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ABSTRACT. A formula for the determinant of the distance matrix for a tree as a function  
of the number of its vertices, independent of the structure of the tree, has been proven by  

      several mathematicians. We explore the details of the proof by Weigen Yan and 
Yeong-NanYeh, look at the history of the topic, and see the theorem in action by  

way of examples. 
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2. INTRODUCTION 
 

      Graph theory is the mathematical study of networks. These networks are represented 
by nodes (vertices) and connections (edges). This study has many applications, and it 
branches to many other disciplines of mathematics, resulting in mathematicians from 
many different mathematical backgrounds having published results in the topic. 

In the 1970’s, Ronald L. Graham, the man responsible for Graham’s Number, 
published several results in graph theory. Beyond his work in graph theory, Graham 
actually began some new areas of study such as worst-case analysis in scheduling theory, 
and the Grahams Scan in computational geometry. On top of his extensive work in 
applied mathematics, Graham was at one point the president of the International Jugglers 
Association, a circus performer, and Chief Scientist at California Institute for 
Telecommunication and Information Technology, and worked at Bell System Tech Labs 
[8]. Also working at Bell was Dr. H.O. Pollak, with whom Graham worked with on 
several graph theory results. In their paper titled On the Addressing Problem for Loop 
Switching [4], graph theory is used in the study of transmitting messages and calls 
efficiently at Bell System Tech. It is in this application that the need for the determinant 
of a distance matrix of a tree is discovered, and proven using rather complicated linear 
algebra. 

In 2005, Weigen Yan and Yeong-Nan Yeh published A simple Proof of Graham and 
Pollak’s Theorem [6]. The theorem they are referring to is the formula for the 
determinant of a distance matrix for a tree, and their proof is the basis for the work done 
in this paper.  

In Yan and Yeh’s proof of the formula, an interesting connection is made to Charles 
Dodgson (27 January 1832 – 14 January 1898). More commonly known by his pen name 
Lewis Carroll, author of the beloved classic Alice in Wonderland, Dodgson was a 
recreational mathematician. Among other things, he developed a new way of evaluating 
determinants of matrices called Condensation, and his method was based on a theorem 
that is known as the Desnanot-Jacobi Identity [4]. Consequently, this identity is 
sometimes referred to as Dodgson’s determinant evaluation rule, as was done by Yan and 
Yeh. This plays a large role in the proof of the main theorem of this paper. 

 
We will begin with a review of graph theory and the linear algebra that applies to 

the focus of this topic. We shall then explore the proof of the main theorem and see some 
examples of the theorem in action. The proof of the theorem depends on Dodgson’s 
determinant evaluation rule, so we will take a break from the proof of the main theorem 
to see the proof of this identity, therein completing the proof of the result. 
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3. TREES AND DETERMINANTS 
 
 Graph theory is the study of networks consisting of vertices and edges. A graph is 
a collection of vertices, edges, and the connections between them. A graph can be 
connected, or disconnected (see Figure 1). 

 
                                                                         Figure 1 

 
Some graphs can have loops or multi-edges, (see Figure 2) but a simple graph is restricted 
to exclude these types of edges. 

                                    

 

                                                                              Figure 2 

Two vertices in a graph are said to be adjacent if they are connected by a at least one 
edge. A path is a series of connections in a graph beginning with a vertex and ending 
with another vertex, with no repeated edges or vertices in the sequence. A cycle is a path 
that ends with the same vertex it began with.  
 A tree is a connected graph with no cycles. (See Figure 3) The vertices at the ends 
of the tree’s branches are called leaves. The leaves are circled in Figure 3. A tree of n  
vertices has 1n −  edges [6]. 

 

Figure 3 

Trees are useful in graph theory since any connected graph has an embedded tree called 
the spanning tree, which uses all the vertices of the graph. There are a lot of nice results 
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about trees, which can make the work easier if one can restrict attention to the spanning 
tree of the graph.   

  The distance from one vertex to another in a graph is the length of the shortest 
path. The way we think about length of a path is the number of “steps” between each 
vertex. It is the same to count the number of edges between the vertices in such a shortest 
path. The distance matrix of a graph on n  vertices is an n n×  matrix whose i, jth entry is 
the distance between the ith and jth vertices [6]. Such a matrix is by definition symmetric 
with whole number entries. For example, the distance matrix of the tree in figure 3 would 
be made by naming the vertices 1 9, ,v v… and forming the matrix. Depending on how the 

tree is labeled, the matrix will look different, but will have the same determinant. The 
entries will all be the same but will be permuted throughout the matrix by a series of row 
and column switches. For example, if row 2 and 3 are swapped, then we must also swap 
column 2 and 3. Each swap results in negation of the determinant, but since all our swaps 
come in pairs, our determinant will remain unchanged.  In Figure 4, a labeling is assigned 
and the resulting distance matrix is given. 

