Cycloids and Paths

An MST 50I Project Presentation by
 Tom Roidt

Under the direction of
Dr. John S. Caughman

In partial fulfillment of the requirements for the degree of:
Masters of Science in Teaching Mathematics
December 8th, 201I
Portland State University
Department of Mathematics and Statistics

A cycloid is the path traced by a point on a circle as the circle rolls along a flat line in two dimensions.

My Paper:

- Introduction and history of cycloids.
- Roberval's derivation of the area under a cycloid.
- Showing that a pendulum constrained by two inverted cycloids will swing in a path of a congruent, inverted cycloid.

My Curriculum Project

- Lesson I: Intro to Cycloids/Deriving the Parametric Equation of a Cycloid.
- Lesson 2: Roberval's Derivation of the Area Under a Cycloid.
- Lesson 3: Using Integration to Find the Arc Length of a Cycloid and Area Under a Cycloid.
- Lesson 4: Showing that a Pendulum Constrained by two Inverted Cycloids Swings in the Path of a Congruent, Inverted Cycloid.

Why Cycloids?

- The basic idea is easy to comprehend and engaging.
- Utilizes concepts from algebra, geometry, trigonometry and calculus.
- Has a rich mathematical history that in many ways parallels the development of calculus.

A Brief History of the Cycloid

- Charles de Bovelles (1475-I566): First to study the curve.
- Galileo Galilei (1564-|642): Named the curve and popularized it.
- Marin Mersenne (I588-I648): First precise mathematical definition.
- Gilles de Roberval (I602-I675): Used Cavalieri's Principle to find the area under the curve.

History of Cycloids (continued)

- Blaise Pascal (I623-I662): Used "indivisibles" to find the area under and arc length of the cycloid.
- Christiaan Huygens (1629-I695): Studied cycloid-constrained pendulum and developed "tautochrone" property.
- Gottfried Leibniz (|646-I7|6): Developed the first explicit formula for a cycloid.
- Jacob (I654-I705) and Johann (I667-I748) Bernoulli: Discovered "Brachistachrone" property of cycloids.

Did we forget anyone?

- Rene Descartes (1596-1650), Pierre de Fermat, (I60I-I665), Christopher Wren, (I632-I723) and Isaac Newton (I642-I727) all studied and contributed to our knowledge of cycloids.
- So many famous mathematicians and scientists have been drawn to the study of the cycloid, the curve has been called, "The Helen of Geometers."

Deriving a Parametric Equation for a Cycloid

Parametric Equation for a Cycloid:

For a generating circle of radius r, with θ being the amount of rotation of the circe in radians, the cycloid curve is given by the parametric equation:

$$
\begin{aligned}
& x=r(\theta-\sin \theta) \\
& y=r(1-\cos \theta)
\end{aligned}
$$

Two Important Properties of Cycloids

- The area under a cycloid curve is 3 times that of its generating circle, or $3 \pi r^{2}$.
- The arc length of a cycloid is 8 times the radius of its generating circle.

Showing that a pendulum constrained by two
inverted cycloids will swing in the path of a congruent, inverted cycloid.

Given an endpoint (x, y), the

 slope, m, and length, l, of a line segment, find the coordinates of the other endpoint.$$
\begin{gathered}
\text { slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}+l=\sqrt{\left(x_{2}-x_{1}\right)+\left(y_{2}-y_{1}\right)} \\
x_{2}= \pm \sqrt{\frac{l^{2}}{m^{2}+1}}+x_{1} \\
y_{2}=m\left(\pm \sqrt{\frac{l^{2}}{m^{2}+1}}\right)+y_{1}
\end{gathered}
$$

Finding $\mathbf{x}_{\mathbf{2}}$

$$
x_{2}= \pm \sqrt{\frac{l^{2}}{m^{2}+1}}+x_{1}
$$

$$
x_{2}= \pm \frac{4 r \cos \frac{\theta}{2}}{\sqrt{\left(\frac{\sin \theta}{1-\cos \theta}\right)^{2}+1}}+r \theta-r \sin \theta
$$

...after some algebra and trig identities...

$$
x_{2}= \pm \frac{4 r \sqrt{1-\cos ^{2} \theta}}{2}+r \theta-r \sin \theta
$$

$$
x_{2}=r(\sin \theta+\theta) \quad \text { or } \quad x_{2}=r(\theta-3 \sin \theta)
$$

Finding $\mathbf{y}_{\mathbf{2}}$

$$
y_{2}=m\left(\pm \sqrt{\frac{l^{2}}{m^{2}+1}}\right)+y_{1}
$$

$$
y_{2}=\left(-\frac{\sin \theta}{1-\cos \theta}\right)(\pm 2 r \sin \theta)-r(1-\cos \theta)
$$

$$
y_{2}= \pm\left(\frac{2 r(1+\cos \theta)(1-\cos \theta)}{1-\cos \theta}\right)-r(1-\cos \theta)
$$

$$
y_{2}=3 r+3 r \cos \theta \quad \text { or } \quad y_{2}=-3 r-r \cos \theta
$$

Which Equations Work?

$$
x_{2}=r(\sin \theta+\theta) \quad \text { or } \quad x_{2}=r(\theta-3 \sin \theta)
$$

$$
y_{2}=3 r+3 r \cos \theta \text { or } \quad y_{2}=-3 r-r \cos \theta
$$

Showing that the new parametric is a shifted cycloid.

