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WHO, WHERE & WHEN

Ruth Bari - Johns Hopkins 
Univ., 1966

William Tutte - Univ. of 
Waterloo, Canada, 1968

Saaty & Kainen - The Four-
Color Problem, 1977
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WHAT & WHY - BARI

Absolute Reducibility 
of Maps of at Most 19 
Regions

All maps with < 20 
regions determined up 
to homeomorphisms
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WHAT & WHY - TUTTE

1 negative, non-integral 
root,  u = (-3 + √5)/2 =       
-0.38196601...

u + 2 = ϕ = 1.618033988...

(3 + √5)/2 = 2.618033988...         
= Golden Root ➔ ϕ + 1                
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WHAT & WHY - SAATY & 
KAINEN

Four-Color Theorem - proved in 1976 
by Appel & Haken

1st major theorem to be proved using 
a computer

Four-Color Problem - Assaults & 
conquest.

ϕ + 1 is never a root of a chromatic 
polynomial
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WHAT & WHY - PARKINSON 
ACADEMIC MOTIVATION

ϕ

Dungeons&Dragons Soccer Ball

Platonic Solids

Color

Graph 
Theory
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TERMINOLOGY

Graph, G: 
{V, E, ~}

Vertices Edges Adjacency Relation

V={A,B,C,D,E}
|V|= 5

E={a,b,c,d}
|E|= 4

All Vi ~ Vj

|V|= 5, |E|= 10

Null 
Graph

Vertex Degree: the number of edges at a vertex
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SIMPLE GRAPHS

Loop Multi-Edges 

All graphs finite and loopless, but multi-
edges have no effect on outcome.
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VERTEX COLORING

For a Graph, G and 
a positive integer, k

 Not all k colors need be used, 
Permutations of k colors used 
gives a new coloring for G

χ(G,0) = 0,  χ(G,1) = 0,

χ(G,2) = 0,  χ(G,3) = 6

χ(G,k): number of ways to color G 
with k given colors so that no edge 
has both of its ends the same color
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DELETION/
CONTRACTION

Deletion: remove an 
edge, keep its vertices

Contraction: remove an edge 
and identify their vertices

Let G:

G-e: G•e:

e
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DELETION/CONTRACTION 
ALGORITHM

Give G a positive value 

While there is a signed graph, and an edge, e, 
in the signed graph, Do:

Choose a non-null, signed graph and an 
edge, e

Remove e from the graph, while keeping 
its sign if e was deleted, and negating its 
sign if e was contracted

Sum up all χ(G,k) of null graphs with the 
appropriate signs

e
e

e’

e’’ e’’’

e’
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THEOREM 1: IF G HAS n >O VERTICES 
AND NO EDGES, THEN 

χ(G, k) = kn

Suppose G is a Null Graph.  

Assume ∃ n vertices, k colors

No Edges ⇒ Vertices are not adjacent

χ(G, n) = k·k·k· ... ·k·k = kn
n times
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THEOREM 2: IF G IS A COMPLETE GRAPH 
WITH n>0 VERTICES, THEN

 χ(Kn, k) = k! ⁄ (k-n)!
Suppose G is a Complete 
Graph, Kn

All vertices are adjacent to one 
another

Choose any vertex and color it 
with one of k colors available.

Next vertex has k-1 remaining 
colors to choose from and so 
on.

χ(Kn, k) = k! ⁄ (k-n)!

 k choices of 
color

 k-1 
choices of 

color

 k-2 
choices of 

color

 k-3 
choices of 

color

 k-4 
choices of 

color

For n=5, χ(K5, k) = k(k-1)(k-2)(k-3)(k-4)
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THEOREM 3: IF G HAS 2 EDGES WITH SAME 
PAIR OF VERTICES, THEN THE DELETION OF 1 
OF THE EDGES DOES NOT AFFECT THE VALUE 

OF Χ(G, k)  

Suppose G contains multi-
edges

Delete extra edges 

More or less adjacent has no 
effect on colorings

Unchanged Χ(G,k)
Χ(G,k) = k(k-1)

Χ(G,k) = k(k-1)

 k choices 
of color

 k-1 choices 
of color

 k choices 
of color

 k-1 choices 
of color

c

Tuesday, December 8, 2009



THEOREM 4: LET G BE THE UNION OF TWO 
SUBGRAPHS H AND J WHOSE INTERSECTION IS A 

COMPLETE GRAPH.  THEN 
Χ(G, k)· Χ(H∩J, k) = Χ(H, k)·Χ(J, k) 