 

                           

Figure 4 

 
                        In linear algebra, determinants of square matrices can be found by a method 

called co-factor expansion. This method utilizes a notion called the minor of an element. 
The minor of an element ija is defined as the sub-matrix left after the ith row and 

j th column are deleted (crossed out). This is denoted as ijM . The cofactor element of ija is 

denoted by ijC and is equal to ( )1
i j

ijM
+− . 

             In cofactor expansion, you may pick any row or column you like to expand along. 
It is beneficial and eases computation time to pick a row or column rich with zeros. The 
determinant of the matrix is then equal to the sum of each of the entries of the row 
multiplied by their respective cofactor element [8].  
 The main theorem gives us a formula for the determinant of a distance matrix of a 
tree. This formula is a function of the number of vertices, and is otherwise completely 
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independent of the structure of the tree. For a tree on n vertices, the determinant will be 
2( 1)( 2)nn −− − − . 

Therefore, according to the theorem, the distance matrices of the following two 
trees should have the same determinant. Let us use co-factor expansion to see. 

 
 

 
                                                            Figure 5 
 
        These are clearly different matrices—the matrix on the left has 3 as an entry twice 
while the matrix on the right does not. Let us compute the determinants using cofactor 
expansion. 
 

( ) ( ) ( )

1 1 2 1 0 2 1 0 1

1 2 0 1 2 2 1 1 3 2 1 0

3 1 0 3 2 0 3 2 1

1 ( 3) 2(2) 2 ( 2) 2 3 1 1

6 6

12

− + −

= − − − − + + − + − +
= − + −
= −

 

 

( ) ( )( ) ( ) ( )

1 2 2 1 0 2 1 0 2

1 0 2 1 2 2 1 2 0

1 2 0 1 2 0 1 2 2

4 2 2 2 2 4 4

4 4 4

12

− + −

= − − − − + + − −

= − − −
= −

 

 
 
                        Although the previous calculations were not very tedious, to carry out the process 

for the matrix in figure 4 would be nightmarish. The first step would be the sum of 8 
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determinants of 8x8 matrices. The next step would be up to 8 summands of determinants 
of 7x7 matrices For matrices this large, there is an alternative way (besides technology) 
to find the determinant.  Dodgson’s method for evaluating determinants is called 
Condensation, because it “condenses” a matrix step by step until the determinant is left at 
the end. The process can be outlined by the following steps: 

  
1) Use elementary row operations so that no zeros occur as an “interior” 

entry.                 [ ]
11 1

1

n

n nn

a a

zero free

a a

 
 − 
  

⋯

⋮ ⋮

⋯

 

 
2) Compute the determinant of each minor of 4 adjacent terms to form a new 

1 1n n− × −  matrix: 
   

            

12 1311 12

22 2321 22

2, 1 1, 1 1, 1 1,

, 2 , 1 , 1

n n n n n n n n

n n n n n n nn

a aa a

a aa a

a a a a

a a a a
− − − − − − −

− − −

 
 
 
 
 
 
 
 

⋯

⋮  

 
3) Repeat step 2) for the 1 1n n− × −  matrix, except now divide the new entry 

by the corresponding interior entry of the n n× . This division is the reason 
why we did not want zeros in the interior. 

. 
4) If a zero appears in the interior of any subsequent matrix,  then repeat step 

3. In general, for the n t n t− × −  matrix obtained by the 2x2 determinants 
of the ( ) ( )1 1n t n t− − × − −  matrix, divide each entry by the interior of the 

( ) ( )2 2n t n t− − × − −  matrix. Repeat until a single value is reached. 

5) If a zero occurs in the interior of any resultant matrix, the process cannot 
continue. Dodgson did develop a solution to this problem but it is itself 
tedious. It will be omitted in this discussion, but for the curious reader, the 
explanation of the method can be found in the article: Condensation of 
Determinants, Being a New and Brief Method for Computing their 
Arithmetical Values [4].  

