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Part 1. Introduction

Suppose you had a simple �re sensor that could detect a �re burning in the room in which it was placed or in
any adjacent room. Suppose also that the sensor had a binary output and could only say, �there is a �re,� or
�there is no �re.� In some buildings, putting such a detector in every room would allow you to pinpoint a �re
based on which sensors activated. The design of other buildings would still allow such a �re safety system to
notify you of a �re, but the room containing the �re may not be determined exactly. What building designs
would allow such a system to precisely locate a �re? Can you cut costs by omitting some sensors and still
locate a �re?

Alternatively, suppose that you had a microprocessor in an array of microprocessors that could test itself
and nearby processors for faults, but could only report whether or not a fault was detected. What circuit
designs allow faults to be precisely located? Can fewer sensors be used and still pinpoint the faults?

Both of these problems are addressed by identifying codes of graphs. In the �re detection system example,
the rooms correspond to vertices, the doors to edges, and the code is the subset of rooms containing sensors.

In this paper, I'll present Gravier and Moncel's result from their 2007 article �On graphs having a V −{x} set
as an identifying code� [1]. My intent is to expand their exposition by providing illustrations and examples
from the literature. In terms of the examples above, their result states that if the structure of the building
makes it possible to pinpoint the �re, it is always safe to leave at least one room without a sensor.

Part 2. De�nitions

The de�nitions of more generic graph theory terms such as vertex or degree are outside the scope of this
paper. Hence we shall assume a familiarity with the de�nitions used by West[2]. We note, however, that our
graphs will be undirected and simple, so they will have neither loops nor multiedges. We will not, in general,
assume that the vertex set is necessarily �nite.

1. Terminology for codes in graphs

De�nition 1. Fix any vertex v in a graph G, and any integer r ≥ 1. Denote by Br (v) the ball of radius
r centered at vertex v, that is, the set of all vertices in V (G) that have graph-theoretic distance at most r
from v.

Consider B1 (v) = {v, a, b, c} and B2 (g) = {g, e, f, x, b, c, h} in the graph shown in Figure 1.1 below. Note
that in Figure 1.1, successively larger r-balls centered at v are obtained by adding the boxed sets of vertices
as you move right across the diagram. For example, B2 (v) includes v and the �rst two distance boxes.

Figure 1.1.
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A distance partition of a graph with root vertex v.

De�nition 2. Fix an integer r ≥ 1. An r-code of G is a subset C of the vertex set of G such that there is
at least one code vertex within the r-ball of every vertex in the graph.
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Figure 1.2.
a b c

A labeled P3 with 1-code C = {a, c}.

As an example, consider a labeled path on three vertices as in Figure 1.2. Note that V (G) = {a, b, c} and
E (G) = {ab, bc}. Then C = {a, c} ⊂ V (G) is an r-code of G, with radius r = 1.

In contrast, the set {a} ⊂ V (G) of the graph in Figure 1.3 is not a 1-code because B1 (c) contains no code
vertices.

Figure 1.3.
a b c

A labeled P3 with (invalid) 1-code C = {a}.

Charon et al[3] and Bertrand et al[4] use the term r-dominating code to denote the same concept that I'm
simply calling an r-code. These articles deal with more granular concepts that aren't relevant in this context.

In terms of the examples of the introduction, a set that is not an r-code wouldn't alert you at all in case of
a �re or faulty microprocessor in a vertex that was too far from a code vertex.

De�nition 3. Given an r-code C, the signature sr (v) of a vertex v is the intersection of the r-ball centered
at v with C; that is,

sr (v) = Br (v) ∩ C.

As an example, observe that B1 (a) = {a, b} and C = {a, c} in Figure 1.2. Then s1 (a) = {a, b}∩{a, c} = {a}.
Similarly, because B1 (b) = {a, b, c}, we have s1 (b) = {a, b, c} ∩ {a, c} = {a, c}. Note that a subset of the
vertex set of a graph is an r-code if and only if the signature sr (v) of every vertex v is nonempty.

