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Chapter 1

Introduction

This paper is about Hamiltonian cycles in the k-ary n-cube. While it is known
that the k-ary n-cube Qk

n is Hamiltonian for (k, n) 6= (2, 1), we will consider
the Hamiltonicity of Qk

n in the presence of missing edges. An obvious necessary
condition for such a subgraph of Qk

n to be Hamiltonian is that every vertex have
degree at least two. Assuming this minimal condition is met, it is natural to
ask how many faults Qk

n can sustain and still necessarily contain a Hamiltonian
cycle. In their 2002 paper [1], Ashir and Stewart establish a sharp bound on
this number of faults. They prove the following theorem.

Theorem 1 Suppose k ≥ 4 and n ≥ 2, or k = 3 and n ≥ 3. If
Qk

n has no more than 4n−5 faults and every node in Qk
n is incident

to at least two healthy links, then Qk
n contains a Hamiltonian cycle.

In this paper, we will work through the details of Ashir and Stewart’s result.
They apply an inductive argument in which the induction step is broken into
several cases. We expand upon their explanation and provide a number of
diagrams to illuminate the argument.

The motivation for such problems comes from analyzing the fault tolerance
of massively parallel computers. A key factor in the architecture of a parallel
computer is the communication network. The natural model for this network
is a graph with vertices representing the computational units and edges repre-
senting the communication links. Fundamental results force us to only consider
communication networks based on highly structured graphs that we can more
fully analyze. Typical networks include rings, trees, meshes, and hypercubes in
addition to the k-ary n-cube. The development of parallel algorithms depends
upon the underlying communication network. Porting an existing algorithm to a
new architecture involves embedding the original communication network within
the new architecture’s network (the guest and host networks respectively). In
particular, the existence of a Hamiltonian cycle demonstrates the possibility of
embedding a ring in Qk

n

5



6 CHAPTER 1. INTRODUCTION



Chapter 2

Preliminaries

2.1 Basic Definitions

• Graph

A graph is an ordered pair of disjoint sets (V, E) such that E ⊂
V (2), which denotes the set of unordered pairs of V . We refer to
the elements of V as vertices and the elements of E as edges. An
edge {x, y} is said to join the vertices x and y. We use the nota-
tion V (G) and E(G) to refer to the sets of vertices and edges of G
respectively. We alternatively use nodes and links as synonyms
for vertices and edges respectively. These terms come from the
application of parallel computing.

• Deletion ( G − e )

Given a graph G and an edge e ∈ E(G), we define G− e to be the
graph with vertex set V (G) and edge set E(G) − e).

• Graph Instersection ( G ∩ H )

Given two graphs G and H, we define the intersection G ∩ H =
(V (G) ∩ V (H), E(G) ∩ E(H)).

• Subgraph

Given graphs G and H, we say H is a subgraph of G if V (H) ⊂
V (G) and E(H) ⊂ E(G).

• Path

A path P is a graph of the form V (P ) = {x1, x2, · · · , xn} and E(P ) =
{{x1, x2}, {x2, x3}, · · · , {xn−1, xn}}. We refer to the vertices x1 and
xn as the endpoints of P , and we make use of the notation P :
x1 ∼ xn to indicate that P is a path with endpoints x1 and xn.

7



8 CHAPTER 2. PRELIMINARIES

• Concatenating Paths

If we have two paths P : x ∼ y and R : y ∼ z where V (S) ∩
V (R) = {y} then we define P · R ≡ R · P to be the concatenation
of the two paths. That is, V (P · R) = V (R · P ) = V (P ) ∪ V (R) and
E(P · R) = E(P ) ∪ E(R). Thus we have R · P : x ∼ z.

• Cycle

A cycle C is a graph of the form V (C) = {x1, x1, · · · , xn}, n ≥ 3 and
E(C) = {{x1, x2}, {x2, x3}, · · · , {xn−1, xn}, {xn, x1}}.

• n-cycle

An n-cycle is a cycle with n vertices.

• Hamiltonian Path

Given a graph G and a path P , we say P is a Hamiltonian path
in G if P is a subgraph of G and V (P ) = V (G).

• Hamiltonian Cycle

Given a graph G and a cycle C, we say C is a Hamiltonian cycle
in G if C is a subgraph of G and V (C) = V (G).

• Incidence

We say two edges are incident if they share an endpoint.

Furthermore, we say an edge e and a vertex x are incident to
one another if x is an endpoint of e.

It will be clear from context which definition we are applying.

• Adjacency

Given a graph G and vertices x and y, we say x and y are adjacent
if {x, y} ∈ E(G).

• Degree

Given a graph G and a vertex x, we say the degree of x, denoted
d(x), is the number of edges in E(G) with x as an endpoint.

• Bridge (2-bridge / 3-bridge )

A 2-bridge is a graph G of the form V (G) = {x0, x1, x2, x3} and
E(G) = {{x0, x1}, {x2, x3}, {x0, x2}, {x1, x3}}.
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x
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A 3-bridge is a graph G of the form V (G) = {x0, x1, x2, x3, x4, x5}
and E(G) = {{x0, x1}, {x2, x3}, {x4, x5}, {x0, x2}, {x2, x4}, {x1, x3}, {x3, x5}}.

• Star

A star is a graph G of the form V (G) = {x0, x1, · · · , xn} and E(G) =
{{x0, x1}, {x0, x2}, · · · , {x0, xn}}. We refer to the node x0 as the
center of the star.
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2.2 The Graph Qk
n

Given positive integers k and n, we define the graph Qk
n known as the k-ary n-

cube. The vertices are n-tuples in which each coordinate is an integer between
0 and k − 1. Two vertices are adjacent if the two n-tuples differ in exactly
one coordinate and that difference equals 1 mod k. Figure 2.1 shows all of the
vertices adjacent to (0, 1, 2) in the graph Q3

3.

(0,1,2) (1,1,2)

(0,0,2)(0,1,0)

(2,1,2)

(0,2,2) (0,1,1)

Figure 2.1: Vertices adjacent to (0, 1, 2) in Q3
3
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Note that every vertex in Qk
n has degree 2n. If x, y are adjacent, then

they differ in exactly one coordinate i. We then say the edge {x, y} lies in
dimension i. We can partition Qk

n along a dimension i to get k copies of Qk
n−1

connected by dimension i links. The vertices of the jth copy are the n-tuples
whose ith coordinate equals j.

2.3 Conventions / Notation

• Faults in a graph

The focus of this paper is on the existence of Hamiltonian cycles within Qk
n

in the presence of faulty links. Throughout this work, there are numerous
graphs depicted visually. Any given edge may be known to be faulty,
known to be not faulty (i.e. healthy), or its state unknown. If an edge is
known to be faulty, we will draw that edge with dashed lines. We do not
consider faulty edges to be deleted from a graph; we merely note them
as faulty. We do not visually distinguish edges of unknown state from
healthy edges. When we refer to a graph H as healthy, we understand
that all of the edges in H are healthy.

• Indexing Conventions

Furthermore, we will partition the graph Qk
n along some dimension. We

will label the Qk
n−1 subgraphs Q1, Q2, . . . , Qk. We then strictly use sub-

scripts in accordance with these labels. Thus by the subscripts it is under-
stood that the nodes x1, y2, and w3 are in Q1, Q2, and Q3 respectively.
We also understand the nodes x1 and x2 are adjacent via an edge in di-
mension 1. Similarly, the nodes yk and y1 are adjacent via an edge in
dimension 1.

• Joining cycles

We will make such frequent use of the following constructions that it is
worth covering them as a concept. Our general goal is to establish the
existence of Hamiltonian cycles. We will accomplish this by successively
joining cycles connected via a 2-bridge to get an ever larger cycle as de-
picted in Figure 2.3. Joining a path and a cycle or joining two paths is a
clear extension of the given example.

2.4 The Theorem of Ashir and Stewart

The theorem of Ashir and Stewart is concerned with guaranteeing the existence
of Hamiltonian cycles in Qk

n under conditions of faulted links. Specifically they
give a sharp result on the number of faults Qk

n can sustain and still maintain
the necessity of a Hamiltonian cycle.
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Figure 2.3: Joining Cycles

Theorem 1 For k ≥ 4 and n ≥ 2 or k = 3 and n ≥ 3, if Qk
n has no more than

4n− 5 faults and every node in Qk
n is incident to at least two healthy links, then

Qk
n contains a Hamiltonian cycle.

The hypothesis that every node is incident to at least two healthy links is a
minimal condition for a graph to contain a Hamiltonian cycle. The proof follows
by induction on n. This leaves as base cases the graph Q3

3 and the family of
graphs Qk

2 for k ≥ 4 (see Figure 2.4). Chapter 3 proves the induction step.
Chapter 4 covers the base case Qk

2 for k ≥ 4, and chapter 6 addresses the base
case Q3

3.

k
n

Q3
3

Q4
3

Q5
3

Q6
3

Q3
4

Q4
4

Q5
4

Q6
4

Q3
5

Q4
5

Q5
5

Q6
5

Q3
6

Q4
6

Q5
6

Q6
6

Q3
2

Q4
2

Q5
2

Q6
2

3 4 5 6

2

3

4

5

6

Figure 2.4: Inductive Structure



Chapter 3

The Induction Step

3.1 Argument Overview

To access the induction hypothesis, we partition the graph Qk
n+1 across a di-

mension to get k copies of Qk
n.