 

Dodgson developed this method in response to the time consumption that ensues 
when trying to apply cofactor expansion to a large matrix, such as our 9x9 matrix for 
instance.[4]  Although the Condensation method would require around 9 steps (or more if 
zeros occur), the method of cofactor expansion could require up to9!=  362,880 steps. 
Condensation is overall a good resort for finding the determinant of very large matrices. 
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Below is the calculation of the determinant of the matrix from Figure 5 using 
Condensation. 

0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0

 
 
 
 
 
 

 

Since zeros are in the interior of this matrix, we must perform elementary row operations 
on it to remedy this problem. We arrive at the matrix: 

1 1 3 5

6 3 2 3

3 2 3 6

5 3 1 1

 
 
 
 
 
 

 

The first step of condensation yields: 

3 7 1

3 5 3

1 7 3

− − − 
 
 
 − − − 

 

The next step requires us to consult the interior of our starting matrix. After 
condensing and dividing by the appropriate interior entry, we arrive at: 

( ) ( )
( ) ( )

15 ( 21) / 3 21 ( 5) / 2 2 8

21 ( 5) / 2 15 ( 21) / 3 8 2

− − − − − −  − 
=   − − − − − − −  

 

Finally, we take step 3 again to obtain with a determinant of 
4 64

12
5

− = − . 

Now using the formula given by our main theorem, we obtain     

                        ( ) ( )4 2
4 1 2 3 4 12

−− − − = − ⋅ = − . 

 
 The theorem Dodgson used to develop this method is known as the Desnanot-
Jacobi Adjoint Matrix Theorem, but is also referred to as Dodgson’s Determinant 
Evaluation Rule, 
 2 11 1 1det( )det( ) det( )det( ) det( )det( )nn n nA A A A A A= −  
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 where A is an n n×  matrix, 2A  is the minor obtained by deleting both the first and last 

rows and columns, ijA  is the minor obtained by deleting the ith row and jth column [6]. 

This identity will come in very handy when proving the main theorem. 
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4. PROOF OF THE MAIN THEOREM 
 

Theorem. (Graham Pollack) Suppose T  is a tree with vertex set 1 2( ) { , ,..., }nV T v v v= . 

Let  ( ),i j n n
D d

×
=  be the n n×  distance matrix of T , where ,i jd  is the distance between 

the vertices iv  and  jv . 

 
Then the determinant of the matrix is 

 
2det( ) ( 1)( 2)nD n −= − − −  

 
which is independent of the structure of T [6]. 
 
 
Proof. (by induction onn ) 
 
Base case: 3n =  
 

 

Figure 5 

        
There is only one tree on 3 vertices (see Figure 5). 
 
The distance matrix for this tree is: 
 

0 1 2

1 0 1

2 1 0

D

 
 =  
  

 

 
For the sake of simplicity in calculations, from here on out we will denote the 

determinant of D  as D . 

 
Using cofactor expansion along the first row, we find 
 

 
1 0 1 1 1 0

0 1 2
2 1 2 0 2 1

D = − + = 0+2+2 = 4 

 
Using the formula in the hypothesis, we have that  
 3 2(3 1)( 2) (2)( 2) 4D −= − − − = − − =  
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Induction Step: Suppose the hypothesis holds for trees on less than n  vertices. 
 
Suppose T is a tree on 4n ≥ vertices. Every tree has a least two leaves, so find two leaves 
of T and call them 1v  and nv .   

 
Leaves have unique neighbors, so call the unique neighbors of 1v  and nv , 2v  and 1nv −  

respectively. So the distance between 1v and 2v  is 1, and so is the distance between nv  

and 1nv − . 

 
Consider the distance matrix of T: 
 
 
                                                         1v   2v  . . .            nv     

1

2

0 1

1 0 ?

.

.

. ? 0 1

1 0n

v

v

v

 
 
 
 
 
 
 
 
 

⋱

⋱
 

 
 
Now, let id  denote the ith column of D.  Note that any entry in 1d  is the distance of some 

vertex to 1v , while any entry in 2d is the distance of some vertex to 2v . Since 1v  is a 

pendant adjacent to 2v , any vertex of distance t  from 2v  will be distance 1t +  from 1v . 

Therefore the entry 1id = 2 1id +  for all 2 2i n≤ ≤ − . Similar for the columns 1nd −  and nd . 

