Figure 1: Depictions of K5, P5, and C5
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A graph with no cycles is called a forest. If there is a path between every pair of

vertices in a graph, the graph is said to be connected. A tree is a connected forest.

The vertices of degree one in a graph are called pendant vertices, and the pendant

vertices in a tree are called leaves. A subgraph H = (V ′, E ′) of a graph G is any

graph where V ′ ⊆ V and E ′ ⊆ E. This relation is denoted by H ≤ G. A maximally

connected subgraph of a graph is called a component. A vertex (edge) whose deletion

from a graph increases the number of components is called a cut vertex (cut edge).

A graph is said to be k-connected if at least k vertices need to be removed in order

to disconnect it. The complete graph Kn is said to be k-connected for all k < n.

A spanning tree of a connected graph G is a subgraph that contains all of the same

vertices as G and is a tree.

Two graphs G and H are isomorphic, written G ∼= H, if they have exactly the

same structure. Specifically, graphs are shown to be isomorphic by finding a bijection

between their vertices that preserves the adjacency relationship, i.e., an isomorphism.

Throughout Chapter 2, we assume graphs are connected unless otherwise stated.

In general, we will reserve the parameters m = |E(G)| and n = |V (G)| for the number

of edges and vertices, respectively, in a graph.

2.2 Preliminary Results on Spanning Trees

The following elementary results will be used repeatedly in later sections of the paper.

Lemma 2.1. [32, Theorem 2.1.4] Every spanning tree of a graph with n vertices has

n− 1 edges.

Lemma 2.2. [32, Corollary 2.1.5.c] Every graph has a spanning tree.
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Lemma 2.3. [32, Propositions 2.1.6-7] If T and T ′ are spanning trees of a graph G

and e ∈ E(T )− E(T ′), then there is an edge e′ ∈ E(T ′)− E(T ) such that T − e+ e′

and T + e′ − e are both spanning trees of G.

Lemma 2.4. For any spanning tree T of a graph G and any edge e ∈ E(G), there

exists an edge e′ ∈ E(T ) such that T + e− e′ is a spanning tree of G.

Proof. If e ∈ E(T ), let e′ = e. Otherwise, adding e to T produces exactly one cycle

(see Corollary 2.1.5.b in [32]). Remove any other edge e′ of that cycle to get back to

a spanning tree.

Lemma 2.5. Every edge in a graph G is contained in some spanning tree of G.

Proof. Let e ∈ E(G) and T be a spanning tree of G that does not contain e. Then

by Lemma 2.4, T + e− e′ is a spanning tree of G for some edge e′ ∈ T .

Lemma 2.6. Every acyclic subgraph of a graph G is contained in some spanning tree

of G.

Proof. Let H ≤ G be acyclic, and T be a spanning tree for G that minimizes t =

|E(H) − E(T )|. If t = 0, choose T . Now suppose t 6= 0. Pick e ∈ E(H) − E(T ).

Then T + e has a cycle C. Since H is acyclic, there exists e′ ∈ E(C)− E(H). Then

T + e − e′ is a spanning tree that contradicts the minimality of t. Therefore t = 0

and such a spanning tree exists.

2.3 Tree Graphs

Graphs are used as an abstract model of relationships between objects, where vertices

represent the objects and edges denote relationships between them. In a tree graph

T (G), the vertices represent all of the spanning trees of G and the edge relationship
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describes how near the spanning trees are to each other, in terms of their edge sets. In

later sections of this paper, we will often simultaneously treat such a vertex both as

a vertex of T (G) and as a spanning tree of G. When there is no room for confusion,

we will sometimes refer to spanning trees simply as trees. Note also that in this

paper, every graph that will be used to construct a tree graph will be assumed to be

connected. This restriction will be explained at the end of Section 3.1.

Given a graph G, its tree graph T (G) is constructed in the following way. The

vertices of T (G) are all of the spanning trees of G. Two distinct spanning trees are

adjacent in T (G) if we can get from one to the other by swapping a single edge. This

is called the edge exchange property. More formally, two trees are adjacent if the size

of the symmetric difference of their edge sets is two.

Let us look at this construction for the four-cycle C4 in Figure 2.

Figure 2: Showing the construction of T (C4)

First in (1) we see C4. Then in (2) we see the four spanning trees of C4 with

dashed edges. In (3), we view these four trees as four vertices in a graph with the

edge exchange condition for adjacency. Denote the four edges of C4 by the names

T, R, B, and L, for top, right, bottom, and left, respectively. Let us consider which

trees the upper left tree should be adjacent to. We can take out L and replace it

by R to create the top right tree. We can swap U for R to get the bottom left tree.

We can also exchange B for R to get the bottom right tree. In this way, the top left

7



tree is adjacent to every other tree in T (C4), so we see the bold edges connecting

them. The same is true for every tree in the graph. Thus in (4) we see that the

tree graph of the four-cycle is the complete graph on four vertices, or using graph

notation, T (C4) ∼= K4.

Let us consider one more example. This time we will add another edge to C4 to

get K4 − e. Figure 3 shows its tree graph construction. In (1) we see K4 − e. Next

in (2) using dashed edges we see its eight spanning trees. The new diagonal edge

has given us four more trees to play with. Finally, in (3) in bold we see T (K4 − e).

By adding one edge to our starting graph we have picked up four more vertices and

twelve more edges in the tree graph.

Figure 3: Showing the construction of T (K4 − e)

Note that our spanning trees are considered different if they have different sets of

edges, not solely if they are nonisomorphic. So while K4 − e has two isomorphism

classes of trees, P3 and K1,3, it has eight distinctly labeled trees. These are what we

are interested in comparing.

The new results in this paper originated in the generation and study of many

8



examples of tree graphs. Multiple parameters were measured, recorded, and compared

to existing data for patterns. The production and analysis of such a data set is a

distinguishing feature of this work, and a sizable catalog is included in Appendix D

to aid in future investigations.
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3 The Tree Graph Function and Parameters

Often when a new graph is constructed from an old one, properties of the new graph

can be inferred from properties of the old. These properties may be parametric or

structural. For example, the number of vertices in the line graph L(G) of G is the

number of edges in G. This is a parametric relation, since we are describing a graph

parameter in terms of other known values. We also know that a vertex of degree k in

G leads to a k-clique in L(G); this is a structural relation.

We can think of the tree graph construction as a process where we input a graph

and get its tree graph as output. This section contains results relating properties of

graphs to properties of their tree graphs. Throughout Chapter 3, we assume graphs

are connected unless otherwise stated.

3.1 The Tree Graph Function

Following an edge in a tree graph T (G) amounts to changing one spanning tree of

G into another using the edge exchange property. One might wonder, then, if it is

always possible to transform one tree into any other by iteration of this process. The

following result shows us that this is the case.

Lemma 3.1. The tree graph T (G) is connected for all graphs G.

Proof. Let T and T ′ be two trees of G. Using Lemma 2.3 repeatedly, we can add

edges from E(T ′) − E(T ) while removing edges from E(T ) − E(T ′) until we have

swapped in all of the missing edges. This induces a path from T to T ′ in T (G). Thus

there is a path between every two vertices in T (G), so it is connected.

The distance between vertices x and y in a graph G is the minimum number of

edges in a path from x to y, and is denoted by d(x, y). Distance between vertices in
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T (G) depends on how similar the corresponding trees are, which we measure by how

many edges they have in common. More formally, we have the following.

Lemma 3.2. For trees T1 and T2 in T (G),

d(T1, T2) = n− 1− |E(T1) ∩ E(T2)| = |E(T1)∆E(T2)|/2

where ∆ denotes the symmetric difference of sets.

Proof. Every tree has n− 1 edges. To get from T1 to T2, we have to swap the edges

that they do not share, of which there are n−1−|E(T1)∩E(T2)|. The set of swapped

edges occur in pairs in the symmetric difference. Repeated use of Lemma 2.3 swaps

these pairs, reducing t = |E(T1)∆E(T2)| to zero in t/2 steps.

The eccentricity of a vertex x, written ecc(x), is defined by

ecc(x) = max{d(x, y) | y ∈ V (G)}

and represents the farthest away that a vertex can be from x. The minimum eccen-

tricity over all vertices of a graph is called the radius, denoted rad(G). The maximum

eccentricity is called the diameter, denoted diam(G). The collection of all vertices of

minimum eccentricity is called the center of G, and is denoted by C(G).

If two trees have no edges in common, by Lemma 3.2 they would be at distance

n− 1. On the other hand, we have at most m− (n− 1) = m− n+ 1 available edges

to swap in order to change between two trees. Thus we have the following result.

Lemma 3.3. For any graph G,

diam(T (G)) ≤ min{n− 1,m− n+ 1}.
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In general we cannot say much about the relationship between the diameters of

G and T (G). For example, consider G ∼= Kn. The diameter of complete graphs is

1, whereas once n ≥ 4, we can always find two spanning trees that have no edges in

common, making the diameter for the tree graphs at least n − 1. Thus these values

can be arbitrarily far apart.

We can view the tree graph operation as a function from the set of connected

graphs, G, to itself, i.e. T : G → G. We can thus investigate properties of this

function, such as surjectivity, injectivity, pre-images, and fixed points.

Theorem 3.4. [13, Lemma 1] For any graph G that contains a cycle, T (G) ∼= G if

and only if G ∼= K3.

This tells us that the only nontrivial fixed point of the tree graph function is the

triangle. We trivially have that T (K1) ∼= K1.

Theorem 3.5. [13, Lemma 2] For any n > 3, the cycle graph Cn is not a tree graph.

Roughly, this result says that tree graphs contain much more structure than a

simple cycle. It also tells us that the tree graph function is not surjective.

Theorem 3.6. [13, Theorem 1] Let G be a graph that contains a cycle. The graphs

in the iterated tree graph sequence

G, T (G), T (T (G)), . . .

will continue to get larger, either in number of edges or vertices or both, unless G ∼=

K3.

Thus except in the trivial case, tree graphs are larger than their input graphs.
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Lemma 3.7. The tree graph of a tree is a single vertex.

Proof. The only spanning tree of a tree T is the tree T itself, so in this case, the tree

graph will be K1.

Lemma 3.8. For any n ≥ 3, T (Cn) ∼= Kn.

Proof. The cycle Cn has n vertices and n edges. Thus diam(T (Cn)) ≤ 1 by Lemma

3.3. The diameter cannot be zero, since T (Cn) has n ≥ 3 vertices by Lemma 3.6.

Thus the diameter is one. The only graphs with n > 1 vertices and diameter 1 are

the complete graphs on n vertices. Therefore T (Cn) ∼= Kn.

We saw an example of this in the first tree graph construction in Figure 2 of

Section 2.3 when we discovered that T (C4) ∼= K4.

We say that two graphs are isoparic if they have the same number of vertices and

edges, but are not isomorphic.

Theorem 3.9. The tree graph function is not injective.

Proof. This means us that two nonisomorphic graphs can have the same tree graph.

Figure 4 shows an example of two isoparic graphs that have isomorphic tree graphs

with 55 vertices and 277 edges. Corollary 3.16 will give a trivial way to break the

injectivity of this function, so the importance of this particular counterexample comes

from the fact that the two isoparic graphs are 2-connected.

Figure 4: Isoparic graphs with isomorphic tree graphs
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The property of being isoparic is not a necessary or sufficient condition for two

graphs to have isomorphic tree graphs. For example, both K3,3 and K1,1,4 have six

vertices and nine edges. However, the tree graph of the former has 81 vertices, while

the tree graph of the latter has 48. Theorem 3.10 will show another general case

where nonisomorphic graphs have the same tree graph.

A graph is planar if it can be drawn in the plane with no edge crossings. A plane

graph is a particular drawing of a planar graph in the plane that contains no edge

crossings. There may be many different ways to draw a planar graph as a plane graph.

In a plane graph, a face is a simply connected region of the plane bounded by at least

three edges. For a more complete introduction to these topics, see Chapter 6 in [32].

By convention, G∗ denotes the planar dual of G. The dual relationship for planar

graphs exchanges the roles of vertices and faces. In particular, G∗ is constructed

by putting a vertex for every face in a plane graph G, including the infinite outer

face. Vertices are connected by an edge each time their corresponding faces share a

boundary edge. If G has m edges, n vertices, and f faces, G∗ will have m edges, f

vertices, and n faces. Figure 5 illustrates the construction of a planar dual. We begin

with a plane graph G in (1). In (2) we see the new vertices added for each face of

G, and the new edges connecting vertices if their respective faces share a boundary

edge. Finally in (3) we see the planar dual G∗ redrawn by itself.

Figure 5: The construction of a planar dual
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Theorem 3.10. If G is 3-connected and planar, then T (G) ∼= T (G∗).

Proof. A classic theorem of Whitney [34] says that if G is 3-connected and planar,

then G∗ is unique up to isomorphism and simple (moreover, also 3-connected and

planar). Thus T (G∗) is well-defined in this case.

A result [18, p. 37] shows that there is a natural bijection between the spanning

trees of G and the spanning trees of G∗. Thus T (G) and T (G∗) have the same number

of vertices. The construction of the bijection [18, p.258] implies that the adjacency

relationship between the spanning trees is preserved. That is, Ti ∼ Tj in T (G) if and

only if T ∗i ∼ T ∗j in T (G∗). Therefore T (G) ∼= T (G∗).

Figure 6 shows an example of this bijection. In (1) we see the starting spanning

tree T of a graph G. In (2) we see T in bold along with the rest of G. Next in

(3) we see the planar dual G∗ drawn in, with the new edges that cross the edges in

E(G)− E(T ) in bold. Finally in (4) we see the dual tree T ∗.

Figure 6: An example of dual spanning tree construction
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The cube, with six faces and eight vertices, is the planar dual of the octahedron,

with eight faces and six vertices. Figure 7 shows an example of dual spanning trees

in these planar dual graphs. The tree graph of these graphs is too large to show here,

having 384 vertices and 3768 edges.

Figure 7: Dual spanning trees (bold edges) in the cube and octahedron graphs

Some examples of 3-connected planar graphs are polyhedral graphs, such as the

previously mentioned cube and octahedron, and Halin graphs. To construct a Halin

graph, start with a planar drawing of a tree with at least one vertex of degree at least

three and no vertices of degree two. Then draw a cycle through all of the leaves in a

way that keeps the graph planar. The wheel graph Wn is a special type of Halin graph

where the base tree is a star graph, which is a tree with n− 1 leaves. The following

result shows us another situation where nonisomorphic graphs can have isomorphic

tree graphs.