Suppose Graph G = H ∪ J where H ∩ J = Kn

JH

∃ 2 disjoint vertex sets, GH and GJ, whose 

colorings not determined by other

GJGH
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(CONTINUED)THEOREM 4: LET G BE THE UNION OF 
TWO SUBGRAPHS H AND J WHOSE INTERSECTION IS A 

COMPLETE GRAPH.  THEN 
Χ(G, k)· Χ(H∩J, k) = Χ(H, k)·Χ(J, k) 

Hence, 

Χ(H,k) = Χ(Kn,k)·Χ(GH,k) =

Χ(H,k) = k(k-1)···(k-r)(k-r-1)Χ(GH,k)  

Similarly, 

Χ(J,k) = Χ(Kn,k)·Χ(GJ,k) =

Χ(J,k) = k(k-1)···(k-r)(k-r-1)Χ(GJ,k)  
J

H

 k choices 
of color

 k-1 choices 
of color

 k choices 
of color

 k-1 choices 
of color
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(CONTINUED)THEOREM 4: LET G BE THE UNION OF 
TWO SUBGRAPHS H AND J WHOSE INTERSECTION IS A 

COMPLETE GRAPH.  THEN 
Χ(G, k)· Χ(H∩J, k) = Χ(H, k)·Χ(J, k) 

Vertex set of H ∩ J is complete, so disjoint from 

either GH or GJ 

Thus, Χ(H∩J,k) = Χ(Kn,k) and

 Χ(G,k)= Χ(GH,k)·Χ(H∩J,k)·Χ(GJ,k).  
 k choices 
of color

 k-1 choices 
of color

 k-1 choices 
of color

H ∩ J
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(CONCLUDED)THEOREM 4: LET G BE THE UNION OF 
TWO SUBGRAPHS H AND J WHOSE INTERSECTION IS A 

COMPLETE GRAPH.  THEN 
Χ(G, k)· Χ(H∩J, k) = Χ(H, k)·Χ(J, k)

Χ(G,k)·Χ(H∩J,k) ={Χ(GH,k)·Χ(GJ,k)·Χ(H∩J,k)}·Χ(Kn,k)

= Χ(GH,k)·[k(k-1)···(k-r)(k-r-1)] Χ(GJ,k)·[k(k-1)···(k-r)(k-r-1)] 

= Χ(H,k)· Χ(J,k)
 k choices 
of color

Χ(P3,k)=k2(k-1)2 /k  

(2 copies of Kn )

 k choices 
of color

 k-1 choices 
of color

 k-1 choices 
of color
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THEOREM 5: DELETION-
CONTRACTION                                    

Χ(G,k)= Χ(G-e,k)-Χ(G·  e,k)  

Let∃ e in G, G-e and G·e 

k-colorings of G are k-colorings of 
G-e ⇔ k-coloring gives distinct 

colors to vertices of edge e

Subtract from Χ(G-e,k) number of 
k-colorings of G-e that give 
endpoint vertices the same color 

These colorings correspond to G·e’s

G

e

G-e G·e

G

G-e
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THEOREM 6: LET V BE A VERTEX THAT IS 
ADJACENT TO EVERY OTHER VERTEX IN A 
GRAPH, G, THEN  Χ(G, k)= k Χ(Gv, k-1)

v adjacent to all other vertices, no 
vertex has same color as v

 Χ(G,k) an arrangement with 
respect to k colors, we selected 1 of 
k colors. 

Rest of arrangement determined by 
colorings of Gv without use of first k 
color chosen

G

Gv

Χ(G, K)= Χ(Gv, K-1)K· 

v
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SPECIFIC GRAPH 
EXAMPLES & Χ(G,k) 

Tree, Tn: A connected graph 
that contains no cycles

Cycle, Cn: A closed path in a 
graph

Wheel, Wn: A graph that has 
a single vertex adjacent to 
every other n vertices of a 
cycle
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Theorem 7: Let Tn be a tree with n vertices, then      

Χ(Tn, k)= k·(k-1)  n-1

By induction, Base Case for n=1 true

Suppose IndHyp. true for some Tn-1 and ∃ e 

adjacent to leaf

T-e has two components (note: Tn-2 = T·e)