 
 
Keeping this in mind, we can compute the following: 
 

( )
( )

1 2

1

1 1 1 ... 1

1 1 ... 1 1

T

T

n n

d d

d d −

− = −

− = −
 

 
Recall that adding multiples of columns to other columns does not change the 
determinant of the matrix. 
 

So use the column ( ) ( )1 2 1

T T

n nd d d d −− + − = 2 0 ... 0 2−  in place of the column 

1d  and rename it td . 

 
Therefore the matrix below has the same determinant as D  but is easier to compute: 
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12 1

2 , 1

2 .. ..

0 . :

: . :

0 . :

2 .. 0

n

n n n

d d

d d −

− 
 
 
 
 
 
 
 

 

 
 
 
 
Use cofactor expansion along the first column to compute the determinant, 
 

( ) 11
1 12 2 1

n nD D D
+= − + −  

 
where i

jD  is the matrix obtained by deleting the ith row and jth column of D. 

 
Note that 1

1D  is the distance matrix of 1T v− , which is a tree on less than n  vertices, so 

the hypothesis holds for it. 
 
So we have that 

                                          ( ) 11
1 12 2 1

n nD D D
+= − + −  

                                        = ( )( )( ) ( )3 1

12 2 2 2 1
n n nn D

− +− − − − + −                       (1) 

 
To get another expression for the determinant of D, we turn to the following lemma. 
 
Lemma. (Desnanot-Jacobi). i

jM  is a matrix obtained by deleting the ith row and jth 

column of an n n×  matrix M , and ik
jlM  is a matrix obtained by deleting the ith and kth 

rows and jth and lth rows of a matrix M , then  
 

1 1 1
1 1 1

n n n
n n nM M M M M M= − . 

 
Proof.  
   

Form the cofactor matrix, CM , whose entry in the ith row and jth column is ( )1
i j i

jM
+−  

where i
jM  is as defined above. Then  
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1 2 1
1 1 1

1 1

... ( 1)

. . .

: . :

( 1) ... ...

n n

C

n n
n n

M M M

M

M M

+

+

 − −
 
 

=  
 
 − 

 

 

Consider the matrix 

11 12 1

21

1 2

...

. .

: . :

...

n

n n nn

m m m

m
M

m m m

⋅

 
 
 =  
 
  

 and the dot product of the ith row of 

M and the ith row of CM : 
 

1 2
1 2 1 2... ( 1) ( 1) ... ( 1)i i i i i n i

i i in nm m m M M M+ + +• − + − −  

 
which simplifies to: 

( )1 1
1 1 2 2( 1) ... ( 1)i i i n i

i i in nm M m M m M+ −− − + + −  

 
Note that using the cofactor expansion formula along the ith row of M  would yield the 
same expression for the determinant of M . 
 
Also, note the expression  

( )1 1
1 1 2 2( 1) ... ( 1)i j j n j

i i in nm M m M m M+ −− − + + −  

with j i≠  is the determinant of the matrix in which row i is replaced with a copy of row 
j. Such a matrix has determinant 0, so we have that  
 

( )1 1
1 1 2 2( 1) ... ( 1)

0
i j j n j

i i in n

i jM if
m M m M m M

i jif
+ − =

− − + + − =  ≠
 

 
Define a new matrix *M . This matrix has the same 1st and nth column as CM , but for 
2 , 1i j n≤ ≤ − ,   

0
*

1ij

if i j
m

if i j

≠
=  =
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1 1
1 1

1 2
2 2

1 1

0 ... 0 ( 1)

1 0 ( 1)

* : :

: 0 1 :

( 1) 0 ... 0

n n

n n

n n
n n

M M

M M

M

M M

+

+

+

 −
 
 − −
 

=  
 
 
 − 

 

 
 
Note that by construction of *M , the matrix product *MM  gives 
 

*MM =

12 13

22

2 3

... 0

0 . 0

0 : . . 0

: . . :

0 ...n n

M m m

m

m m M

 
 
 
 
 
 
 
 

 

 
 
Using cofactor expansion along the first column of *MM , the determinant of *MM  is 
given by 
 

*MM = ( )1

1
*M MM . 

 
Then, expanding along the last column of 1

1*MM  this expression simplifies to: 

*MM = 1
1

n
nM M M  . 