Corollary 3.11. For any non-wheel Halin graph H, we have H � H∗ but T (H) ∼=

T (H∗).

Proof. Euler’s formula (see page 241 in [32]) says that for any plane graph, n−m+f =

2. Suppose G and G∗ are isomorphic. Then n = f , which by Euler gives us that

n − m + n = 2, so m = 2(n − 1). Let H be a Halin graph and TH the spanning

tree that induces it. Let l be the number of leaves of TH . Then |E(H)| = n− 1 + l,
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since the edges of H either come from the set of n− 1 edges in TH or from the l-cycle

through its leaves. For H∗ to be isomorphic to H, we would need l = n− 1, so that

|E(H)| = n− 1 +n− 1 = 2(n− 1). But a tree with n− 1 leaves is a star, so H would

be a wheel graph. Thus if H ∼= H∗, H is a wheel graph. In either case, by Theorem

3.10, T (H) ∼= T (H∗).

Figure 8 shows (1) a star graph, (2) the wheel graph W5, (3) a non-star tree, and

(4) the Halin graph built from the tree.

Figure 8: Examples of wheel and Halin graphs

The last three results together tell us that, given a tree graph T (G), it may not

be possible to find a unique graph G that generates it. One step in that direction

comes from Lemma 1.2 in [21], which says that if the spanning trees corresponding to

any vertex and all of its neighbors in T (G) are given, the remaining spanning trees

can uniquely be assigned to the vertices of T (G). From this information a unique

G can be recovered by taking the union of all of the spanning trees. In general,

reconstruction seems to be a challenging problem. That is, given a tree graph T (G),

we want to find a graph H such that T (H) ∼= T (G). One ambitious desire would be

to determine under which circumstances this is possible, and moreover when it is, to

know when H is unique.

Let G
⊙

xyH be the graph that identifies the vertex x of G with the vertex y of

H. Let the Cartesian product G�H be defined as follows. The vertex set is the set
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V (G) × V (H), and two vertices (x, x′) and (y, y′) are adjacent if and only if either

x = y and x′ ∼ y′, or x′ = y′ and x ∼ y. The following result shows us that certain

tree graphs can be built up as products of smaller tree graphs.

Theorem 3.12. For any graphs G and H, and vertices x ∈ V (G), y ∈ V (H),

T (G
⊙
xy

H) ∼= T (G)�T (H).

Proof. Let c be the vertex of G
⊙

xyH where G and H are joined at x and y. Then

c is a cut vertex of G
⊙

xyH. As such, every spanning tree of G
⊙

H has at least

two edges incident to c: at least one each from G and H. Thus each tree of G
⊙

xyH

can be broken down into a spanning tree of G and a spanning tree of H. Conversely,

every pair of spanning trees from G and H, when joined at c, make a spanning tree

for G
⊙

xyH. Thus T (G
⊙

xyH) and T (G)�T (H) have the same vertex set.

Let T1 ∼ T2 in T (G)�T (H). This is (x, y) ∼ (x′, y′) for x, x′ ∈ T (G) and

y, y′ ∈ T (H). By the adjacency rules, WOLOG x = x′ and y ∼ y′ in T (H). This

tells us that y and y′ have the edge exchange property. Consider the graphs x
⊙

y

and x′
⊙

y′. Since x = x′, these two graphs differ only by a single edge. Thus they are

adjacent in T (G
⊙

xyH). Using the same argument we can see that adjacent vertices

in T (G
⊙

xyH) will have their corresponding vertices in T (G)�T (H) be adjacent as

well. Therefore adjacency is the same in both graphs and they are isomorphic.

We also have the following corollary, which implies that it does not matter which

vertices we choose to identify in the process described above.

Corollary 3.13. For any u, x ∈ V (G) and v, y ∈ V (H),

T (G
⊙
uv

H) ∼= T (G
⊙
xy

H).
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Thus from now on we will simply write G
⊙

H without any reference to the

vertices being identified.

Theorem 3.12 was proved independently in [2] (see Lemma 1). The smallest

nontrivial example of this is the graph constructed by letting two triangles share a

vertex, as shown in Figure 9. In (1) we see two copies of K3. We then see them joined

at a vertex in (2). Finally in (3) we see the tree graph of the middle graph, which is

the Cartesian product T (K3)�T (K3) ∼= K3�K3, since T (K3) ∼= K3 by Lemma 3.8.

Figure 9: Creating the tree graph of the vertex union of two graphs

Using similar reasoning and a simple induction argument, we get the following

two corollaries.

Corollary 3.14. Fix any k ≥ 1 and let G be the disjoint union of graphs H1, . . . , Hk.

Then T (G) ∼= T (H1)� . . .�T (Hk).

Corollary 3.15. Fix any k ≥ 1 and graphs H1, . . . , Hk. Let G ∼= H1

⊙
· · ·
⊙

Hk.

Then T (G) ∼= T (H1)� . . .�T (Hk).

Let G− e denote the graph where the edge e is deleted and G · e denote the graph

where the edge has been contracted. When an edge is contracted, its endpoints are
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identified and we follow the convention that the newly formed loop edge is deleted so

that simple graphs remain loopless.

For any graph G, let S = {e ∈ E(G) | e is a cut edge}. Define Gtrim to be the

graph remaining after contracting all of the edges in S. If we think of G as being a

collection of smaller graphs joined together with the
⊙

operator, we are removing all

of the component graphs that are trees. These are the pieces that do not contribute

anything new to the tree graph, since they are in every tree. This brings us to our

next corollary.

Corollary 3.16. For any graph G, T (Gtrim) ∼= T (G).

Proof. Suppose G ∼= G1

⊙
Gt, where G1 is 2-connected and Gt is a tree. By Theorem

3.12, T (G) ∼= T (G1)�T (Gt). By Lemma 3.7, T (Gt) is a single vertex. It is trivial to

show that H�K1
∼= H for any graph H. Thus T (G) ∼= T (G1). Using Corollary 3.15

we can then conclude that T (Gtrim) ∼= T (G).

Figure 10 shows a graph G on the left and Gtrim on the right.

Figure 10: An example of the trimming process

Corollary 3.14 allows us to restrict our attention to the case of connected graphs,

as is our working assumption in this chapter. Since connected graphs without cut

vertices are 2-connected, Corollary 3.15 allows us to restrict further to consider only

the tree graphs of 2-connected graphs. Indeed, the tree graphs of 2-connected graphs

are the building blocks of all tree graphs, just as primes are the building blocks of the

natural numbers. Accordingly, every time a graph is mentioned as being the input for
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the tree graph function in this paper, we will henceforth assume that it is 2-connected

unless otherwise noted.

3.2 Parameters of Tree Graphs

In this section we collect results concerning parameters of tree graphs T (G), especially

in their relation to the parameters of G.

Recall that κ(G) is the vertex connectivity of a graph: for a non-complete graph,

the minimum number of vertices needed to be removed in order to disconnect it.

Likewise, κ′(G) is the edge connectivity. For more information on these parameters,

see Chapter 4 in [32]. The smallest degree of a graph is δ(G). A classic result is that

the following chain of inequalities holds [33]:

κ(G) ≤ κ′(G) ≤ δ(G).

One way to get a feel for these inequalities is that deleting all of the neighbors of

a vertex or all of the edges incident to a vertex will separate that vertex from the

rest of the graph. Additionally, deleting an edge from a graph does not delete its

incident vertices in the way that deleting a vertex also removes its incident edges.

The following theorem of Liu highlights a special property of tree graphs.

Theorem 3.17. [16, Corollary 2.8] For all graphs G,

κ(T (G)) = κ′(T (G)) = δ(T (G)).

This theorem tells us that tree graphs are maximally connected. This can be an

important property to network designers, as local disruptions should not jeopardize

the entire structure.
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A coloring of a graph is an assignment of numbers to its vertices. A proper coloring

is a coloring where adjacent vertices get different numbers. The chromatic number

of a graph, χ(G), is the minimum number of colors in a proper coloring of G. See

Chapter 5 in [32] for more information on this parameter.

The following result gives us an upper bound on the chromatic number of a tree

graph based on the number of edges of the underlying graph.

Theorem 3.18. [26, Theorem 1] For all graphs G,

χ(T (G)) ≤ |E(G)|.

As an example, K4 − e has five edges, so the tree graph T (K4 − e) needs at most

five colors for a proper coloring. It contains a K4 subgraph, so requires at least four

colors. Figure 11 demonstrates that this is sufficient.

Figure 11: A proper four-coloring of T (K4 − e)

The girth of a graph, denoted girth(G), is the length of its shortest cycle. The

circumference of a graph, denoted circ(G), is the length of it longest cycle. This next

result gives us a lower bound on the smallest degree (δ) and an upper bound on the

largest degree (∆) of a tree graph T (G) based on cycle and edge information from

the underlying graph G.
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Theorem 3.19. [17, Theorem 1] For a graph G with n vertices and m edges, let

v = m− n+ 1. Then

v · (girth(G)− 1) ≤ δ(T (G)) ≤ ∆(T (G)) ≤ v · (circ(G)− 1).

In our K4 − e example, we have m = 5 and n = 4, so v = 2. The length of the

shortest cycle is three while the length of the longest cycle is four. Putting these

together gives us that 4 ≤ δ(T (K4 − e)) and ∆(T (K4 − e)) ≤ 6. Compare these to

the actual values of δ(T (K4 − e)) = 4 and ∆(T (K4 − e)) = 5.

The chromatic index of a graph, χ′(G), is the edge coloring version of the chro-

matic number. We need a minimum of ∆(G) distinct colors to properly color the

edges of G. A famous theorem by Vizing [29] says that at most one more color is

necessary. Together with Theorem 3.19, this gives us the following corollary.

Corollary 3.20. For a graph G with n vertices and m edges, let v = m−n+1. Then

χ′(T (G)) ≤ (circ(G)− 1) · v + 1.

If we know something about the structure of the trees, we can give an exact value

to the minimum degree of the tree graph. A unicycle is a connected graph with

exactly one cycle. All unicycles in this paper will be assumed to be spanning.

Theorem 3.21. For a graph G with n vertices and m edges, let v = m− n+ 1.

(i) There exists a tree of G such that every unicycle that contains it has cycle length

equal to girth(G) if and only if δ(T (G)) = v · (girth(G)− 1).

(ii) There exists a tree of G such that every unicycle that contains it has cycle length

equal to circ(G) if and only if ∆(T (G)) = v · (circ(G)− 1).
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Proof. (i) Suppose first that such a tree existed. Then by Theorem 4.22 it will

achieve degree v · (girth(G)−1), which by Theorem 3.19 is as small as possible. Thus

δ(T (G)) = v · (girth(G)− 1).

Now suppose δ(T (G)) = v · (girth(G)− 1). There is some vertex x in T (G) with

that degree. Again by Theorem 4.22, x is part of v cliques. Each c−clique contributes

c− 1 edges to the degree of x. Let s1, s2, . . . , sv be the number of edges added to the

degree of x for each of the v cliques that contain x. Since each clique in T (G) comes

from a cycle in G, the smallest a clique can be is the size of the smallest cycle, which

is girth(G). Thus si ≥ girth(G)−1. We have that s1+s2+· · ·+sv = v ·(girth(G)−1),

so the average value of the si is (girth(G) − 1). Since they are all positive integers

bounded by their average, they must equal that average. Thus x is only part of cliques

of size girth(G), so all unicycles containing x have cycle length equal to girth(G).

(ii) The proof is similar to that of (i).

The graph K4 − e is an example that has such a tree for the lower bound. The

value girth(K4 − e) = 3 and v = 5− 4 + 1 = 2. Any tree that contains the diagonal

edge cannot be part of a unicycle with cycle size 4. The only other possible cycle size

is 3, so all unicycles containing that tree have cycle size 3. Thus in T (K4− e) we see

four vertices of minimum degree 2 · (3 − 1) = 4. The house graph, shown in Figure

12, has girth 3 and is a nonexample. The tree graph of the house graph has minimum

degree 5, which is not a multiple of 2, which is the v value for the house. Therefore

no tree of the house can contain only unicycles with cycle size 3.

Figure 12: K4 − e and the house graph
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It is easier to find graphs that meet the lower bound than the upper bound. The

bound on ∆ is sharp for some families, such as the θa,2,2 and Pn,k graphs that are

defined in Section 4.8.

The clique number of a graph, ω(G), is the size of its maximum clique. We can

place a lower bound on the clique number of a tree graph based on the circumference

of the base graph.

Theorem 3.22. For any graph G,

ω(T (G)) ≥ circ(G).

Proof. Let s = circ(G). The cycle Cs is then a subgraph of G. By Corollary 4.19,

T (Cs) will be a subgraph of T (G). By Lemma 3.8, T (Cs) ∼= Ks. Thus T (G) will

contain a Ks subgraph, and so ω(T (G)) is at least circ(G).

For most of the tree graphs studied, this bound is tight. However, for some families

of graphs the gap between the two values can get arbitrarily large. For example, the

Kn,2 graphs have a circumference of 4. Call the vertices in the two-cell x and y.

Consider the set of trees where x is adjacent to all of the vertices in the n-cell and

y is adjacent to just one of them. There are n such trees and they all differ by just

one edge, so they will all be adjacent in T (Kn,2). Thus ω(T (Kn,2)) ≥ n, which can

be taken as far away from 4 as we want.

Each vertex in a clique needs a different color in a proper coloring. This gives us

the easy bound χ(G) ≥ ω(G). From this fact and Theorem 3.22 we get the following

corollary.
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Corollary 3.23. For any graph G,

χ(T (G)) ≥ circ(G).

For almost all of the tree graphs studied, the clique number and the chromatic

number were the same. One time where these differed was when the base graph was

K4. We have that ω(T (K4)) = 4 < 5 = χ(T (K4)). Figuring out exactly when these

values coincide would be valuable.

A regular graph has vertices all of the same degree. The independence number

of a graph is α(G), defined to be the maximum number of vertices in a graph that

induce a subgraph with no edges. Let G have n vertices and m edges. Let µ(G) be

the number of spanning unicycles in G, and let v = m−n+ 1. Let Pn,k be the graph

where two vertices are joined by n openly-disjoint paths of length k, n, k > 1. Paths

are openly-disjoint if and only if they share only their endpoints.

