
A Questionable Distance-Regular Graph

Rebecca Ross

Abstract In this paper, we introduce distance-regular graphs and develop the intersection algebra
for these graphs which is based upon its intersection numbers. We discuss results following from
the definition of the intersection algebra. We investigate two examples of distance-regular graphs
and show how these results apply. Finally, we introduce parameters that determine intersection
numbers. We investigate if these intersection numbers are nonnegative and feasible.

1. Introduction

In this paper, we introduce distance-regular graphs and develop the intersection algebra
for these graphs which is based upon its intersection numbers. We discuss results following
from the definition of the intersection algebra. We investigate two examples of distance-
regular graphs and show how these results apply. Finally, we introduce parameters that
determine intersection numbers. We investigate if these intersection numbers are nonnegative
and feasible.

2. Preliminaries

In this section we fix notation and review the basic definitions regarding graphs, distance-
regularity graphs, and intersection numbers. For more information concerning graphs, see
West [1] or Biggs [3].

2.1 Graphs

A graph Γ consists of a finite set V , whose elements are called vertices , another finite set
E, whose elements are called edges , and a subset I of V x E, called the incidence relation
such that each edge is incident with exactly two vertices, and no pair of edges is incident
with the same pair of vertices. Two distinct vertices are said to be adjacent if there exists
an edge incident to them both.

A walk is a sequence of vertices such that consecutive vertices in the sequence are adjacent.
A path is a walk with distinct vertices. A graph is connected if for each pair of distinct vertices
there exists a path containing them. The length of a walk with n vertices is n − 1. The
distance between vertices u and v, denoted by ∂(u, v), is the length of the shortest path
containing the vertices. The diameter , d, of a graph is the maximum distance between any
two vertices in V (Γ).

A graph automorphism is a permutation of the vertex set that preserves the adjacency
relation. The group of automorphisms of a graph, Γ, is denoted by Aut(Γ). A graph Γ
is vertex-transitive if for every u, v ∈ V (Γ), there exists an automorphism mapping u to
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v. A connected graph Γ is distance-transitive if for any vertices u, v, x, y ∈ V (Γ) such that
∂(u, v) = ∂(x, y) there exists an automorphism g ∈ Aut(Γ) that maps u to x and v to y.

2.2 Distance-regular graphs

Let Γ be a connected graph with diameter d. For each u ∈ V (Γ) and each integer i, define

Γi(u) := {v ∈ V (Γ) | ∂(u, v) = i}.

If k is a nonnegative integer, we say Γ is regular , with valency k, if for all u ∈ V (Γ),
|Γ1(u)| = k. We say Γ is distance-regular, with intersection numbers ph

ij (0 ≤ h, i, j ≤ d),
whenever for all integers h, i, j (0 ≤ h, i, j ≤ d) and all u, v ∈ V (Γ) with ∂(u, v) = h,

|Γi(u) ∩ Γj(v)| = ph
ij. (1)

These intersection numbers must be nonnegative and satisfy a triangle inequality, in that

ph
ij = 0

if one of h, i, j is greater than the sum of the other two. Necessary conditions such as these
on the intersection numbers are often called feasibility conditions. Unless a set of parameters
meets these criteria, it is impossible (infeasible) to have a distance-regular graph with these
intersection numbers. For more information on feasibility conditions, see [2]

For convenience, we define

ci := pi
i−1,1 (1 ≤ i ≤ d),

bi := pi
i+1,1 (0 ≤ i ≤ d− 1),

ai := pi
i1 (1 ≤ i ≤ d)

and define c0 = 0 and bd = 0. Note that a0 = 0 and c1 = 1. Also, for Γ regular with valency
k, we have k = b0. We can also observe that

ci + ai + bi = k (0 ≤ i ≤ d). (2)

For any vertex v of a distance-regular graph Γ with diameter d, define ki = |Γi(v)| for
1 ≤ i ≤ d. It follows then that there are ki−1 vertices in Γi−1(v) and each of those vertices
is adjacent to bi−1 vertices in Γi(v). Also, there ki vertices in Γi(v) that are adjacent to ci

vertices in Γi−1(v). So counting the number of edges incident with both Γi−1(v) and Γi(v) is
ki−1bi−1 = kici. Thus,

ki =
kb1b2 . . . bi−1

c2c3 . . . ci

(3)

For the remainder of this paper, we will assume Γ is distance-regular with diameter d ≥ 3.
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3. The Adjacency Algebra, A

Given a graph, Γ with vertex set {v1, v2, ..., vn}, the adjacency matrix of Γ is the n × n
matrix, A, whose entry (A)ij is the number of edges in Γ with endpoints {vi, vj}. We notice
that by our definition of graph, A is a symmetric 0−1 matrix. It also follows then that if λ is
an eigenvalue of A, then λ is real and that the multiplicity of λ as a root of det(λI −A) = 0
is equal to the dimension of the space generated by the eigenvector corresponding to λ. We
will usually refer to the eigenvalues of A as the eigenvalues of Γ.

Definition 3.0.1 Let Γ be a distance-regular graph with diameter d and adjacency matrix
A. Define the adjacency algebra of Γ to be the algebra given by span{A0, A, A2, . . .} and
denoted by A.

