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ALTERNATING SIGN MATRICES AND SYMMETRY

Introduction

An Alternating Sign Matrix (or ASM) is an n× n matrix whose entries are each 0, 1,
or -1 with the property that the sum of each row or column is 1, and the non-zero entries in
any row or column alternate in sign. An example of a 6× 6 ASM is




0 0 1 0 0 0
0 0 0 0 1 0
1 0 −1 1 −1 1
0 0 1 −1 1 0
0 0 0 1 0 0
0 1 0 0 0 0




The study of ASM’s arose out of analyzing Dodgson’s method for evaluating determinants
[1]. The simplest of questions was posed: How many n× n ASM’s are there? This question
proved difficult to answer. David Robbins, Howard Rumsey, and William Mills conjectured
in [2] that the number of n× n ASM’s is given by the product

An =
n−1∏
j=0

(3j + 1)!

(n + j)!

and it was more than 10 years before a satisfactory proof was given by Doron Zeilberger
in [3].

The sequence (An) grows very quickly, its first ten terms being 1, 2, 7, 42, 429, 7436, 218348,
10850216, 911835460, 129534272700. Surprisingly, this sequence was recognized by other
mathematicians at the time, in particular George Andrews, as that one counting another
class of objects: Descending Plane Partitions. In fact, counting ASMs is equivalent to many
other counting problems. See [4] for a partial list of these.

Square ice

Near the time Zeilberger was presenting his proof, Greg Kuperberg made an important dis-
covery. Alternating sign matrices had actually been studied before in detail, but under the
radar of the mathematical community. What’s more, this alternate theory on ASMs was
unbeknownst even to its purveyors. What Kuperberg discovered was that physicists had
long studied ASMs as objects they referred to as “square ice” states. Though physicists had
not produced a formula for the number of square ice states, their work suffered mathemati-
cians to “use a previous exercise” when they identified square ice with ASMs. This discovery
allowed for a considerably shorter proof of the ASM conjecture using the pre-existing theory
from physics. His proof can be found in [5].
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Figure 1. A Square Ice State

What is square ice? It is a 2-dimensional square lattice of water molecules with Oxygen
atoms on the vertices of the grid and a Hydrogen atom between neighboring Oxygen atoms.
In Figure 1, bonds between Oxygen and Hydrogen atoms are represented by a line.

This gives rise to a connected directed graph whose vertices represent the Oxygen atoms
and directed edges represent the Hydrogen atoms. Edges are oriented so that their terminal
vertex is the Oxygen atom to which the Hydrogen atom is bonded. This graph is the view of
square ice we will take in this paper. Figure 2 below shows the directed graph of the square
ice from Figure 1.

Figure 2. Square Ice viewed as a directed graph
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To produce a bijection between square ice and ASMs we must impose what are known
as domain wall boundary conditions to the square ice, requiring that there are Hydrogen
atoms bonded all along the left and right sides and none bonded along the top and bottom.

A few things are apparent by the construction of our graph. First, each interior vertex
(those of degree > 1) has two inward and two outward pointing edges. So in terms of which
edges point in or out, these vertices may come in only

(
4
2

)
= 6 possible configurations. Sec-

ond, our boundary condition assures that the edges on the boundary point inward in the
horizontal direction and outward in the vertical direction.

Figure 3. The six possible vertex types

Now the way to turn square ice into an ASM is by assigning to each of the interior ver-
tices the value 1, 0, or -1, depending on the configuration of its inward and outward pointing
edges. Figure 3 shows each vertex configuration along with its corresponding value. The
alternating sign matrix for our square ice example becomes




0 1 0 0
1 −1 1 0
0 0 0 1
0 1 0 0




Turning an ASM into square ice with boundary conditions is basically the reverse of this
process. Deciding which of the 4 vertex configurations to assign to a given zero entry in the
ASM would be the only noteworthy thing here. It turns out that once the 1s and -1s have
been given their unique vertex configurations, the graph is completely determined by the
following: Consider a 0 in the ASM and look at the sums of the entries to the left of it in the
same row and also above it in the same column. The sum must be 0 or 1 in each case by the
alternating property, and herein lie our four choices: If the row sum is 1 or 0, choose from
the vertex configurations which horizontally point all-left or all-right, respectively. Then if
the column sum is 1 or 0, choose the vertex configurations which vertically point all-down
or all-up, respectively.