In the proof for Theorem 3.22 we saw that each unicycle with cycle size c in G

gives rise to a c−clique in T (G). Later on, Theorem 4.22 will show us that T (G) can

be decomposed into µ(G) cliques such that each vertex is part of exactly v cliques. At

most one vertex from each of those cliques can be chosen to be part of an independent

set. Thus, choosing a vertex prevents one from choosing any other vertices from the

v cliques it is part of. So the number of cliques in a decomposition divided by

the number of cliques per vertex should give us an upper bound on the number of

independent vertices we can choose. That brings us to our next result.
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Theorem 3.24. For a graph G with n vertices and m edges, let v = m−n+1. Then

α(T (G)) ≤ bµ(G)/vc.

Proof. Let S = {s1, s2, . . . , sα} be the vertices in a maximum independent set in

T (G). We count the ordered pairs of the form (si, ci), where ci is a clique in the

clique decomposition from Theorem 4.22 that contains si. If we choose the vertices

first, we have α choices. Each vertex is in v cliques, so we have that many choices for

ci. Thus we have α · v ordered pairs. Suppose that α · v > µ(G). Since we only have

µ(G) different cliques, by the pigeonhole principle at least one of them is repeated

in our set of ordered pairs. That implies that we have chosen at least two vertices

from the same clique, which contradicts the fact that the vertices are chosen from an

independent set. Thus we have that α · v ≤ µ(G). Since the independence number is

an integer, we get the final bound of α(T (G)) ≤ bµ(G)/vc.

For example, if the base graph is K1,1,3, we have µ = 18 and v = 3, while b18
3
c =

6 ≥ 5 = α. For another, let G = P3,2, which is 6-regular. Then we have µ = 6 and

v = 2, which gives the correct value of α = 3. If T (G) is regular, this bound seems

to be tight.
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4 Properties of Tree Graphs

This section will contain results concerning structural properties that all tree graphs

share. Some concern graph-theoretic properties, while others are more algebraic in

nature. Together they help demonstrate how truly remarkable the family of tree

graphs is. Throughout Chapter 4, we assume graphs are connected unless otherwise

stated.

4.1 Paths and Cycles

A graph is hamiltonian if it has a cycle that contains all of its vertices. When we

investigate this property for tree graphs, we are really looking into whether or not it

is possible to cycle through all of the spanning trees of a graph by just swapping one

edge at a time. The following result, from the first paper on tree graphs, says this is

always possible.

Theorem 4.1. [4, Theorem L] For any graph G, T (G) is hamiltonian.

Figure 13 shows one possible hamiltonian cycle through T (K4 − e). The hamil-

tonicity of tree graphs might be desirable to circuit or network designers who need to

test the performance of every possible spanning tree of their system. Some authors,

such as that of [11], even came up with constructive algorithms to generate and cycle

through all of the spanning trees of a graph in this way.

Figure 13: A hamiltonian cycle through T (K4 − e)
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A graph is uniformly hamiltonian if for each of its edges e, there exists a hamil-

tonian cycle that uses e and one that avoids e.

Theorem 4.2. [10, Corollary 2] For any graph G, the tree graph T (G) is uniformly

hamiltonian.

So while K4−e is hamiltonian, it is not uniformly hamiltonian, as no hamiltonian

cycle can use the diagonal edge. This result gives us that T (K4 − e), however, is

uniformly hamiltonian. Figure 14 shows an example of this for one edge, e′.

Figure 14: Hamiltonian cycles using and avoiding edge e′ in T (K4 − e)

A graph is edge-pancyclic if each of its edges is used in a cycle of every possible

size from its girth to its circumference. Hamiltonian-connected means that there is a

hamiltonian path between every two vertices in the graph. Path-full implies that if

there exists paths of length m and n between two vertices, then for all m < k < n

there exists a path of length k between them as well.

Theorem 4.3. [1, Theorems 3.1-3] T (G) is edge-pancyclic, hamiltonian-connected,

and path-full for any graph G.

These facts are illustrated for T (K4 − e) in the next few figures.
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Figure 15: Cycles of various lengths in T (K4 − e)

Figure 16: A hamiltonian path between vertices x and y in T (K4 − e)

Figure 17: Various xy-paths in T (K4 − e)

Together these results show us that tree graphs are very structured and have

plenty of edges with which to move through the graph.
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4.2 Centers

A subgraph H = (V ′, E ′) of G = (V,E) is an induced subgraph if for every two vertices

x and y in V ′, x ∼ y in H if and only if x ∼ y in G. In general, the complement

Gc has the same vertices as G but with x ∼ y in Gc if and only if x � y in G. For

our purposes, we need a second type of complement. Specifically, if H ≤ G, then we

define H = (V (H), E(G)−E(H)). In particular, the complement of a spanning tree

T of G will be understood to be the complement of T in G.

Recall that the center of a graph, denoted C(G), is the subgraph induced on the

set of vertices of minimum eccentricity. In some sense, these are the vertices that

are closest to all other vertices. If G ∼= C(G), we say that G is self-centered. An

equivalent definition is to say that rad(G) = diam(G). Some tree graphs are self-

centered while others have a proper center. The distinction between the two cases is

explored in the next results.

Lemma 4.4. Let T be a spanning tree of G. If T is acyclic, then the eccentricity of

the vertex in T (G) corresponding to T is given by

ecc(T ) = m− n+ 1.

Proof. Every tree has n − 1 edges, so T has m − n + 1 edges. By Lemma 2.6, T is

contained in a spanning tree of G. Lemma 3.2 tells us this tree will be at distance

m− n+ 1 from T , which by Lemma 3.3 is the maximum possible.

Corollary 4.5. If all trees of G have acyclic complements, T (G) is self-centered.

Proof. By Lemma 4.4 all of the trees will correspond to vertices in T (G) with the

same eccentricity, which implies rad(T (G)) = diam(T (G)) and that T (G) is self-

centered.
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Since all cycles have at least three edges, if v = m−n+1 = 2 no tree complement

can contain a cycle. Thus all graphs with v = 2 have self-centered tree graphs. This

family includes the Pn,k graphs and the θa,b,c graphs, described later in this chapter.

A graph is bipartite if its vertices can be partitioned into two sets such that every

edge in the graph has one end in each set. Bipartite graphs have no odd cycles. Thus

if G is bipartite and v = 3, T (G) will be self-centered. In general, we get the following

corollary.

Corollary 4.6. Let G be any graph, and let v = m − n + 1. If v < girth(G), then

T (G) will be self-centered.

The converse of this corollary is false. Consider the graph G = K4,1,1. Since it

has only two vertices of degree higher than two, every cycle in it contains at least one

vertex of degree two. Suppose the complement of a spanning tree T of G contained

a cycle. The complement T would then contain all of the edges incident with at

least one of the degree two vertices. Thus in T that vertex would have no edges

incident to it, contradicting the fact that T is a spanning tree. Therefore all trees of

G have acyclic complements, and so by Corollary 4.5 the graph T (G) is self-centered.

However, we have that girth(G) = 3 and v(G) = 4.

As the inverse to Lemma 4.4, we have the following.

Lemma 4.7. Let T be a spanning tree of G. If T contains a cycle, then the eccentricity

of the vertex in T (G) corresponding to T satisfies

ecc(T ) < m− n+ 1.

Proof. No tree in T (G) contains T , since it contains a cycle. This implies d(T ′, T ) <

m − n + 1 for all T ′ ∈ T (G), since no tree can be m − n + 1 away from T by using
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all of the edges in its complement. Thus ecc(T ) < m− n+ 1.

Combining the last few results, we can now describe the trees in the center of a

non-self-centered graph.

Theorem 4.8. If T (G) is not self-centered and T ∈ C(T (G)), then T contains a

cycle.

Proof. Since the center is proper, not all trees in T (G) have the same eccentricity.

Thus by Corollary 4.5 at least one tree T ′ has a complement that contains a cycle.

No tree with an acyclic complement can be in the center, since by Lemmas 4.4 and

4.7 its eccentricity would be strictly greater than that of T ′. Thus all trees in the

center have a complement that contain a cycle.

Figure 18 shows an example of the previous results on tree graph centers. In (1)

we see our graph G. It has 6 vertices and 8 edges, and so v = 3. In (2) and (3) we see

trees T1 and T2 in bold. Note that (4) shows T1, which contains a triangle. On the

other hand, (5) shows T2, which is acyclic. Thus trees can be at most distance two

from T1 and distance three from T2 in T (G). Since there is only one triangle in G

and that is the only cycle that can be formed with v = 3 edges, T1 is the only vertex

in the center of T (G).

Figure 18: Trees and their complements determine the center of T (G)
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The converse of Theorem 4.8 is also not true. Consider G = K5. The center of

T (G) consists of the five spanning trees that are star graphs. Let T be any path

through G. The complement T contains a triangle between the two endpoints of the

path and the middle vertex of the path. Therefore T contains a cycle, but T is not

in the center of T (G).

The next result, from the literature, relates the diameter of self-centered graphs

with the diameter of their line graphs. A graph is d-self-centered if it is self-centered

with diameter d. We define Grida,b to be the graph Pa�Pb.

Theorem 4.9. [28, Theorem 2.2] Let G and L(G) be d- and f -self-centered graphs,

respectively. Then f ∈ {d− 1, d, d+ 1}.

Thus if a graph and its line graph are both self-centered, their diameters can differ

by at most one. A noteworthy passage in [28] poses the following:

If G = K2 (1-self-centered) then L(G) = K1 is 0-self-centered. On the

other hand, examples of G and L(G) which are both d-self-centered can be

easily found. Hence we have the following interesting problem: Determine

the remaining (if any) d-self-centered graphs whose line graphs are (d−1)-

or (d+ 1)-self-centered.

Several tree graphs are examples of the latter type. The tree graphs of K3,2, K4,2,

and Grid3,2 all have line graphs that are also self-centered whose diameter has in-

creased by one. We conjecture that there is an infinite family of tree graphs with this

property, but it has not been fully investigated yet.

4.3 Local Properties

An ordered pair (E,B) is a matroid if E is a set of elements and B ⊆ P(E) is a set

of subsets of E called bases satisfying: (i) If B ∈ B then B 6= ∅ and (ii) If A,B ∈ B
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then for all a ∈ A − B there exists b ∈ B − A such that (A − {a}) ∪ {b} ∈ B. It

turns out that the spanning trees of a graph can be used to form a matroid. If we

let E be the set of edges of a graph G, and B be the set of spanning trees of G, then

MG = (E,B) is a matroid.

Given any matroid M , the matroid basis graph is the graph whose vertices are the

bases of the matroid and where two vertices are adjacent if and only if their bases

differ by a single element. Notice that this sounds remarkably like our definition of

a tree graph. In fact, when the collection of spanning trees of a graph is viewed as a

matroid as above, tree graphs can be seen as a special case of matroid basis graphs.

Thus results that hold for matroid basis graphs also apply to tree graphs.

Tree graphs constitute a proper subclass of the class of all matroid basis graphs,

however. For example, let M = {{1, 2, 3, 4}, {12, 13, 14, 23, 24, 34}}. The matroid

basis graph for M is the octahedron (see Figure 7). Since the bases all have two

elements, if they were the edges of a tree, the base graph would need to have exactly

three vertices. But our edge set has four elements. Indeed, there are no simple graphs

with three vertices and four edges. Thus, this matroid basis graph is not a tree graph.

Maurer published influential papers [20, 21] that described and characterized ma-

troid basis graphs. Many local and global properties were investigated. One concept

in these papers is that of the common neighbor graph, defined as follows. Let x and

y be vertices of G that are at distance two. Let N = {v ∈ V | v ∼ x, v ∼ y} be the

set of common neighbors of x and y. The common neighbor graph of x and y is the

subgraph of G induced on the set of vertices N ∪ {x, y}. A square is the graph C4

and the pyramid is the wheel graph W5.

Theorem 4.10. All common neighbor graphs of tree graphs are squares or pyramids.

Proof. A matroid is graphic if its bases are the edge sets of the spanning forests of
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some graph. Thus the set of spanning trees of a connected graph together with the set

of edges of the graph is a graphic matroid. A remark in [21, p. 125] states that every

graphic matroid is binary (another designation for matroids, whose definition is not

important for our purposes), which, in turn, is equivalent to the basis graph having

no induced octahedra (see Theorem 4.1 in [21]). Thus T (G), as the basis graph for

the set of spanning trees of G, contains no induced octahedra. But Lemma 1.4 in [20]

says that the common neighbor graph of a basis graph is either a square, pyramid, or

an octahedron. Since we just learned that octahedra are ruled out for tree graphs, all

common neighbor graphs of tree graphs are either squares or pyramids. Additionally,

Corollary 4.3 in [21] states that if G is not a Cartesian product of complete graphs,

then T (G) contains at least one common neighbor graph that is a pyramid.

Figure 19 shows square and pyramid common neighbor graphs in T (K4 − e).

Figure 19: Common neighbor graphs in T (K4 − e)

4.4 Homomorphisms

A homomorphism from graph G to H is a function φ : V (G) → V (H) such that

x ∼ y ⇒ φ(x) ∼ φ(y). If there is a homomorphism from G to H, we will write

G → H. Homomorphisms preserve some of the structure of the original graph. In

this section we make a short investigation of how the tree graph function interacts

with graph homomorphisms.
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A natural first question about homomorphisms is to determine when a homo-

morphism can exist between graphs. One necessary condition for G → H is that

χ(G) ≤ χ(H). In any proper coloring, distinctly colored vertices cannot be adjacent,

so H cannot require fewer colors than G needs. From this observation we get the

following result.

Theorem 4.11. The assumption that G→ H does not imply T (G)→ T (H).

Proof. By way of a counterexample, notice that there is a homomorphism from K4−e

to K3 that maps the two vertices of degree 2 to a single vertex of K3 and the two

vertices of degree 3 to the two other vertices in K3. However, χ(T (K4 − e)) = 4,

while χ(T (K3)) = 3, so there can be no homomorphism from T (K4 − e) to T (K3).

Therefore G→ H does not imply T (G)→ T (H).

