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1 Abstract

In this 501 paper, I will present the results found in the article ”On Chro-
matic Polynomials and the Golden Ratio,” by W.T. Tutte. Specifically, I
outline how the Golden Ratio, Φ, nearly appears as a root, the Golden Root,
to the chromatic polynomials of a particular class of graphs. Specifically,
when the n-vertex planar triangulation is evaluated at 1+Φ, the value must
be less than Φ5−n in absolute value. In this way, Tutte provides a theoret-
ical explanation for what was originally a purely empirical observation. In
a later chapter, I also present a few results about the Four Color Theorem
which show that the Golden Root can actually never be a root of such a
chromatic polynomial.

2 History of the Problem

In 1966, a woman by the name of Ruth Bari earned her doctorate in Mathe-
matics at Johns Hopkins University with the completion of her thesis, ”Ab-
solute Reducibility of Maps of at Most 19 Regions.” Bari’s paper covers
regular major maps.
The chromatic polynomials, introduced by George David Berkhoff in 1912
to further the study of the Four Color problem, of all the aforementioned
maps were calculated and it was this list of results that caught the eye of
renowned mathematician William Tutte.
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During the Summer of 1968 in Waterloo, Ontario, Canada, Tutte used
the now antiquated IBM360 computer to determine all zeroes of Bari’s chro-
matic polynomials.

As a general rule, Tutte found that there is just one negative non-integral
value for which the polynomial vanishes and this zero is close to

u = (−3 +
√

5)/2 = −0.38196601....

Immediate observation reveals the fact that u differs only the number 2
from the number of the Golden Ratio φ. Tutte refers to this particular zero
as the golden root of the polynomial.

Bari was using a slight variation of the polynomial which we now com-
monly refer to as the chromatic polynomial. In modern notation, her chro-
matic polynomials would be shifted and we would have a root near the value
1 + Φ.

For most of Bari’s polynomials, the golden root agrees with u to five or
more decimal places. Tutte also found the zeroes of those cubic maps of up
to eleven faces for which there is no ring of three faces and these zeroes have
agreement of up to two decimal places of the golden root. The main body
of this paper is a theoretical explanation of these empirical observations
that these chromatic polynomials tend to have a root near φ+ 1. After the
main theorem, I have included an Epilogue that discusses a related result
to Tutte’s found in the study of the Four Color Problem proving that φ+ 1
can never actually be a root to a chromatic polynomial.

3 Academic Motivation

My personal motivation for studying Tutte’s result and its correlations is
threefold: one part world-famous constant, one part discrete mathematics,
and one part love of color. And it was with a broad search consisting of
subject words Golden Ratio and Graph Theory that landed me pinpoint in
the world of the chromatic polynomials and some striking properties with
respect to their roots... or impossible roots for that matter.

As a child, I was infatuated with a number of things, but I had no idea
that many of them would re-emerge in my life in the concept of a Master’s
Degree research paper. There was my obsession with the integers from as
far back as I can remember, mainly as a result from being born on a Friday
the 13th and the obvious attention it brought me as a child. There was my
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love of the concept of color and its prevalence in everything. Colors had
personalities for me as a child, much the same as the integers did. Add to
that an affinity for puzzles, mazes and other thinking games, one might not
have been surprised I would develop an interest in the discipline of Discrete
Mathematics.

In addition, I adored the realm of fantasy and its dragons and such.
Naturally, I ventured into the realm of Dungeons and Dragons and was
immediately fascinated with the dice that accompany the game.

Not until later in life did I realize the behind-the-scenes beauty of the
Platonic Solids, but the 5-headed Chromatic Dragon (all 5 heads being of
different color) and the icosahedron would play a role for me 25 years later.

Chromatic polynomials or dragons, truncated icosahedrons or 20-sided
dice, shapes or mysterious numbers, or connect the dots or planar triangu-
lations... it makes no difference in the grand scheme of things because in
the end everything is connected.

4 Definitions

Graph Constraints A graph G is a triple consisting of a vertex set V (G),
an edge set E(G), and a relation that associates with each edge two vertices
(not necessarily distinct) called its endpoints. A loop is an edge whose
endpoints are equal. Multiple Edges are edges having the same pair of
endpoints. A simple graph is a graph having no loops or multiple edges.
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When u and v are the endpoints of an edge, they are adjacent and are
neighbors. We write x↔ y for ”x is adjacent to y”. The graphs considered
throughout this paper are finite and loopless. They may, however, have
multiple edges.

Set Cardinalities Each vertex set and edge set has a finite number of ele-
ments in it. Edges from a vertex to itself are forbidden, but multigraphs are
allowed. i.e. There may exist more than one edge from vertex to another.
We denote the numbers of vertices and edges of a graph G by αv(G) and
αe(G) , respectively. We also write α(G) for the sum of these two numbers.

αv(G) = |V | where V = {vi | v ∈ V i ∈ Z}
αe(G) = |E| where E = {ei | vi ∼ vj ←→ ei connects vi to vj}
α(G) = |V |+ |E|

Vertex Coloring If G is a graph and n is a positive integer, we write
P(G,n) for the number of ways of properly coloring the vertices of G with
n given colors so that no edge has both of its ends the same color. In such
a coloring not all the n colors need be used. A permutation of the n colors
that affects the colors actually used is considered to give a new coloring of
the graph.
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Deletion and Contraction Let A be an edge, with ends x and y, in a
graph G. We write G′A for the graph obtained from G by deleting A, but
retaining its ends x and y. If A is the only edge of G with ends x and y, we
write G′′A for the graph obtained from G′A by identifying x and y. We say
that G′′A is obtained from G by contracting A.
The following is a formal algorithm for the Deletion and Contraction method
of breaking down a graph into its respective null graphs. We will soon see
that determining P(G,n) with respect to null graphs is quite simple and
thus the algorithm provides us with a basis of determining the number of
ways of coloring the vertices, P(G,n) of any graph G.