De�nition 4. Given an r-code C, a pair of vertices u, v ∈ V (G) are called Twin vertices whenever
sr (u) = sr (v) .

In K3 (or more generally any complete graph on more than one vertex), B1 (x) = B1 (y) for all vertices x
and y. In Figure 1.4, every vertex is a twin of every other vertex.

Figure 1.4.

a b

c

A labeled K3 with vertices a and c in the 1-code and b not
in the 1-code. Any two vertices in this graph are twins.

De�nition 5. The symmetric difference of sets A and B is the set (A\B)∪ (B\A) denoted by A∆B.
Two vertices are twins if and only if their signatures are equal. Equivalently, two vertices u, v ∈ V (G) are
twins if and only if the symmetric di�erence of their signatures is empty. That is, u is a twin of v if and only
if

sr (u) ∆sr (v) = ∅.

In Figure 1.5, s1 (a) = {a, b, c} and s1 (b) = {a, b, d, e}, so s1 (a) ∆s1 (b) = {c, d, e}.

De�nition 6. An r-identifying code of G is an r-code of G such that no twin vertices exist. A graph
that admits an r-identifying code is called r-identifiable.
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Figure 1.5.
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A labeled graph with vertices with 1-code C = {a, b, c, d, e}.

Referring to Figures 1.2 and 1.4, notice that P3 is 1-identi�able and K3 is not. Neither are r-identi�able for
any r > 1, because when r > 1 the r-balls of every vertex would contain the entire code (and thus their
signatures would equal each other.) When the r-balls of two vertices are equal, their signatures are necessarily
equal.

Figure 1.6 illustrates a 1-code that does not 1-identify the graph. Note that while c is in the symmetric
di�erence s1 (a) ∆s1 (b), the signatures s1 (b) and s1 (c) are equal, hence b and c are twins.

Figure 1.6.
a b c

A labeled P3 with vertices with 1-code C = {b, c}.

The examples from the introduction are applications of 1-identifying codes (often referred to simply as
identifying codes) because they consider only the 1-balls centered at each sensor.

De�nition 7. Let u and v be vertices in a graph G with r-code C. Any vertex in sr (u) ∆sr (v) is said to
r-separate u from v. When sr (u) ∆sr (v) is nonempty, u and v are said to be r-separated.

Note that this means that if a vertex v separates two other vertices, v must be in the code. In Figure 1.5,
vertex d 1-separates vertex b from vertices e and a. Though it may not be intuitive at a glance, vertex e
1-separates itself from vertex f .

If the distance between two vertices is strictly greater than 2r, then those two vertices are necessarily r-
separated because their r-balls do not intersect. Often 1-separation is referred to simply as separation.

De�nition 8. The r-transitive closure of a graph G is denoted Gr, has vertex set V (Gr) = V (G), and
edge uv ∈ E (Gr) if and only if there exists a path on at most r edges from u to v in G.

De�nition 9. The complete code of a graph is the entire vertex set of that graph.

2. A global assumption

We will consider only simple graphs, because multiple edges and loops have no e�ect on identifying codes.

If a graph is disconnected, then the r-ball of each vertex is a subset of the vertex set of exactly one connected
component. Therefore, the components must be considered individually when constructing an r-identifying
code. To that end, we'll be considering only simple, connected graphs.

As mentioned in the discussion following De�nition 4, a complete graph Kn never admits an r−identifying
code when n > 1, because the r-ball of every vertex is V (Kn), so all r-balls (and hence all vertex signatures)
are equal. A single vertex graph must have its only vertex in any r-identifying code. A connected graph on
two vertices is isomorphic to K2, so it does not admit an r-identifying code. Thus, we will be considering
only simple, connected graphs on at least three vertices.
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A graph containing vertices of in�nite degree can require every vertex to be included in any r-identifying
code. An example of such a graph is given in Part 4. Therefore, we will consider only simple, connected
graphs on at least three vertices that have bounded maximum degree.