Χ(T-e,k)=k·Χ(T·e,k) by IndHyp.,                     
Χ(Tn,k)= Χ(T-e,k)-Χ(T·e,k) by Theorem 5

Χ(Tn,k)=k·Χ(T·e,k)-k(k-1)n-2                                 
=k·(k-1)n-2 ·[k-1]                                                
=k·(k-1)n-1

n=1 k colorsTn

Χ(Tn,k)=k 

n-1 vertsTn-1

e

T-e

Tn-2

T1

= T·e
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Theorem 8: Let Cn be a cycle with n vertices, then      

Χ(Cn, k)=(k-1)n-1+(-1)n (k-1)
Χ(C2,k) = Χ(K2,k) = Χ(T2,k) = k·(k-1), 
Χ(C3,k) = Χ(K3,k) = k·(k-1)(k-2)

Cn - e is a tree on n vertices, so            
Χ(Cn - e,k)=k·(k-1)n-1

Cn · e is a cycle graph with n-1 
vertices, so Del/Con Alg ⇒                

Χ(Cn,k) =k·(k-1)n-1 - Χ(Cn · e,k)

Using Χ(C3,k) =  (k-1)3 - (k-1) as initial 
condition to solve recursion or using 
characteristic equation

C4

e

C4-e C4·e-=

Χ(Cn, K)=(K-1)n-1+(-1)n (K-1)
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Theorem 9: Let Wn be a wheel with n spokes, then      
Χ(Wn, k)=  k(k-2)n+(-1)n(k-2)

∃ cycle, Cn surrounding hub vertex, v.

Theorem 6 ⇒ Χ(Wn,k)= k ·Χ(Gv, k-1)

Assuming v is wheel center, Gv = Cn and 
by Theorem 8,                                              
Χ(Cn, k)=(k-1)n-1+(-1)n (k-1)

Substituting (n-1) for n gives us the result

v

W3:

Gv = C3

kth color

(k-3)

(k-1)

(k-2)

Χ(W3,k)= k(k-1)(k-2)(k-3) 
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CHROMATIC 
POLYNOMIAL, Χ(G,  k)

Χ(G,k) is function counting distinct ways to color G, with k or fewer colors, 
and where permutations of colors are also distinct

For G with n vertices, m edges, and t components, G1, G2, ... , Gt :

Coefficient of kn in Χ(G,k) is 1

Coefficient of kn-1 in Χ(G,k) is -m

Coefficients of k0, k1, kt-1 are all 0

Coefficient of kt is nonzero

Χ(G,k) = Χ( G1) Χ( G2) ... Χ( Gt)

Coefficients of every Χ(G,k) alternate in signs

K4 =W3:

Χ(K4,k)= k(k-1)(k-2)(k-3) 

Χ(K4,k)= k4 - 6k3 + 11k2 - 6k
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Φ, THE GOLDEN RATIO

Given a rectangle having 
sides in the ratio 1:Φ

Φ is defined as unique 
number such that 
partitioning the original 
rectangle into a square 
and new rectangle which 
also has sides in ratio 1:Φ

The Golden Ratio Nothing extraordinary about the the now popular φ
is stated here, but for a the chance newcomer, let’s take a quick look at
where this remarkable concept comes from.

Given a rectangle having sides in the ratio 1 : x, φ is defined as the
unique number x such that partitioning the original rectangle into a square
and new rectangle as illustrated above results in a new rectangle which also
has sides in the ratio 1 : x (i.e., such that the shaded rectangles shown above
are similar). Based on the above definition, we immediately see the ratio:

φ

1
=

1
φ− 1

resulting in the quadratic polynomial

φ2 − φ− 1 = 0.

Using the quadratic equation and solving the polynomial for its roots,
we obtain the exact value of φ, namely

φ = 1/2 +
√

5/2

= 1.6180339887498948482045868343...