Null Graph Algorithm
1- Give G a positive value.
2- While there is a signed graph, and an edge, α, in the signed graph,

do:
i- Choose a non-null signed graph and an edge α.
ii- Remove α from the graph, while keeping its sign if α was deleted,

and negating the sign if α was contracted.
3- Sum up all the chromatic polynomials of the null graphs with the

appropriate signs.

In the figure below, a step to the left is a deletion and a step to the right
is a contraction. After each step, if the graph is not reduced down to a null
graph, the algorithm is repeated. At the end of the algorithm, only null
graphs remain.
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5 Set-up Theorems

From the definition of P(G,n) and Deletion/Contraction, we may derive the
following theorems:

Theorem 1 If G has k > 0 vertices and no edges, then P (G,n) = nk.

Proof. Suppose G were a graph with k > 0 vertices and no edges. Since
no edges exist, surely no edge will have the same edge color regardless of
any coloring. Thus, we have k vertices and n choices of colors for coloring
each vertex. Therefore,

P (G,n) = n× n× ...× n, k times = nk

and we are done.

�

Theorem 2 If G is a complete k-graph where k > 0 then
P (G,n) = n(n− 1)(n− 2)...(n− k + 1).

8



Proof. Suppose G were a complete k-graph where k > 0. By definition,
a complete k-graph is a graph with k vertices, each with valency k − 1 and
thereby adjacent to every other vertex in G. Choose any arbitrary vertex
and color it some color of the n choices. Since this vertex is adjacent to each
other vertex, then the next vertex must be of some color different than our
first choice. Thus we have n−1 remaining colors to choose from. Continuing
in this manner and counting each vertex along the way until all k vertices
are colored, we obtain the following for P (G,n):

P (G,n) = P (n, k) = n!
(n−k)! = n(n−1)(n−2)...(n−k+1)(n−k)...3×2×1

(n−k)(n−k−1)(n−k−2)...3×2×1 .

Indeed,

n(n−1)(n−2)...(n−k+1)(n−k)...3×2×1
(n−k)(n−k−1)(n−k−2)...3×2×1 = n(n− 1)(n− 2)...(n− k + 1)

and we are done.

�

Theorem 3 If G has two edges with the same pair of ends, then the deletion
of one of them does not affect the value of P (G,n).

Proof. Suppose G is a multigraph and contains multiple edges between
the same vertices. Coloring has nothing to do with how more or less con-
nected one vertex is to another, just whether or not it is connected at all.
Therefore, without loss of generality, deleting all extra edges between the
same of pair vertices so as to leave just one still keeps those two vertices
adjacent and thereby a different color as required and not altering the value
of P (G,n).
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�

By a natural extension of the results of Theorems 1 and 2, we define
P (G,n) to be 1 when G is a null graph. It is convenient to refer to a
null graph as the complete 0-graph. We use these conventions in the next
theorem.

Theorem 4 Let G be the union of two subgraphs H and K whose intersec-
tion is a complete k-graph (k ≥ 0). Then

P (G,n) · P (H
⋂
K,n) = P (H,n) · P (K,n).

Proof. Suppose G is a graph described as above. Then there would ex-
ist two disjoint sets of vertices whose colorings were not determined by one
another, call them GH and GK . Since the vertex set of H

⋂
K is that of a

complete k-graph, it is disjoint from either GH or GK . Thus

P (H,n) = P (Kk, n) · P (GH) = n(n− 1)(n− 2)(n− r)(n− r − 1) · P (GH)
and

P (K,n) = P (Kk, n) ·P (GK) = n(n−1)(n−2)(n− r)(n− r−1) ·P (GK)

P (H
⋂
K,n) = n(n− 1)(n− 2)(n− r)(n− r − 1)·

P (G,n) · n(n− 1)(n− 2)(n− r)(n− r − 1) =

= [n(n− 1)(n− 2)(n− r)(n− r − 1)]2 ·P (GH) ·P (GK) = P (H,n) ·P (K,n)
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P (G,n) · P (H
⋂
K,n) = P (H,n) · P (K,n)

= P (G,n) · P (K1, n) = P (H,n) · P (K,n)

= P (G,n) · n = n(n− 1) · n(n− 1)

P (G,n) = n(n−1)·n(n−1)
n = n(n− 1)2

�
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Theorem 5 If G is a simple graph and A is an edge of G, then

P (G,n) = P (G′A, n)− P (G′′A, n).

Proof. Each proper n − coloring of G is a proper n − coloring of G′A.
A proper n− coloring of G′A is a proper n− coloring of G if and only if it
gives distinct colors to the endpoints of b,c of A. Hence we can count the
proper n-colorings of G by subtracting from P (G′A, n) the number of proper
n-colorings of G′A that give b and c the same color.
Colorings of G′A in which b and c have the same color correspond directly
to proper n− colorings of GA”, in which the color of the contracted vertex
is the common color of b and c. Such a coloring properly colors all of the
edges of GA” if and only if it properly colors all the edges of G other than
A.

�

Theorem 6 Let A be a vertex of G, and let it be joined by an edge to every
other vertex of G. Then, if GA is the graph obtained from G by deleting A
and its incident edges, we have

P (G,n) = n · P (GA, n− 1).