The following de�nition summarizes and formalizes the discussion above into a global assumption:

De�nition 10. Unless speci�ed otherwise, the graph G is de�ned to be

• simple and connected,
• on at least three vertices,
• with r-identifying, complete code C = V (G), and
• bounded maximum degree.

Proposition 11 clari�es the assumption that the complete code is r-identifying.

Part 3. Results

We will start by considering 1-identifying codes and then generalize to r-identifying codes.

3. Adding vertices to a code is always safe

The following pair of results justify the choice to let C = V (G) in the global De�nition 10.

Proposition 11. Assume a graph G is simple and connected. If C is a 1-identifying code of G and S is a
set of vertices not in the code, then C ∪ S is a 1-identifying code of G.

Proof. Let u, v ∈ V (G) be arbitrarily chosen. Let S ⊆ V (G) \C. Because C is a 1-identifying code of G,
there exists a vertex a ∈ s1 (u) ∆s1 (v) that 1-separates u from v. If the code is altered to include an arbitrary
vertex x ∈ S, then the 1-separation of u from v by a still holds. Because u, v, and x were chosen arbitrarily,
this is true for all pairs of vertices in V (G) and all vertices in S, hence C ∪S is a 1-identifying code of G. �

Corollary 12. If G is a 1-identi�able graph, then C = V (G) is a 1-identifying code of G.

Proof. If we let S = V (G) \C, then the corollary follows immediately from Proposition 11. �

4. When a vertex v is required in a 1-identifying code

We will now consider a speci�c vertex v ∈ V (G) and some consequences of it being required in any 1-
identifying code. That is, if C\ {v} is not a 1-identifying code (and by De�nition 10, C is), then there are
some important stepping stone lemmas to be found concerning v and vertices nearby. Figure 4.1 illustrates
both Lemma 13 and Corollary 14.

Lemma 13. Assume De�nition 10 with r = 1. If vertices x and y are twins in C − v, then x ∼ y.

Proof. By the assumption that C = V (G), it must be the case that x, y ∈ C. Since x and y are twins
in C − v, it must also be the case that except for v, s1 (x) = s1 (y). Observe that x ∈ s1 (x) = s1 (y), so
x ∈ B1 (y) and x is adjacent to y. �

Corollary 14. Assume De�nition 10 with r = 1. If vertices x and y are twins in C − v, then

(1) exactly one of x and y is adjacent1 to v and
(2) the distance from v to the other is 2, and there exists a length 2 path through the adjacent vertex in

part (1) above.

1Bold edge in Figure 4.1.
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Figure 4.1.
v

x

y

a

Illustration for Lemma 13 and Corollary 14.

Proof. Note that v must 1-separate x and y, so it must be in exactly one of their 1-balls by de�nition.
Without loss of generality, let v ∈ B1 (x). Then v ∼ x and part (i) is proven.
Because v 1-separates x and y and v ∼ x, it must be the case that v is not adjacent2 to y. By Lemma 13,
x ∼ y, so v ∼ x ∼ y is a vy-path of length 2. �

5. Conditions on vertex removal

Lemma 15. Assume De�nition 10 with r = 1. The set C\ {v} is a 1-identifying code of G if and only if all
vertices of B1 (v) are 1-separated from all of the vertices of V (G) \B1 (v).

Proof. Suppose that C\ {v} is a 1-identifying code of G. Then all vertices of G must be 1-separated from
each other pairwise, and in particular all vertices of B1 (v) are 1-separated from all vertices of V (G) \B1 (v).

Contrapositively suppose that C\ {v} is not a 1-identifying code of G. Then by Corollary 14, a vertex in
B1 (v) must be the twin of a vertex in V (G) \B1 (v). By de�nition, twin vertices are not 1-separated. �

6. Removal of at least one vertex is possible when r = 1

We now turn to the main result of the paper. Figure 6.1 is illustrative of the vertices referred to throughout
the theorem.