4.5 Automorphism Groups

We denote by Aut(G) the the group of automorphisms of G, which is the group of

permutations of V (G) that respect adjacency in G. The glory g(G) of a graph G is

the size of its automorphism group, so that g(G) = |Aut(G)|. (This definition gives

us a way to quantify how glorious a graph is!) Automorphism groups can range in size

anywhere from the full symmetric group Sn (of order n!) for complete graphs, all the

way down to the trivial group (of order 1) for some graphs. Such inglorious graphs

are called asymmetric. It is known that, asymptotically, almost all finite graphs are

asymmetric (see Corollary 2.3.3 in [9]).

The data gathered for this research indicate that tree graphs tend to be very

glorious. This high level of symmetry can arise even if the base graph is asymmetric.

For example, the smallest 2-connected asymmetric graph can be visualized (see Figure

20) by identifying an edge of two squares and adding a diagonal edge through one of
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the squares. We will refer to this graph as Asym6. Its tree graph has 29 vertices and

122 edges, and has an automorphism group of order 12. In fact, the automorphism

group is isomorphic to D12, the symmetries of a regular hexagon.

Figure 20: An asymmetric graph G with |Aut(T (G))| = 12

Brendan McCay’s well-known computer program nauty [22] was used to find the

glories of the tree graphs constructed during this research. In some smaller cases,

the automorphism group itself could be uncovered. The number of groups discerned

so far is perhaps not large enough to support any serious conjecture, but all of the

groups found have either been dihedral groups or (products of) symmetric groups.

This only applies to graphs that are 2-connected but not 3-connected, a distinction

that will be explained in Conjecture 4.33.

The two major results in this section relate the automorphism group of a tree

graph T (G) to the automorphism group of G. In Theorem 4.15 we see that the latter

is always isomorphic to a subgroup of the former. In Theorem 4.16 we learn that in

most cases, if G is sufficiently connected then the two groups are the same. We first

prove several lemmas. We remind the reader of Menger’s theorem [23] on connectivity

which says that if G has connectivity κ, then any two vertices x, y will be connected

by at least κ openly-disjoint xy-paths (xy-paths are openly-disjoint if and only if they

share only their endpoints x and y).

Lemma 4.12. Let G be a 2-connected graph and let e, e′ ∈ E(G) be distinct. There

is a cycle in G containing both e and e′.

Proof. By the fact that G is 2-connected, we have that κ ≥ 2. Suppose that e and e′

share a vertex, that is, e = {x, y} and e′ = {x, z}. By Menger’s Theorem there exists
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a path from y to z openly-disjoint from the path yxz. The union of these two paths

then creates a cycle containing e and e′.

Suppose now that e = {w, x} and e′ = {y, z} share no vertices. Since the graph is

connected, there exists a path p from w to y. This path falls into one of several cases.

• the path p contains neither x nor z: by Menger’s theorem there exists a path q

from x to z openly-disjoint from p.

• the path p contains x but not z: by Menger’s theorem there exists a path q

from w to z openly-disjoint from p.

• the path p contains z but not x: by Menger’s theorem there exists a path q

from x to y openly-disjoint from p.

• the path p contains x and z: by Menger’s theorem there exists a path q from w

to y openly-disjoint from p.

In each case, the union of p, q, e, and e′ produces a cycle containing the two desired

edges.

Figure 21 illustrates each of the four cases. The bold edges represent the path p

and the dashed edges represent the path q.

Figure 21: Building a cycle that contains e and e′

Lemma 4.13. Let G be a 2-connected graph and let e, e′ ∈ E(G) be distinct. There

exists a spanning tree of G which includes e and avoids e′.
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Proof. By Lemma 4.12, there exists a cycle containing both e and e′. Start building

a tree by first adding in all of the edges in that cycle except for e′. That collection of

edges forms an acyclic subgraph of G. By Lemma 2.6, there is a tree that contains

that subgraph. Thus we have a tree that contains e and does not contain e′.

Let σ ∈ Aut(G). Then σ is a permutation of V (G) such that σ(x) ∼ σ(y) if

and only if x ∼ y. But σ also induces a permutation σ̂ of edges of G. We define

σ̂ : P(E(G))→ P(E(G)) to be the map satisfying

σ̂(S) = {{σ(x), σ(y)} | {x, y} ∈ S}.

We will view T , a spanning tree of G, both as a vertex of T (G) and as a set of edges

of G, depending on our need. By the adjacency restriction of σ on V (G), we know

that σ̂(T ) ∼= T as a spanning tree. The function σ also induces an automorphism

φσ ∈ Aut(T (G)) by φσ(T ) = σ̂(T ).

There are two types of edges: those that are not contained in cycles (so-called cut

edges) and those that are (so-called cycle edges). Since automorphisms preserve the

structure of the graph, the edge orbits under Aut(G) are partitioned by these types.

That is, cycle edges get sent only to cycle edges and cut edges get sent only to cut

edges under the action of Aut(G).

Lemma 4.14. Let σ ∈ Aut(G) and φσ be defined as above. If φσ(T ) = T for all

T ∈ V (T (G)), then σ̂(e) = e for all cycle edges e ∈ E(G).

Proof. This theorem says that if an induced automorphism acts like the identity on

T (G), then its base automorphism fixes cycle edges in G. We argue by contrapositive.

Suppose that σ̂ does not fix all cycle edges in G. Then there exist distinct cycle

edges e and e′ such that σ̂(e) = e′. By Lemma 4.13, there exists a spanning tree T
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of G that contains e and avoids e′. Then φσ(T ) 6= T , since σ̂(T ) contains e′ while T

does not. Therefore the statement is true by contrapositive.

Theorem 4.15. For any 2-connected graph G, there exists a subgroup

H ≤ Aut(T (G)) such that Aut(G) ∼= H.

Proof. Using the same notation as above, define Ψ : Aut(G)→ Aut(T (G)) by Ψ(σ) =

φσ for any σ ∈ Aut(G). We claim that Ψ is a group homomorphism. To see this, let

σ1, σ2 ∈ Aut(G) and T ∈ V (T (G)). Then

Ψ(σ2 ◦ σ1)(T ) = φσ2◦σ1(T )

= σ̂2(σ̂1(T ))

= φσ2(φσ1(T ))

= Ψ(σ2) ◦Ψ(σ1)(T ).

Thus Ψ is a homomorphism. We will now show that Ψ is an injection. Let i be the

appropriate identity automorphism. If Ψ(σ) = Ψ(i) then for any T ∈ V (T (G)),

σ̂(T ) = φσ(T ) = Ψ(σ)(T ) = Ψ(i)(T ) = φi(T ) = î(T ).

This implies that σ̂ equals î when they are acting on V (T (G)). But we want to

show that σ equals i as elements of Aut(G), ie. when they are acting on V (G).

We are assuming that φσ(T ) = T for all T ∈ V (T (G)). Since G is 2-connected,

every edge is a cycle edge. By Lemma 4.14, this means that σ̂(e) = e for all e ∈ E(G).

Thus σ̂ fixes all of the edges of G.

By way of contradiction, then, suppose σ does not fix all of the vertices in G,

that is, σ(x) = y, for some x 6= y. If {w, x} is an edge that contains x, then either

41



σ̂({w, x}) = {σ(w), y} is a different edge, which is a contradiction, or else w = y and

σ(y) = x. Since G is 2-connected, it contains more than just the one edge {x, y}

with endpoint x. Indeed, let {x, z} denote another edge in G. The transposition of

x and y forces z to move as well, which sends {x, z} to a different edge. This is a

contradiction.

Thus we have that σ fixes all of the vertices of G, meaning σ = i. This implies

that Ψ is an injective group homomorphism from Aut(G) into Aut(T (G)), which lets

us conclude that the image of Aut(G) is the desired subgroup H.

As an example,

Aut(K4 − e) ∼= V4 ≤ D8
∼= Aut(T (K4 − e))

where V4 is the Klein 4-group and D8 is the dihedral group of symmetries of the

square. Note that this result might not hold if G is not 2-connected. For example,

let G be the star graph on five vertices with an edge added between two of the leaves;

see Figure 22. The automorphism σ of G that swaps the two leaves 1 and 2 has the

same effect on all of G’s trees as the identity automorphism i; σ̂(T ) = î(T ) for all

T ∈ V (T (G)). However, σ(1) = 2 6= 1 = i(1) when acting on V (G), so σ 6= i in

Aut(G).

Figure 22: A non-2-connected graph that fails to satisfy the conclusion of Theorem 4.15
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In general, suppose two isomorphic trees are connected to a graph G at the same

vertex. Let G′ be this new graph. Let γ be the automorphism of G′ that swaps the

two trees and fixes everything else. Then γ̂(T ) = T for all T ∈ V (T (G′)), since G is

fixed by γ. We then have that γ̂ = î but γ 6= i. In this case Ψ would not be injective,

which is what we want.

One way to prevent this issue is to assume that G is 2-connected, and thus has

no cut edges. Since that is our running assumption in this paper, we do not include

that hypothesis in the theorem.

If G contains a cycle, the result depends on whether or not G has any non-

identity automorphisms that fix all of its cycle edges. For example, K3

⊙
K3 is not

2-connected, but none of its seven nonidentity automorphisms fix all of its cycle edges.

Thus the theorem holds for it.

Theorem 4.16. Suppose G is 3-connected with m edges and n vertices. Then

Aut(T (G)) ∼= Aut(G), except that if m = 2(n−1), it is also possible that Aut(T (G)) ∼=

Aut(G)× Z2.

Proof. The cycle automorphism group, Autc(G) is defined as the group of all functions

φ : E(G) → E(G) such that X ⊆ E(G) is a cycle if and only if φ(X) is a cycle. On

page 329 of [31] we have that if G is 3-connected, then Aut(G) ∼= Autc(G). Let MG =

(E,B) be the graphic matroid of G. On the same page we are told that Aut(MG) ∼=

Autc(G) for any graph. Corollary 3.5 from [21] gives us that Aut(T (G)) ∼= Aut(MG),

except that if m = 2(n − 1), it is also possible that Aut(T (G)) ∼= Aut(MG) × Z2.

Following the chain of isomorphisms gives us our result.

As an example of this result, K5 is 3-connected, and

Aut(T (K5)) ∼= S5
∼= Aut(K5).
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An example of the exception is K4, with four vertices and six edges. Indeed,

Aut(T (K4)) ∼= S4 × Z2
∼= Aut(K4)× Z2.

A negative exception is K4,3. It is 3-connected and has seven vertices and twelve

edges, yet

g(K4,3) = g(T (K4,3)) = 144.

4.6 Induced Subgraphs and Planarity

Recall that G−e is the graph where the edge e is deleted and G ·e is the graph where

the edge has been contracted. Let us use the example of the house graph H and let

e be its bottom edge. Figure 23 shows H on the left with edge e in bold, H − e in

the middle, and H · e on the right. The graph H − e is a triangle with two pendant

vertices, which we know from Corollary 3.16 will have the same tree graph as K3.

The graph H · e is the same as K4 − e, and we saw what its tree graph looks like in

Section 2.

Figure 23: The house graph showing deletion and contraction of an edge

In this section we learn that tree graphs contain the tree graphs of smaller graphs

inside of them. We can use this knowledge to show that essentially all tree graphs
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are nonplanar.

Lemma 4.17. Let e be an edge of G. The subgraph of T (G) induced on all trees that

do not contain e is isomorphic to T (G− e).

Proof. Delete all of the trees that do contain e from T (G). The remaining trees will

not contain e. These are exactly the spanning trees of G−e, with the same adjacency

relationship as before. Thus what remains is T (G− e).

Lemma 4.18. Let e be an edge of G. The subgraph of T (G) induced on all trees that

contain e is isomorphic to T (G · e).

Proof. Let T be a tree that contains e. If we contract e, T becomes a tree T ′, a

spanning tree for G · e. Likewise, for every tree T ′ ∈ G · e, there is a spanning tree T

of G that can be made by expanding (“un-contracting”) e. Indeed, the two processes

are inverses of each other.

These results were found independently in earlier papers, for example Lemma 2.3

in [16]. Let us see an example of these results in action, using the same house graph H

as before. Figure 24 shows T (H) on the left and again on the right with the induced

subgraphs differentiated. The bold edges belong to T (H− e) ∼= K3, while the dashed

edges belong to T (H · e) ∼= T (K4 − e). Notice that each vertex in the graph is in

exactly one of these two induced subgraphs. The ones in the triangle are all of the

spanning trees that do not contain e, and the remaining vertices are the trees that do

contain e. Cummins makes use of this deletion/contraction property in his original

paper [4].
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Figure 24: T (H) with the noted induced subgraphs shown

H is a minor of a graph G, written H v G, if we can obtain H from G by

a sequence of deleting vertices, deleting edges, and contracting edges. Minors are

generalizations of subgraphs. For instance, C4 v C5, but C4 � C5. Wagner’s theorem

[30], following Kuratowski’s celebrated work, says that a graph is planar if and only

if it does not contain K5 or K3,3 as a minor. The following corollary summarizes the

findings of this section so far.

Corollary 4.19. If H is a minor of G then T (H) will be an induced subgraph of

T (G).

In diagram form, Corollary 4.19 says:

T (H) ≤ T (G)

↑ ↑

H v G

We can use this relationship to investigate the planarity of tree graphs. Our

tactic will be to show that two small tree graphs are not planar and that almost
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every graph has one of those two base graphs as a minor, causing their tree graphs

to also be nonplanar.

Lemma 4.20. The tree graphs T (K4 − e) and T (K3

⊙
K3) are not planar.

Proof. The graph K4 − e, also known as the diamond, and the joined triangle graph

K3

⊙
K3 from Figure 9, also called the butterfly, play a special role in deciding the

planarity of tree graphs. The tree graph of the diamond is not planar since it contains

a K5 minor. Likewise, the tree graph of the butterfly is not planar as it contains K3,3

as a minor. The next two figures demonstrate this. The first transformation is

shown in Figure 25. First the bottom left vertex is deleted, then the dashed edges

are contracted to reveal K5. The left graphic in Figure 26 shows T (butterfly). The

middle graphic is a redrawing of it after deleting some edges. Once the dashed edges

are contracted, we get K3,3 on the right.

Figure 25: Showing the tree graph of the diamond is nonplanar

Figure 26: Showing the tree graph of the butterfly is nonplanar

47



Theorem 4.21. The tree graph T (G) is nonplanar unless G ∼= C3 or G ∼= C4.