Proof. Suppose G is a graph with a vertex A as described above. Then
A ∈ V |Ai ∼ Aj , ∀i 6= j. If GA is defined as above, then we know that no
other vertex in G has the same color as A, which is n, by definition of A’s
degree. Thus, since P (G,n) is an arrangement with respect to n colors, we
simply have selected a color from one of those n choices for the first slot in
our arrangement. The rest of the arrangement is solely determined by the
coloring of GA without use of the one out of n colors just chosen. Thus,
n · P (GA, n − 1) is the representation of our permutation of colorings on n
colors and we are done.

�
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We now make use of Theorems 1 through 6 to determine P (G,n) in some
simple cases.

Theorem 7 Let Tk be a tree with exactly k vertices. Then

P (Tk, n) = n(n− 1)k−1.

Proof. We note the fact that any tree with k ≥ 2 vertices has a vertex of
degree 1. This proof is by induction on the number of vertices. The result
is true for n = 1 since P (Tk, 1) = (1) · (1 − 1)0 = 1. Suppose it were true
for a tree with T with n = N − 1 vertices, e an edge of T incident with a
vertex of degree 1. Then T ′e has two components, one of which is an isolated
vertex and the other a tree of N − 1 vertices. In this case, the latter case is
the tree T ′′e . Hence

P (T ′e, n) = nP (T ′′e , n).
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Using Theorem 5 and our induction hypothesis we obtain

P (T, n) = (n− 1) · P (T ′′e , n) = (n− 1)n(n− 1)N−2 = n(n− 1)N−1.

Thus the result is true when n = N , and therefore for all n by the
principle of induction.

�

Let Ck denote a circuit of k edges where k ≥ 2. Then by Theorems 2
and 3, we have the following lemma.

Lemma 1 P (C2, n) = n(n− 1)

Proof. Suppose our graph was C2. Then we have a graph of two vertices
and two edges, each edge connecting the vertices twice. We have already
shown in Theorem 3 that the deletion of one of these edges does not affect
the value P (C2, n). We have reduced this to a K2 graph, a complete 2-graph,
where P (K2, n) = n(n− 1) by Theorem 2. The result follows immediately.

�

Moreover, the deletion-contraction method yields a more general result
for any cycle graph on k edges. For k  2 and by Theorems 5 and 7, we
obtain a nice theorem.

Theorem 8 Let Ck be a cycle graph with exactly k vertices or edges. Then

P (Ck, n) = (n− 1)k−1 + (−1)k(n− 1).
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Proof. If k ≥ 3 the deletion of any edge from Ck results in a Path graph
Pk where Pk is a tree on k vertices. The contraction of any edge results in
a cycle graph Ck−1 and thus by Theorem 5

P (Ck, n) = n(n− 1)k−1 − P (Ck−1, n).

One may observe that C3 = K3 and thus, we have

P (C3, n) = n(n− 1)(n− 2) = (n− 1)3 − (n− 1).

Using P (C3, n) as an initial condition, we may solve the recursion given
above and obtain our result:

P (Ck, n) = (n− 1)k + (−1)k(n− 1).

�

Let Wk, be a wheel of k spokes . This means that Wk is obtained from
a circuit Ck of k edges adjoining a new vertex v called the hub, and then
joining v to the k vertices of Ck by k new edges called spokes. By Theorems
6 and 8 we have another theorem.

Theorem 9 Let Wk be a wheel graph on k spokes. Then

P (Wk, n) = n(n− 2)k + (−1)k(n− 2).
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Proof. Suppose we have a graph that is a wheel defined above. Then by
definition, there exists some circuit graph Ck with k edges and k vertices that
creates Wk. Thus, using Theorem 6, we have P (Wk, n) = nP (Gv , n− 1)
where Gv is the graph made when deleting vertex v and all edges inci-
dent to v. If we assume that v is the center of our wheel, then deleting v
and all of the spokes results in the circuit graph Ck. Hence P (Wk, n) =
nP (Gv , n− 1) = nP (Ck, n− 1) and by Theorem 8 we already know that
P (Ck, n) = (n−1)k+(−1)k(n−1) Surely, substituting n−1 for n in the pre-
ceding equation results in our desired formula. P (Wk, n) = nP (Gv , n− 1) =
nP (Ck, n− 1) = n(n− 2)k + (−1)k(n− 2) and we are done.

�

6 Chromatic Polynomial

Chromatic Polynomial It is known that P (G,n) is a polynomial in n,
for each G, and that its degree is equal to the number of vertices of G.
This result is proved by induction, using Theorems 1, 3, and 5. Proof. By
Theorem 1, if a graph G has k vertices and no edges, then P (G,n) = nk.
This is obviously a polynomial in n and of degree k. By Theorem 2, if G is
a complete K-graph, where K > 0, then P (G,n) = n · (n− 1) · · · (n− k+ 1).
Again, we have a resulting polynomial in n with a product of k terms, and
is thus of degree k. By Theorem 7, if G is a tree with k vertices, then
P (G,n) = n(n− 1)(k−1) · n(k+1) · ··.
P (G,n) is known as the chromatic polynomial of G. As a polynomial it has a
value not only when n is a positive integer but when n is any real or complex
number, while providing us with an empirical number of proper colorings of
any graph. .
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7 Planar Graphs

Planar Graphs Tutte lightly states that it is known that a planar tri-
angulation must have at least one vertex whose valency is less than 6. To
prove this aside, let us first introduce the Handshaking lemma and a few
corollaries:

Lemma 2 In any graph, the sum of all the vertex degrees is equal to twice
the number of edges.

Proof. Since each edge has two ends (adjacent vertices), it must contribute
exactly 2 to the sum of the degrees and the result follows immediately.∑

δ(Gv) = 2e

�

Lemma 3 Euler’s Formula: If a connected plane graph G has exactly n
vertices, e edges, and f faces, then

n− e+ f = 2.