This can be thought of another way. Imagine traversing the graph from left to right along a
row, beginning with an exterior edge, and keep track of direction changes of edges along the
way. Any 1s in this row of the matrix will change the direction from right-to-left, and -1s
will change from left-to-right. Entries other than this will need to preserve direction and are
the zero configurations with no horizontal direction change. Similarly, taking a vertical path
from top to bottom will begin with an edge pointing up, with 1s and -1s changing direction
from up-to-down and down-to-up, respectively. Again, the 0s must not change direction.
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This will determine exactly which zero configurations are needed to complete the graph once
the 1s and -1s have been positioned.

Colored ice

Let us impose coordinates on our graph and define the parity of a vertex (x, y) to be
the parity of x + y. Now we color an edge blue if it points from an odd vertex to an even
vertex, and green if it points from an even to an odd. Figure 4 shows how this works on our
square ice example where the blue edges are shown solid and the green edges dashed.

Figure 4. A 2-coloring of square ice with coordinates

It is obvious by our boundary conditions that the 4n exterior edges will alternate in color
around the graph. Also, since each vertex has in-degree and out-degree 2, we now have that
each interior vertex is on 2 blue and 2 green edges. In addition, let’s agree to give each
exterior vertex the color of its incident edge.

Proposition 1. A monochromatic component in a 2-colored square ice graph is either a path
connecting same-colored exterior vertices or it is a cycle.

Proof. By symmetry, we may consider only the blue components. The vertices of the blue
subgraph are either degree 1 or 2. By construction, the degree 1 vertices are exactly the
exterior vertices so any component containing an exterior edge must be a path and hence
connects distinct blue exterior vertices. If a component does not contain an exterior edge,
then each of its vertices has exactly 2 neighbors and is a cycle by definition. ¤
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Definition Call exterior vertices which are joined by a monochromatic path paired and
the induced partition of the set of exterior vertices a pairing.

A wealth of symmetries

Shown in Figure 5 are the seven 3× 3 alternating sign matrices along with their square ice
blue subgraphs. The exterior blue vertices have been numbered clockwise beginning at the
point (0, 1). See that each vertex is paired with its neighbor on the left in three cases and
with its neighbor on the right in three cases. The remaining case shows the vertex paired
with the one on the opposite side.

Now we know that the set of ASMs is closed under the symmetry group D8 since neither a
rotation of n

2
π or taking the transpose will change the fact that rows and columns sum to 1

and nonzero entries alternate in sign. What is not as obvious is that ASMs, as a set, possess
more symmetries than this! We will use our 2-colored square ice graphs to examine these
symmetries. Let’s look at the case n = 3 to shed some light here.