Assume we have been given Qk
n+1 with k ≥ 4 and n ≥ 2 or k = 3 and

n ≥ 3 with 4(n + 1)− 5 = 4n− 1 faults such that every node is incident to two
healthy links. With 4(n+1)−5 faults, we cannot guarantee that one of the n+1
dimensions has four faults. However, with n ≥ 2, we have 4(n+1)−5 > 2(n+1).
Thus, by the pigeon hole principle, some dimension must have at least three
faults. Without loss of generality (WLOG) we assume dimension 1 has at least
three faults. We now partition Qk

n+1 across dimension 1. This leaves us with k
copies of Qk

n which we label Q1, Q2, · · ·Qk. We now have the required graph to
apply the induction hypothesis. With at least 3 faults committed to dimension
1, we have at most 4n − 4 faults distributed among the Qi’s.

The induction argument follows three principal cases:

• case (i): Within each Qi every node is incident to two healthy links in Qi,

• case (ii): Some node xi is incident to only one healthy link in Qi,

• case (iii): Some node xi is incident to zero healthy links in Qi.

Note that these cases are distinct. The only overlap to consider is between
cases (ii) and (iii). Suppose xi and yj are nodes in Qk

n+1 such that xi is incident
to only one healthy link in Qi and yj is incident to no healthy links in Qj . Then
xi must be incident to 2n−1 faults in Qi and yj must be incident to 2n faults in
Qj . It may be the case i = j, and one of the faults incident to xi is also incident
to yj . Thus we have at least (2n − 1) + (2n) − 1 = 4n − 2 faults distributed
among the Qi’s. Since we can have at most 4n− 4 faults distributed among the
Qi’s, cases (ii) and (iii) cannot occur simultaneously.

We further break cases (i) and (ii) into sub-cases.

13



14 CHAPTER 3. THE INDUCTION STEP

• case i: Within each Qi every node is incident with two healthy links in
Qi

◦ case i-a: No Qi contains all 4n−4 faults distributed among the Qi’s,

◦ case i-b: Some Qi contains 4n − 4 faults.

• case ii: Some node xi is incident to only one healthy link in Qi,

◦ case ii-a: There is an edge {wi, xi} in Qi that is faulty with the edge
{wi, wi+1} healthy.

◦ case ii-b: There is no such edge {wi, xi}.

• case iii: Some node xi is incident to zero healthy links in Qi,

3.2 Case i: Within each Qi every node is inci-
dent to two healthy links in Qi

We have the hypotheses of the main theorem that Qk
n+1 has 4n− 1 faults such

that every node is incident to at least two healthy links. We also have the
assumption that dimension 1 contains at least three faults.

3.2.1 Case i-a: No Q
i
has 4n − 4 faults

• The graph Q1 contains a Hamiltonian cycle C1

We can relabel the Qi’s such that Q1 contains at least as many faults as any
other Qi. Thus each of Q2,· · · , Qk contains no more than 2n− 2 faults which is
half the maximum number of possible faults distributed among the Qi’s. By our
assumptions, Q1 contains at most 4n− 5 faults with every node in Q1 incident
to at least two healthy links in Q1. Thus, we can apply our induction hypothesis
to Q1 to get a Hamiltonian cycle C1.

• There exists a healthy 3-bridge between C1 and Q2

We start by using a counting argument to establish a healthy 3-bridge be-
tween Q1 and Qk or a healthy 3-bridge between Q1 and Q2 (see Figure 3.1
).

We partition C1 into groups of three vertices to form desired configurations
that only overlap in healthy links in C1 (See Figure 3.2). Recall Qi = Qk

n. So,
there are kn nodes in C1 which gives us 2b kn

3 c candidate 3-bridges. However
the faults may be distributed among Q2, Qk, or dimension 1; so, we have at
most 4n − 1 candidate 3-bridges eliminated due to containing a faulty edge.

The following edge case calculations demonstrate that for k ≥ 4 and n ≥ 2
or k = 3 and n ≥ 3 we have 2b kn

3 c > 4n − 1.
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xk

yk

zk

Q
k

x1

y1

z1

Q1

x1

y1

z1

Q1

x2

y2

z2

Q2

or

Figure 3.1: Putative healthy 3-bridge

Q Q Qk 1 2

Figure 3.2: Partitioning C1

k = 4, n = 2 :

2

⌊

kn

3

⌋

= 2

⌊

42

3

⌋

= 2 · 5 = 10,

4n− 1 = 4 · 2 − 1 = 7,

k = 3, n = 3 :

2

⌊

kn

3

⌋

= 2

⌊

33

3

⌋

= 2 · 9 = 18,

4n − 1 = 4 · 3 − 1 = 11.

So, there remains at least one desired healthy 3-bridge. By relabeling the Qi’s
if necessary, assume we have the right hand image in Figure 3.1.

• There is a cycle C2 in Q2 that contains the established 3-bridge
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In order to connect C1 with Q2, we need a Hamiltonian cycle in Q2 that
passes through {x2, y2} or {y2, z2}. With our current assumptions, we may
apply the induction hypothesis to get a Hamiltonian cycle in Q2. If there are
only two healthy links in Q2 incident to y2, then we are done since the given
Hamiltonian cycle must pass through both {x2, y2} and {y2, z2}. If y2 is incident
to more than two healthy links in Q2, mark all but three links incident to y2

in Q2 as faulty making sure to leave {x2, y2} and {y2, z2} remaining as healthy
links. Recall that Q2 initially had at most 2n−2 faults and we have introduced
at most 2n − 3 faults for a current maximum of 4n − 5 faults in our modified
Q2. However, in order to apply the induction hypothesis, we must additionally
ensure every node in the modified Q2 is incident to two healthy links in Q2.

Suppose some node in the modified Q2 is not incident to two healthy links
in Q2. Every node other than y2 is affected by at most by one of the temporary
faults. Since each node was initially incident to at least two healthy links, and
we explicitly leave three healthy links incident to y2, every node in the modified
Q2 must be incident to at least one healthy link. Suppose after adding the
temporary faults, w2 is now incident to only one healthy link. Then w2 must
have initially been incident to 2n − 2 faults which is the maximum possible
faults in the unmodified Q2. So, w2 is the only node in Q2 incident to less than
two healthy links. We now mark the third healthy link incident to y2 as faulty
and reinstate the link {y2, w2}. Every fault in Q2 is incident to either y2 or
w2. So, every other node in Q2 loses at most two healthy links due to faulty
connections with y2 and w2. By our construction, y2 and w2 are both incident
to two healthy links.

Q2

x

y

z 2

2

2

Figure 3.3: Healthy Links Incident To y2

Since every node in our modified Q2 is incident to at least two healthy links,
we can apply our induction hypothesis. So, we have a Hamiltonian cycle C2 in
Q2. Due to the faults we temporarily placed in incidence to y2, C2 must contain
either the link {x2, y2} or {y2, z2} to incorporate the node y2 (see Figure 3.3).

• Form the cycle D2 by joining C1 and C2

By relabeling the nodes of Q2 if necessary, we can assume WLOG that C2

contains the link {x2, y2}. We can join the cycles C1 and C2 to form the cycle
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D2 as depicted in Figure 2.3.

• There exists a healthy 3-bridge between D2 and either Qk or Q3

Note that D2 ∩ Q1 and D2 ∩ Q2 have kn nodes each. As depicted in Figure
3.4, we can partition D2 to get 2bkn

3 c 3-bridges that only overlap in healthy
links in D2.

Q Q Q Qk 1 2 3

Figure 3.4: Partitioning D2

We apply the same counting argument used to establish a 3-bridge between
C1 and Q2 to conclude that we have at least one of our desired 3-bridges.
Relabeling Qk

n+1 if necessary, we assume WLOG that we have a healthy 3-
bridge connecting D2 with Q3.

• Repeat the Last Two Steps

The conditions that applied to Q2 in the argument above, namely that Q2

contains no more than 2n − 2 faults, also apply to Q3. Thus we have a Hamil-
tonian cycle in Q3 that passes through one of the required edges of the 3-bridge
connecting D2 and Q3 to create a cycle D3 that passes through all of the nodes
in Q1, Q2, and Q3. We can apply this same argument repeatedly to create the
cycles D4, · · ·Dk−2.