Proof. By Corollary 4.19 and Lemma 4.20 we know that the tree graph of any graph

containing the diamond or the butterfly as a minor will be nonplanar. So which

graphs do not have these as minors? If we forbid the diamond as a minor, [6] tells

us that we are left with the cactus graphs, which are connected graphs in which any

two cycles have at most one vertex in common. By also forbidding the diamond as

a minor, we leave ourselves with the 2-connected cacti. Lemma 2 in [6] tells us that

only cycles remain.

By Lemma 3.8 we know that tree graphs of cycles are complete graphs. Any

complete graph Kn, for n ≥ 5 will contain K5 as a subgraph, and so will be nonplanar.

Thus T (Cn) is nonplanar for n ≥ 5. By inspection we know that K3 and K4 are

planar, so T (C3) and T (C4) are planar. Those are the lucky two.

4.7 Clique Decomposition

A graph decomposition is a partition of the edges of a graph. Essentially, we are

breaking down the graph into smaller component parts. Sometimes we would like

these parts to all share a particular property. One example of this is a clique decom-

position, in which the edges in every cell of the partition form a complete subgraph in

the given graph. This can be done trivially, as technically a single edge is the same as

the complete graph K2. Thus clique decompositions are usually restricted to cliques

of order three and larger.

Not all graphs have such a clique decomposition. Consider the diamond, for

example. It does not have enough edges to be a K4, and pulling out a K3 leaves

two edges behind. In this section we will show that every tree graph has a clique

decomposition. Moreover, every vertex will be in the same number of cliques. This is
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a very restrictive condition to place on graphs, one which might help to characterize

tree graphs.

In a graph with n vertices and m edges, let v = m−n+1. This is a measure of the

number of “extra” edges of G, as the number of edges leftover whenever a spanning

tree is taken out.

Theorem 4.22. Let G be a graph with n vertices and m edges, and let v = m−n+1.

The edges of T (G) can be decomposed into cliques of size at least three such that each

vertex is in exactly v cliques.

Proof. Start with any vertex of T (G), which corresponds to a spanning tree of G.

To walk from it to its neighbors in T (G), we first must add an edge to it, creating a

unique cycle of size at least three. By Lemma 2.4, removing any other edge from this

cycle gives us a new spanning tree, whose corresponding vertex must be adjacent to

the vertex for our starting tree in T (G). Adding that extra edge creates a unicycle.

Each spanning unicycle with cycle size c ≥ 3 in G gives rise to a Kc clique in T (G)

(see Lemmas 3.8 and 3.16 and Corollary 4.19). This tells us that each spanning

unicycle that contains a given tree produces a unique clique in T (G). How many

such unicycles contain a given tree? Well there are v extra edges in G that can be

added in order to create the unicycles. Therefore every tree is part of v such unicycles,

and every vertex in T (G) is part of v cliques.

The size of a clique that contains a given edge in T (G) can be found by looking

at the union of the trees that are incident to it and finding the size of the cycle that

is created. Figure 27 shows such a clique decomposition for T (G), where G is the

diamond graph. There is a K4 in bold and four K3 subgraphs in thin and dashed

edges. We can see why the cliques arise by looking at the spanning trees of K4− e in

Figure 3. The four interior trees do not have the diagonal edge, so the union of any
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two of them is C4. The four exterior trees do contain the diagonal edge, so any union

involving them will give a C3 which includes that edge.

Figure 27: Clique decomposition of the tree graph of the diamond

We can use this decomposition property to predict the number of edges in T (G).

To do so, we just need to find all of the spanning unicycles of G and record the size

of the cycle in each of them.

Corollary 4.23. Let G be any graph and let u1, u2, . . . , uµ be all of the distinct span-

ning unicycles of G. Let c1, c2, . . . , cµ be the list of the sizes of the unique cycles

contained in these unicycles. Then

|E(T (G))| =
µ∑
i=1

(
ci
2

)
.

Proof. Theorem 4.22 gives us that T (G) can be decomposed into cliques and that

each k−clique arises from a k−cycle contained in a unicycle. Once we know the sizes

of the cycles in all of the unicycles, we know the kinds of cliques in the decomposition

of T (G). Since Kn has
(
n
2

)
edges, we get the total number of edges by simply adding

up all of the appropriate binomial coefficients.

As an example, consider the diamond. Figure 28 shows its five spanning unicycles.

The first four contain C3, so will contribute 4 ·
(
3
2

)
= 12 edges. The last contains C4,

so adds
(
4
2

)
= 6 edges, for a total of 18. This matches what we see in Figure 27.
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Figure 28: The µ = 5 unicycles of the diamond

Recall that a graph is bipartite if its vertices can be partitioned into two sets such

that every edge in the graph has one endpoint in each set.

Corollary 4.24. For any 2-connected graph G, the tree graph T (G) is not bipartite.

Proof. Since G is 2-connected, it contains a cycle. From Corollary 4.19 we know that

cycles in graphs give rise to complete graphs in their tree graphs. Each such complete

graph contains at least one triangle, so T (G) contains at least one triangle. Therefore

T (G) has at least one odd cycle, and so by König’s theorem [32, Theorem 1.2.18],

T (G) cannot be bipartite. Additionally, we get that girth(T (G)) = 3 for all such

G.

4.8 Special Families

When investigating tree graphs, several special families stand out. One of those is the

family of theta graphs. The graph θa,b,c is made by joining two vertices with openly-

disjoint paths of length a, b, and c, with at least two of the values being greater than

one. For example, the house graph is isomorphic to θ3,2,1. Simple counting shows us

that θa,b,c has a+ b+ c edges and a+ b+ c− 1 vertices. This means that no matter

what the parameters are, v = m− n+ 1 = 2 for theta graphs.

Line graphs were mentioned in the introduction as another example of a deter-

ministic graph construction that yields interesting results. The line graph, L(G), has

a vertex for every edge of G, where two vertices are adjacent if and only if their corre-

sponding edges are incident in G. Thanks to Krausz’s characterization of line graphs
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[12], we know that a graph is a line graph if and only if its edges can be partitioned

into cliques such that each vertex is in at most two cliques (here cliques can have size

smaller than three). We can use this strong property to describe tree graphs that are

also line graphs. The next two theorems do just that.

Theorem 4.25. For any integers a ≥ b ≥ c ≥ 1, with b ≥ 2,

T (θa,b,c) ∼= L(Ka,b,c).

Proof. The number of vertices of T (θa,b,c) is the number of spanning trees of θa,b,c.

Since v = 2 and θa,b,c has three cycles, we have to remove two edges and break three

cycles to get a spanning tree. We cannot remove two edges from just one of the three

disjoint paths, as the union of the other two would still be a cycle. Thus we must

remove one edge from two distinct paths to create a tree. There are ab+ac+ bc ways

to do this, which tells us the number of vertices of T (θa,b,c).

The number of vertices of L(Ka,b,c) is the number of edges in Ka,b,c. Each vertex

in a cell is adjacent to exactly all of the vertices in the other two cells. Thus there

are

a(b+ c) + b(a+ c) + c(a+ b)

2
=
ab+ ac+ ba+ bc+ ca+ cb

2

=
2ab+ 2ac+ 2bc

2

= ab+ ac+ bc

edges in Ka,b,c, which gives us the number of vertices in L(Ka,b,c).

We have now seen that the two graphs have the same number of vertices. Label

each edge of θa,b,c with the numbers 1 through a + b + c. By construction, each of

the three paths in θa,b,c has a corresponding cell in Ka,b,c of the same size. Label the
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vertices of Ka,b,c so that the vertices in the cells get the same labels as the edges in

their corresponding paths. In this way we can set up a bijection between the trees

of θa,b,c and the edges of Ka,b,c. Each tree can be identified by the labels of the two

edges that were removed in order to create it. We then identify tree {i, j} with edge

ij (see Figure 29). This gives us a bijection between the vertices of T (θa,b,c) and the

vertices of L(Ka,b,c).

Two trees in T (θa,b,c) are adjacent if they differ by a single edge — that is, if their

labels differ in a single place. Thus {i, j} will be adjacent to {i, k} and {k, j} for all

available values of k. Adjacency in L(Ka,b,c) is determined by edges that are incident

to each other — that is, if they share a vertex. So edge ij will be incident to edges

ik and kj for all available values of k. Thus the adjacency relationship is preserved

by the bijection and therefore the two graphs are isomorphic.

Figure 29: Spanning tree {2, 6} of θ3,2,1 and corresponding edge {2, 6} in K3,2,1

Theorem 4.26. Let G be a 2-connected graph. There are at least two possibilities

for when T (G) is a line graph, i.e. T (G) ∼= L(H) for some graph H:

1. G ∼= Cn and H ∼= K1,n.

2. G ∼= θa,b,c and H ∼= Ka,b,c.

Proof. Theorem 4.22 tells us that each vertex of T (G) is partitioned into v = m−n+1

cliques of size at least three. So by Krausz, we consider the cases when v = 1 or v = 2.
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Case v = 1: In this case, G has the same number of vertices and edges. For

2-connected graphs, this only leaves the cycles. Lemma 3.8 gives us that tree graphs

of cycles are complete graphs, and it is not hard to see that Kn
∼= L(K1,n).

Case v = 2: In this case, G has one more edge than it has vertices. We know G is

2-connected. Let Ψ(v) be the maximum number of cycles in a graph with parameter

v. In [7] we learn that 2v−1 + v2− 3v+ 3 ≤ Ψ(v) ≤ 2v − 1. Plugging in v = 2, we get

3 ≤ Ψ(2) ≤ 3, which tells us that G can have at most three cycles. It cannot have

zero cycles since m > n, nor can it have exactly one cycle since m 6= n. Thus it either

has two or three cycles. If it has exactly two cycles, they must not share an edge,

otherwise a third cycle would be created from their boundary. Likewise there cannot

be more than one path between the two cycles, otherwise an additional cycle would

be created. Then either the cycles share a vertex or there is a single path joining

them. In either case, the graph has a cut-vertex and so is not 2-connected. Thus

there are exactly three cycles in G. This is only possible if G is a theta graph.

Thus G ∼= θa,b,c as described above. By Theorem 4.25, T (θa,b,c) ∼= L(Ka,b,c). This

finishes the result.

For example, since the house graph is isomorphic to θ1,2,3, we have that T (house) ∼=

L(K1,2,3).

Because of this relationship between theta graphs and complete tripartite graphs

via the line graph, we can say something about the automorphism group of their tree

graphs. Recall that the glory of a graph G, g(G), is the size of its automorphism

group.
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Theorem 4.27. For any integers a ≥ b ≥ c ≥ 1, with b ≥ 2, the glory

g(T (θa,b,c)) = s! a! b! c!

where s is the number of parameters among {a, b, c} that are equal.

Proof. From Theorem 4.25 we know that T (θa,b,c) ∼= L(Ka,b,c). Thus we have that

Aut(T (θa,b,c)) ∼= Aut(L(Ka,b,c)). Corollary 1.4 in [15] says that Aut(G) ∼= Aut(L(G))

under conditions which our complete tripartite graphs meet. Therefore Aut(T (θa,b,c))

∼= Aut(Ka,b,c). Since Aut(Ka,b,c) ∼= (Sa × Sb × Sc) o Ss, we have g(T (θa,b,c)) =

s! a! b! c!.

For example, g(T (θ2,2,2)) = 6 · 23 = 48, and g(T (θ4,2,2)) = 2 · 24 · 22 = 192, while

g(T (θ3,2,1)) = 1 · 6 · 2 · 1 = 12.

We can combine earlier results to get tight bounds on the chromatic number of

tree graphs of theta graphs.

Theorem 4.28. Let a ≥ b ≥ c ≥ 1, with b ≥ 2. Then

a+ b ≤ χ(T (θa,b,c)) ≤ a+ b+ c.

Proof. At the beginning of Section 4.8 we saw that θa,b,c has a + b + c − 1 vertices

and a+ b+ c edges. Since θa,b,c has exactly three cycles, one each of sizes a+ b, a+ c,

and b+ c, finding the circumference of θa,b,c amounts to choosing the greatest of those

values. By our ordered labeling of the parameters, this is a + b. Corollary 3.23 then

gives us a+b = circ(θa,b,c) ≤ χ(T (θa,b,c)). Further, χ(T (θa,b,c)) ≤ |E(θa,b,c)| = a+b+c

by Theorem 3.18. Putting these bounds together gives the result.
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When c = 1, the graph, θa,b,c is hamiltonian and the bounds only differ by one.

Data gathered suggests that the lower bound is usually the correct value.

The next nice family of base graphs is the Pn,k family. Recall that Pn,k is the

graph formed by joining two vertices with n openly-disjoint paths of length k. The

graph Pn,k has nkn−1 spanning trees. To see this, notice that to avoid cycles, all but

one of the paths must be broken by removing a single edge, and that removing more

than one edge from any path would disconnect the graph. There are n choices for the

unbroken path. There are n − 1 paths left to break, and k edges in each path from

which to select one for removal. This gives us nkn−1 spanning trees, which also tells

us the number of vertices of T (Pn,k).

The tree graphs of this family are regular and are extremely glorious. They also

seem to be integral and vertex transitive, topics which will be explored in the next

section. Additionally, it can be shown that T (Pn,2) is related to the n−dimensional

hypercube. (Recall that the hypercube Qn is defined as Kn
2 , where the exponentiation

is taken over the Cartesian product.)

The construction works as follows. Start with the hypercube Qn. Next, take its

line graph. Then connect two vertices in the line graph if their respective edges were

opposite each other on a 4-cycle face in Qn. Figure 30 illustrates this process when

n = 3. In (1) we start with Q3. The image in (2) adds L(Q3). In (3) we add the extra

edges across all of the square faces. Finally in (4) we see the completed T (K3,2) by

itself. As we do not rely on this result, we omit the verification of this construction.
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Figure 30: Constructing T (K3,2) from Q3

Theorem 4.29. The graph T (Pn,k) is regular with degree (n− 1)(2k − 1).

Proof. As discussed above, each tree of Pn,k is missing n − 1 edges: one each from

n− 1 of the paths. Picking any one of these to add back to the graph creates a single

2k−cycle. Removing any of the 2k edges in this cycle other than the one just added

will create a new tree adjacent to the first in T (Pn,k). This gives us (n− 1)(2k − 1)

adjacent trees, and the degree of each vertex in the graph.

As mentioned earlier, these tree graphs are highly symmetric. As n and k increase,

the automorphism group grows very rapidly. For example, g(T (P3,3)) = 1296, while

g(T (P3,5)) = 10368000.