Theorem 16. (Gravier and Moncel, [1]) Assume De�nition 10 with r = 1. There exists a vertex v such that
V (G) \ {v} is a 1-identifying code of G.

Proof. Because the maximum degree of G is bounded by assumption in De�nition 10, there exists at least one
vertex in G of maximum degree. Let a be a vertex having maximum degree in G. If C\ {a} is a 1-identifying
code of G, then the proof is complete. If not, then there exist twin vertices in G given 1-code C\ {a}.
By Corollary 14 and Lemma 15, one of these twins is in B1 (a); call it x. The other, which we'll denote by
y, is in V (G) \B1 (a). Because x and y were not twins in C but are in C\ {a},

s1 (x) = s1 (y) ∪ {a}
and because C = V (G),

(6.1) B1 (y) ( B1 (x) .

We claim that since C\ {a} is not a 1-identifying code of G, then C\ {y} must be a 1-identifying code of G.
By Lemma 15, it su�ces to show that each vertex of B1 (y) is 1-separated from each vertex of V (G) \B1 (y).

We start by 1-separating all vertices in B1 (y) from everything outside of that ball except a. Let z ∈ B1 (y).
By (6.1), it must be the case that z ∈ B1 (x). Let

b ∈ (V (G) \B1 (y)) \ {a} = V (G) \ (B1 (x) ∪B1 (y)) = V (G) \B1 (x) ,

that is, let b fall outside of the union of the 1-balls around x and y. Because a is the only di�erence between
B1 (y) and B1 (x), we see that b /∈ B1 (x) and symmetrically x /∈ B1 (b). Thus, x 1-separates z from b.

2Dotted non-edge in Figure 4.1.
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Figure 6.1.

The 1-code C = V (G) \ {y}. The gray lines indicate po-
tential sets of edges to regions of the graph that are not rel-
evant. The small vertices are elements of B1 (y) \ {w, x, y}.

We continue by 1-separating all vertices in B1 (y) from a. First, note that a ∈ V (G) \B1 (y), so a 1-separates
itself from y because a 6∼ y. If the only neighbors of a were in B1 (x), then x ∼ y and a 6∼ y would make the
degree of x strictly greater than that of a, a contradiction. Therefore, a has a neighbor in V (G) \B1 (x) and
that neighbor separates a from x.

Let w be any non-y, non-x vertex of B1 (y), that is, w ∈ B1 (y) \ {x, y}. By way of contradiction, suppose that
a and w are not 1-separated by 1-code C\ {y} but that they were by 1-code C. Then B1 (w) = B1 (a)∪ {y},
and the degree of w is greater than the degree of a, a contradiction.

Hence, every vertex of B1 (y) is 1-separated from every vertex of V (G) \B1 (y) and so by Lemma 15, the
1-code V (G) \ {y} is a 1-identifying code of G. �

7. Extension of the r = 1 results to r > 1

We now extend the previous results to show that it is possible to remove at least one vertex from a graph
that meets the conditions of De�nition 10 when r > 1.

Lemma 17. Recall De�nition 8. The maximum degree of a graph G is bounded if and only if the maximum
degree of Gr is bounded.

Proof. By de�nition, V (G) = V (Gr) and E (G) ⊆ E (Gr), so G has bounded maximum degree whenever Gr

does.
Conversely, suppose that G has bounded maximum degree d, and let v ∈ V (G) be any vertex. Then the
degree of v in Gr can be no greater than dr, and Gr has bounded maximum degree. �

Lemma 18. A simple, connected graph G is r-identi�able by a r-code if and only if Gr is 1-identi�able by
the same set C.

Proof. Given vertices u, v ∈ V (G), De�nition 8 implies that u ∈ Br (v) in G if and only if u ∈ B1 (v) in Gr.
Indeed for any vertex x, it follows that Br (x) in G is equal to B1 (x) in Gr. The equality of sr (x) in G and
s1 (x) in Gr follows.