• Completing the Hamiltonian Cycle of Qk
n+1

Creating the final cycle Dk−1 requires a slightly modified argument as the
3-bridges that are disjoint in Figure 3.4 may now share links in Qk. Thus a fault
in Qk may now render two 3-bridges unavailable. Recall that there are at most
2n−2 faults in Qk. In the worst case, we have at least 2b kn

3 c−2(2n−2) 3-bridges
that survive the faults in Qk, and we have at most 2n + 1 additional faults to
consider. Recall that we have 4n−1 faults in our Qk

n+1. The following edge case

calculations show for k ≥ 4 and n ≥ 2 or k = 3 and n ≥ 3, 2b kn

3 c − 2(2n− 2) >
2n + 1



18 CHAPTER 3. THE INDUCTION STEP

k = 4, n = 2 :

2

⌊

kn

3

⌋

− 2(2 · n − 2) = 2

(⌊

42

3

⌋

− (2 · 2 − 2)

)

= 2 · (5 − 2) = 6

2n + 1 = 2 · 2 + 1 = 5.

k = 3, n = 3 :

2

⌊

kn

3

⌋

− 2(2 · n − 2) = 2

(⌊

33

3

⌋

− (2 · 3 − 2)

)

= 2 · (9 − 4) = 10

2n + 1 = 2 · 3 + 1 = 7.

So, we have a desired healthy 3-bridge. The conditions that applied to Q2 in
constructing C2 again apply to Qk. So, we have a Hamiltonian cycle Ck in Qk

that passes through one of the required links in the 3-bridge connecting Dk−2

with Qk. Thus we can join Ck to Dk−2 to get a Hamiltonian cycle of Qk
n+1.

This completes the subcase (i-a) in which no Qi contains 4n− 4 faults.

3.2.2 Case i-b: Some Q
i
contains 4n − 4 faults

In this case we assume every node in each Qi is incident to two healthy links
in Qi. We also assume that the maximum number of faults not residing in
dimension 1 all lie within a single Qi. By relabeling the indices if necessary, we
assume WLOG that Q1 contains the maximum 4n− 4 faults. Let x1 and y1 be
nodes in Q1 connected by a faulty link. Suppose further that {x1, y1} is a link
in the 2-bridge {x1, y1, x2, y2} where the links {x1, x2}, {x2, y2}, and {y1, y2}
are all healthy as depicted in Figure 3.5. We exhibit a Hamiltonian cycle in
Qk

n+1 given this 2-bridge. We then show via contradiction that such a 2-bridge
always exists.

x

y

1

1

Q1

x

y

2

2

Q2

Figure 3.5: The Given 2-Bridge

• Each Qi contains an isomorphic cycle Ci
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Given the 2-bridge in Figure 3.5, temporarily mark the faulty link {x1, y1}
as healthy. We can then apply the induction hypothesis to Q1 as Q1 now only
has 4n − 5 faults and each node in Q1 is incident to two healthy links in Q1.
Thus, we have a Hamiltonian cycle C1 in Q1. Note that C1 may or may not
contain the link {x1, y1}. Either way, since all of the faults not in dimension 1
are in Q1, each Qi, i = 2, . . . , k contains a healthy cycle Ci that is an isomorphic
copy of C1.

• There is a cycle D1 containing all nodes in Q1 and Q2

If {x1, y1} ∈ C1, then we have a Hamiltonian Path P1 : x1 ∼ y1 Q1. We
can join P1 with C2 via the 2-bridge {x1, y1, x2, y2} to get the cycle D1 that
contains all of the nodes in Q1 and Q2.

If {x1, y1} /∈ C1, then we apply a counting argument similar to the one
used in case (i-a) to argue for the existence of a healthy 2-bridge {u1, v1, u2, v2}
connecting C1 and C2. Since there are kn nodes in Q1, we have bkn

2 c candidate
2-bridges. The only faults left to consider are the three faults in dimension 1.
The following edge case calculations show that we have at least one such healthy
2-bridge. We use the 2-bridge to join C1 and C2 to form the cycle D1 containing
all of the nodes in Q1 and Q2

k = 4, n = 2 :

⌊

kn

2

⌋

=

⌊

42

2

⌋

= 8 > 3

k = 3, n = 2 :

⌊

kn

2

⌋

=

⌊

33

2

⌋

= 4 > 3

So, whether or not {x1, y1} ∈ C1, we have a cycle D1 containing all of the
nodes in Q1 and Q2.

• There is a healthy 2-bridge joining D1 and C3

Note that D1 ∩Q2 contains kn nodes. This gives us b kn

2 c disjoint candidate
2-bridges connecting D1 and C3. The counting argument above that established
the 2-bridge {u1, v1, u2, v2} applies to guarantee a healthy 2-bridge between D1

and C3. We can then join D1 and C3 to form the cycle D2 that contains all of
the nodes in Q1, Q2, and Q3.

• Repeat the previous step

We can repeatedly apply the argument of the previous step to get the cycles
D3, · · · , Dk−1. By the nature of this construction, we avoid the extra consider-
ations of case (i-a) in constructing Dk−1. So, given the 2-bridge in Figure 3.5,
we have a Hamiltonian cycle in Qk

n+1.

• The 2-bridge in Figure 3.5 always exists
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Suppose no such 2-bridge exists. Then it must be the case that no such
2-bridge exists between Q1 and Qk as well as between Q1 and Q2 or else we
could simply relabel the graph. Thus, each fault in Q1 must be incident with at
least two dimension 1 faults. That is, given a fault {x1, y1} we must have one
of the four scenarios depicted in Figure 3.6.

y

y

x

x

y

y

x

x

y

y

x

x

y

y

x

x

y

y

x

x

y

y

x

x

k 1 2 k 1 2

k 1 2 k 1 2

k 1 2 k 1 2

k 1 2 k 1 2

Figure 3.6: The Four Ways to Prevent the 2-bridge

So, if two faults in Q1 are not incident to one another, at least four dimension 1
faults are required to prevent the existence of the 2-bridge in Figure 3.5. Thus,
with only three dimension 1 faults, it must be the case that any two faults in Q1

must incident to one another. This constraint on the faults in Q1 permits only
three possibilities: the faults form a 3-cycle, a star with x1 at the center, or a
star with y1 at the center. Thus, in the worst case, we can have at most 2n− 2
faults (since x1 and y1 are both incident to at least 2 healthy links in Q1) and
still prevent the existence of the 2-bridge in Figure 3.5. Since 4n−4 > 2n−2 for
n ≥ 2, we have enough faults in Q1 to guarantee the existence of the 2-bridge
in Figure 3.5.

This completes the proof of the induction step for sub-case (i-b) and case
(i).

3.3 Case ii: Some node xi is incident to only one
healthy link in Qi

In this case, we assume some Qi has a node incident to only one healthy link
within Qi. Note that we still have at least three faults in dimension 1, and every
node in Qk

n+1 is incident to two healthy links. By relabeling the Qi’s if necessary,
we assume WLOG that {x1, y1} is the only healthy link in Q1 incident to x1.
We additionally label Qk

n+1 such that {x1, x2} is a healthy link. It may or may
not be the case that the link {x1, xk} is healthy.

With only 4n− 4 faults distributed among the Qi’s, every node in Qi i 6= 1
must be incident to at least three healthy links in Qi. Otherwise, (2n − 1) +
(2n − 2) = 4n − 3 faults are required. It is possible that some node y1 ∈ Q1,
y1 6= x1 may be incident to only two healthy links in Q1.
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Case (ii) breaks into two subcases depending upon whether or not there
exists some w1 such that {x1, w1} is faulty and {w1, w2} is healthy.

3.3.1 Case ii-a: There exists w1 such that {x1, w1} is faulty
and {w1, w2} is healthy

• There is a Hamiltonian Path P1 : x1 ∼ y1 in Q1

Every node in Q1 other than x1 is incident to at least two healthy links in
Q1. Temporarily mark the faulty link {x1, w1} as healthy. Then every node
in Q1 is now incident to at least two healthy links in Q1. Furthermore, Q1

had at most 4n − 4 faults initially. So, our modified Q1 has at most 4n − 5
faults. Thus, we may apply the induction hypothesis to our modified Q1 to get
a Hamiltonian cycle that must necessarily pass through the link {x1, w1}. Thus,
we have a Hamiltonian Path P1 : x1 ∼ w1 in the unmodified Q1.

• There is a Hamiltonian Path P2 : x2 ∼ y2 in Q2

If necessary, temporarily mark the link {x2, w2} as healthy. As argued above,
w2 is incident to at least 3 healthy links in Q2. Select the link {x2, w2} and one
other healthy link incident to w2 in Q2 to leave as healthy. Temporarily mark
the remaining links incident to w2 in Q2 as faulty.