There are number of ways in which to arrive at the Golden Ratio, ranging
from Euclid’s extreme and mean ratios of a line segment to nested radicals
and recurrence relations to infinite series related to the Fibonacci numbers;
however, my personal favorite was that of the Pythagoreans and their Pen-
tagram, determining that each intersection of edges sections the edges in the
golden ratio: the ratio of the length of the edge to the longer segment is φ,
as is the length of the longer segment to the shorter. Also, the ratio of the
length of the shorter segment to the segment bounded by the 2 intersecting

19
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Φ, THE GOLDEN RATIO

If Φ2 -Φ-1=0, then        
Φ2 = Φ+1

If k = Φ+1

Then k = Φ2 , k - 1 = Φ, 
and k - 2 = Φ-1
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THEOREM 10: LET G BE THE UNION OF TWO 
SUBGRAPHS H AND J WHOSE INTERSECTION IS A 

COMPLETE GRAPH WITH 0 ≤ nk ≤ 3 VERTICES.  THEN 
Χ(G, 1 + Φ) = Φ-θ Χ(H, 1 + Φ)·Χ(J, 1 + Φ)

Where θ= 0, 2, 3 or 2, respectively to nk = 0, 1, 2, 3

Proof consists of 4 cases

Case1: θ= 0, nk = 0 ⇒ The intersection of H and J is a 

null graph (complete 0-graph), Χ(∅,k)=1 by Theorem 

1 and Χ(H ∩ J,k)=1

Theorem 4 ⇒ Χ(G, 1 + Φ) ·1= Χ(H, 1 + Φ)·Χ(J, 1 + Φ)

Χ(G, 1 + Φ)= Φ0 Χ(H, 1 + Φ)·Χ(J, 1 + Φ)
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(CONCLUDED)THEOREM 10: LET G=H∪J, WHERE 

H∩J=Kn AND WITH 0 ≤ nk ≤ 3 VERTICES.  THEN 

Χ(G, 1 + Φ) = Φ-θ Χ(H, 1 + Φ)·Χ(J, 1 + Φ)

Case 4: θ= 2, nk = 3 ⇒ H ∩ J = K3, and by Theorem 2 

Χ(H ∩ J,k)=k(k-1)(k-2)

Χ(K3 , 1 + Φ) ⇒ Χ(K3 , 1 + Φ = Φ2) · Φ2((Φ+1)-1)((Φ+1)-2)= 

Φ2(Φ)(Φ-1) = Φ2(Φ)(Φ-1) = Φ2

Theorem 4 ⇒ Χ(G, 1 + Φ) ·Φ2 = Χ(H, 1 + Φ)·Χ(J, 1 + Φ) 

⇒ Χ(G, 1 + Φ)  = Φ-2 ·Χ(H, 1 + Φ)·Χ(J, 1 + Φ)
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PLANAR GRAPHS:A GRAPH THAT 
CAN BE DRAWN ON THE PLANE IN SUCH A WAY THAT ITS 

EDGES INTERSECT ONLY AT THEIR ENDPOINTS

Non-PlanarPlanar

K4

Bowtie

K5

K3,3
Handshaking Lemma

Euler’s Formula

m ≤ 3n - 6

no triangles, then         
m ≤ 2n-4

if planar, then ∃ at least 

one vertex of degree 5
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G PLANAR, CONNECTED⇒G HAS AT 
LEAST ONE VERTEX OF DEGREE < 6

By contradiction, let every vertex in G be of 
degree ≥ 6

∑ δ(G) = 2·e ≤ 2(3n-6) = 6n-12, so degree 
sum at most 6n-12

average vertex degree 

✾ Contradiction since every vertex had 
degree ≥ 6

!

Corollary 2 Let G be a connected planar simple graph with n vertices, m
edges and NO triangles. Then m ≤ 2n− 4.

Proof. For a graph G with f faces, the Handshaking lemma shows for pla-
nar graphs that 2m ≥ 4f (since the degree of each face of a simple graph
without triangles is at least 4) so that f ≤ 1/2 m. Using Euler’s formula
shows

n−m + f = 2⇒ m− n + 2 = f ⇒ m− n + 2 ≤ 1/2 m⇒ m ≤ 2n− 4

However, suppose there are triangles as faces, more specifically all faces
were triangles, then the Handshaking lemma implies

2m = 3f ⇒ m = 3/2 f ⇒ n − m + f = 2 ⇒ n − 3/2 f + f = 2 ⇒
n− 1/2 f = 2⇒ n− 2 = 1/2 f ⇒ f = 2n− 4
And now we finally come back to Tutte’s claim:

Corollary 3 Let G be a connected planar simple graph. Then G contains
at least one vertex of degree 5 or less

Proof. Suppose G is planar. Then by Corollary 1 above, we have m ≤ 3n−6.
Now suppose that every vertex in G has degree 6 or more. By the Hand-
shaking lemma,

∑
δ(Gv) = 2e ≤ 2(3n− 6) ≤ 6n− 12.