Proof. We induct on the number of vertices, n. The basis step for n = 1
gives us a bouquet of loops. But loops are not allowed so we simply have
a null graph, resulting in e = 0 edges and giving us f = 1 face. Indeed,
1 + 0 + 1 = 2 and the trivial base holds.

For our Induction step, suppose the statement is true for some n>1.
Since G is connected and has more than one vertex, there exists some edge
and that edge is not a loop. When contracting such an edge, we obtain a
plane graph G’ with n’ vertices, e’ edges, and f ’ faces. The contraction
does not change the number of faces since we merely shortened boundaries,
but it reduces the number of edges and vertices by 1, so n′ = n−1,e′ = e−1,
and f ′ = f . Applying our induction hypothesis yields the following:

n− e+ f = n′ + 1− (e′ + 1) + f ′ = n′ − e′ + f ′ = 2
and our result is proven.

�

Corollary 1 Let G be a connected planar simple graph with n vertices,
where n ≥ 3, and has m edges. Then m ≥ 3n− 6.
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Proof. Let G have f faces. Then the Handshaking lemma allows for the
planar graph that 2m ≥ 3f (since the degree of each face of a simple graph
is at least 3). So f ≤ 2/3m. Apply Euler’s formula:

n−m+ f = 2⇒ m− n+ 2 ≤ 2/3m⇒ m ≤ 3n− 6

and the result is proven.

�

Corollary 2 Let G be a connected planar simple graph with n vertices, m
edges and NO triangles. Then m ≤ 2n− 4.

Proof. For a graph G with f faces, the Handshaking lemma shows for pla-
nar graphs that 2m ≥ 4f (since the degree of each face of a simple graph
without triangles is at least 4) so that f ≤ 1/2m. Using Euler’s formula
shows

n−m+ f = 2⇒ m− n+ 2 = f ⇒ m− n+ 2 ≤ 1/2m⇒ m ≤ 2n− 4

However, suppose there are triangles as faces, more specifically all faces
were triangles, then the Handshaking lemma implies

2m = 3f ⇒ m = 3/2 f ⇒ n − m + f = 2 ⇒ n − 3/2 f + f = 2 ⇒
n− 1/2 f = 2⇒ n− 2 = 1/2 f ⇒ f = 2n− 4
And now we finally come back to Tutte’s claim:

Corollary 3 Let G be a connected planar simple graph. Then G contains
at least one vertex of degree 5 or less

Proof. Suppose G is planar. Then by Corollary 1 above, we have m ≤ 3n−6.
Now suppose that every vertex in G has degree 6 or more. By the Hand-
shaking lemma,∑

δ(Gv) = 2e ≤ 2(3n− 6) ≤ 6n− 12.

. Therefore, the degree sum is at most 6n − 12. Invoking the Pigeonhole
Principle, we can divide 6n− 12 by the number of vertices n to obtain the
average vertex degree in G.
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6n− 12
n

= 6− 12
n
< 6

However, this is a contradiction since we assumed that every vertex had
degree 6 or greater thus proving that there exists at least one vertex of
degree 5 in the graph G.

�

8 Phi, Φ

The Golden Ratio Nothing extraordinary about the the now popular φ
is stated here, but for a the chance newcomer, let’s take a quick look at
where this remarkable concept comes from.

Given a rectangle having sides in the ratio 1 : x, φ is defined as the
unique number x such that partitioning the original rectangle into a square
and new rectangle as illustrated above results in a new rectangle which also
has sides in the ratio 1 : x (i.e., such that the shaded rectangles shown above
are similar). Based on the above definition, we immediately see the ratio:

φ

1
=

1
φ− 1

resulting in the quadratic polynomial

φ2 − φ− 1 = 0.

Using the quadratic equation and solving the polynomial for its roots,
we obtain the exact value of φ, namely
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φ = 1/2 +
√

5/2

= 1.6180339887498948482045868343...

There are number of ways in which to arrive at the Golden Ratio, ranging
from Euclid’s extreme and mean ratios of a line segment to nested radicals
and recurrence relations to infinite series related to the Fibonacci numbers;
however, my personal favorite was that of the Pythagoreans and their Pen-
tagram, determining that each intersection of edges sections the edges in the
golden ratio: the ratio of the length of the edge to the longer segment is φ,
as is the length of the longer segment to the shorter. Also, the ratio of the
length of the shorter segment to the segment bounded by the 2 intersecting
edges (a side of the pentagon in the pentagram’s center) is φ. The pen-
tagram includes ten isosceles triangles, five acute and five obtuse isosceles
triangles. In all of them, the ratio of the longer side to the shorter side is φ.

9 A Non-Integral Value of n

Let φ denote the golden ratio. Thus

φ2 = φ+ 1, (1)

φ = (1 +
√

5)/2 = 1.61803398874989484820... (2)

In this section we put n = 1 + φ. Thus
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n = φ2 = φ+ 1, n− 1 = φ, n− 2 = φ−1, (3)

by (1). Applying this result to Theorem 4 we obtain the following rule:

Theorem 10 Let G be the union of two subgraphs H and K whose inter-
section is a complete k-graph, where k = 0, 1, 2, or 3. Then

P (G, 1 + φ) = φ−θP (H, 1 + φ)P (K, 1 + φ),

where θ = 0, 2, 3 or 2, respectively.