We now argue that we can apply the induction hypothesis to Q2. First note
that Q2 initially had 2n−3 faults and we have introduced at most 2n−2 faults
for a maximum total of 4n− 5 faults. By the argument at the beginning of this
section, each node in the unmodified Q2 was incident to at least three healthy
links in Q2. Since each introduced fault is incident to w2, every node in Q2

other than w2 is affected by at most one of the introduced faults. Thus, every
node other than w2 must be incident to at least two healthy links in Q2. Since
we explicitly left two healthy links incident to w2, we may apply the induction
hypothesis to our modified Q2 to get a Hamiltonian cycle C2 in Q2. Whether
or not the link {x2, w2} is healthy in the original Q2, we have a Hamiltonian
Path P2 : x2 ∼ w2 in the unmodified Q2.

• There is a cycle D1 containing all of the nodes in Q1 and Q2

We explicitly chose x1 and w1 such that the links {x1, x2} and {w1, w2} are
healthy. Thus we can join P1 and P2 to get the cycle D1 that contains all of
the nodes in Q1 and Q2.

• There is a healthy 2-bridge joining D1 with Q3

There are
⌊

kn

2

⌋

disjoint 2-bridges connecting D1 and Q3 (See Figure 3.7).
With 2n − 1 faults restricted to Q1, we need only consider the remaining 2n
faults. The following edge case calculations demonstrate that for k ≥ 2 and
n ≥ 3 or k ≥ 4 and n = 2, the inequality

⌊

kn

2

⌋

> 2n holds.
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k = 4, n = 2 :

⌊

kn

2

⌋

=

⌊

42

2

⌋

= 8 > 2n

k = 3, n = 3 :

⌊

kn

2

⌋

=

⌊

33

2

⌋

= 13> 2n

x x

w w

1

1 2

2

Q Q Q1 2 3

Figure 3.7: Partitioning D1

Thus a 2-bridge {u2, v2, u3, v3} between D1 and Q3 survives the 4n−1 faults
in Qk

n+1.

• There is a cycle D2 containing all of the nodes in Q1, Q2, and Q3

The argument that established P2 applies to establish a Hamiltonian path
P3 : u3 ∼ v3 in Q3. We then join D1 and P3 to get a cycle D2 that contains all
of the nodes in Q1, Q2, and Q3.

• Repeat the last two steps

We can repeat the last two steps to produce the cycles D3, D4, · · · , Dk−1

which gives us a Hamiltonian cycle of Qk
n+1. This completes the induction step

for the case (ii-a).
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3.3.2 Case ii-b: There is no node w1 such that {x1, w1} is
faulty and {w1, w2} is healthy

In this case, each of the 2n − 1 neighbors of x1 joined to x1 via a faulty link in
Q1 is also incident to a dimension 1 fault between Q1 and Q2. This accounts
for 4n− 2 faults which is all but one of the 4n− 1 faults in Qk

n+1. Now suppose
the link {x1, xk} is healthy. With n ≥ 2, x1 is incident to at least three faulty
links in Q1. With only one fault in Qk

n+1 not accounted for, there is a node w1

such that {x1, w1} is faulty and {w1, wk} is healthy. So, by symmetry, we are in
case (ii-a), and we construct the cycles D1, D2, · · · , Dk−1 by incorporating Qi’s
in the opposite order. So, for the remainder of this section suppose {x1, xk} is
faulty which gives us a precise accounting of all of the faults in Qk

n+1.
Ashir and Stewart offer two different such Hamiltonian cycles of Qk

n+1 de-
pending upon the parity of k. We start by establishing a bridge between Qk

and Q1 and a bridge between Q1 and Q2.

• There is a Hamiltonian path P1 in Q1

Let w1 be a node in Q1 such that {x1, w1} is faulty. Temporarily mark the
link {x1, w1} as healthy. Since Q1 contained only 2n − 1 faults, the modified
Q1 contains 2n < 4n − 5 faults. Recall from the discussion at the beginning of
case (ii) that every node αi other than x1 is incident to at least two healthy
links within Qi. Temporarily marking {x1, w1} as healthy places two healthy
links in Q1 incident with x1 which allows us to apply the induction hypothesis
to our modified Q1. So, we have a Hamiltonian cycle C1 in Q1. By the nature
of the faults incident to x1, C1 must contain the link {x1, w1}. Thus we have a
Hamiltonian path P1 in the original unmodified Q1 with endpoints x1 and w1.

• Q2 and Qk each contain a healthy path isomorphic whose vertices
differ from those in P1 only in the first coordinate

In the current case, all of the faults in Qk
n+1 lie in Q1 or in dimension 1

links with an endpoint in Q1. Thus, Q2 and Qk each contain a healthy path
isomorphic to P1. We denote the two paths P2 and Pk respectively.

• A collection of parallel paths in dimension 1

Consider a node α2 in Q2. As noted above, the faults in Qk
n+1 are restricted

to Q1 or dim-1 links with endpoints in Q1. Thus the dim-1 links connecting
α2, α3, . . . , αk are all healthy. Therefore, we have a collection of parallel paths
S1, S2, . . . , Skn that collectively contain all of the nodes in Q2, Q3, . . . , Qk.

• Knitting together S1, S2, . . . , Skn and P1

We will use links in P2 and Pk to connect the endpoints of the paths
S1, S2, · · · , Skn . We then complete the Hamiltonian cycle of Qk

n+1 using the
links {w1, wk}, {x1, x2}, and the path P1.
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The parity of kn affects the manner in which we complete the knitting of the
Hamiltonian cycle of Qk

n+1. Since the parity of kn is exactly that of k, Ashir and
Stewart offer two alternative stitchings of the final Hamiltonian cycle depending
on the parity of k. To facilitate describing the stitching process, we use a double
indexing notation for the graph Qk

n+1. Let x1,1, x1,2, · · ·x1,kn denote the nodes
in P1 where x1,1 = x1, x1,2 = y1, · · ·x1,kn = w1. As indicated in Figure 3.8, we
similarly label the corresponding nodes in Qi by xi,1, xi,2, · · ·xi,kn .

x x x

y y y

w w w

k

k

1

1

2

2

k 1 2

= = =

= = =

= = =

x x x

x x x

x x x

k,1

k,2

k,k

1,1

1,2

1,k

2,1

2,2

2,kn n n

Figure 3.8: Double Index Labeling of Qk
n+1

• The Hamiltonian cycle when k is even

To slightly compact the notation of the Hamiltonian cycle, let S ′

i = Si −
{xk,i} and P ′ = P − {x1, 2}. The following explicit Hamiltonian cycle of Qk

n+1

is depicted in Figure 3.9.

x1,kn ·Skn ·x2,kn−1·Skn−1·xk,kn−2, xk,kn−2·Skn−2 · · ·S
′

3·xk−1,2·S
′

2·x1,1·S1·xk,1·xk,2·xk,3·x1,3·P
′

This completes sub-case (ii-b) and case (ii).

• The Hamiltonian cycle when k is odd

The following explicit Hamiltonian cycle is depicted in Figure 3.10

x1,kn · Skn · x2,kn−1 · Skn−1 · · ·x1,kn · S2xk,1 · S1 · P1

3.4 Case iii: Some node xi is incident to zero
healthy links in Qi

We still have our initial assumptions that our given Qk
n+1 contains 4n− 1 faults

with every node incident to at least two healthy neighbors. We still have at
least 3 faults confined to dimension 1. For case (iii) we further assume that
some node xi ∈ Qi is incident to zero healthy links in Qi. To see that every
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x

x

x

x 1,1

1,2

1,kn

k,1

Figure 3.9: (Case ii-b) The Hamiltonian cycle when k is even.

node αi other than x1 must be incident to at least three healthy links in Qi

consider the remaining 2n−4 faults that may be in the Qi’s i 6= 1. In the worst
case all of the remaining 2n − 4 faults may be incident to a node w1 already
incident to x1 via a faulty link. Thus, in this worst case, w1 is still incident to
three healthy links in Q1.

Relabeling the Qk
n+1 if necessary we assume WLOG that x1 ∈ Q1 is incident

to zero healthy links in Q1. Thus the links {x1, x2} and {x1, xk} must be healthy.

• The Subgraph (Figure 3.12) Exists

We begin by establishing the existence of one of the configurations in Fig-
ure 3.11. The following counting argument shows that a desired configuration
survives all of the faults in Qk

n+1.
Note that x1 is the center of a star consisting of 2n faults in Q1. Partition

those faults into n pairs. In order to not have one of the configurations in Figure
3.11, two dim-1 faults are required to prevent both possible configurations. Thus
4n faults in total are required. However, we have only 4n−1 faults in our Qk

n+1.
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x1,kn

x1,1

xk,kn

x2,1

Figure 3.10: (Case ii-b) The Hamiltonian cycle when k is odd.

So, at least one such configuration exists. By relabeling Qk
n+1 if necessary,we

assume WLOG that we have the configuration in Figure 3.12.

• The path P1 : y1 ∼ z1 in Q1 with |P1| = kn − 1 is healthy.