The θa,b,c and Pn,k graphs are similar in that they are both formed by joining two

vertices with openly-disjoint paths. In the former, there are exactly three paths but

their lengths can be different. So θa,b,c is a graph with exactly three cycles, which is

the minimum possible among 2-connected graphs that are not cycles. In the latter,
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the number of paths can vary but their lengths are the same. This allows Pn,k to have

many cycles of length 2k (in particular,
(
n
2

)
of them). In either case, the simplicity of

the cycle structure of the graph leads to nice structural properties of its tree graph.

We can also view even cycle graphs C2k as special cases of the Pn,k family. Having

a single cycle leads to a complete tree graph, which has the most automorphisms

possible.

4.9 Conjectures

While exploring the data generated in this investigation of tree graphs, many patterns

emerged. Some of these patterns were nailed down and turned into the results proved

elsewhere in this paper. Other patterns could not be explained as easily, and thus

are (hopefully temporarily) left as conjectures. This section collects some of the more

compelling conjectures put forth so far. Many of them are algebraic in nature, and

all of them help build the allure of tree graphs.

Conjecture 4.30. The clique decomposition from Theorem 4.22 is unique.

When v = 1 or 2, we know from Theorem 4.26 that our tree graphs are line graphs.

Krausz’s characterization says that we can decompose line graphs into cliques, and

Whitney’s isomorphism theorem [33] says that except in the case of one counterexam-

ple (a counterexample that does not occur among tree graphs), isomorphic line graphs

are equivalent to isomorphic graphs. In other words, L(G) ∼= L(H) ⇐⇒ G ∼= H.

Since the base graph is reconstructed from the clique decomposition of the line graph,

this implies that the decomposition is unique. It might not be a stretch to assume

that unique decomposition holds for all values of v, and thus all tree graphs.

Even if this is true, it still does not help us necessarily find the base graph that

induces a particular tree graph. Theorems 3.9 and 3.10 are thorns in our side that
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prevent us from knowing if a unique graph gives rise to our tree graph. Nonetheless,

it would provide useful information about the base graph, such as the possible sizes

of cycles in G.

Conjecture 4.31. Let G be a graph with n > 3 vertices. If Aut(G) ∼= Aut(T (G))

then G is 3-connected.

We know the converse is true by Theorem 4.16 (unless perhaps m = 2(n−1)). This

conjecture would suggest that the properties are equivalent for tree graphs (again, ex-

cept for perhaps in the case when m = 2(n−1)). The contrapositive of this conjecture,

along with Theorem 4.15, says that if G is 2-connected but not 3-connected, Aut(G)

will always be a proper subgroup of Aut(T (G)). The restriction on n eliminates the

pesky K3 counterexample, which by definition is only 2-connected.

We indicated that the tree graphs of Pn,k graphs were glorious, but exactly how

glorious are they?

Conjecture 4.32. For any integers n, k ≥ 2, the glory of the graph Pn,k is given by

g(T (Pn,k)) =


(2k)!, n = 2

n!(k!)n, n > 2

When n = 2, we have P2,k, which is just a 2k−cycle, and we know this has the

tree graph K2k. So the automorphism group is S2k, which tells us g(T (P2,k)) = (2k)!.

Otherwise, the automorphism group seems to be the wreath product Sk o Sn. When

k = 2 we get the special case of S2 o Sn, which are the hyperoctahedral groups.

Conjecture 4.33. Let G be a graph with n > 3. If G is 2-connected but not 3-

connected, then g(T (G)) is divisible by 4.
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The connectivity restriction of Conjecture 4.33 is based on an extension of Frucht’s

theorem [8], which says that for any group Γ there is a graph G whose automorphism

group realizes Γ. We can in fact find such a graph G that is as connected as we want

[27]. Thus we can pick any number n, construct a 3-connected graph which has that

glory, say with automorphism group Zn, and by Theorem 4.16 we get g(T (G)) = n.

The triangle K3 has the symmetry group of the dihedral group on six elements,

and Aut(K3) ∼= Aut(T (K3)) so g(T (K3)) = 6. This has been the only 2- but not

3-connected graph found so far whose glory was not divisible by four. One way

Conjecture 4.33 could be true is if every automorphism group for this type of tree

graph contains a subgroup of size four.

Conjecture 4.34. For any graph G, the ratio g(T (G))/g(G) is 1, 3, or even.

Theorem 4.15, along with Lagrange’s theorem, says the given ratio has to be a

whole number. By Theorem 4.16 the ratio is one when G is 3-connected (Conjec-

ture 4.31 says this is the only time). When G = C4, we have Aut(G) ∼= D8 while

Aut(T (G)) ∼= S4, which gives a glory ratio of three. So far, C4 has been the only

graph found to have this ratio, and besides one and three, the rest of the ratios have

been even.

The adjacency matrix A(G) of a graph G is a square matrix with rows and columns

indexed by the vertices of G, where an entry is 1 if the corresponding pair of vertices

is adjacent, and 0 otherwise. The eigenvalues of A(G) can tell us useful information

about the graph [5, 9]. If all of the eigenvalues of A(G) are integers, G is called an

integral graph. If every vertex of G can be sent to every other vertex by means of an

automorphism, then G is called vertex-transitive.

Conjecture 4.35. For any integers n, k ≥ 2, the graph T (Pn,k) is integral and vertex-

transitive.
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The adjacency matrix A(T (Pn,k)) seems to have d3n−2
2
e distinct eigenvalues. Since

it is regular, the maximum eigenvalue will be (n− 1)(2k − 1). Then there are dn−1
2
e

jumps of size 2k between the next biggest distinct eigenvalues, then jumps of size k

down to the smallest eigenvalue of 1− n.

Figure 31 shows P3,2 on the left next to its tree graph. In this example, the list

of eigenvalues and their multiplicities of T (P3,2) is 6, 2(3), 0(2),−2(6). See Appendix C

for more information.

Figure 31: P3,2 and its tree graph

We now know many useful properties of T (Pn,k) and can use them to construct a

formidable graph with quite a bit of freedom of choice. Suppose you wanted a regular

graph; then T (Pn,k) will not disappoint. Perhaps you are picky and want to choose

the degree? We saw in Theorem 4.8 that T (Pn,k) is (n − 1)(2k − 1)−regular, and

(n − 1) can be be any positive integer we want. Since 2k − 1 is odd and at least

three, their product gives us the ability to generate any natural number that is not a
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power of two (we can get those as well, if G is allowed to be a non-simple graph). For

example, say you want a 60-regular graph. Then any of the graphs T (P5,8), T (P13,3),

or T (P21,2) will satisfy you. Did you also want your graph to be integral? How

about vertex-transitive? Maximally-connected? All of the above? No problem. Even

hamiltonian-connected is guaranteed! These are some very nice graphs. Figure 32

shows a drawing of T (P4,2).

Figure 32: The tree graph T (P4,2)
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Patterns were also found in the multiplicities of eigenvalues of T (Pn,2). See Ap-

pendix C for more information.

The tree graphs of theta graphs seem to be almost integral. Let a, b, and c be

distinct. The data collected suggests that T (θa,b,c) has only three non-integer eigen-

values while T (θa,b,b) has only two. For T (θa,b,b), the integer eigenvalues seem to

be

{−2, a− 2, 2(b− 1), a+ b− 2}

while the two irrational eigenvalues are

{.5(a+ 4(b− 1)±
√
a(a+ 8b))}.

Certain values of a and b make these last two integers, such as (a, b) = (1, 10) and

(2, 6).

Let r = a+ b+ c. The non-integer eigenvalues of T (θa,b,c) seem to be the roots of

the monic cubic polynomial

x3 − 2(r − 3)x2 + (r − 6)(r − 2)x+ d,

where d is some constant mysteriously dependent on a, b, and c. For example, the

triple (5, 3, 1) gives the cubic x3 − 12x2 + 21x + 38, while for (4, 3, 2), which has the

same r value of 9, we get x3 − 12x2 + 21x+ 2.

The only regular tree graphs so far have been when the base graph is a cycle, Pn,k,

or a bracelet — copies of one of the two former types connected together in a cycle like

a bracelet. Figure 33 shows bracelets made from three copies each of C4 on the left

and P3,2 on the right. Their tree graphs are 16-regular and 27-regular, respectively.

The regularity seems to come from the fact that there are only two types of cycles
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present: in these examples, only C4 and C6. Also of importance might be the fact

that in all three of these families, any two cycles share at least one vertex.

A counting argument shows that if b copies of Pn,k are arranged to make a bracelet

graph B, then B is regular with degree (bk − 1)n+ (2k − 1)(b− 1)(n− 1).

Figure 33: Two bracelet graphs with regular tree graphs

Conjecture 4.36. If the repeated graph in a bracelet B has a regular tree graph, then

T (B) is regular.

All examples generated in the direction of this conjecture have produced regular

tree graphs. Conversely, trying to make bracelets out of graphs with nonregular tree

graphs, such K4 − e, has not yielded regular tree graphs. It might be useful to have

a more formal definition of a bracelet graph built from a given graph, and to explore

other bracelet-like constructions.

The degree bounds from Theorem 3.19 tell us that if the girth and circumference

of a graph are the same, i.e. if the graph has only one cycle size, then its tree graph

will be regular. Cycle graphs and Pn,k graphs fall into this category. The bracelets do

not have a single cycle size, however, showing that it is a sufficient but not necessary

property for tree graph regularity.

It should also be noted that bracelets do not seem to inherit integrality from

their base graphs. The graph Pn,k is integral, but data suggests that the tree graph
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of a bracelet built from Pn,k is not. In this way integrality seems to be a stronger

condition than regularity. However, there are examples of nonregular tree graphs that

are integral, such as T (θ3,3,1).

Conjecture 4.37. If T (G) is regular, it is vertex-transitive. Furthermore, it is inte-

gral.

Vertex-transitivity implies regularity. Since automorphisms preserve the structure

of a graph, vertices can be mapped only to vertices of the same degree. In a vertex-

transitive graph, every vertex can be mapped to every other vertex. Thus all degrees

must be the same and the graph is regular. The converse does not hold in general,

however. Figure 34 shows a 3-regular graph that is not vertex-transitive. Some of

the vertices are part of two four-cycles and one five-cycle, while others are part of

two five-cycles and one four-cycle. There is no way to map these types to each other.

Despite the failure of this implication for general graphs, we have no counterexamples

(yet) among tree graphs, hence Conjecture 4.37.

Figure 34: A regular graph that is not vertex-transitive
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By Theorem 4.22 we can decompose the edges of T (G) into cliques of at least size

three such that each vertex is part of the same number of cliques. Consider a clique

decomposition of a tree graph. The partition type of a vertex with reference to a clique

decomposition is the multiset of clique sizes that contain the vertex. For example,

the only two partition types of the vertices in the decomposition of T (diamond), seen

in Figure 27, are {3, 3} and {3, 4}. Only regular graphs can be vertex-transitive, but

there is a generalized version of this property that all tree graphs seem to share. In

this case, the graph is vertex-transitive on all vertices of the same partition type.

More formally, we have the following.

Conjecture 4.38. For each partition type p of G, the subgraph induced on all vertices

of partition type p is vertex transitive.

Let us take a look at a few examples. The subgraphs induced on the partition types

of T (diamond) are C4 and K4. For T (house) we get K2, K3, and Prism3
∼= K2�K3.

With T (K1,1,3) we get T (K3,2) and Q3. For all of these graphs, unique degrees

correspond to unique partition types. That is not always the case, however. Let

H ′ be the graph depicted in Figure 35. Then T (H ′) has ten vertices of degree 9.

Eight of them have partition type {6, 3, 3} while the remaining two have partition

type {5, 4, 3}. The subgraph induced on the former type is Q3, while the latter type

induces K2. All of these induced subgraphs are vertex transitive.

Figure 35: A graph whose tree graph shows degree and partition type are not equivalent

If Conjecture 4.38 is true, we may be able to say something about the automor-

phism group of a tree graph based on the automorphism groups of these vertex-
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transitive subgraphs. A partition type of size k would need at least k automorphisms

to be transitive on that set of vertices. So

g(T (G)) ≥ max{k | p is a partition type of size k in G}.

One lofty goal would be to characterize tree graphs. That is, given a graph

G, we want to be able to know for sure whether or not there exists a graph H

such that G ∼= T (H). We saw in Section 4.3 that all tree graphs are matroid basis

graphs. Maurer came up with several characterizations of matroid basis graphs in [20].

However, these characterizations involve many properties that are tough to check in

practice. Since tree graphs constitute a proper subclass of the class of matroid basis

graphs that behaves quite nicely, the hope is that there is a nicer way to characterize

them. For now we simply tack on a few necessary conditions that seem strong enough

and hope for the best.

Conjecture 4.39. For any graph G, G ∼= T (H) for some graph H if and only if G is

a matroid basis graph with no induced octahedra and can be decomposed into cliques

of size three or more, where each vertex is in the same number of cliques.

Theorem 4.10 and Theorem 4.22 give us that these are necessary conditions. This

conjecture posits that they are also sufficient conditions. It has been difficult so far

to try to produce a graph meeting these conditions that is not already known to be

a tree graph, since the conditions are hard to check. We hope that this conjecture

could lead to a classification of tree graphs, although even if it is successful it will be

of more theoretical than practical use.
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5 Trees and Decompositions of Complete Graphs

5.1 Background and Terminology

A matching in a graph is a set of disjoint edges. A perfect matching in a graph with an

even number of vertices is a matching that includes every vertex. A perfect matching

is also called a 1-factor. A 1-factorization of a graph is a set of perfect matchings

that partitions the edge set.

As it happens, there are many different 1-factorizations of the complete graph on

an even number of vertices, K2n. Categorizing these has led to a number of interesting

results, including the designation of several infinite families. One such family is GK2n.

To describe this family, we begin by placing 2n−1 vertices evenly-spaced in a circular

arrangement around a single, central vertex. Next, a perfect matching is formed by

adding an edge that joins the central vertex to one of the outer vertices, and then

drawing in all of the edges that are perpendicular to the first one. To complete the 1-

factorization, we form the remaining perfect matchings by simply rotating this design

around the central vertex. An illustration of this construction is shown in Figure 36.

The first two matchings are shown, and then the complete 1-factorization is given,

with matchings distinguished by the colors of the edges.