Proposition 3.0.2 For any nonnegative integer k, the (i, j)th entry of Ak counts the
number of vi, vj-walks of length k.

Proof. This holds for k = 0 since A0 is the identity matrix, I. For k = 1, A1 = A is the
adjacency matrix, which by definition counts the number of walks of length 1 between any
two vertices. Suppose true for Al for l < k. Observe that every walk of length k from vi to
vj consists of a walk of length k − 1 from vi to a vertex vl that is adjacent to vj. By the
induction hypothesis, (Ak−1)il is the number of walks of length k− 1 with endpoints {vi, vl}
for 0 ≤ l < k. Thus

(Ak)ij = (Ak−1A)ij

=
n∑

l=1

(Ak−1)il(A)lj

= (Ak−1)i1(A)1k + (Ak−1)i2(A)2k + · · ·+ (Ak−1)in(A)nj

which equals the number of walks of length k with endpoints {vi, vj}. ¤

Lemma 3.0.3 Let Γ be a distance-regular graph with diameter d and adjacency algebra A.
Then dim(A) ≥ d + 1.

Proof. Pick any u, v ∈ V (Γ) and let ∂(u, v) = k. Then for all i < k the uv-entry of Ai will
be zero since the shortest path connecting u to v is of length k and the uv-entry of Ak is
nonzero. Since the diameter of Γ is d, there exist vertices x, y ∈ V (Γ) such that ∂(x, y) = i
for 0 ≤ i ≤ d. So for all 0 ≤ i ≤ d, Ai is not contained in the span of A0, · · · , Ai−1. Thus,
{A0, A, . . . , Ad} are linearly independent and dim A ≥ d + 1. ¤

Corollary 3.0.4 A connected graph with diameter d has at least d+1 distinct eigenvalues.

Proof. Let Γ be a connected graph with adjacency matrix, A. By Lemma 3.0.3, the dimen-
sion of A is at least d + 1, thus the minimum polynomial of A has degree at least d + 1. It
follows then that A has at least d + 1 distinct eigenvalues. ¤
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3.1 Bose-Mesner Algebra, M
We next recall the Bose-Mesner algebra of Γ. For each integer i (0 ≤ i ≤ d), let Ai be

the ith distance matrix , which is the n× n matrix where each rs-entry is given by

(Ai)rs =

{
1 if ∂(vr, vs) = i,
0 if ∂(vr, vs) 6= i

(vr, vs ∈ V (Γ)).

We notice that A0 = I and that A1 is the adjacency matrix A of Γ. Also,

A0 + A1 + ... + Ad = J,

where J is the all-1 matrix of size n. It is also clear that At
i = Ai for (0 ≤ i ≤ d).

Lemma 3.1.1 Let Γ be a distance-regular graph with diameter d. For 1 ≤ i, j ≤ d,

AiAj =
d∑

h=0

ph
ijAh.

Proof. Let Γ be a distance-regular graph with diameter d and Ak the kth distance matrix
of Γ for (0 ≤ k ≤ d). Pick any x, y ∈ V (Γ) and let t = ∂(x, y). Then

(AiAj)xy =
∑

z∈V (Γ)

(Ai)xz(Aj)zy

= |{z ∈ V (Γ) | ∂(x, z) = i and ∂(z, y) = j}|
= pt

ij.

On the other hand, the xy-entry of
∑d

h=0 ph
ijAh is equal to

d∑

h=0

ph
ij(Ah)xy = pt

ij(At)xy

= pt
ij(1)

= pt
ij,

since (Ah)xy = 0 if h 6= t. ¤

Corollary 3.1.2 Let Γ be a distance-regular graph. For 1 ≤ i ≤ d,

AAi = bi−1Ai−1 + aiAi + ci+1Ai+1.

Proof. By applying Lemma 3.1.1 and the definition of bi, ai, and ci, the equation follows
easily. ¤

It follows then that

Ai+1 =
1

ci+1

[AAj − bj−1Aj−1 − ajAj],
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which is a polyomial in A with degree j + 1.

Now, the distance matrices are linearly independent (exactly one matrix has a nonzero entry
in every position) and, by Lemma 3.1.1, closed under multiplication. Thus, we have that
{A0, A1, ..., Ad} is a basis for what is called the Bose-Mesner algebra of Γ, denoted by M.
It follows that M has dimension d + 1. Furthermore, A, the adjacency matrix of distance-
regular graph Γ, is an element of M. Thus, A ⊆ M. Therefore,by Lemma 3.0.3, it follows
that dim A = d + 1 and that {A0, A1, ..., Ad} is a basis for A .

Corollary 3.1.3 For a distance-regular graph Γ with diameter d, M = A.

Proof. Clear since A ⊆M and dim A =dim M. ¤

Corollary 3.1.4 If Γ is a distance-regular graph with diameter d, then Γ has d + 1 distinct
eigenvalues.

Proof. Follows from Lemma 3.0.3 and Lemma 3.1.3. ¤

We define the eigenmatrix of distance-regular graph, Γ, to be the (d+1)× (d+1) matrix
given by the the l-th column of P consists of the eigenvalues of Al. The il-th entry of P is
denoted Pl(i).