Temporarily mark the links {x1, y1} and {x1, z1} as healthy. Originally, Q1

contained at most 4n− 4 faults. So, with the two newly instated healthy links,
the modified Q1 contains at most 4n − 6 faults which is less than the 4n − 5
faults of the induction hypothesis. By the argument at the beginning of case
(iii), every node in the original Q1 other than x1 is incident to two healthy links
in Q1. The newly marked healthy links place two healthy links incident with
x1. Thus every node in the modified Q1 is incident to two healthy links. Thus,
we can apply the induction hypothesis to our modified Q1. Thus, we have a
Hamiltonian cycle C1 in Q1. Note that C1 must pass through the links {x1, y1}
and {x1, z1}. Thus we have a path P1 : y1 ∼ z1 that contains all of the nodes
of Q1 except x1.

• The Hamiltonian path Pk : xk ∼ zk in Qk is healthy.

Recall that Qk contains no more than 2n−4 faults. If necessary, temporarily
mark the link {xk, zk} as healthy. Recall that xk was initially incident to at
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Figure 3.11: Case iii: Needed Configuration
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Figure 3.12: Case iii: Configuration In Hand

least 3 healthy links in Qk. Choose the link {xk, zk} and a healthy link incident
to xk to preserve. Mark the remaining 2n−2 links incident to xk in Qk as faulty.
Note that our modified Qk has at most (2n − 4) + (2n − 2) = 4n − 6 < 4n − 5
faults. We now verify the second condition of the induction hypothesis holds.
Each fault we introduced was incident to xk . So, each node in Qk other than xk

is affected by at most 1 of the introduced faults. Since every node in the original
Qk was incident to at least 3 healthy links, every node other than xk in Qk is
healthy to at least 2 healthy links. We explicitly left 2 healthy links incident
to xk. So, we may apply the induction hypothesis to Qk to get a Hamiltonian
cycle that must necessarily contain the link {xk, zk}. Therefore, we have the
Hamiltonian path Pk : xk ∼ zk in the unmodified Qk.

• There exists a healthy Hamiltonian path P2 : x2 ∼ y2 in Q2.

All of the conditions that existed in the previous case exist for Q1. Thus we
can apply the previous argument mutatis mutandis to get a Hamiltonian path
P2 : x2 ∼ y2 in Q2.

• There is a cycle D2 containing all of the nodes in Qk, Q1, and Q2.
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D2 = Pk · x1 · x2 · P2 · y1 · P1 · zk

• There is a healthy 2-bridge connecting D2 and Q3.

With |D2 ∩ Q2| = kn, we have bkn

2 c disjoint 2-bridges between D2 and Q3.
We have at most 2n−1 faults outside of Q1 to consider. The following counting
argument shows that we do not have enough faults to prevent the existence of
a required 2-bridge. Denote the 2-bridge by {u3, v3, u2, v2}.

k = 4, n = 2 :

2

⌊

kn

2

⌋

= 2

(⌊

42

2

⌋)

= 16

2n − 1 = 2 · 2 − 1 = 3.

k = 3, n = 3 :

2

⌊

kn

2

⌋

= 2

(⌊

33

2

⌋)

= 2 · (4) = 8

2n − 1 = 2 · 3 − 1 = 5.

• There is a Hamiltonian path P3 : u3 ∼ v3 in Q3.

The argument establishing Pk and P1 applied directly to give us the Hamil-
tonian path P3 in Q3.

• There is a cycle D3 containing all of the nodes in Qk, Q1, Q2, and Q3

Connect D2 and P3 with our usual construction to get the cycle D3.

• Repeat to construct the Hamiltonian cycle Dk−1 in Qk
n+1

Repeat the last four steps to successively construct the cycles D4, . . . , Dk−1.
This concludes the proof of the induction step.



Chapter 4

The Base Case Qk
2
, k ≥ 4

4.1 Argument Overview

We assume we have 4(2) - 5 = 3 faulty links. With 3 faults distributed among 2
dimensions, some dimension must contain at least 2 faults. Assume WLOG that
dimension 1 contains at least 2 faults. We now partition Qk

2 across dimension
1 to get Q1, Q2, . . . , Qk. Note that each Qi is a k-cycle. We now consider if the
third fault is in dimension 1 or in one of the Qi’s.

4.2 Case i: All 3 faults lie in dimension 1

With all of the faults lying in dimension 1, each Qi is a healthy k-cycle which
is necessarily Hamiltonian. For consistency with the rest of this paper, we let
C1, . . . , Ck stand for the Hamiltonian cycles in Q1, . . . , Qk respectively. We
now need a 2-bridge between C1 and C2 or between C1 and Ck. Since each
Ci contains k nodes, we have 2b k

2 c disjoint 2-bridges to connect C1 with either

C2 or Ck. With k ≥ 4, we have 2b k
2 c > 3. So, a desired 2-bridge exists.

Assume WLOG that we have a 2-bridge between C1 and C2 which gives a
cycle D1 encompassing all of the nodes in Q1 and Q2. We now need a 2-bridge
connecting D1 with either Ck or C3. Again we have 2b k

2 c disjoint 2-bridges with
k ≥ 4 and only 3 faults in dimension 1. So, some 2-bridge is left unaffected by
the faults in Qk

2 . Assume WLOG that we have a 2-bridge between D1 and C3

which yields a cycle D2 encompassing all of the nodes in Q1, Q2, and Q3. This
construction continues to get the cycle Dk−2 which encompasses all of the nodes
in Q1, Q2, . . . , Qk−1. Up until now, at each stage of the construction, we had
2bk

2 c disjoint 2-bridges to consider. When considering 2- bridges between Dk−1

and Qk, we have 2-bridges between Q1 and Qk as well as between Qk−1 and Qk.
It may be the case that these 2-bridges are not disjoint within Qk. However,
this poses no problem since all of the faults are in dimension 1 by assumption.
Thus, the counting argument above applies again to conclude there is a healthy

29
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2 , K ≥ 4

2-bridge between Dk−1 and Ck. Thus, we can construct the cycle Dk−1 which
is our desired Hamiltonian cycle of Qk

2 .

4.3 Case ii: Only 2 faults lie in dimension 1

Assume WLOG that the third fault lies in Q1. We label the fault in Q1 as
{x1, y1}. If the 2-bridge {x1, x2, y1, y2} or the 2-bridge {x1, xk, y1, yk} consists
of healthy dim-1 links, then we may apply case (i) above by considering the
Hamiltonian path P1 : x1 ∼ y1 in Q1 as the starting point. The 2-bridge with
healthy dim-1 links connects P1 with C2 to create D1. The argument then
proceeds identically to case (i).

Now assume that neither 2-bridge has two healthy dim-1 links. With only
two dim-1 faults, it must the case that one of the dim-1 links in each of the 2-
bridges {x1, x2, y1, y2} and {x1, xk, y1, yk} is faulty. Since each node is incident
to at least two healthy links by hypothesis, it cannot be the case that the edges
{x1, x2} and {x1, xk} are both faulty. Similarly, only one of {y1, y2} and {y1, yk}
can be faulty. Thus, we have two possibilities for the two dim-1 faults. Either
{x1, xk} and {y1, y2} are both faulty or {x1, x2} and {y1, yk} are both faulty. We
can assume WLOG that the links {x1, x2} and {y1, yk} are faulty. In the case k
is even, the Hamiltonian cycle in Figure 3.9 applies with x1,3, x1,2, x2,3, and xk,2

replaced with x1, y1, x2, and yk respectively. Figure 4.1 depicts this situation
when k = 6. When k is odd, then figure 3.10 applies with x1,m, x1,1, x2,m, and
xk,1 replaced with x1, y1, x2, and yk respectively. Figure 4.2 depicts this scenario
when k = 5.

x x

yy

1 2

1k

Figure 4.1: Hamiltonian Cycle for Qk
2 when k = 6
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x x

yy

1 2

1k

Figure 4.2: Hamiltonian Cycle for Qk
2 when k = 5
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Chapter 5

A Lemma on Q3
2

Lemma 1 If Q3
2 has three faulty links such that every node is incident to two

healthy links, then Q3
2 has a Hamiltonian cycle unless the three faults form a

cycle of length 3.

With three faults spread across two dimensions, some dimension must con-
tain at least two faults. We assume WLOG that dimension 1 contains at least
two faults. We partition Q3

2 over dimension 1 and label the nodes of Q3
2 as xi,

yi, zi, 1 ≤ i ≤ 3. We have two cases to consider depending upon whether or not
the third fault is also in dimension 1 or if it is in dimension 2.

5.1 Case i: Both dimensions contain faults

.
In this case the third fault must lie in one of the three Qi’s. We may assume

WLOG that Q1 contains the third fault with the link {x1, y1} as faulty. With
all faults accounted for, we have the healthy Hamiltonian paths Pi : xi ∼ yi,
1 ≤ i ≤ 3. Furthermore, the healthy links {x2, y2} and {x3, y3} permit us to
extend P2 and P3 to form the cycles C2 and C3 in Q2 and Q3 respectively.
The current case of having only two faults in dimension one now breaks down
into two more sub-cases. We consider whether or not one of the following two
2-bridges has healthy dim-1 links:

{x1, x2, y1, y2} or {x1, x3, y1, y3}.