Note that the second cycloid is shifted to the right (or left) by π r.

Note that when $\theta=0$ in our original cycloid, $\theta=\pi$ in our shifted cycloid.

Showing that the new parametric is a shifted cycloid (continued).

Beginning with our original inverted cycloid:

$$
x=r(\theta-\sin \theta)
$$

$$
y=-r(1-\cos \theta)
$$

Replacing θ with $(\theta+\pi)$, and \quad Replacing θ with $(\theta+\pi)$, and subtracting πr gives us: subtracting $2 r$ gives us:

$$
x=r((\theta+\pi)-\sin (\theta+\pi))-\pi r \quad y=-r(1-\cos (\theta+\pi))-2 r
$$

Which simplify to:

$$
x=r(\sin \theta+\theta) \quad \text { and } \quad y=-3 r-r \cos (\theta)
$$

Which we recognize as our parametric for x_{2}, y_{2}.

So, we have shown that a pendulum constrained by inverted cycloids will indeed swing in the path of a congruent, inverted cycloid.

Lesson I: Intro and Deriving the Parametric

Figure 1: Cycloid with Generating Circle

Lesson 2: Roberval's Area Under the Cycloid

そし

Figure 2: Cycloid with Left Half

$$
d=\sqrt{\left.k_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Lesson 3: Using Integrals to Find the Arc Length and Area Under the Cycloid

Worksheet 3.1 (p. 1 of $\mathbf{3}$)

Name
Date \qquad
In-Class Assignment: Area Under and Arc Length of a Cycloid

Part 1: Review of Cycloids
Recall that a cycloid is the curve made by a point on a circle as the circle rolls along a flat surface.

A cycloid has the parametric equation
$\mathbf{x}=\mathrm{r}(\theta-\sin \theta)$ and $\mathrm{y}=\mathrm{r}(1-\cos \theta)$ where r is the radius of the generating circle and θ is $x=r(\theta-\sin \theta)$ and $y=r(1-\cos \theta)$ where r is the rans.
the amount of rotation of the circle in radians.

Part 1: Area Under the Cycloid

Recall the formula for the area under a parametric curve
If $x=f(t)$ and $y=g(t)$
then
$A=\int_{t 1}^{t 2} y d x=\int_{t 1}^{t 2} g(t) \cdot f^{\prime}(t)$

Step 1: Find $f^{\prime}(t)$

Worksheet 3.1 (p. 3 of 3)

Part 2: Arc Length of a Cycloid
Recall the arc length formula:
$L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$

Step 1: find $\frac{d x}{d t}$ and $\frac{d y}{d t}$ and set the limits of integration.

Step 2: Substitute and expand, factoring out the r^{2}

Step 3: Substitute, using the trig identity $1-\cos t=2 \sin ^{2}\left(\frac{t}{2}\right)$

Step 4: Eliminate the radical, and integrate

Lesson 4: Showing that a Pendulum Constrained by two Inverted Cycloids follows the Path of a Congruent, Inverted Cycloid

Because of the complexity of the algebra involved in the actual derivation (see section 3 of Part 1), I've eliminated some of the more difficult steps. This activity should probably be done as follows:
Intro: Teacher presents Diagram 3.1 and goes over the basic problem.

Students work in pairs or small groups or solo to solve the following problem.

Activity 1: Given the coordinates of one endpoint of a line segment, the length of that segment and the slope of that segment, find a formula to find the other endpoint. Let $\left(x_{1}, y_{1}\right)$ be the known endpoint. Let L be the length of the segment, and m be its slope
Hint: combine the slope formula and the distance formula. Your "formula" will have two parts, one to find the x coordinate of the missing endpoint, and one to find the y coordinate).

Once everyone has the formulas, we begin activity two

Activity 2: Looking at the diagram, what expressions can we plug into our formulas for
the following variables. Be ready to give a short explanation for your answer
$\mathrm{x}_{1}=$
$\mathrm{y}_{1}=$
$\mathrm{m}=$
$\mathrm{L}=$

Thank You!