1 0 0
0 1 0
0 0 1







1 0 0
0 0 1
0 1 0







0 1 0
1 0 0
0 0 1







0 1 0
0 0 1
1 0 0







0 0 1
1 0 0
0 1 0







0 0 1
0 1 0
1 0 0







0 1 0
1 −1 1
0 1 0




Figure 5. The seven 3× 3 ASMs and their associated blue subgraphs

The blue subgraphs in Figure 5 have an interesting property which will lead us to our main
result. Consider these numbered blue vertices not as sitting on the edges of a square, but
rather as the vertices of a hexagon. Notice that the second and last graphs on the top row
have the same pairings: {(1, 6), (2, 3), (4, 5)}. Now imagine leaving the graph alone, but ro-
tating the numbers on the hexagon counterclockwise by one position. The graphs with this
new numbering would now have the pairing {(1, 2), (3, 4), (5, 6)} which amounts to rotating
the pairing clockwise. But among our seven possibilities we already have two graphs with
this pairing. The fact that there were 2 graphs with that pairing before and after rotating
vertices illustrates a general property that these graphs have, namely that the number of
n× n ASMs with a given pairing remains the same after its exterior vertices are rearranged
by any rotation in D2n. We restate this as Theorem 2 [6].
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Theorem 2. Let An(πB, πG, l) be the set of n×n ASMs in which the blue subgraph induces the
pairing πB, the green subgraph induces the pairing πG, and the sum of the number of cycles in
the two subgraphs is l. If π′B is πB rotated clockwise, and π′G is πG rotated counterclockwise,
then the sets An(πB, πG, l) and An(π′B, π′G, l) are in bijection.

To prove Theorem 2, we shall produce a bijection between the sets of n × n ASMs whose
induced pairings differ by a rotation in D2n. This will be accomplished by focusing our
attention first on the interior vertices of the blue subgraph and then on the exterior paired
vertices. In what follows, consider an n× n ASM and let Γ be the coordinatized 2-coloring
of its square ice graph as in Figure 4.

Definition For each unit square subgraph S of Γ, define the parity of S to be the parity
of its lower-left vertex. We refer to a square of parity k as a k-square.

Partitioning the squares of Γ by parity will allow us to produce our bijection in two stages -
treating first the 1-squares and then the 0-squares.

An interior square S (containing only interior vertices) in Γ may have any one of 24 = 16
color configurations for its edges. If the 4 edges of S alternate in color around the square, call
this an alternating square. Note that only interior squares may be alternating. Now
for k ∈ {0, 1}, define functions Gk : Γ → Γ which switch the edge-colors of all alternating
k-squares. These functions are well-defined since squares of the same parity can only meet
at vertices and not edges. Therefore what Gk does to one k-square does not affect what it
does to any other k-square.

Next, define the composite functions Hk = Gk ◦ R where R is the function which switches
the color of every edge in Γ. The result of applying Hk to Γ is that all edges in Γ will switch
colors except for those in alternating k-squares. Finally, we will want to affect both 0-squares
and 1-squares in this way, so we define the function G = H0 ◦ H1. This function has been
called gyration and the meaning for this will be seen in its action on the pairing of Γ. Figure
6 shows the function G applied to our running example of square ice.

Figure 6. Example of G acting on 2-coloring of square ice

Notice that after H1, the blue pairing has been rotated clockwise, though it is now a pairing
on formerly green vertices. The green pairing has been rotated counterclockwise, now on
formerly blue vertices. The map H0 repeats this effect, where the blue and green pairings
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have returned to their original colors, but rotated. The alternating k-squares are like “fixed
points” for the Hk. But since our result regards pairings, and pairings paths, we will char-
acterize blue components (and hence paths) by certain subsets of the vertex set of Γ.

Definition Define a k-fixed vertex as an interior vertex whose 2 blue edges are contained
in different k-squares.

By construction of Γ, an interior vertex must be 0-fixed, 1-fixed, or both:

Since k-fixed vertices are where a blue (respectively green) component moves from one k-
square to another, we will examine their behavior with respect to the functions Hk.

Proposition 3. A vertex is k-fixed in Γ iff it is k-fixed in Hk(Γ).

Proof. As each internal vertex in Γ is contained in some internal k-square, we need only
consider the internal squares. The possibilities of having a k-fixed vertex in an interior k-
square are shown in Figure 7 where the darkened vertices are k-fixed. Therefore a vertex in
a k-square is k-fixed before and after the application of Hk.