4. The Intersection Algebra, B
In this section we will introduce the intersection algebra. We begin by defining the

intersection matrices. For more information on the intersection algebra, see [3] and [5].

Definition 4.0.5 Let Γ be a distance-regular graph with diameter d. For any j (0 ≤ j ≤ d),
we define the intersection matrix, Bj, to be the (d + 1) × (d + 1) matrix with entries given
by:

(Bj)ih := ph
ij. (0 ≤ h, i ≤ d) (4)

Define B := span{B0, B1, . . . , Bd}. Also, let B1 := B. By the triangle inequality, ph
0j = δhj,

so that the 0h-entry of Bj is nonzero if and only if j = h. It follows then that B0, B, . . . , Bd

are linearly independent. We will show that B is closed under matrix multiplication but first
we need the following lemma.

Lemma 4.0.6 For a distance-regular graph Γ with diameter d, then

d∑

h=0

ph
mip

n
hj =

d∑

l=0

pl
ijp

n
ml (5)

Proof. Given vertices w, x, y, z such that ∂(w, x) = n, we will show that both sides of
equation (5) count the number of ordered pairs (y, z) such that ∂(x, y) = m, ∂(w, z) = j,
and ∂(y, z) = i.
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Figure 1: Counting Quadrilaterals by ∂(x, z)

Let h be an integer such that 0 ≤ h ≤ d. Suppose ∂(x, z) = h. Then since ∂(w, x) = n
and ∂(w, z) = j, the number of choices we have for such a vertex z is pn

jh. See Figure 1.

Given such a z, since ∂(x, z) = h and we also want ∂(y, z) = i and ∂(x, y) = m, there are ph
mi

choices for y. So, if we let h = 0, the number of pairs (y, z) is pn
j0p

0
mi by the multiplication

rule for counting. Or if we let h = 1, the number of pairs (y, z) is pn
j1p

1
mi and so on up to

h = d. Summing from 0 to d, yields the total number of such pairs. Thus the total number
of pairs (y, z) that satisfy the given conditions is equal to

∑d
h=0 ph

mip
n
hj.

Figure 2: Counting Quadrilaterals by ∂(w, y).

Now let l be an integer such that 0 ≤ l ≤ d. Suppose ∂(w, y) = l. Then since ∂(w, x) = n
and ∂(x, y) = m, the number of choices we have for such a vertex y, is pn

ml. See Figure 2.
Given such a y, since ∂(w, y) = l and we also want ∂(y, z) = i and ∂(x, y) = j, there are pl

ij

choices for z. So, if we let l = 0, the number of pairs (y, z) is p0
ijp

n
m0 by the multiplication

rule for counting. Or if we let l = 1, the number of pairs (y, z) is p1
ijp

n
m1 and so on up to

l = d. Summing from 0 to d, yields the total number of such pairs. Thus the total number
of pairs (y, z) that satisfy the given conditions is equal to

∑d
l=0 pl

ijp
n
ml. ¤

Proposition 4.0.7 For a distance-regular graph Γ with diameter d,

BiBj =
d∑

h=0

ph
ijBh (6)

Proof. We will show that the mn-th entry of both matrices are the same.
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(BiBj)mn =
d∑

h=0

(Bi)mh(Bj)hn =
d∑

h=0

ph
mip

n
hj

=
d∑

l=0

pl
ijp

n
ml =

d∑

h=0

ph
ij(Bh)mn

by equation (4) and Lemma 4.0.6 above. ¤
Corollary 4.0.8 For a distance-regular graph Γ, M ∼= B.

Proof. Let φ : M → B be the linear map given by φ(Ai) = Bi for all i. Then φ is an
isomorphism of vector spaces. Furthermore, by (6),

φ(AiAj) = φ(
d∑

h=0

ph
ijAh) =

d∑

h=0

ph
ijφ(Ah)

=
d∑

h=0

ph
ijBh = BiBj = φ(Ai)φ(Aj).

Therefore, φ is an isomorphism of algebras. ¤
Corollary 4.0.9 Let Γ be a distance-regular graph. For 1 ≤ i ≤ d− 1,

BBi = bi−1Bi−1 + aiBi + ci+1Bi+1. (7)

Proof. Due to isomorphism and Corollary 3.1.2. ¤
Corollary 4.0.10 Let Γ be a distance-regular graph with diameter d. Then

ph
ij =

1

cj

[bi−1p
h
i−1j−1 + (ai − aj−1)p

h
ij−1 + ci+1p

h
i+1j−1 − bj−2p

h
ij−2] (8)

Proof. Obtaining the intersection number ph
ij is equivalent to finding the ih-entry of the

matrix Bj. Solving for Bi+1 in Corollary 4.0.9, yields

Bi+1 =
1

ci+1

[BBi − bi−1Bi−1 − aiBi]

from which it follows that

Bi =
1

ci

[BBi−1 − bi−2Bi−2 − ai−1Bi−1]. (9)

Thus,

ph
ij = (Bj)ih =

1

cj

(BBj−1 − bj−2Bj−2 − aj−1Bj−1)ih

=
1

cj

[(BBj−1)ih − bj−2p
h
ij−2 − aj−1p

h
ij−1].
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And

(BBj−1)ih =
d∑

k=0

(B)jk(Bj−1)kh

=
d∑

k=0

pk
i1p

h
kj−1

= bip
h
i−1j−1 + aip

h
ij−1 + ci+1p

h
i+1j−1,

by the triangle inequality. Therefore, the result follows. ¤

Corollary 4.0.11 Let Γ be a distance-regular graph with diameter d. Then Γ has d + 1
distinct eigenvalues which are the eigenvalues of the intersection matrix B.