5.1.1 Case i-a: A 2-bridge contains healthy dim-1 links

Assume WLOG that the 2-bridge spans Q1 and Q2. Figure 5.1 shows the one
known fault and a cycle D1 joining Q1 and Q2 along with an isomorphic re-
drawing of the graph.

Figure 5.2 shows the four possible 2-bridges we can use to join D1 and Q3

to construct a Hamiltonian cycle of Q3
2. If one of these four 2-bridges is healthy,
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Figure 5.1: Q3
2 lemma - case 1a

then we get our Hamiltonian cycle with the usual construction. The only way
the two dimension 1 faults can destroy all four 2-bridges is if the links {z2, z3}
and {z1, z3} are both faulty. In this case we have the Hamiltonian cycle depicted
in Figure 5.3.
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Figure 5.2: Q3
2 lemma - case 1a: the four possible 2-bridges

5.1.2 Case i-b: Neither 2-bridge has two healthy dim-1
links

With only two dim-1 faults, it must the case that one of the dim-1 links in each
of the 2-bridges {x1, x2, y1, y2} and {x1, xk, y1, yk} is faulty. Since each node is
incident to at least two healthy links by hypothesis, it cannot be the case that
the edges {x1, x2} and {x1, x3} are both faulty. Similarly, only one of {y1, y2}
and {y1, y3} can be faulty. Thus, we have two possibilities for the two dim-1
faults. Either {x1, x3} and {y1, y2} are both faulty or {x1, x2} and {y1, y3} are
both faulty. We can assume WLOG that the links {x1, x2} and {y1, y3} are
faulty. In this case, we have the Hamiltonian cycle of Q3

2 depicted in Figure 5.4
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Figure 5.3: Q3
2 lemma - case 1a : the cycle with faulty {z1, z3} and {z3, z2}
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Figure 5.4: Q3
2 lemma - case 1b

5.2 Case ii: All faults lie In one dimension

In this case, we argue that up to isomorphism there are only six ways to place
the three faults in dimension one in Q3

2. We start by encoding the dim-1 edges
in a Table T as depicted in Figure 5.5. Let Cij denote swapping columns i and
j in T . Similarly, let Rij denote swapping rows i and j in the Table T . By
direct inspection of the adjacency relation in Figures 5.6 and 5.7 we see that
Cij and Rij respectively encode isomorphisms of Q3

2.
With these isomorphisms in hand, we consider the distinct ways we may

place 3 faults within the nine entries in T . In subsequent drawings of T , the
edge numbers are omitted and the faulty edges are indicated with disks.

The argument successively considers how to distribute the three faults among
a single column, among two columns, and then among all three columns of T .
Starting with restricting the faults to lie in a single column, we get one way to
place the faults as depicted in Figure 5.8.

Now, we consider how to distribute the three dim-1 faults among two columns
in T . Note that one column will contain 2 faults and the other will contain 1
fault. We start by considering how to place 2 faults in a single column. Figure
5.9 shows that by combining C12, C23, R12, and R23, there is only one way up
to isomorphism to place two faults in a single column.

With the two faults placed as in the top middle table depicted in Figure
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Figure 5.6: Cij encodes an isomorphism of Q3
2

5.9, we consider how to place the third fault. The two rows of isomorphisms
in Figure 5.10 show that there are two ways to place the third fault. To see
that that we do indeed have two isomorphism classes, note that the upper row
indicates the existence of a node incident to two faults and that there is no such
node in the lower row.

All we have left to consider, is how to distribute the faults among the three
columns. To analyze this case, we successively consider distributing the three
faults among one row, two rows, and then all three rows. Starting with placing
all three faults among a single row, Figure 5.11 shows that up to isomorphism
there is only way to do this.

Now we consider how to place all three faults in 3 columns and 2 rows. In
this case, we must have 2 faults in one row and the third fault in a second row.
Figure 5.12 shows that by combining C12, C23, R12, and R23, there is up to
isomorphism only one way to place two faults in a single row.

Starting with the table in the middle left of Figure 5.12, we now consider
the ways to add the third fault. Figure 5.13 shows that up to isomorphism,
there are only two ways to spread the three faults across all three columns and
two rows. To see that that the two rows represent distinct isomorphism classes,
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Figure 5.7: Rij encodes an isomorphism of Q3
2

=~ =~
C C12 23

Figure 5.8: The one way to have 3 faults in a single column

consider that the upper row contains a 4-cycle containing three faults and that
no such 4-cycle exists in the lower row. Furthermore, Note that the upper row
of Figure 5.13 contains a configuration that is also present in the upper row of
Figure 5.10.

Finally, we consider how many ways three faults can be distributed across
three columns and three rows. Note that we have 3 · 2 · 1 = 6 ways to place the
three faults in the table. Figure 5.14 shows that all six such arrangements are
isomorphic.

From Figure 5.8, we get 1 configuration. From Figure 5.10, we get 2 config-
urations. From Figure 5.11 we get 1 configuration. From Figure 5.13, we get
only 1 additional configuration, and we get the sixth configuration from Figure
5.14. Note that the only configuration in which the three dim-1 faults form a
cycle is in Figure 5.11.

Figure 5.15 displays an example from each of the six congruence classes, and
Figure 5.16 shows the Hamiltonian cycle for all of the graphs except for (a).
The faults are indicated as usual with dotted lines. In addition to the faults,
only those healthy links required to exhibit the Hamiltonian cycle are drawn.
Figure 5.17 show the graph of 5.16-(a) with the faulty 3-cycle. The healthy links
displayed are required for a Hamiltonian cycle to pass through the nodes lying
on the faulty 3-cycle. It is clear form this drawing that there is no Hamiltonian
cycle for Q3

2 in this case.
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=~ =~
C C12 23

= ~
= ~

R

R

13

12

Figure 5.9: The one way to have 2 faults in a single column

=~ =~ =~
R C R12 13 12

=~
C13

Figure 5.10: The two ways to have 3 faults in two columns

=~ =~
R R12 23

Figure 5.11: The one way to have 3 faults in three columns and one row
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Figure 5.12: The one essential way to have two faults in a single row

=~ =~ =~
R C R13 12 13

=~
R13

Figure 5.13: The two ways to have 3 faults in two rows



40 CHAPTER 5. A LEMMA ON Q3
2

=~ =~

=~ =~

R R

R R

12 23

12 23

= ~

R13

Figure 5.14: The one essential way to have 3 faults in distinct columns and rows

(a) (b) (c)

(d) (e) f( )

Figure 5.15: The Six Ways to have 3 faults in dim 1

(b) (c)

(d) (e) (f)

Figure 5.16: The Five Hamiltonian Cycles
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(a)

Figure 5.17: No Hamiltonian Cycle
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Chapter 6

The Base Case Q3
3

We assume we have Q3
3 with 4·(3)−5 = 7 faults such that each node is incident to

at least two healthy links. Our general strategy in this case is to recapitulate the
argument of the induction step replacing the induction hypothesis with Lemma
1. In order to use Lemma 1 we must insure that our Q3

2 subgraphs do not contain
a 3-cycle of faults. Thus, we handle this scenario separately. First, note that a
3-cycle of faults must lie within a single dimension. Thus, our troublesome case
occurs when our Q3

3 contains two 3-cycles in distinct dimensions.

6.1 Case i: Q3
3 contains two 3-cycles in distinct

dimensions

Denote the two 3-cycles by C and D. Relabel our Q3
3 if necessary to have C in

dimension one and partition along dimension one. Label the Qi’s such that Q1

contains as many or more faults than Q2 which contains as many or more faults
than Q3. This labeling forces D to exist in Q1. Furthermore, Q2 contains at
most one fault, and Q3 does not contain any faults.

• Q1 contains a Hamiltonian path P1 : y1 ∼ z1

We now suppose that the seventh fault lies within Q1 and consider whether
or not the seventh fault is incident to D. We label the Q3

3 depending upon how
D sits within Q1. We distinguish two nodes in D with the labels y1 and z1

such that y1 is incident to as many faults in Q1 as either of the other nodes in
D and z1 is arbitrarily assigned to an unlabeled node in D. We now consider
whether or not the seventh fault is incident to D. In the case that the seventh
fault is incident to D, Figure 6.1 shows the possibilities along with our imposed
labeling. Temporarily mark the link {y1, z1} as healthy. Then we may apply
Lemma 1 to our modified Q1 to get a Hamiltonian cycle that must necessarily
contain the link {y1, z1}. Thus we have a Hamiltonian path P1 : y1 ∼ z1 in the
original Q1.
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x1

y1 z1

x1

y1 z1

x1

y1

z1

Figure 6.1: Q3
3 case 1-a: Seventh Fault Is Incident to D

Now suppose the seventh fault is not incident to D. Since Q1 is the graph
Q3

2, Figure 5.2 shows the two cases for the seventh fault along with P1.

y z1 1 y z1 1

Figure 6.2: Q3
3 case 1-a: Seventh Fault Not Incident to D

If the seventh fault is not in Q1, then we temporarily mark a link in Q1

incident to D as faulty and apply the preceding argument to get the Hamiltonian
path P1 : y1 ∼ z1.