Figure 7. k-fixed vertices in a k-square before and after the application of Hk

¤
Remark. An internal k-square cannot possess only 1 or only 3 k-fixed vertices. If v was
the unique k-fixed vertex in a k-square S, it would have an incident blue edge on S and
one off S. Then all of the other (non k-fixed) vertices would have their incident blue edges
all on S, resulting in three blue edges incident to v. Having only 3 k-fixed vertices gives a
contradiction with a similar argument.

It is clear that the application of Hk will reverse the edge colors in all but the third case
above, the alternating square: First R changes every edge color, and then Gk changes back
only those in alternating squares. Thus Hk leaves alternating k-squares alternating and k-
fixed vertices k-fixed.



8 ALTERNATING SIGN MATRICES AND SYMMETRY

Proposition 4. Two k-fixed vertices are in the same blue component of Γ after the action
of Hk if and only if they were in the same blue component before.

Proof. We have seen that if 2 k-fixed vertices are adjacent in the blue subgraph (Figure 7)
then they remain fixed after the application of Hk since there is a k-square containing them
both. If u and v are k-fixed vertices connected by a blue path of non-k-fixed vertices, then
that path must be contained in a single k-square since the vertices between u and v, by
definition, have their incident blue edges both on a single k-square. Now Figure 7 shows
that u and v would still be connected by a blue path after the application of Hk since the
colors would switch in all cases except the third.

Now we may take a blue path of any length connecting 2 k-fixed vertices and divide it
at each intermediate k-fixed vertex into subpaths. Each subpath is contained in a single
k-square and may or may not change after applying Hk, depending on whether it is part of
an alternating square or not. In this way, Hk may alter the path overall, but not the k-fixed
vertices it contains.

Finally, since H2
k is the identity on Γ, the argument above is bi-directional.

¤

So a monochromatic path passes through the same sequence of k-fixed vertices before and
after Hk. We know what will happen at each interior subpath, but not what happens before
the first and after the last k-fixed vertices. We know both that the endpoints paired by that
path will rotate around the graph and, because of the order in which G is constructed - first
H1 and then H0, the direction this will happen.

Recall that we originally colored blue the edges which point from a 1-vertex to a 0-vertex, so
by the domain wall boundary conditions, the bottom left horizontal edge is always blue. Then
H1 will “move” this edge up one position and H0 will “move” it up again, thereby rotating it
clockwise around the graph. Similarly, the bottom left vertical edge is always green in Γ, so
H1 will move it one position to the right and H0 will move it right again, thereby rotating it
anticlockwise around the graph. As the exterior edges alternate in color around the graph,
this will be true in general: Blue edges rotate clockwise and green edges rotate anticlockwise.

The one question remaining is, what happens before the first and after the last k-fixed
vertex in a monochromatic path? The answer is: not much. We will see this in the following
proposition.

Proposition 5. An exterior k-square contains exactly one k-fixed vertex which is connected
to each endpoint in Γ by monochromatic paths.

Proof. The squares on the corners of Γ have only one interior vertex which clearly must be
fixed and connected to each of the exterior vertices in that square by a blue and a green
path, each of length 1.
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So suppose S is a non-corner k-square on the boundary of Γ, and that none of its ver-
tices is k-fixed. Exactly one external edge in S must be blue by construction. As neither of
the internal vertices on S is fixed, the path beginning with this blue edge must never leave
S. Thus S is all blue, contradicting the fact that the exterior edges must alternate in color
around Γ. So S must have a k-fixed vertex.

If S had 2 k-fixed vertices, then the blue path beginning in S must leave S at its first
internal vertex v, but the other k-fixed vertex w must also have a blue component passing
between different k-squares there. This component may not include the other external edge
in S by the alternating condition, so it must also be connected to v, giving v 3 incident blue
edges. Thus S must have exactly 1 k-fixed vertex.