Proof. Since M ∼= B, the minimum polynomals of A and B are the same. Thus they have
the same eigenvalues. ¤

5. Examples

5.1 The Hamming Graph

The Hamming graph H(n, q) is the graph whose vertices are sequences of length n from
an alphabet of size q. We observe that |V (H(n, q))| = qn. Two vertices are considered
adjacent if the n-tuples differ in exactly one term. We will show that the Hamming graph is
distance-regular. First, we need the following results.

Lemma 5.1.1 For all vertices x, y of H(n, q), ∂(x, y) = i if and only if n(x, y) = i, where
n(x, y) is defined to be the number of coordinates vertices x and y differ when considered as
n-tuples.

Proof. Let x and y be vertices of Hamming graph, H(n, q). Then by the adjacency relation,
if ∂(x, y) = 0 then x and y are the same vertices and therefore differ in 0 coordinates.
Similarly, if ∂(x, y) = 1 then x and y are adjacent and by the adjacency relation differ
in exactly one term. Suppose this holds for ∂(x, y) < i. Consider ∂(x, y) = i. Then by
definition of distance, there exists a path between x and y of length i. So there exists a
vertex,z, that is distance i− 1 from x and distance 1 from y. By the induction hypothesis, z
differs from x in exactly i−1 terms. It also differs from y in exactly 1 term by the adjacency
relation. Thus, y differs from x in exactly i− 1 + 1 = i terms. ¤

Lemma 5.1.2 The Hamming graph is vertex-transitive.

Proof. By definition of vertex-transitive, H(n,q) is vertex-transitive if for all pairs of vertices
x, y there exists an automorphism of the graph that maps x to y. Let v be a fixed vertex
and x ∈ V (H(n, q)). Then the mapping ρv : x → x + v, where addition is done modular
q, will be an automorphism of the graph since if the n-tuples x, y differ in exactly 1 term,
then the n-tuples x + v and y + v will differ in exactly 1 term thus preserving the adjacency
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relation. And for any two vertices, x, y ∈ V (H(n, q)), the automorphism ρy−x maps x to y.
Thus, the Hamming graph is vertex-transitive. ¤
Lemma 5.1.3 The Hamming graph is distance-regular.

Proof. For a graph to be distance-regular, it is enough to show that for any vertex, the
intersection numbers ai, bi, and ci are independent of choice of vertex. Pick vertices x, y such
that ∂(x, y) = i. Since H(n, q) is vertex transitive, suppose, without loss of generality, that
vertex x is the sequence {00000. . . 0}. By Lemma 5.1.1, y will have i nonzero entries. Now,
ai is the number of neighbors of y that are also distance i from x. So we have i choices of
coordinate in which to differ from y and q − 2 letters of the alphabet to choose from. Thus,
ai =

(
i
1

)
(q− 2) = i(q− 2). And bi will be the number of neighbors of y that are also distance

i + 1 from x. So there are n − i places in which to differ from x and y and q − 1 letters to
choose from. So bi = (n− i)(q − 1). In counting ci, we are counting the number of vertices
that are distance i−1 from x and adjacent to y. So we can change any of the i nonzero terms
to choose to turn back to zero. So ci = i. Thus the Hamming graph is distance-regular. ¤

It can be proven (see [4]) that P , the eigenmatrix of H(3, 2) is given by

Pl(i) =
l∑

α=0

(−q)α(q − 1)l−α

(
n− α

l − α

)(
i

α

)
. (10)

Restricting our attention to the first column of this matix, we have

P1(i) =
1∑

α=0

(−q)α(q − 1)1−α

(
n− α

1− α

)(
i

α

)

= qn− n− qi, (11)

which gives the eigenvalues for A. By Lemma 4.0.11, these eigenvalues will be the same as
the eigenvalues of the intersection matrix B. If we let θi denote the i-th eigenvalue of B, we
have

θi = q(n− i)− n.

5.2 H(3,2)

Let’s look at a concrete example of the Hamming graph, H(3, 2). The vertices of this graph
will be 3-term sequences from a binary alphabet. So |V (H(3, 2))| = 8 and each vertex will
have degree 3 since there are 3 terms in which any two vertices can differ.
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The adjacency matrix for H(3, 2) is given below.