Since * *MM M M= , we have  

 

                                                       1
1* n
nM M M=                                                         (2) 

 
 
Now compute the determinant of *M  a second way. Expanding along the first row, we 
get: 
 

( ) ( )1 11 1 1
1 1 1* * 1 1 *

n n n
nM M M M M

+ += ⋅ + − − ⋅ ⋅  

= ( ) 11 1 1
1 1 1* * 1 *

n n
nM M M M M

+= ⋅ − − ⋅ ⋅  

 
To simplify this, continue with cofactor expansion exploiting the many zeros in the first 

and last rows, to obtain 1
1* n

nM M=  and ( ) ( ) 11 1* 1 1 1
n n

n nM M
+= − − ⋅ , so that  
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                                         1 1
1 1* n n

n nM M M M M= ⋅ − ⋅ .                                      (3) 

 
Equating the two expressions (2) and (3) we have for *M  we have the statement of the 

lemma.                                                                                                                            �  
 
 
Returning to the proof of the main theorem, we make use of the identity. By the lemma, 
we have that  

1 1 1
1 1 1

n n n
n n nD D D D D D= − . 

 

By the definition of the distance matrix of T , 1
1
n

nD D= , since T  is symmetric. 

Recalling that 1
1

n
nD , 1

1D , and n
nD  are the distance matrices of 1 nT v v− − , 1T v− , and 

nT v−  respectively, we can apply the induction hypothesis and obtain: 

 
1 1 1
1 1 1

n n n
n n nD D D D D D= − , 

which, upon substitution, yields  

                      ( ) ( )( ) ( )( )
2 24 3 13 2 2 2

n n

nD n n D
− − − − − = − − − −

 
.                         (4) 

 
We now have, in (1) and (4), a system of two equations in two unknowns: 
 

( ) ( )( ) ( )( )

( )( )( ) ( )

2 24 3 1

3 1

1

3 2 2 2

2 2 2 2 1

n n

n

n n n

D n n D

D n D

− −

− +

  − − − = − − − −  

 = − − − − + −


 

 

For simplicity, let 1
nx D= . Simplifying the above equations and using the method of 

substitution to eliminate the variable D , we obtain: 

 

( ) ( )2 3 2 63 2 2 2 0n nx n x n− −+ − − − =  

 
This is a quadratic, and factors into 
 

( ) ( )( )3 32 2 2 0n nx x n− −− + − =  

which has solutions  
 

32nx −=   or  32 (2 )nx n−= − . 
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Using the solution 32 (2 )nx n−= −  in either of the original equations gives that the 
determinant of any distance matrix is 0. This is clearly a contradiction to the base case of 
the induction proof.  So our solution must be 32nx −= . We now have that  
 

D =  ( )( )( ) ( )3 1 32 2 2 2 1 2
n n nn

− + −− − − − + −  

                                            = 2( 1)( 2)nn −− − −                                                                     
 
 

Remark: As a corollary, we have that i
jD = 32n−  where ,i j  are leaves vertices of T .  
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5. CONCLUSION 
 

 The need to find the determinant of a distance matrix of a tree arose in an 
application problem involving telephone call routing. It was discovered by Ron Graham 
in his work on this application that the determinant of a distance matrix of a tree is in fact 
independent of the structure of the tree itself. It depends only upon the number of vertices 
in the tree, and can be expressed by a simple formula. This result is so simple yet so 
intriguing, that it has led to many different proofs of the formula over the last few 
decades. Through examples we explored the method of condensation and learned co-
factor expansion, since these were needed to understand the proof of the formula. We 
also experienced the fascinating formula at work in different trees of the same number of 
vertices. We then looked in detail at the proof given by Weigen Yan and Yeong-Nan 
Yeh.   
 



Tillia 

 18 

6. QUESTIONS  

Although it is not immediately or intuitively clear why the determinant has no 
regard for the tree’s structure, it may help to recall that a tree of n  vertices always has 

1n − edges. Edges are directly related to distance, and the term 1n − appears in the 
formula.   

 In my discussions with others and research in other articles, still nowhere have I 
found a satisfying intuitive explanation for why the determinant is expressed by such a 
formula. The formula 2( 1)( 2)nn −− − −  seems to be a counting problem. Ignoring sign, it 
could be counting the number of ways to first pick an edge in the tree, then whether to 
include or exclude each remaining edge. The sign of the determinant depends on the 
number of vertices in the tree. An even number of vertices will yield a negative 
determinant while an odd number gives a positive. How does the determinant relate 
geometrically to the number of edges in a tree? 
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