Proof. There are four cases here:

Case 1: k = 0, θ = 0. H
⋂
K = ∅

In the first case the intersection of H an K is the null graph. We have already
defined the null graph to be the complete 0-graph and have P (∅, n) = 1.
Therefore, using Theorem 4, we may write P (G,n)P (H

⋂
K,n) = P (H,n)P (K,n) =

P (G,n)1 = P (H,n)P (K,n) and obtain P (G,n) = P (H,n)P (K,n) Evalu-
ating for θ = 0, and substituting n = φ+ 1 from (3) we see that

P (G,φ+ 1) = φ0P (H,φ+ 1)P (K,φ+ 1) = P (H,φ+ 1)P (K,φ+ 1)
and the result is proven.

Case 2: k = 1, θ = 2. H
⋂
K = complete 1-graph, K1

A complete 1-graph has P (K1, n) = n. Therefore P (G,n)P (H
⋂
K,n) =

P (H,n)P (K,n) ←→ P (G,n)n = P (H,n)P (K,n) by direct result of Theo-
rem 4. Substituting n = φ + 1 = φ2 from (3), we obtain P (G,φ + 1)φ2 =
P (H,φ+ 1)P (K,φ+ 1). Multiplying both sides by φ−2 yields our result for
θ = 2,

P (G,φ+ 1) = φ−2P (H,φ+ 1)P (K,φ+ 1)
and the result is proven.

Case 3: k = 2, θ = 3. H
⋂
K = complete 2-graph, K2

A complete 2-graph has P (K2, n) = n(n−1). Therefore P (G,n)P (H
⋂
K,n) =

P (H,n)P (K,n)←→ P (G,n)n(n− 1) = P (H,n)P (K,n) by direct result of
Theorem 4. Substituting n = φ + 1 = φ2 from (3), we obtain P (G,φ +
1)φ2φ = P (G,φ + 1)φ3 = P (H,φ + 1)P (K,φ + 1). Multiplying both sides
by φ−3 yields our result for θ = 3,
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P (G,φ+ 1) = φ−3P (H,φ+ 1)P (K,φ+ 1)
and the result is proven.

Case 4: k = 3, θ = 2. H
⋂
K = complete 3-graph, K3

A complete 3-graph has P (K3, n) = n(n−1)(n−2). Therefore P (G,n)P (H
⋂
K,n) =

P (H,n)P (K,n) ←→ P (G,n)n(n − 1)(n − 2) = P (H,n)P (K,n) by direct
result of Theorem 4. Substituting n = φ + 1 = φ2 from (3), we obtain
P (G,φ+ 1)φ2φφ−1 = P (G,φ+ 1)φ2 = P (H,φ+ 1)P (K,φ+ 1). Multiplying
both sides by φ−2 yields our result for θ = 2,

P (G,φ+ 1) = φ−2P (H,φ+ 1)P (K,φ+ 1)
and the result is proven.

�

If v is a vertex of a graph G we write Gv for the graph obtained from G
by deleting the vertex v and its incident edges.

We say that G is wheel-like at a vertex v if there is a circuit C of G
satisfying the following conditions:

• v is not a vertex of C.

• Each vertex of C is joined to v by at least one edge of G.

• No edge of G joins v to a vertex not belonging in C.

Under these conditions we say that the circuit C encloses v and we obtain
the following:

Theorem 11 Let a vertex v of a planar graph G be enclosed by a circuit C
of m vertices. Then

P (G, 1 + φ) = (−1)mφ1−mP (Gv , 1 + φ).

Proof. Proceed with induction. The theorem is trivially true when
α(G) = 0 since then no vertex v or circuit C can exist. Thus, m = 0
and

P (G, 1 + φ) = (−1)mφ1−mP (Gv , 1 + φ) = (−1)0φ1−0P (Gv , 1 + φ) =
φP (Gv , 1 + φ) = P (G, 1 + φ)
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Now we may assume as an inductive hypothesis that it is true whenever
α(G) is less than some positive integer q and consider the case α(G) = q.
This now breaks into a few different cases that represent the possibilities
that can happen.

CASE A. Suppose first that there is a vertex x of G that is distinct
from v and does not belong to C.

CASE A1. It may happen that X0 is incident with no edges of G. In
this case we write H for the edgeless graph defined by the vertex X0 and K
for the graph Gx0 . Clearly, K is planar by our original hypothesis and v is
still enclosed by the circuit C in K. Moreover, Gv is the union of H and Kv.
We then have

P (G, 1 + φ) = P (H, 1 + φ) · P (K, 1 + φ) by Theorem 10,

P (G, 1 + φ) = (−1)mφ1−mP (H, 1 + φ)P (Kv, 1 + φ) by the inductive hy-
pothesis,
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P (G, 1 + φ) = (−1)mφ1−mP (Gv, 1 + φ) also by Theorem 10.

and the theorem is true for G.
CASE A2. Another possibility is that X1 is joined to another vertex

Y2, necessarily not v, by two distinct edges A2 and B1. Let H be the graph
obtained from G by deleting B1. Then Hv is obtained from Gv by deleting
B1 and in neither case does the deletion affect the chromatic polynomial by
Theorem 3. But v is still enclosed by the circuit C in H and the theorem is
true for H by the inductive hypothesis. Hence, the theorem is also true for G.

CASE A3. In the remaining case X1 is joined to another vertex Y1 6= v
by exactly one edge A1. We consider the graphs G′A1

and G”A1 . These
graphs are planar since the property of planarity is invariant with respect
to deletions and contractions of edges. We note that

α(G”A1) < α(G′A1
) < α(G). (4)

We see that

(Gv)′A = (G′A)v, (Gv)′′A = (G′′A)v. (5)

Moreover, v is enclosed by the circuit C in each of the graphs G′A1
and

G”A1 . Accordingly,

P (G, 1 + φ) = P (G′A, 1 + φ)− P (G′′A, 1 + φ) by Theorem 5,

P (G, 1 + φ) = (−1)m · φ1−m · P ((Gv)′A, 1 + φ)− P ((Gv)′′A, 1 + φ)

by (4), (5), and the inductive hypothesis,

P (G, 1 + φ) = (−1)m · φ1−m · P (Gv, 1 + φ) again by Theorem 5 and the
theorem is true for G.