Suppose that G is r-identi�able. Then for all distinct x, y ∈ V (G), sr (x) 6= sr (y). Then in Gr, s1 (x) 6= s1 (y)
in Gr.

Conversely, suppose that Gr is 1-identi�able. Then similar to the above argument, for all distinct a, b ∈
V (Gr), we see that s1 (a) 6= s1 (b) in Gr, so sr (x) 6= sr (y) in G.

Therefore, any r-identifying code of a graph G is a 1-identifying code of Gr and vice versa. �
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Corollary 19. Assume De�nition 10. There exists a vertex v such that V (G) \ {v} is an r-identifying code
of G.

Proof. Consider Gr. By Lemma 17, Gr has bounded maximum degree and by Lemma 18, Gr is 1-identi�able.
Thus, Gr meets the criteria of Theorem 16 and there exists a vertex v ∈ Gr such that C\ {v} is a 1-identifying
code of Gr. By Lemma 18, the set C\ {v} is an r-identifying code of G. �

Part 4. Exhibits of extremal cases

8. Requiring a code of cardinality n− 1

As an example of a family of graphs that require all but one vertex in any 1-identifying code, consider the
stars. That is, consider a single central vertex adjacent to every other vertex in the graph, with every other
vertex adjacent to only the central vertex.

Figure 8.1.

A star graph on 10 vertices.

If the central vertex of a star is removed from an otherwise complete code, then each leaf 1-separates itself
from all other leaves and the central vertex is 1-separated from each leaf v by all non-v leaves.

On the other hand, if a leaf u is removed from an otherwise complete code, then every non-u leaf 1-separates
itself from all other leaves (including u,) and the central vertex is 1-separated from u by all non-u leaves.

Thus any single vertex removed from a star graph's complete code leaves a 1-identifying code.

However, if two leaves are removed, then their signatures are both exactly the central vertex. If a leaf and
the central vertex are removed, then the leaf's signature is empty.

Hence, all stars on n ≥ 3 vertices require exactly n − 1 vertices in their minimum-cardinality 1-identifying
codes.

All �nite graphs whose 1-identifying codes require all but one vertex are classi�ed by Foucaud et al [5].

9. Unbounded maximum degree

We now explore an example justifying our global assumption of bounded degree. Section 5 of [3] gives the
following example of a graph of unbounded maximum degree.

Let G be a graph with vertex set V (G) = Z and the following edges:

• Each even integer has an edge to every other even integer.
• Each odd integer has an edge to every other odd integer.
• Every even integer has an edge to every larger odd integer.
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Figure 9.1.

even s
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n + 4n + 2

n + 3
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n + 1n -1

n -2n -4

n -3

A �nite subgraph of a graph with unbounded maximum
degree.

That is, the evens form a complete graph, the odds form a complete graph, and the edges from evens to odds
are all to the �right� on the number line. See Figure 9.1 for an illustration of a small, �nite portion of G.

Let n be any even integer. Consider what 1-separates n from n−2. No even can 1-separate them, as all even
numbers are in B1 (n)∩B1 (n− 2). No odd numbers less than n are in B1 (n). All odd numbers greater than
n − 2 are in B1 (n) ∩ B1 (n− 2). In fact, the only thing 1-separating n from n − 2 is n − 1. Because n was
chosen arbitrarily, this means that every odd integer must be contained in any 1-identifying code.

Now consider what 1-separates n + 1 from n− 1. Similar to the evens, all evens less than n− 1 and all odds
are in B1 (n− 1). The only number in B1 (n + 1) that is not in B1 (n− 1) is n itself, so all even integers
must be in any 1-identifying code.

Hence, the only 1-identifying code of G is V (G).

Part 5. Further questions and conjectures

As the primary result of this paper shows, a 1-identi�able graph contains at least one vertex that is removable
from the complete code. Future research could explore the classi�cation of graphs for which the removable
vertex is unique.

At the other extreme, there exist graphs for which any single vertex could be removed from the complete
code. Examples include stars on at least four vertices and vertex transitive graphs.
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