• The 2-bridge {y1, y2, z1, z2} has healthy dim-1 links

We have determined six of the seven faults in our Q3
3. None of the six faults

affects the dim-1 links in either of the following 2-bridges: {y1, y3, z1, z3} and
{y1, y2, z1, z2}. With only one fault not accounted for, one of these 2-bridges
must contain healthy dim-1 links. We may relabel the graph if necessary and
assume WLOG that the 2-bridge {y1, y2, z1, z2} contains healthy dim-1 links.

• Q2 contains a Hamiltonian path P2 : y2 ∼ z2

Note that it may be the case that Q2 contains the seventh fault in our Q3
3. If

the link {y2, z2} is faulty, then temporarily mark two of the three healthy links
in Q2 incident with y2 as faulty and the link {y2, z2} as healthy. Then we may
apply Lemma 1 to our modified Q2 to get a Hamiltonian cycle in Q2 that must
include the link {y2, z2}. Thus we have a Hamiltonian path in the original Q2

with endpoints y2 and z2.
If the link {y2, z2} is healthy and there is a fault in Q2 incident to y2, then

mark one of the three healthy links incident to y2 as faulty, making sure to leave
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the link {y2, z2} healthy. Then we may apply Lemma 1 to get a Hamiltonian
cycle in our modified Q2 that must contain the link {y2, z2}. Thus we have a
Hamiltonian path in the original Q2 with endpoints y2 and z2. The argument
in this paragraph applies mutatis mutandis if there is a fault in Q2 incident to
z2.

If there is a fault in Q2 that is not incident to either y2 or z2 then y2 is
incident to three healthy links in addition to the link {y2, z2}. Leave the link
{y2, z2} as healthy, and temporarily mark two of the other three links as faulty.
It may be the case that the two faults we introduced form a cycle with the fault
already present in Q2. In this case, reinstate one of the temporary faults and
mark the third untouched link as faulty. We may now apply Lemma 1 to get a
Hamiltonian cycle in our modified Q2 that must contain the link {y2, z2}. Thus
we have Hamiltonian path in the original Q2 with endpoints y2 and z2.

If there is no fault in Q2, then mark two of the healthy links in Q2 incident
with y2 as faulty, making sure to leave the link {y2, z2} remaining as healthy. We
may then apply Lemma 1 to get a Hamiltonian cycle in Q2 that must contain
the link {y2, z2}. Thus we have a Hamiltonian path in the original Q2 with
endpoints y2 and z2.

Thus, whether or not the seventh fault is in Q2, we have a Hamiltonian path
P2 : y2 ∼ z2 in Q2.

We use the healthy links {y1, y2} and {z1, z2} to join the paths P1 and P2

in our usual construction to get a cycle E that encompasses all of the nodes in
Q1 and Q2.

• There is a healthy 2-bridge bewteen E and Q3

Recall that Q3 does not contain any faults. This gives us four 2-bridges
between E ∩Q2 and Q3 that are disjoint in dim-1 links. We need only consider
three faults as threats to our 2-bridges since three faults are in Q1 and one of
the faults in C has endpoints in Q1 and Q3. Thus one of the four 2-bridges has
healthy dim-1 links. We label the 2-bridge {u2, u3, v2, v3}. By our labeling of
the Qi’s, Q3 does not contain any faults. We may apply the argument for P2

above to conclude there is a Hamiltonian path P3 : u3 ∼ v3 in Q3. We use our
usual construction to get a Hamiltonian cycle in Q3

3.

6.2 Case ii: Q3
3 does not contain two 3-cycles in

distinct dimensions

If our Q3
3 contains one or more cycles, then those cycles are restricted to a

single dimension that we assume WLOG is dimension one. If our Q3
3 does not

contain a 3-cycle, then some dimension must contain at least three faults, since
seven faults are distributed among three dimensions. In this case, we label our
Q3

3 such that dimension one contains at least three faults. We now partition
our Q3

3 along dimension one. We wish to reuse the argument of the induction
hypothesis. However, we can only reuse the argument if dimension one contains
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no more than five faults. So, we handle the case that dimension one contains
more than five faults separately.

6.2.1 Case ii-a: Dimension 1 contains more than five faults

In this case, Q1 contains at most 1 fault with Q2 and Q3 not containing any
faults. Thus, we may apply Lemma 1 to get a Hamiltonian cycle C1 in Q1.
We partition C1 into four disjoint pairs of adjacent nodes to get eight 2-bridges
connecting C1 with Q2 or Q3 that only overlap in healthy links in C1. With at
most seven faults in dimension 1 and no faults in Q2, one of these eight 2-bridges
is healthy. Assume WLOG that the 2-bridge {u1, u2, v1, v2} is healthy.

We now establish a Hamiltonian cycle in Q2 containing the link {u2, v2}.
Temporarily mark two of the links in Q2 incident to v2 as faulty, making sure
to leave the link {u2, v2} healthy. Then we may apply Lemma 1 to our modified
Q2 to get the Hamiltonian cycle C2 that must contain the link {u2, v2}. Thus
we have our desired Hamiltonian cycle in our original Q2. We can join C1 and
C2 using the 2-bridge {u1, u2, v1, v2} to get a cycle D containing all of the nodes
in Q1 and Q2. We partition D as shown in Figure 3.4 so that D ∩ Q1 and
D∩Q3 each consist of four disjoint pairs of adjacent nodes. Then we have eight
2-bridges between D and Q3 that are disjoint in D. Since there are no faults in
Q3, we do not need to consider if these 2-bridges are disjoint within Q3. With
at most seven faults in dimension 1, one of the 2-bridges is healthy.

The argument that established C2 applies to get a Hamiltonian cycle C3 in
Q3 that shares a healthy link with the 2-bridge connecting D and Q3. We join
C3 and D with our usual construction to get a Hamiltonian cycle in the original
Q3

3.

6.2.2 Case ii-b: Dimension 1 contains no more than five
faults

We are now in a position to reuse the argument of the induction hypothesis.
We replace the induction hypothesis with Lemma 1. For reference, we label
the pieces of the argument as they relate to the cases of the induction step
argument.

• IS Case (i): Within each Qi every node is incident to two healthy links

• IS Case (i-a): None of Q1, Q2, or Q3 contains four faults.

We label the Qi’s such that Q1 contains at least as many faults as either Q2

or Q3. Thus Q2 and Q3 each contains at most two faults. With our hypotheses
on Q1, we can apply Lemma 1 to get the Hamiltonian cycle C1 in Q1. By our
labeling of Q1, Table 6.2.2 shows the possible combinations of faults that may
lie in dimension 1 and Q2 or Q3.

Partition C1 into groups of three nodes as depicted in Figure 3.2 (k = 3).
We then have six disjoint 3-bridges between C1 and Q2 or Q3. In the worst case
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dim-1 faults max Q2 or Q3 faults
(a) 3 2
(b) 4 1
(c) 5 1

Table 6.1: Possible Combinations of Faults

(Table 6.2.2 (c)) , one of these 3-bridges consists of healthy dim-1 links with
one fault in the Qi with i 6= 1. We may relabel our Q3

3 such that the 3-bridge
{x1, x2, y1, y2, z1, z2} as depicted in the right-hand image of Figure 3.1 consists
of healthy dim-1 links. Furthermore, we relabel Q3

3 such that if our 3-bridge
contains a fault, then {x2, y2} is faulty.

In either case, there is a Hamiltonian cycle in Q2 containing the link {y2, z2}.
If the link {x2, y2} is healthy, temporarily mark it as faulty. Mark an additional
link incident to y2 other than {y2, z2} as faulty. It may be the case that {x2, y2}
was initially healthy and our two introduced faults have formed a 3-cycle with
the possible fault already present in Q2. In this case, reinstate the link that
is not {x2, y2} and mark the fourth link incident to y2 in Q2 that is neither
{x2, y2} or {y2, z2} as faulty. We now have at most three faults in Q2, and these
three faults do not form a 3-cycle. Furthermore, every node in Q2 is incident
to at least two healthy links in Q2. Thus we may apply Lemma 1 to get a
Hamiltonian cycle C2 in our unmodified Q2 that must necessarily contain the
link {y2, z2}. We may then join C1 and C2 via the 2-bridge {y1, y2, z1, z2} to
get the cycle D2 containing all of the nodes in Q1 and Q2.