Figure 36: The 1-factorization GK8
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A 1-factorization of K2n is said to be rotational if it is stabilized by a permu-

tation of [2n] that fixes one vertex and cyclically permutes the rest. Indeed, the

1-factorization GK8 illustrated above is an example, where we let ρ denote the per-

mutation that fixes the center vertex and cyclically permutes the other vertices. No-

tice that ρ also cyclically permutes the seven 1-factors of this 1-factorization, thereby

stabilizing the set of them. Analogously, we see that GK2n is rotational for any n.

Given any 1-factorization F of K2n, we say that a subgraph G is orthogonal to F

if each 1-factor of F shares at most one edge with G. For example, the star, in which

the center vertex is adjacent to all of the outer vertices, is a spanning tree for K8

that is orthogonal to the 1-factorization GK8 described above. One way to visualize

orthogonal spanning trees is to use colors on the edges — given a 1-factorization F ,

we imagine that each perfect matching in F colors its edges a distinct color. An

orthogonal spanning tree, then, is often said to be rainbow-colored by F , since it

must contain one edge of each color.

We will be considering many different subgraphs of the complete graph K2n. We

continue to draw such graphs in rotational form, meaning vertices 1 through 2n − 1

are spaced evenly around a circle in clockwise manner, and vertex 2n is placed at the

center. An example of a subgraph drawn in rotational form appeared in Figure 36

earlier.

Suppose K2n is drawn in rotational form. For any edge {a, b}, if 2n 6∈ {a, b}, we

define its length by

length{a, b} = min{|a− b|, 2n− 1− |a− b|},

and if 2n ∈ {a, b}, we say the edge has length 0.
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For any edge {a, b} of nonzero length, we define its center (denoted center{a, b})

to be the unique vertex x ∈ [2n− 1] such that

length{a, x} = length{b, x}.

An edge {2n, b} of length 0 has center b.

Figure 37 gives an example of a subgraph G of K8 drawn in rotational form, along

with information about its edges.

Figure 37: Lengths and centers of edges in a rotational drawing of K8

Note that any edge in K2n is uniquely determined by its center and length.

To obtain a rotational decomposition of K2n, we begin with starter graphs, which

are graphs that contain one edge of each possible length.

Fix any integer n > 0 and any n-tuple of integers (c0, . . . , cn−1) satisfying 0 <

cl < 2n for each l (0 ≤ l < n). We define the starter graph, denoted SG(c0, . . . , cn−1),

to be the subgraph of K2n with a single edge of length l and center cl, for each l

(0 ≤ l < n). Figure 38 illustrates examples of starter graphs.
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Figure 38: Examples of starter graphs

Suppose G is a subgraph of K2n with edge set E. Let ρ denote the permutation

of [2n] that cyclically permutes (1, 2, 3, . . . , 2n − 1) and fixes 2n. We define ρ(G) to

be the subgraph of K2n with edge set

ρ(E) = {{ρ(a), ρ(b)} | {a, b} ∈ E}.

Equivalently, we can simply say that vertices a, b are adjacent in ρ(G) if and only if

the vertices ρ−1(a), ρ−1(b) are adjacent in G.

Using the above, we can now introduce the notion of a rotational family of sub-

graphs.

Fix any integers n, d > 0 and let G be any subgraph of K2n. We define the

rotational family FdG generated by G to be the set

FdG := {G, ρ(G), . . . , ρd−1(G)}.

Notice that the set FdG has cardinality d.

We will illustrate our results using the following two families of rotational 1-

factorizations, the first of which is fairly common in the literature.
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Fix any integer n > 0. The 1-factorization GK2n of K2n is the rotational family

F2n−1
G generated by the graph G = SG(c0, . . . , cn−1) where

cl = 1 for all l (0 ≤ l < n).

Figure 39: Starter graphs for the GK2n 1-factorization

A new family of rotational 1-factors was discovered. The half family, HK2n, is

constructed by essentially splitting up the even and odd length edges and grouping

them together. More formally, we have the following. Fix any integer n > 0. The

1-factorization HK2n of K2n is the rotational family F2n−1
G generated by the graph

G = SG(c0, . . . , cn−1) where cl is given by the following chart, depending on the form

of n and l:
l < 2 2 ≤ l ≤ n− 2 l > n− 2

l = 0 l = 1 l ≡2 0 l ≡2 1 l = n− 1

n = 2k + 0 1 k 2k − 1 2k 3k − 1

n = 2k + 1 1 k 2k 2k + 1 k
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Figure 40: Starter graphs for the HK2n 1-factorization

In order to construct spanning trees that are orthogonal to a given rotational 1-

factorization, we use rotational families of graphs that are built using opposing pairs

of edges.

Suppose K2n is drawn in rotational form and let e1, e2 be any pair of edges with

centers c1, c2. We define the distance between them to be

dist(e1, e2) = length{c1, c2},

where edges at distance n− 1 are said to be opposing.

We next define the direction of the pair e1, e2 with centers c1, c2 to be the vertex

dir(e1, e2) = center{c1, c2}.

Figure 41 gives an example of a subgraph G of K8 drawn in rotational form, along
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with information about its edge pairs.

Figure 41: Distance and direction for edge pairs in a rotational drawing of K8

With this terminology in place, we can now define the graphs of interest.

Fix any integers n > t ≥ 0 and any n-tuple of integers (d0, . . . , dn−1) satisfying

0 < di < 2n for each i (0 ≤ i < n). We define the opposing pair graph, denoted

OPGt(d0, . . . , dn−1), to be the subgraph of K2n with a single edge of length t and

center dt, and, for each i 6= t, an opposing pair of edges of length i and direction

di. We refer to t as the exceptional length of the OPG. Figure 42 gives examples of

opposing pair graphs.

Figure 42: Examples of opposing pair graphs

Notice that any opposing pair graph in K2n has exactly 2n−1 edges, which is the

same as the number of edges required for a spanning tree of K2n. Indeed, the graph

OPG4(1, 2, 9, 3, 6), which is the left-most graph depicted above, is a spanning tree for
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K10. In general, as the center graph above shows, an opposing pair graph need not

be acyclic. By a standard result about spanning trees [32, Theorem 2.1.4], if S is any

set of 2n− 1 edges in K2n, then S will be a spanning tree for K2n if and only if S is

acyclic and if and only if S forms a connected graph on the vertex set [2n].

We define the rest graph of G by

Rest(G) = K2n −
(⋃

H∈Fn−1
G

H
)
.

In other words, Rest(G) is the complementary graph in K2n of the union of the

rotational family Fn−1G . Figure 43 illustrates the rest graphs for two of the previous

opposing pair graphs.

Figure 43: Examples of rest graphs

It should be noted that when G = OPGt(d0, . . . , dn−1), the rest graph Rest(G)

has exactly n edges of length t and a single edge of each length i 6= t, for a total of

2n−1 edges. Occasionally it will happen that both G and Rest(G) are spanning trees

for K2n. When this occurs, the graph G will be of great use in advancing our goal of

constructing an orthogonal spanning tree decomposition.
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5.2 Literature

The first result on this topic goes back to work by Brualdi and Hollingsworth, who

showed that any 1-factorization of the even complete graph admits a pair of disjoint

orthogonal spanning trees.

Theorem 5.1. [3, Theorem 1] Any 1-factorization of K2n has at least two disjoint

orthogonal spanning trees.

Soon thereafter, this was extended to include a third tree.

Theorem 5.2. [19] Any 1-factorization of K2n has at least three disjoint orthogonal

spanning trees.

For the particular 1-factorization GK2n, and for certain values of n, Krussel, et

al. showed that it is possible to improve tremendously on the number of disjoint

orthogonal spanning trees.

Theorem 5.3. [19] If 2n− 1 is a prime of the form 8m+ 7, there exists a full set of

n disjoint orthogonal spanning trees for GK2n.

The above result uses number-theoretic properties in the construction of the or-

thogonal trees, but it did not, perhaps, take full advantage of the rotational symmetry

of the 1-factorization GK2n. This observation led to a new avenue of investigation

described next.

5.3 New Results

Using the rotational symmetry of GK2n and HK2n, a strengthening of the results in

the last section can be obtained.
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Theorem 5.4. [14, Theorem 7.1] For every positive integer n, there exists a full set

of n disjoint orthogonal spanning trees for GK2n.

Using the techniques developed in the proof of the result above, there appears to

be room for further extensions.

Theorem 5.5. For any positive integer 3 ≤ n ≤ 11, there exists a full set of n

disjoint spanning trees for K2n orthogonal to HK2n.

For the data that supports this result, see Table 4 in Appendix E.

We conjecture that for any positive integer n, there exists a full set of n disjoint

spanning trees for K2n that are orthogonal to HK2n. We have generated a large

amount of data that supports this conjecture. As n increases, the number of dis-

tinct opposing pair graphs that generate a decomposition orthogonal to HK2n grows

rapidly. See Appendix E for a summary of the data collected.

Given a starter graph 1-factor S, we would like to explore the set of opposing pair

graphs that are orthogonal to S to see which ones are trees that lead to complete

spanning tree decompositions of K2n. Suppose t, the length of the exceptional edge,

is fixed. For each of the n edge lengths, we have 2n − 1 choices for the direction of

their corresponding pair (or single edge, in the case of the exceptional length edge).

This seems to give us (2n − 1)n opposing pair graphs to check. In fact, our search

space is much smaller and all of the orthogonal OPGs can be easily enumerated, as

the next results show.

Theorem 5.6. [14, Theorem 6.2] Fix integers n > t ≥ 0 and any two n-tuples of inte-

gers (c0, . . . , cn−1) and (d0, . . . , dn−1) satisfying 0 < ci, di < 2n for each i (0 ≤ i < n).

By rotation, assume dt = ct. Let S = SG(c0, . . . , cn−1) and G = OPGt(d0, . . . , dn−1).
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Then the graph G is orthogonal to S if and only if

{di − ci + (−1)nbn/2c}i 6=t ≡ {1, 2, . . . , n− 1} (mod 2n− 1).

Corollary 5.7. [14, Corollary 6.3] Each rotational 1-factorization of K2n and choice

of 0 ≤ t < n gives rise to (n− 1)! different orthogonal opposing pair graphs.

The challenge is now to see which of those orthogonal graphs are also spanning

trees. We can enumerate the (n − 1)! tuples corresponding to all of the OPGs or-

thogonal to the starter graph 1-factor and test to see which of them gives a tree

decomposition of K2n. The procedure goes as follows.

1. Choose the color c for the exceptional length edge t.

2. Find the symmetric opposite sequence (SOS) of c, the n−1 numbers symmetric

about the line connecting c to vertex 2n in the rotational form of K2n, read

clockwise.

3. Now we build a table. Write out the tuple for the starter graph 1-factor, then

create 2n− 2 more rows, with the value in each position deriving from the one

above it by being the next value clockwise from it in the rotational form of K2n.

4. Record the subtable that contains the SOS in the tth column. The top rows

might need to be cycled back to the bottom in order to find the complete SOS.

5. Remove the tth column.

6. The directions for the edge pairs for the OPGs can now be found by performing

a traversal of the subtable. Choose n − 1 values such that exactly one value

is chosen from each row and column. The respective OPG tuples are built by

taking these values and inserting c into the tth position.
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This procedure is explored in the following example. Suppose our 1-factor is

S = SG(1, 2, 4, 5, 2) and t = 4. WOLOG let the color of the exceptional length edge

be c = 1. This gives us the SOS of 4,5,6,7. Here is the table generated by S.

1 2 4 5 2
2 3 5 6 3
3 4 6 7 4
4 5 7 8 5
5 6 8 9 6
6 7 9 1 7
7 8 1 2 8
8 9 2 3 9
9 1 3 4 1

We see the SOS in bold in the last column corresponding to t = 4. We take the

following subtable based on the location of the SOS.

3 4 6 7
4 5 7 8
5 6 8 9
6 7 9 1

Any traversal of this subtable will give the values d0, . . . , d3 that, when combined

with dt = d4 = c = 1, will give an orthogonal opposing pair graph. For example,

OPG4(3, 5, 8, 1, 1) will be orthogonal to S.

5.4 Conjectures

In there original paper, Brualdi and Hollingsworth made an extremely strong conjec-

ture that remains very open.

Conjecture 5.8. [3, Conjecture 1] For any 1-factorization of K2n, there exists a full

set of n disjoint orthogonal spanning trees.
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Figure 44 shows a 1-factorization of K6 along with a full set of three disjoint

orthogonal spanning trees.

Figure 44: A successful test of the conjecture for K6

We put forth several restricted versions of this conjecture that we hope will be

easier to attack.

Conjecture 5.9. For any positive integer n, there exists a full set of n disjoint

spanning trees for K2n that are orthogonal to HK2n.

Conjecture 5.10. [14] Every rotational 1-factorization of K2n has a full set of n

disjoint rotational orthogonal spanning trees.

In future work, we propose to analyze the data we have, which supports these

conjectures, to extend the earlier work and obtain stronger results. The new HK2n

family is a good candidate for a rotational 1-factor with easily describable orthogonal

spanning trees. See Appendix E for data concerning this family.

80



References

[1] B. Alspach and G. Liu. Paths and cycles in matroid basis graphs. Graphs and
Combinatorics, 5(1):207–211, 1989.

[2] J. A. Bondy and A. W. Ingleton. Pancyclic graphs ii. Journal of Combinatorial
Theory, Series B, 20(1):41–46, 1976.

[3] R. A. Brualdi and S. Hollingsworth. Multicolored trees in complete graphs.
Journal of Combinatorial Theory, 68(2):310–313, 1996.

[4] R. L. Cummins. Hamilton circuits in tree graphs. Circuit Theory, IEEE Trans-
actions on, 13(1):82–90, 1966.

[5] D. M. Cvetković, M. Doob and H. Sachs. Spectra of graphs: theory and applica-
tion, volume 87. Academic Pr, 1980.

[6] E. S. El-Mallah and C. J. Colbourn. The complexity of some edge deletion
problems. Circuits and Systems, IEEE Transactions on, 35(3):354–362, 1988.

[7] R. C. Entringer and P. J. Slater. On the maximum number of cycles in a graph.
Ars Combin, 11:289–294, 1981.

[8] R. Frucht. Herstellung von graphen mit vorgegebener abstrakter gruppe. Com-
positio Mathematica, 6:239–250, 1939.

[9] C. Godsil and G. Royle. Algebraic Graph Theory. Springer, 2001.