The fact that this vertex is connected to each of the exterior vertices by monochromatic
paths requires checking 2 cases. Case 1: The k-fixed vertex is on the exterior blue edge.
Then the blue path leaves S and the other two edges in S are necessarily green. Case 2:
Reverse blue and green in Case 1. ¤

Now before we prove Theorem 2, let us summarize what we have shown. A component in
the blue subgraph is either a cycle or a path connecting exterior blue vertices. If it is a path,
then it passes through a sequence of k-fixed vertices (one sequence for each parity). These
1-fixed vertices are still 1-fixed and on the path after the application of H1. Likewise, the
0-fixed vertices remain 0-fixed and on the path after the application of H0. These sequences
of vertices both begin and end in exterior squares. Thus paths become paths and cycles
become cycles after Hk, and paths are identified by their k-fixed vertices before and after
Hk.

Proof of Theorem 2. Let P be a blue path in Γ connecting exterior blue vertices u and
v. By Proposition 5, P contains k-fixed vertices and Propositions 3 and 4 give that Hk

leaves these vertices k-fixed and connected in the image of P . Moreover, Proposition 5 gives
that Hk(u) and Hk(v) are connected. Since each of these results was bijective and applied to
both parities, we have a bijection between the set of blue paths in Γ and G(Γ). This, in turn,
gives a bijection of pairings before and after G. Finally, we saw that by the construction of Γ
and the order we composed the function G that the blue and green pairings rotate clockwise
and anticlockwise, respectively, after the application of G.

Next, let l be the total number of cycles in Γ. By Propositions 3 and 4, a cycle con-
taining k-fixed vertices will be a cycle of the same color after the application of Hk. If a
cycle contains no k-fixed vertices, it must be contained in a single k-square by definition of
k-fixed. Cycles of this type will merely change color under Hk. Thus we have a bijection
between the set of cycles in Γ and G(Γ). The colors may change, but the overall number
does not. ¤

Remark. Consider the function D which reflects Γ over the line y = x. This will switch
the colors of all exterior paths and vertices. Now for either parity, the function Hk ◦D will
reflect the pairings over the line y = x (with blue and green pairings on formerly green and
blue vertices, respectively) and rotate them (clockwise if blue, anticlockwise if green) back
to their original colors. The choice of which Hk to compose with D will merely affect which
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2 external vertices remain fixed.

Corollary 6. If the blue square ice subgraph of an n × n ASM has its external vertices as
the vertices of a regular n-gon, and if its blue pairing is rearranged by an element of D2n,
then the number of ASMs with a given pairing remains the same.

Proof. This is a direct result of Theorem 2 and its subsequent remark as the rotation and
reflection described there generate D2n. ¤

An example

To give an example showing the function G at work on a large example of square ice, we
give a 15 × 15 ASM and its associated colored graph. To properly see what is happening
at each step of the process, first the blue subgraph will be shown and then the green subgraph.

Some things to notice: There are 7 total cycles in the graph - 3 blue and 4 green. No-
tice how the single-square blue cycle (contained in a 1-square) changes to green after H1 and
remains green after H0, but it has grown to a two-square cycle. It is also interesting to see
how the larger cycles change shape and move, though you can check that they still (after
each Hk) contain the same k-fixed vertices. Last but not least, the movement of the paths
is delightful to watch. The construction shows the blue and green paths rotating clockwise
and anticlockwise, respectively, all the while “dodging” the moving cycles.




0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 1 0 −1 0 1
0 1 0 0 0 −1 1 0 −1 1 −1 0 1 0 0
0 0 0 1 0 0 0 0 0 −1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 −1 1 −1 0 1 −1 1 0 0 0 0 −1 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 −1 1 0 −1 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 −1 1 0 0
0 0 0 0 1 0 0 0 −1 0 0 1 0 0 0
0 1 0 0 −1 0 0 0 1 −1 1 0 0 0 0
0 0 0 0 1 0 0 −1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
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Figure 8. blue graph

Figure 9. blue graph after H1
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Figure 10. blue graph after H0

Figure 11. green graph
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Figure 12. green graph after H1

Figure 13. green graph after H0
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