We now partition D2 into disjoint groups of 3 nodes as depicted in Figure
3.4 with k = 3 to get six disjoint 3-bridges connecting D2 with Q3. As argued
for the 2-bridge between C1 and either Q2 or Q3, one of the 3-bridges between
D2 and Q3 must consist of healthy dim-1 links with at most one fault in Q3.
Label the 3-bridge as {u1, u3, v1, v3, w1, w3} such that {u3, v3} and {v3, w3} are
links in Q3. Furthermore, label the 3-bridge such that if the 3-bridge contains
a fault Q3, the link {u3, v3} is faulty. Then we may apply the argument for the
existence of C2 to get a Hamiltonian cycle C3 in Q3 containing the link {v3, w3}.
By joining D2 and C3 with the 2-bridge {v1, v3, w1, w3}, we have a Hamiltonian
cycle in our Q3

3.
This completes IS case (i-a).

• IS case (i-b): Some Qi contains four faults.

By relabeling our graph if necessary, we may assume WLOG that Q1 contains
four faults.

We begin by establishing the existence of the 2-bridge depicted in Figure 3.5.
If two faults in Q1 are incident to one another, then their respective 2-bridges
between Q1 and Q2 will share a dim-1 link. If we consider 2-bridges between Q1

and Q3, in addition to 2-bridges between Q1 and Q2, then regardless how the
faults lie in Q1, we are guaranteed four disjoint 2-bridges connecting Q1 with
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either Q2 or Q3. With only three dim-1 faults to consider, at least one of the
candidate 2-bridges has healthy dim-1 links. We may relabel our Q3

3 such that
our 2-bridge is given by {x1, y1, x2, y2}.

We next establish the isomorphic Hamiltonian cycles C1, C2, and C3 in Q1,
Q2, and Q3 respectively. Temporarily mark the faulty link {x1, y1} as healthy.
We may then apply Lemma 1 to get the Hamiltonian cycle C1 that may or may
not contain the link {x1, y1}. Under the current case of the induction step, there
are no faults in Q2 or Q3. Thus, we have the isomorphic cycles C2 and C3.

We now exhibit the cycle D1 containing all of the nodes in Q1 and Q2. If
{x1, y1} ∈ C1 we may then we may construct D1 by joining C1 and C2 with our
usual construction. If {x1, y2} /∈ C1, then we consider the four disjoint 2-bridges
that exist between C1 and C2. With only the three dim-1 faults to consider,
one of these four 2-bridges must be healthy. We then construct D1 using this
healthy 2-bridge. To complete the Hamiltonian cycle for our Q3

3, we establish a
2-bridge between D1 and C3. We can partition D1∩Q2 into four pairs of disjoint
nodes which gives us four disjoint 2-bridges between D1 and Q3. With only the
three dim-1 faults to consider, one of these four 2-bridges is healthy. Thus, we
may complete the Hamiltonian cycle of Q3

3 with our usual construction.
This completes the proof for IS case (i-b) and case (i).

• IS case(ii): Some node xi is incident to only one healthy link in some Qi

We relabel our Q3
3 if necessary to assume WLOG that x1 is incident to

only one healthy link in Q1. We furthermore assume WLOG that {x1, y1} is a
healthy link.

• IS case (ii-a): There exists a node w1 such that {x1, w1} is faulty and
{w1, w2} is healthy

We begin by establishing a Hamiltonian path in P1 : x1 ∼ w1 in Q1. Tem-
porarily mark the link {x1, w1} as healthy. We may now apply Lemma 1 to our
modified Q1 since every node is incident to at least two healthy links, there are
no more than three faults, and there is no 3-cycle of faults. Thus, we have a
Hamiltonian cycle in our modified Q1. By the nature of the links incident to
x1, the Hamiltonian cycle must contain the link {x1, w1}. Thus we have the
Hamiltonian path P1 in our unmodified Q1.

We next establish the Hamiltonian path P2 : x2 ∼ w2 in Q2. At most Q2

contains one fault. If necessary, mark the link {x2, w2} as healthy. Choose a
healthy link {x2, u2} and mark the remaining two links in Q2 incident to x2 as
faulty. It is possible that {x2, w2} was healthy initially and that the two faults
we introduced formed a 3-cycle with the possible fault in Q2. In this case,
we reinstate one of the links we marked as faulty, and mark the link {x2, u2}
as faulty. We have introduced at most two faults to Q2 which limits us to a
maximum of three faults in our modified Q2. We have arranged the faults in Q2

so that there is no 3-cycle of faults, and every node in Q2 is incident to at least
two healthy links in Q2. Thus, we may apply Lemma 1 to get a Hamiltonian
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cycle in our modified Q2. Whether or not {x2, w2} is healthy in our original
Q2, we have our desired Hamiltonian path P2.

We now use the 2-bridge {x1, w1, x2, w2} with our usual construction to form
the cycle D1 containing all of the nodes in Q1 and Q2.

To complete the construction of a Hamiltonian cycle in our Q3
3, we establish

a 2-bridge between D1 and Q3. We have eight potential 2-bridges: four between
D1∩Q1 and Q3 and four between D1∩Q2 and Q3. With three faults committed
to Q1, we only have four faults to consider. So, at least one of these 2-bridges
is healthy. Label the link of our 2-bridge that is in Q3 by {v3, z3}. We may
apply the argument above that established P2 to get the Hamiltonian path
P3 : v3 ∼ z3}. We complete our desired Hamiltonian cycle by joining D1 and
P3 with our usual construction.

This completes the proof for IS case(ii-a).

• IS case(ii-b): There is no w1 such that {x1, w1} is faulty and {w1, w2} is
healthy.

Since x1 is incident to three faults in Q1, our current case determines all
but one of the faults in our Q3

3. With only one fault left undetermined, at least
one of the three faults incident to x1 in Q1 must be incident to a healthy link
between Q1 and Q3. Thus, if the link {x1, x3} is healthy, we are back in IS case
(ii-a) by symmetry.

So, for the remainder of this case, we assume {x1, x3} is faulty which gives
us a complete accounting of the seven faults in our Q3

3. Furthermore, in this
case, Figure 3.10 depicts the Hamiltonian cycle for Q3

3.
This completes the proof for IS case (ii-b) and case (ii).

• IS case(iii): Some node xi is incident to zero healthy links in Qi

We assume WLOG that x1 in not incident to any healthy links in Q1. Thus
the links {x1, x2} and {x1, x3} must be healthy.

We begin by arguing for the existence of one of the configurations depicted
in Figure 3.11. We have two disjoint pairs of faults incident to x1 in Q1. Each
such pair of faults requires two dim-1 faults to prevent both configurations
shown in Figure 3.11. With only three faults in dimension 1, one of the desired
configurations survives the dim-1 faults. By relabeling the graph if necessary,
assume we have the configuration depicted in Figure 3.12.

We begin by establishing the path P1 : y1 ∼ z1 in Q1 that contains all of the
nodes in Q1 except x1. If we temporarily mark the links {x1, y1} and {x1, z1}
as healthy then we may apply Lemma 1, since every node in our modified Q1

is incident to two healthy links and there are only two faults. Thus we get a
Hamiltonian cycle in our modified Q1 that must contain the links we marked as
healthy. Thus we have our desired path P1.

We now show there is a Hamiltonian path P2 : x2 ∼ y2 in Q2. Mark two of
the links incident to x2 in Q2 as faulty. Make sure to leave the link {x2, y2} as
healthy. Then we may apply Lemma 1 to our modified Q2 to get a Hamiltonian
cycle that contains the link {x2, y2}. Thus we have our desired Hamiltonian
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path P2 in the original Q2. Similarly, we have a Hamiltonian path P3 : x3 ∼ z3

in Q3.
The path x1 · x2 ·P2 · y1 ·P1 · z3 ·P3 · x1 explicitly describes the Hamiltonian

cycle in our Q3
3.

This completes the proof for IS case (iii), and case (ii) of Q3
3.
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Conclusion

Now that we have completed the proof of the main theorem, we consider whether
or not we can, under the assumptions of the theorem, strengthen the bound
4n − 5 to include additional faults. Figure 7.1 depicts a configuration in which
4n−4 faults preclude the existence of a Hamiltonian cycle. Note that the square
subgraph depicted always occurs as a subgraph of Qk

n for our values of k and
n. (For example, consider the 4-cycle {(0, 0, ?), (1, 0, ?), (1, 1, ?), (0, 1, ?)} where
? represents the remaining entries in the n-tuples).

{2n-2
faults

} 2n-2
faults

Figure 7.1: No Hamiltonian Cycle

To see that there does not exist a Hamiltonian cycle in the presence of this
configuration, observe that the depicted faults force a Hamiltonian cycle to
contain all four of the edges in the square. Since any Hamiltonian cycle must
account for exactly two edges at each vertex, none of the four vertices above
can be incident to an edge joining it with the rest of the graph. It follows that
the bound 4n− 5 is sharp.

Possible directions for further research include considering a probabilistic
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analysis in which we consider a random collection of more than 4n − 5 faults
and determine the likelihood of the existence of a Hamiltonian cycle.
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