A =




000 100 010 001 110 101 011 111
000 0 1 1 1 0 0 0 0
100 1 0 0 0 1 1 0 0
010 1 0 0 0 1 0 1 0
001 1 0 0 0 0 1 1 0
110 0 1 1 0 0 0 0 1
101 0 1 0 1 0 0 0 1
011 0 0 1 1 0 0 0 1
111 0 0 0 0 1 1 1 0




We can also determine the intersection matrix, B. The diameter of H(3, 2) is 3 since
vertices can differ at most by 3 terms. So B will be a 4 × 4 matrix. Using the intersection
numbers derived in Lemma 5.1.1, we can generate B by calculating up to i = 3. Thus the
intersection matrix B for H(3, 2) is:

B =




p0
01 p1

01 p2
01 p3

01

p0
11 p1

11 p2
11 p3

11

p0
21 p1

21 p2
21 p3

21

p0
31 p1

31 p2
31 p3

31


 =




a0 c1 0 0
b0 a1 c2 0
0 b1 a2 c3

0 0 b2 a3


 =




0 1 0 0
3 0 2 0
0 2 0 3
0 0 1 0




We can also use equation (9) to generate the rest of the intersection matrices. These will
be B2 and B3 since the diameter of H(3, 2) is equal to 3. So

B2 = B1+1 =
1

c2

[BB − b0B0 − a1B] =
1

2
[B2 − 3B0 − 0B]

and

B3 = B2+1 =
1

c3

[BB2 − b2−1B2−1 − a2B2] =
1

3
[BB2 − 2B − 0B2].

So we have that

B2 =




0 0 1 0
0 2 0 3
3 0 2 0
0 1 0 0


 and B3 =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 .

Now that we have the intersection matrices, we can calculate the eigenvalues and eigen-
matrix for H(3, 2). As predicted by equation (10), the eigenmatrix P for the distance-regular
graph H(3, 2) is given by

P (Γ) =




1 3 3 1
1 1 3 1
1 −1 −1 −1
1 −3 −1 −1
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5.3 The Johnson Graph

The Johnson graph J(n, r), is defined to be the graph whose vertices are the r-element
subsets of a n-element set S. We observe that |V (J(n, r))| = (

n
r

)
. Two vertices are adjacent

if the size of their intersection is exactly r − 1. Said another way, vertices are adjacent in
they differ in only one term. We will show the Johnson graphs are distance-regular but the
need the following Lemma first.

Lemma 5.3.1 If x, y are vertices of a Johnson graph, then ∂(x, y) = i if and only if |x∩y| =
r − i, when considering x, y to be r-sets.

Proof. Let x, y be vertices of J(n, r). Then ∂(x, y) = 0 if and only if x and y are the same
vertex, which holds if and only if |x ∩ y| = r = r − 0. Suppose the result holds for any x, y
with ∂(x, y) < i.

If ∂(x, y) = i, then ∂(x, y) > i− 1, so |x ∩ y| < r − i + 1 by the induction hypothesis. So
|x ∩ y| ≤ r − i. By definition of distance, there exists a path of length i from x to y. Thus
there exists a vertex z that is distance i− 1 from x and adjacent to y. So by the induction
hypothesis

|z \ x| = i− 1 and |y \ z| = 1.

Now we notice that
|y \ x| = |(y \ x) ∩ z|+ |(y \ x) \ z|.

Since (y \ x) ∩ z ⊆ z \ x and (y \ x) \ z ⊆ y \ z,

|y \ x| ≤ |z \ x|+ |y \ z|
= (i− 1) + 1,

so |y \ x| ≤ i which implies |x ∩ y| ≥ r − i. We conclude |x ∩ y| = r − i as desired.
Now suppose |x∩ y| = r− i. We need to show that ∂(x, y) = i. If ∂(x, y) ≤ i then, by the

induction hypothesis, |x ∩ y| > r − i, a contradiction. So ∂(x, y) ≥ i. On the other hand, if
we let

x \ y = {x1, . . . , xi} and y \ x = {y1, . . . , yi},
then we can define, for each j (0 ≤ j ≤ i),

zj = (x \ {x1, . . . , xj}) ∪ {y1, . . . , yj},
and the sequence x = z0, z1, . . . , zi = y is an xy-path of length i. So ∂(x, y) ≤ i, forcing
∂(x, y) = i as desired. ¤
Lemma 5.3.2 Johnson graphs are distance-regular.

Proof. Again, it is enough to show that the intersection numbers for Johnson graphs are
independent of choice of vertex for the graph to be distance-regular. Let x, y be vertices
of J(n, r) such that ∂(x, y) = i. Considered as r-element subsets of {1, 2, . . . , n}, to get a
neighbor of y, we need to pick an element of y, say a, and change it an element that is not
in y, say to b. There are four ways this can be done.
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Case 1: If a is an element of x ∩ y and b is an element of x \ y , then z will still differ from
x by r− i terms since a was common to both x and y but b is not common to x. This gives
a neighbor of y such that ∂(x, z) = i.

Case 2: If a is an element of x∩ y and b is not an element of x∪ y, then z will be a neighbor
of y that differs from y in 1 term and from x in r − (i + 1) terms. So ∂(x, z) = i + 1.

Case 3: If a is an element of y \ x and b is an element of x \ y, then z will differ from y in 1
term and from x in only r − (i− 1) since we are changing a to a term that is already in x.
Thus ∂(x, z) = i− 1.

Case 4: If a is an element of y \ x and b is not an element of x ∪ y, then z will differ from y
by 1 term and from x in r − i terms since a was not in x and neither is b. Thus ∂(x, z) = i.