CASE B. We may now assume that G has no vertices other than v and
the vertices of C. Let the vertices of C be enumerated as v1, v2,..., vm in their
cyclic order in C. By definition of a circuit, we can clearly deduce that m ≥ 2.

CASE B1. Suppose first that there is an edge A of G whose ends
are non-consecutive vertices of C. We may write them as vi and vj , where
2 < j < m. There are edges A1 and Aj joining v to v1 and vj , respectively.
We consider the complete 3-graph T defined by the edges A, A1, and Aj .
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Since G is planar it is the union of two proper subgraphs H and K whose
intersection is the circuit T and since G is wheel-like at v, we may assume
H to include v2 but not vj+1, and K to include vj+1 but not v2. We have

α(H), α(K) < α(G). (6)

We observe that v is enclosed in H by a circuit of j edges, and in K by
a circuit of m − j + 2 edges. Moreover Gv is the union of Hv and Kv, two
subgraphs whose intersection is a complete 2-graph with edge A. Hence,

P (G, 1 + φ) = φ−2 · P (H, 1 + φ) · P (K, 1 + φ) by Theorem 10,

P (G, 1+φ) = φ−2·(−1)j · φ1−j · P (Hv, 1 + φ)·(−1)m−j+2 · φ−1−m+j · P (Kv, 1 + φ)

by (6) and the inductive hypothesis. Thus

P (G, 1 + φ) = (−1)m · φ−2−m · P (Hv, 1 + φ) · P (Kv, 1 + φ)

P (G, 1 + φ) = (−1)m · φ1−m · P (Gv, 1 + φ)

again by Theorem 10 and the theorem is true for G.

CASE B2. In the remaining case G is equivalent to a wheel of m spokes
and C to a circuit of m edges by Theorem 3. Then,

P (G, 1 + φ) = φ2 · φ−m + (−1)m · φ−1, by Theorem 9 and (3),

P (G, 1 + φ) = (−1)m · φ1−m · φm + (−1)m · φ

P (G, 1 + φ) = (−1)m · φ1−m · P (Gv, 1 + φ) by Theorem 8 and the theo-
rem is true for G.

We have now shown that if the theorem holds when α(G) < q, it holds
also for α(G) = q. Since it is trivially true when α(G) = 1 it follows in
general by induction and we are done.

�
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10 Maps

A regular map is a cubic map of simply connected regions without proper
2-rings or proper 3-rings. A cubic map is a collection of vertices, joined
together by edges, to create enclosed faces with the restriction that exactly
three edges meet at each vertex. Note that if a map has a vertex with
more than three edges meeting at it, an entire new face can be added over
the vertex. This result is due to the work the esteemed Arthur Cayley in
1879. This result is important to this paper as it allows us to determine
a coloring of the newer cubic map and making the task of determining the
original coloring trivial since we can simply shrink each face back down to
the vertex it replaced.

Major maps are those regular maps which contain no regions with fewer
than five sides. By deriving some of the properties of regular major maps,
all such maps with fewer than twenty regions were determined within home-
omorphisms in her work. Note that two graphs are homeomorphic if there
is an isomorphism from some subdivision of one graph to some subdivision
of the other graph.

26



Let a graph G be realized in the 2-sphere or closed plane so as to dissect
the surface into simply connected regions each bounded by a circuit of G.
For any natural number n, an n-sphere of radius r is defined as the set of
points in (n + 1)-dimensional Euclidean space which are at distance r from
a central point, where the radius r may be any positive real number. These
regions are the faces of a plane map M of which G is the 1-section, the
face that bounds all other regions. A face is called a m-gon if its bounding
circuit has exactly m edges. Evidently each face is at least a 2-gon.

The edges and vertices of G are called the edges and vertices of M,
respectively. An edge or vertex is incident with a face F if it belongs to the
bounding circuit of that face. The chromatic polynomial P (G,n) of G is
also called the chromatic polynomial of M, and accordingly may be written
as P (M,n).

The map M is called a triangulation of the 2-sphere or closed plane, or
a planar triangulation, if its faces are all triangulations, that is, 3-gons. The
class of all planar triangulations with exactly k vertices will be denoted by
Z(k). We write Z(k, m), where m is a positive integer, for the class of all
plane maps of k vertices in which one face is an m-gon and the others are
all triangles.
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11 Main Theorem

We now state and prove the main theorem of the paper.

Theorem 12 If M ∈ Z(k), then

|P (M, 1 + φ)| ≤ φ5−k

If M ∈ Z(k,m), where 2 ≤ m ≤ 5, then

|P (M, 1 + φ)| ≤ φ3+m−k.

Proof. Proceed by induction on αv(G). The theorem is trivially true
when αv(G) = 0. Since there are no vertices, Z(0) and Z(m, 0) would
surely be null. Indeed, evaluating any of the two absolute value inequalities
with P (m,n) = 1 implies

|1| ≤ φ5 and |1| ≤ φ3+m for any m >0

Assume as an inductive hypothesis that it is true whenever αv(G) is less
than some positive integer q, and consider the case αv(G) = q. Observe that
we are working with q vertices now.