[10] C. A. Holzmann and F. Harary. On the tree graph of a matroid. SIAM Journal
on Applied Mathematics, 22(2):187–193, 1972.

[11] T. Kamae. The existence of a hamiltonian circuit in a tree graph. IEEE Trans-
actions on Circuit Theory, 14(3):279–283, 1967.

[12] J. Krausz. Démonstration nouvelle d’une théorème de Whitney sur les réseaux.
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1979.

[19] J. Krussel, S. Marshall and H. Verral. Spanning trees orthogonal to one-
factorizations of K2n. Ars. Combin., 57:77–82, 2000.

[20] S. B. Maurer. Matroid basis graphs. i. Journal of Combinatorial Theory, Series
B, 14(3):216–240, 1973.

[21] S. B. Maurer. Matroid basis graphs. ii. Journal of Combinatorial Theory, Series
B, 15(2):121–145, 1973.

[22] B. D. McKay and A. Piperno. Practical graph isomorphism, {II}. Journal of
Symbolic Computation, 60(0):94 – 112, 2014.

[23] K. Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae,
10(1):96–115, 1927.

[24] M. C. Hernando, F. Hurtado, A. Márquez, M. Mora and M. Noy. Geometric tree
graphs of points in convex position. Discrete Applied Mathematics, 93(1):51–66,
1999.

[25] X. Li, V. Neumann-Lara and E. Rivera-Campo. On a tree graph defined by a
set of cycles. Discrete mathematics, 277(1):303–310, 2003.

[26] V. Estivill-Castro, M. Noy and J. Urrutia. On the chromatic number of tree
graphs. Discrete Mathematics, 223(1):363–366, 2000.

[27] G. Sabidussi. Graphs with given group and given graph-theoretical properties.
Canadian Journal of Mathematics, 9:515–525, 1957.
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Appendices

Appendix A Selected Algorithms

To carry out the original research for this paper, a program was written that takes a

graph as input and outputs its tree graph. Here is an outline of the algorithm.

1. Input the base graph G

2. Find τ(G), the number of spanning trees of G using the Matrix Tree Theorem

3. Find and list the edges in E(G)

4. Create C, the set of every possible (n− 1)-set of edges from E(G)

5. For each set of edges in C, see if it forms a spanning tree of G

• If so, record it and increase the tally of found trees

6. Stop once the tally reaches τ(G)

7. For every pair of stored spanning trees, see if they have the edge exchange
property

• If so, put an edge between them in T (G)

8. Output T (G)

Additional programs were written to calculate various graph parameters of tree

graphs, such as the vertex-connectivity and center. In addition, the free nauty [22]

software was used extensively to investigate the automorphism groups of tree graphs.
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Appendix B Examples of Graph Families

This appendix illustrates some of the named families of graphs mentioned in the

paper.

B.1 Grid Graphs

Grid4,2 and Grid5,4

B.2 Complete Multipartite Graphs

K3,2 and K5,1
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K3,2,1 and K4,2,2

B.3 Pn,k Graphs

P7,2 and P5,4

B.4 Prism Graphs

Prism4 and Prism6
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B.5 θa,b,c Graphs

θ3,2,1 and θ4,4,2

B.6 Wheel Graphs

W5 and W7

B.7
⊙

Graphs

K4

⊙
C6 and C4

⊙
C3

⊙
C3

⊙
C3

⊙
C3
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B.8 Named Graphs

House and Asym6
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Appendix C Spectrum Data from T (Pn,2)

The T (Pn,k) graphs are conjectured (see Conjecture 4.35) to be integral with the

following spectrum: There are d3n−2
2
e distinct eigenvalues, with maximum eigenvalue

(n− 1)(2k − 1). There are dn−1
2
e jumps of size 2k between the next biggest distinct

eigenvalues, then jumps of size k down to the smallest eigenvalue of 1 − n. Table 1

shows the eigenvalues of some T (Pn,2) graphs.

Table 1: Eigenvalues of T (Pn,2)

Graph G Eigenvalues of T (G)
K2,2 -1 3
K3,2 -2 0 2 6
K4,2 -3 -1 1 5 9
K5,2 -4 -2 0 2 4 8 12
K6,2 -5 -3 -1 1 3 7 11 15
K7,2 -6 -4 -2 0 2 4 6 10 14 18
K8,2 -7 -5 -3 -1 1 3 5 9 13 17 21
K9,2 -8 -6 -4 -2 0 2 4 6 8 12 16 20 24
K10,2 -9 -7 -5 -3 -1 1 3 5 7 11 15 19 23 27

Patterns were also found in the multiplicities of eigenvalues of T (Pn,2).
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Table 2: Multiplicities of eigenvalues of T (Pn,2)

3 1

6 2 3 1

10 8 9 4 1

15 20 25 4 10 5 1

21 40 60 24 25 15 6 1

28 70 126 84 70 6 35 21 7 1

36 112 238 224 196 48 77 56 28 8 1

45 168 414 504 504 216 189 8 126 84 36 9 1

55 240 675 1008 1170 720 525 80 261 210 120 45 10 1

The ith row of Table 2 shows the multiplicities of the eigenvalues of T (Pi+1,2),

in order from smallest to largest eigenvalue. The patterns appear as we read the

diagonals from the array. For example, the leftmost values, 3, 6, 10, . . . , are the tri-

angular numbers. The formula for these is
(
n+1
2

)
. The second-from-the-left values,

2, 8, 20, . . . , come from 2
(
n
3

)
. Fourth-from-the-left starting with 4, 24, 84, . . . , come

from 4
(
n
5

)
. Sixth-from-the-left starting with 6, 48, 216, . . . , come from 6

(
n
7

)
. In gen-

eral, the pattern for these even diagonals d from the left seems to be d
(
n
d+1

)
. The

pattern for the third-from-the-left, 9, 25, 60, . . . , seems to be (n3 − 5n2 + 10n)/8; no

binomial coefficient here. The rest of the odd diagonals do not seem to want to give

up a pattern, despite many visits to the Online Encyclopedia of Integer Sequences.

Coming from the right side now, the patterns are more straightforward. 1, 1, 1, . . .

is
(
n
0

)
. 3, 4, 5, . . . is

(
n
1

)
. 10, 15, 21, . . . is

(
n
2

)
. The pattern for the dth diagonal from

the right seems to be
(
n
d−1

)
. No explanation for the behavior of these multiplicities is

immediately apparent. Stare too long at the patterns and the patterns stare back.
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Appendix D Catalog of Tree Graph Data

Table 3 is a collection of some of the data generated during this research on tree

graphs. The first column is the input graph G, and the remaining columns refer to

parameters of its tree graph T (G). The programs used to calculate certain graph

parameters, such as the independence number (α), the clique number (ω), and the

chromatic number (χ), did not run well on graphs larger than about 50 vertices, and

so many of those entries are blank in the table.

This second half contains parameters from the base graphs. The µ parameter can

be difficult to measure for larger, more complicated graphs, so is missing from some

of these rows.

91



T
a
b
le

3
:

P
or

ti
on

of
tr

ee
gr

ap
h

d
at

a
co

ll
ec

te
d

P
ar

am
et

er
s

fo
r
G

P
ar

am
et

er
s

fo
r
T

(G
)

G
ra

p
h
G

n
m

v
g
ir
th

ci
rc

µ
|A
u
t|

n
m

α
ω

δ
∆

χ
d
ia
m

|A
u
t|

K
1
,1
,1

3
3

1
3

3
1

6
3

3
1

3
2

2
3

1
6

K
2
,1
,1

4
5

2
3

4
5

4
8

18
2

4
4

5
4

2
8

K
3
,1
,1

5
7

3
3

4
18

12
20

72
5

4
6

8
4

3
48

K
4
,1
,1

6
9

4
3

4
56

48
48

24
0

10
5

8
11

6
4

38
4

K
5
,1
,1

7
11

5
3

4
16

0
24

0
11

2
72

0
10

14
5

38
40

K
6
,1
,1

8
13

6
3

4
43

2
14

40
25

6
20

16
12

17
6

46
08

0
K

3
,2
,1

6
11

6
3

6
12

21
6

18
00

12
20

5
12

K
2
,2
,2

6
12

7
3

6
48

38
4

37
68

17
23

5
48

K
3
,2

5
6

2
4

4
6

12
12

36
3

4
6

6
4

2
48

K
4
,2

6
8

3
4

4
24

48
32

14
4

8
4

9
9

4
3

38
4

K
5
,2

7
10

4
4

4
80

24
0

80
48

0
12

12
4

38
40

K
6
,2

8
12

5
4

4
24

0
14

40
19

2
14

40
15

15
5

46
08

0
K

7
,2

9
14

6
4

4
67

2
10

08
0

44
8

40
32

18
18

6
64

51
20

K
3
,3

6
9

4
4

6
39

72
81

52
2

12
14

4
72

K
4
,3

7
12

6
4

6
14

4
43

2
43

20
18

22
6

14
4

K
5
,3

8
15

8
4

6
72

0
20

25
27

54
0

24
30

7
72

0
K

4
4

6
3

3
4

15
24

16
54

4
4

6
7

5
3

48
K

5
5

10
6

3
5

12
0

12
5

93
0

12
16

4
12

0
K

6
6

15
10

3
6

72
0

12
96

17
46

0
20

30
5

72
0

K
7

7
21

15
3

7
50

40
16

80
7

36
50

85
30

50
50

40
G

ri
d
3
,2

6
7

2
4

6
7

4
15

51
3

6
6

8
6

2
72

G
ri

d
3
,3

9
12

4
4

8
8

19
2

15
36

12
22

4
12

8
G

ri
d
4
,2

8
10

3
4

8
4

56
30

4
9

15
3

14
4

G
ri

d
4
,3

12
17

6
4

12
4

24
15

31
67

7
18

44
6

64
G

ri
d
5
,2

10
13

4
4

10
4

20
9

15
66

12
24

4
28

8

92



P
ar

am
et

er
s

fo
r
G

P
ar

am
et

er
s

fo
r
T

(G
)

G
ra

p
h
G

n
m

v
g
ir
th

ci
rc

µ
|A
u
t|

n
m

α
ω

δ
∆

χ
d
ia
m

|A
u
t|

H
ou

se
5

6
2

3
5

6
2

11
31

3
5

5
7

5
2

12
A

sy
m

6
6

8
3

3
6

24
1

29
12

2
7

6
7

12
6

3
12

θ 4
,2
,1

6
7

2
3

6
7

2
14

47
3

6
6

9
6

2
48

θ 5
,2
,1

7
8

2
3

7
8

2
17

66
3

7
7

11
7

2
24

0
θ 4
,3
,1

7
8

2
4

7
8

2
19

75
4

7
7

10
7

2
14

4
θ 5
,3
,1

8
9

2
4

8
9

2
23

10
3

4
8

8
12

8
2

72
0

θ 4
,4
,1

8
9

2
5

8
9

4
24

10
8

4
8

8
11

8
2

11
52

θ 5
,4
,1

9
10

2
6

9
10

2
29

14
6

5
9

9
13

9
2

28
80

θ 3
,2
,2

6
7

2
4

5
7

4
16

58
3

5
7

8
6

2
48

θ 3
,3
,2

7
8

2
5

6
8

8
21

90
4

6
8

9
6

2
14

4
W

5
5

8
4

3
5

32
8

45
23

2
11

5
8

12
5

4
16

W
6

6
10

5
3

6
10

12
1

83
0

10
18

5
20

W
7

7
12

6
3

7
12

32
0

27
12

12
25

6
24

W
8

8
14

7
3

8
14

84
1

84
28

14
33

7
28

P
ri

sm
3

6
9

4
3

6
12

75
46

5
10

14
4

12
P

ri
sm

4
8

12
5

4
8

48
38

4
37

68
17

23
5

48
P

ri
sm

5
10

15
6

4
10

20
18

05
24

39
0

22
34

6
20

P
3
,3

8
9

2
6

6
9

12
27

13
5

4
6

10
10

2
12

96
P
3
,4

11
12

2
8

8
12

12
48

33
6

6
8

14
14

2
82

94
4

P
3
,5

14
15

2
10

10
15

12
75

67
5

18
18

2
10

36
80

00
P
4
,3

10
12

3
6

6
18

48
10

8
81

0
15

15
3

31
10

4
P
4
,4

14
16

3
8

8
24

48
25

6
26

88
21

21
3

79
62

62
4

P
5
,3

12
15

4
6

6
30

24
0

40
5

40
50

20
20

4
93

31
20

P
5
,4

17
20

4
8

8
40

24
0

12
80

17
92

0
28

28
4

95
55

14
88

0

93



Appendix E Half Family Data

Table 4 gives opposing pair graphs that lead to a decomposition of K2n orthogonal

to the 1-factorization HK2n for n from 3 to 11, supporting Theorem 5.5.

Table 4: Opposing pair graphs orthogonal to HK2n

n OPG orthogonal to HK2n

3 OPG2(3, 4, 1)
4 OPG3(4, 6, 5, 1)
5 OPG4(5, 4, 7, 1, 1)
6 OPG5(3, 9, 10, 9, 9, 1)
7 OPG6(3, 10, 12, 10, 10, 12, 1)
8 OPG7(3, 12, 14, 11, 13, 13, 11, 1)
9 OPG8(3, 13, 16, 16, 11, 13, 13, 15, 1)
10 OPG9(3, 15, 18, 18, 13, 16, 16, 15, 12, 1)
11 OPG10(3, 16, 20, 15, 19, 17, 15, 19, 17, 14, 1)

Table 5 gives the count of the number of distinct (up to rotation and reflection)

opposing pair graphs orthogonal to the HK2n 1-factorization for different values of n

and exceptional lengths t. The counts for smaller values of t were not calculated for

n = 11. This data suggests that Conjecture 5.9 is true, since as n increases there are

many more available orthogonal opposing pair graphs with which to decompose K2n.

Table 5: Number of different ways to decompose K2n orthogonal to HK2n

n\t 0 1 2 3 4 5 6 7 8 9 10 Total
3 0 0 1 1
4 0 0 1 2 3
5 0 0 0 1 3 4
6 0 0 1 1 3 5 10
7 2 0 2 2 2 10 20 38
8 0 0 1 1 6 6 26 52 92
9 5 7 2 4 17 9 37 60 246 387
10 0 17 8 4 31 49 117 123 237 1074 1660
11 5251 ≥ 5251
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