Now, by definition the intersection number ai is given by |Γi(x) ∩ Γ1(y)|. So we want all
vertices, z, such that ∂(x, z) = i and ∂(z, y) = 1. These are given by Case 1 and Case 4.
From Case 1, we have that there are r − 1 choices for a and i choices for b. From Case 4
we have i choices for a and n− r − i choices from b. Thus ai = (r − i)i + i(n− r − i). The
intersection number bi is given by |Γi+1(x) ∩ Γ1(y)|. So we want all vertices, z, such that
∂(x, z) = i + 1 and ∂(z, y) = 1. These are given by Case 2. We have r − i choices for a and
since we must pick z not in the union of x and y, we have n− 2r +(r− i) = n−k− i choices
for b. Thus bi = (r − i)(n− r − i). The intersection number ci is given by |Γi−1(x) ∩ Γ1(y)|.
So we want all vertices, z, such that ∂(x, z) = i−1 and ∂(z, y) = 1. These are given by Case
3. We have i choices for a and i choices for b, thus ci = i2. Since the intersection numbers
for J(n, r) are independent of choice of vertex, the Johnson graph is distance-regular. ¤

It can be shown (see [4]) that the eigenvalue matrix for the Johnson graph is given by

Pl(i) =
l∑

α=0

(−1)l−α

(
r − α

l − α

)(
r − i

α

)(
n− r + α− i

α

)
(12)

It follows then at the eigenvalues for the Johnson graph are given by the first column of this
matrix which is

P1(i) =
1∑

α=0

(−1)1−α

(
r − α

1− α

)(
r − i

α

)(
n− r + α− i

α

)
.

Thus the eigenvalues for the adjacency matrix A for Johnson graph J(n, r) is given by

θi = −r + (r − i)(n− r + 1− i). (13)

5.3.3 Johnson Graph J(4,2)

Let’s look at a concrete example of the Johnson graph, J(4, 2). The vertices of this graph
will be 2 element subsets of the numbers {1, 2, 3, 4}. So |V (J(4, 2))| = 6 and each vertex
will have degree 4 since each vertex with differ in term with exactly 4 other vertices. The
adjacency matrix for J(4, 2) is given below.

12



A =




12 13 14 23 24 34
12 0 1 1 1 1 0
13 1 0 1 1 0 1
14 1 1 0 0 1 1
23 1 1 0 0 1 1
24 1 0 1 1 0 1
34 0 1 1 1 1 0




As we did with the Hamming graph H(3,2), we can calculate the intersection matrices.
The diameter of J(4, 2) is 2. So we will only have intersection matrices B and B2 which will
be 3× 3 matrices. Using the intersection numbers derived in Lemma 5.3.1, we can generate
B by calculating up to i = 2. Thus,

B =




p0
01 p1

01 p2
01

p0
11 p1

11 p2
11

p0
21 p1

21 p2
21


 =




a0 c1 0
b0 a1 c2

0 b1 a2


 =




0 1 0
4 2 4
0 1 0




Continuing as we did for the H(3, 2), we will use the recurrence relation on the intersection
matrices to generate B2. So,

B2 = B1+1

=
1

c2

[BB − b0B0 − a1B]

=
1

4
[B2 − 4B0 − 2B]

=




0 0 1
0 1 0
1 0 0




Now that we have the intersection matrices, we can calculate the eigenvalues and eigen-
matrix for J(4, 2). As predicted by equation (12), the eigenmatrix P for the distance-regular
graph J(4, 2) is given by

P (Γ) =




1 4 1
1 0 1
1 −2 −1




6. Feasibility of Given Parameters

We were given specific intersection numbers and worked to determine if a distance-regular
graph with diameter d was feasible. In general, there are some basic conditions that must
hold for a graph to be feasible. We have already mentioned that the intersection numbers, ph

ij,
must be nonnegative integers. Also, we have that for any vertex v of a distance-regular graph
Γ with diameter d, ki, the number of vertices in Γi(v), must be an integer for (2 ≤ i ≤ d).
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The parameters we were given are:

ci =
3i(d− i + 1)(d + i + 1)

d(d + 2)(2i + 1)
, bi =

3(d− i)(i + 1)(d + i + 2)

d(d + 2)(2i + 1)
(14)

We were able to determine the following results.

Proposition 6.0.4 Given the parameters defined in (14), then k = 3.

Proof. By definition, k = b0. Thus for the given parameters,

k = b0 =
3(d− 0)(0 + 1)(d + 0 + 2)

d(d + 2)(0 + 1)
= 3.

¤

Proposition 6.0.5 Given the parameters defined in (14), then ki = 2i + 1.

Proof. This result follows by induction on i. For k0 = 1 and k1 = k = 3 the recurrence
holds. Suppose true for i and consider ki+1. From equation (3), ki+1 = ki

bi

ci+1
, which equals

2i + 3 by (14). ¤
So one of our feasibility constraints is meet. Now to get the last parameter, ai and begin

checking the other constraint.

Proposition 6.0.6 Given the parameters defined in (14), then

ai =
3i(i + 1)

d(d + 2)

.