Suppose first that M ∈ Z(q). It may happen that the 1-section G of M
has a circuit C of two edges, i.e. a 2-gon or line. Then there exist positive
integers q1 and q2 such that M can be formed from a member M1 of Z(q1, z)
and a member of M2 of Z(q2, z) by deleting the 2-gons and identifying their
bounding circuits. In other words, there exist numbers of vertices where our
triangulation can be formed from a plane map on this number of vertices
(i.e. q1 and q2) and one face is a 2-gon. We form M by deleting the 2-gons
and identifying bounding circuits.

Evidently, q1 and q2 are both less than q and their sum is q + 2. This is
because the whole number of vertices in M is q. We have two subscripted
M’s - namely, M1 and M2 that live within M and therefore must have a
smaller amount of vertices than q. Now let H1 and H2 be the 1-sections of
M1 and M2, respectively. These two subgraphs of G have G as their union
and C as their intersection. Thus,
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|P (M, 1 + φ)| = φ−3 · |P (M1, 1 + φ)| · |P (M2, 1 + φ)| (By Theorem 2 and
Theorem 10 since ”k” = 2⇒ θ = 3)
|P (M, 1 + φ)| ≤ φ−3 · φ5−q1 · φ5−q2 (By our inductive hypothesis)
|P (M, 1 + φ)| ≤ φ−3 · φ10 · φ−q1 · φ−q2
|P (M, 1 + φ)| ≤ φ7 · φ−q1·−q2
|P (M, 1 + φ)| ≤ φ7 · φ−q−2

Resulting in |P (M, 1 + φ)| ≤ φ5−q.

We may now suppose G to have no circuit such as C.
It may happen that G is a complete 3-graph. Then M has exactly two faces,
with the same bounding circuit G. In this case,

|P (M, 1 + φ)| = φ2 = φ5−q (by Theorem 2)
|P (G, k)| = k(k − 1)(k − 2) where k = 3⇒ θ = 2
|P (G, 1 + φ)| = φ−2 · k[(k− 1)(k− 2)] = φ−2 · φ2[φ · (φ− 1)] = φ(φ) = φ2

or
q = 3⇒ P (M, 1 + φ) = φ5−q = φ5−3 = φ2

and the theorem is satisfied.

It may also occur that G is wheel-like at v, and v is enclosed by a circuit
in G of m edges, where m is the valency of v in G. By deleting v and its
incident edges and fusing the triangles of M incident with v into a single
new face, we derive from M a member Mv of Z(q − 1,m). The 1-section of
Mv is Gv. Then

|P (M, 1 + φ)| = φ1−m · |P (Mv, 1 + φ)| (by Theorem 11)

|P (M, 1 + φ)| = φ1−m · |P (Mv, 1 + φ)| ≤ φ1−m · φ3+m−q (by induction
hypothesis)

But we deleted v so we now have q − 1 vertices and thus

|P (M, 1 + φ)| ≤ φ1−m · φ3+m−q = φ1−m · φ3+m−(q−1) = φ1−m · φ4+m−q

|P (M, 1 + φ)| ≤ φ5−q and the theorem is satisfied.

We have now shown that M satisfies the theorem if it belongs to Z(q).
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Suppose that M ∈ Z(q,m) where m = 2, 3, 4 or 5.

For m = 2, we can convert M into a planar triangulation N by deleting
one edge of the 2-gon. The deletion does not alter the chromatic polynomial
by Theorem 3. So, by the result already proven

|P (M, 1 + φ)| = |P (N, 1 + φ) ≤ φ5−q = φ3+m−q| since m = 2.

For m = 3, the M is a planar triangulation as all faces obviously would
be triangles. Again, by the result already proven

|P (M, 1 + φ)| ≤ φ5−q < φ3+m−q| since m = 3.

In the remaining case, m = 4 or m = 5, we can find two non-consecutive
vertices x and y in the bounding circuit of the m-gon such that no edge of G
joins x and y. We can add a new edge A joining x and y so as to subdivide
the m-gon into a triangle and an (m − 1) − gon. (i.e. a 4 and another 4
(3-gon) or a 4 and a � (4-gon) ). Let us denote the resulting map by N
and its 1-section by J. Instead of adding A, we can identify x and y and
delete one edge incident with a resulting 2-gon. This procedure yields a map
N1 ∈ Z(q − 1,m − 2) (note that Z(q − 1,m − 2) has one less vertex and 2
less edges). Let us denote the 1-section of N1 by H. Then G = J ′A (J minus
edge A yet keeping x and y) and H have the same chromatic polynomial as
J ′′A (contracting and identifyingx and y) by Theorem 3. Using Theorem 5
we find that

P (G,n) = P (G′A, n)− P (G′′A, n)

P (M, 1 + φ) = P (N, 1 + φ)− P (N1, 1 + φ)

|P (M, 1 + φ)| ≤ |P (N, 1 + φ)|+ |P (N1, 1 + φ)|

If m = 4, we have N ∈ Z(q) (since it is a obvious triangulation) and
N1 ∈ Z(q−1, 2). Hence, by the inductive hypothesis and the results already
proven we have

|P (M, 1 + φ)| ≤ |P (N, 1 + φ)| + |P (N1, 1 + φ)| = φ5−q + φ5−(q−1) =
φ5−q + φ2 = φ7−q = φ3+m−q since m = 4
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If m = 5, we have N ∈ Z(q, 4) and N1 ∈ Z(q − 1). Hence, by the induc-
tive hypothesis and the result of the previous paragraph we have

|P (M, 1 + φ)| ≤ |P (N, 1 + φ)| + |P (N1, 1 + φ)| = φ7−q + φ5−(q−1) =
φ7−q + φ5−q · φ = φ8−q = φ3+m−q since m = 5

By induction, the theorem is now proven.