Proof. From equation (2), ai + bi + ci = k, so it follows that given our parameters,

ai = k − bi − ci

= k − 3i(d− i + 1)(d + i + 1)

d(d + 2)(2i + 1)
− 3(d− i)(i + 1)(d + i + 2)

d(d + 2)(2i + 1)

=
d2(k − 3) + 2d(k − 3) + 3i(i + 1)

d(d + 2)

=
3i(i + 1)

d(d + 2)
,

when k = 3. ¤
6.1 Intersection Numbers Investigated

We can set up the intersection matrix, B for our given parameters although we won’t
have a set diameter and so the dimension for the intersection matrix is undetermined.
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B =




a0 c1 0 · · · 0
b0 a1 c2 · · · 0
0 b1 a2 · · · 0
...

...
...

. . . cd

0 0 · · · bd−1 ad




=




0 1 0 · · · 0

3 6
d(d+2)

6(d−1)(d+3)
5d(d+2)

· · · 0

0 6(d−1)(d+3)
3d(d+2)

18
d(d+2)

· · · 0
...

...
...

. . . 3
d+2

0 0 · · · 3d(2d+1)
d(d+2)(2d−1)

3(d+1)
d+2




(15)

For our parameters to be considered feasible, each entry of the intersection matrices must
be nonnegative. Recall the entries of intersection matrices are the intersection numbers for
the graph. These can be determined using the recursive formula given in equation (8).

Conjecture 6.1.1 The entries in B0, B,B2, . . . , Bd are all nonnegative.

Partial results that support the conjecture.

Proposition 6.1.2 Intersection matrices B0 and B are nonnegative.

Proof. Clearly B0 = I is nonnegative. B is as equation (15) and since ai, bi, and ci are
nonnegative so will the matrix. ¤
Proposition 6.1.3 Intersection matrix B2 is nonnegative.

Proof. This result follows by applying the triangle inequality to the recurrence relation on
the intersection numbers given in 8. Specifically, the intersection numbers found in B2 are
given by:

ph
i2 =

1

c2

[bi−1p
h
i−11 + (ai − a1)p

h
i1 + ci+1p

h
i+11 − b0p

h
i0] (16)

By the triangle inequality, the only nonzero intersection numbers will be when the sum of
any two of i, h, and 2 do no exceed the third term. Thus we have the following cases.

Case 1: h = i− 2. This reduces equation (16) to

pi−2
i2 =

1

c2

[bi−1bi−2]

= 15/2
i (i− 1) (i− 1− d) (i− 2− d) (d + i + 1) (d + i)

d (d + 2) (2 i− 1) (2 i− 3) (d− 1) (d + 3)

which is nonnegative since i ≤ d for all i.

Case 2: h = i− 1. This reduces equation (16)

pi−1
i2 =

1

c2

[bi−1(ai−1 + ai − a1)]

= −15
i (i− 1) (i + 1) (d + i + 1) (i− 1− d)

(2 i− 1) (d− 1) (d + 3) d (d + 2)

15



which by observation is nonnegative.

Case 3: h = i. This reduces equation (16) to

pi
i2 =

1

c2

[bi−1ci + (ai − a1)ai + ci+1bi − b0)]

= 5
i (i + 1) (3 i2 + 3 i− 3− 2 d− d2)

2

(2 i− 1) (2 i + 3) (d + 2) d (d− 1) (d + 3)

which we can observe to be nonnegative.

Case 4: h = i + 1. This reduces equation (16) to

pi+1
i2 =

ci+1

c2

[ai+1 + ai − a1]

= −15
i (i + 2) (i + 1) (d + i + 2) (i− d)

(2 i + 3) (d + 2) d (d− 1) (d + 3)

Case 5: h = i + 2. This reduces equation (16) to

pi+2
i2 =

1

c2

[ci+1ci+2]

= 15/2
(i + 2) (i + 1) (i− d) (d + i + 3) (d + i + 2) (i + 1− d)

d (d + 2) (2 i + 3) (2 i + 5) (d− 1) (d + 3)

If d > i, then pi+2
i2 is nonnegative and if d = i then pi+2

i2 = 0. Thus pi+2
i2 is nonnegative.

Therefore, the entries of B2 are nonnegative. ¤

Conjecture 6.1.4 The entries of the intersection matrix B3 are nonnegative.

Proof. The intersection numbers found in B3 are given by the recurrence relation of equation
(8). Specifically, the intersection numbers found in B3 are given by

ph
i3 =

1

c3

[bi−1p
h
i−12 + (ai − a2)p

h
i2 + ci+1p

h
i+12 − b1p

h
i1]. (17)

By applying the triangle inequality, we have the following cases.

Case 1: h = 1− 3. This reduces equation (17) to

pi−3
i3 =

1

c3

[bi−1p
i−3
i3 ]

=
1

c3c2

[bi−3bi−2bi−1]

= −35

2

i (i− 1) (i− 2) (i− 1− d) (i− 2− d) (i− 3− d) (d + i + 1) (d + i) (d + i− 1)

d (d + 2) (2 i− 1) (2 i− 3) (2 i− 5) (d− 1) (d + 3) (d− 2) (d + 4)

Case 2: h = i− 2. This reduces equation (17) to

pi−2
i3 =

1

c3

[bi−1p
i−2
i−12 + (ai − a2)p

i−2
i2 ]
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=
1

c3

[bi−1bi−2(ai−2 + ai−1 − a1) + (ai − a2)bi−1bi−2]

=
bi−1bi−2

c3c2

[ai−2 + ai−1 + ai − a1 − a2]

=
105

2

i (i− 1) (i− 2) (i + 1) (i− 1− d) (i− 2− d) (d + i + 1) (d + i)

(2 i− 1) (2 i− 3) (d− 1) (d + 3) (d− 2) (d + 4) d (d + 2)

Case 3: h = i− 1. This reduces equation (17) to

pi−1
i3 =

1

c3

[bi−1p
i−2
i−12 + (ai − a2)p

i−2
i2 + ci+1p

i−1
i+12]

=
1

c3c2

[bi−1bi−2(ai−2 + ai−1 − a1) + (ai − a2)bi−1bi−2 + ci+1bibi−1]

=
1

c3c2

[bi−1bi−2(ai−2 + ai−1 + ai − a1 − a2) + ci+1bibi−1]

= −21/2
(i− 1) (i + 1) (d + i + 1) (i− 1− d) (5 i2 − 12− 2 d− d2)

2
i

d (2 i− 3) (2 i + 3) (d + 2) (2 i− 1) (d− 1) (d + 3) (d− 2) (d + 4)

Case 4: h = i. This reduces equation (17) to

pi
i3 =

1

c3

[bi−1p
i
i−12 + (ai − a2)p

i
i2 + ci+1p

i
i+12 − b1p

i
i1]

=
1

c3

[
bi−1cici+1

c2

+ ai − a2c2[bi−1ci + (ai − a1)ai + ci+1bi − b0]

+
ci+1

c2

[bibi−1]− b1ai]

=
1

c3c2

[bi−1cici+1 + (ai − a2)(bi−1ci + (ai − a1)ai + ci+1bi − b0) + ci+1bibi−1]

−b1ai

c3

= 7
i (i− 1) (i + 2) (i + 1) (5 i2 + 5 i− 6− 6 d− 3 d2)

2

(2 i + 3) (d + 2) (d + 4) (d− 2) (d + 3) (d− 1) (2 i− 1) d

Case 5: h = i + 1. This reduces equation (17) to

pi+1
i3 =

1

c3

[bi−1p
i+1
i−12 + (ai − a2)p

i+1
i2 + ci+1p

i+1
i+12 − b1p

i+1
i1 ]

=
ci+1

c3c2

[bi−1ci + (ai+1 + ai − a1)(ai − a2)]

+
ci+1

c3c2

[[bici+1 + (ai+1 − a1)ai+1 + ci+2bi+1 − b0]− b1(ai+1 + ai − a1)]

= −21/2
i (i + 2) (i + 1) (d + i + 2) (i− d) (5 i2 + 10 i− 7− 2 d− d2)

2

(2 i− 1) d (d + 3) (d− 1) (2 i + 5) (d− 2) (d + 4) (d + 2) (2 i + 3)
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Case 6: h = i + 2. This reduces equation (17) to

pi+2
i3 =

1

c3

[(ai − a2)p
i+2
i2 + ci+1p

i+1
i+12]

=
1

c3c2

[(ai − a2)ci+1ci+1 + ci+1[bici+1 + (ai+1 − a1)ai+1 + ci+2bi+1 − b0]]

=
105

2

(i + 3) (i + 2) (i + 1) (d + i + 3) (d + i + 2) (i + 1− d) (i− d) i

d (d + 3) (d− 1) (2 i + 5) (d− 2) (d + 4) (d + 2) (2 i + 3)

Case 7: h = i + 3. This reduces equation (17) to

pi+3
i3 =

1

c3

[ci+1p
i+3
i+12]

=
ci+2ci+3

c3c2

which Maple simplified to

−35

2

(i + 3) (i + 2) (i + 1) (d + i + 4) (d + i + 3) (d + i + 2) (i + 2− d) (i + 1− d) (i− d)

d (d + 2) (2 i + 5) (2 i + 7) (d− 1) (d + 3) (2 i + 3) (d− 2) (d + 4)

¤
Thus, B3 is nonnegative.

Proposition 6.1.5
For distance-regular graph Γ with intersection matrix B as given, and diameter d, the ith

eigenvalue of B is given by

θi = θ0 − 6i(i + 1)

d(d + 2)

where θ0 = 3.

Proof. plug in a’s, b’s, and c’s and

7. Conclusions

18



References

[1] Douglas B. West. Introduction to Graph Theory, Prentice Hall, New Jersey, 2001, 1-28.

[2] A.E. Brouwer, A.M. Cohen, A. Neumaier. Distance-Regular Graphs, Springer-Verlag,
New York, 1980, 126-135.

[3] Norman Biggs. Algebraic Graph Theory, Cambridge University Press, Cambridge, 164-
169.

[4] J. H. van Lint, R. M. Wilson. A Course in Combinatorics, Cambridge University Press,
1992, 364-374.

[5] Chris Godsil, Gordon Royle, Algebraic Graph Theory, Springer-Verlag, New York, 2001,
163-170.

[6] Lowell W. Beineke, Robin J. Wilson. Topics in Algebraic Graph Theory, Cambridge
University Press, Cambridge, 2004, 30-50.

19