�

12 Epilogue

It turns out that the Four Color Theorem is equivalent to stating that the
vertices of any planar graph can be 4-colored. We just have to look at the
dual graph - a graph where two vertices are connected by an edge if the
corresponding faces in the original graph have a boundary edge in common.
It is obvious that the vertices of the original graph are in a one-to-one corre-
spondence with the edges of the dual graph. This tells us that another way
to state the 4-color theorem is that for no planar graph does the chromatic
polynomial P (G,n) have a root at n = 4. The chromatic number of a graph
is the smallest positive integer such that the chromatic polynomial is greater
than zero.

Conjecture: φ+1 is never a root of the chromatic polynomial of a graph.

But we must consider the behavior of P (G,n) on the real number line by
introducing two theorems, a lemma and a corollary...

Theorem 13 If n < 0 and G is not the empty graph, then for G connected

P (G,n) =
{
>0 if αv(G) = order of G is even
<0 if αv(G) = order of G is odd

}
.

Proof. Suppose

P (G,n) = nαv(G) − Anαv(G)−1+. . .+(−1)αv(G)−1 Aαv(G)−1n.

Then for n > 0,

P (G,n) = (−1)αv(G)(|n|αv(G) + A1|n|αv(G)−1+ . . . + Aαv(G)|n|),
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where |n| denotes the absolute value of n. The theorem follows immedi-
ately upon a parity inspection of the leading (−1)αv(G) term and the result
is proven.

�

Lemma 4 Let k(G) denote the number of components of G. There is a
polynomial S(G,n) such that P (G,n) = nk(G) · S(G,n)

Proof. Let k = k(G) and let G1, . . . , Gk be the components of G. Then

P (G,n) =
∏k
i=1 P (Gi, n) (by theorem 5).

Notice that if G is not the empty graph and has order n, then αn(G) = 0.
This is because P (G, 0) = αn(G), but P (G, 0) = 0 unless G is the empty
graph. Now we can immediately see that each factor P (Gi, n) is divisible
by n and so P (G,n) is divisible by nk. Therefore, P (G,n) = nk(G) ·S(G,n)
and the result is proven.

�

Note that if G has a loop, one writes S(G,n) = 0.

Theorem 14 If G has no loops and G is not the empty graph, then (−1)αv(G)+k·
S(G,n) > 0, where αv(G) is the order of, the number of components, k =
k(G), and with 0 < n < 1.

Proof. Suppose the theorem is false and let G be a couter-example with
a minimum number of m edges. Certainly, m > 0 since a graph H with-
out edges has αv(G) = k and S(H,n) = 1. Also, G cannot be a forest
(a graph each of whose components is a tree), for if G were a forest, then
P (G,n) = nk(n − 1)αv(G)−k and so S(G,n) = (n − 1)αv(G)−k. Since n < 1,
n− 1 < 0 and so (−1)n+k(n− 1)αv(G)−k > 0.
Since G is not a forest, it must have an edge A which is not a bridge (an
edge whose removal disconnects the graph). Hence, k(G) = k(G′A) and, for
any edge B, k(G) = k(G′′B).
Now, for any graphG of order αv(G), let us write T (G,n) = (−1)αv(G)+kS(G,n)
where k = k(G). Since P (G,n) = P (G′A, n)− P (G′′A, n) by Theorem 6 and
k(G) = k(G′A) = k(G′′A), S(G,n) = S(G′A, n) − S(G′′A, n). But G and G′A
have order αv(G) while G′′A has order αv(G)− 1. Hence,
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T (G,n) = T (G′A, n) + T (G′′A, n)

Since G is loopless, G′A is loopless with fewer edges than G so T (G′A, n) >
0 for n < 1. Also, T (G′′A, n) > 0 for n < 1. Therefore, T (G,n) > 0 for n < 1
and, indeed, (−1)αv(G)+k · S(G,n) > 0 and the result is proven.

�

Corollary 4 For 0 < n < 1, and if G connected and loopless of order
αv(G), then

(−1)αv(G)P (G,n) < 0.

Proof. Write P (G,n) = nS(G,n). Now (−1)αv(G)+1S(G,n) > 0 by Theo-
rem 14. Hence,

(−1)αv(G)P (G,n) = (−1)αv(G)nS(G,n)
(−1)αv(G)nS(G,n) = (−n)(−1)αv(G)+1S(G,n)
(−n)(−1)αv(G)+1S(G,n) < 0

and we are done.

�

Observe that connectivity is required in the hypothesis of the previous
corollary. Else, the graph of G = K2, the disjoint union of two copies of K2

results in chromatic polynomial P (G,n) = n2(n− 1)2. Clearly, P (G,n) > 0
and, in fact, (−1)4P (G,n) > 0 for 0 < n < 1.
Tying together the information we have about the golden ratio, its occur-
rence in the chromatic polynomials of a specific family of graphs, the real
roots of those chromatic polynomials, we are able to obtain a picture of
the behavior of P (G,n) for n ≤ 1 for a graph that is loopless, connected,
nontrivial graph. Without loss of generality, assume that the order αv(G)
of G is even. Then, we can graph P (G, , n):
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And finally, with the completed proof of the Four Color Theorem, Saaty
and Kainen have shown that:

Theorem 15 φ+ 1 is never a root of the chromatic polynomial of a graph.

Proof. Suppose (3 +
√

5)/2 = φ + 1 is a root of P (G,n) for some loop-
less graph. Then, since P (G,n) is a polynomial with integral coefficients,
(3 −

√
5)/2 must also be a root. But 0 < (3 −

√
5)/2 < 1, contradicting

Corollary 4 and we are done.

�
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