. Therefore, the degree sum is at most 6n − 12. Invoking the Pigeonhole
Principle, we can divide 6n− 12 by the number of vertices n to obtain the
average vertex degree in G.

6n− 12
n

= 6− 12
n

< 6

However, this is a contradiction since we assumed that every vertex had
degree 6 or greater thus proving that there exists at least one vertex of
degree 5 in the graph G.

!

18
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THEOREM 11: vertex v enclosed by cycle Cn 
in planar graph, G ⇒ Χ(G, 1+Φ)=(-1)n Φ1-n Χ(Gv, 1+Φ)

Cycle enclosing v, induct on|G|=|V|+|E|

Base Case true since |G|= 1 ⇒ ∄ cycle, n=0 

3 subcases

x0 is not adjacent to any other vertex of G

x1 adjacent to vertex y1 ≠ v, but  not a 
vertex Ci in cycle C

x joined to some vertex y2 = Ci in cycle C

x1

x0

y1

y2=c1

Tuesday, December 8, 2009



G-e and G·e retain planarity since invariant WRT deletions/contractions

|G·e| < |G-e| < |G|, (Gv) -e = (G-e)v  and (Gv) ·e = (G·e)v

Del/Con ⇒ χ(G, 1+Φ) = χ(G-e, 1+Φ) - χ(G·e, 1+Φ)

Ind.Hyp ⇒ (-1)n Φ1-n · χ((G-e)v , 1+Φ) - χ((G·e)v , 1+Φ) = (-1)n Φ1-n · χ(Gv , 1+Φ)

THEOREM 11: SUBCASE A-                                 
Χ(G, 1+Φ)=(-1)n Φ1-n Χ(Gv, 1+Φ)

G·eG-eG
x1

e x1 =y2
y2=c1
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THEOREM 11: CASE B- Assume that G has 
no other vertices other than type v and Ci                                  

Χ(G, 1+Φ)=(-1)n Φ1-n Χ(Gv, 1+Φ)

2 subcases

G is equivalent to a wheel 
of n spokes and n enclosing 
cycle edges

∃ edge e whose endpoints 

are non-consecutive 
vertices Ci and Cj of cycle C

W5

e

Cj

Ci
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THEOREM 11: SUBCASE B-                                 
Χ(G, 1+Φ)=(-1)n Φ1-n Χ(Gv, 1+Φ)

∃ edges e1 and ej joining v 

to C1 and Cj, respectively

Consider complete 3-
graph formed by edges e, 
e1 and ej v

v

e

C3

C1

e1

e3
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(concluded)THEOREM 11: SUBCASE B-                                 
Χ(G, 1+Φ)=(-1)n Φ1-n Χ(Gv, 1+Φ)

Planar G = H ∪ J, where H ∩ J is 

cycle v ➝C1 ➝C3=Cj

H includes Cj+1 not C2, J includes C2 
not Cj+1

Planar Gv =Hv ∪ Jv , where Hv ∩ Jv is 

K2 using e

So Ind.Hyp, Thm 10 ⇒ Χ(G, 1+Φ) =

(-1)n Φ-2-n Χ(Hv, 1+Φ) · Χ(Jv, 1+Φ) = 
(-1)n Φ1-n Χ(Gv, 1+Φ)

e
v

C3

C1

C2

C4

JH

JvHv

e
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FINAL SETUP FOR MAIN 
THEOREM

Let G be in 2-sphere or closed plane

Regions bounded by cycle in G, 
regions are faces of a plane map M of 
which G is the 1-section (the face that 
bounds all other regions)

Faces are m-gons

Edge or vertex incident with face if it 
belongs to bounding cycle of that face

Χ(G, k) = Χ(Mn, k)

Planar Triangulations, Z(n), Z(n, m) M9,6

M12

3-gons
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MAIN THEOREM:                                          
(i) If M ∈ Z(n), then |Χ(Mn, 1+Φ)| ≤ Φ5-n                          

(ii) If M ∈ Z(n,m), then |Χ(Mn,m , 1+Φ)| ≤ Φ3+m-n

Induct on |M|: Base case true for n=1, m=0, 
and for null graph Χ(M1,k)=1

|Χ(M1, 1+Φ)|= |1| ≤ Φ5-n = Φ5-1 = Φ4 

|Χ(M1,0 , 1+Φ)|=|1|≤ Φ3+m-n = Φ3+0-1 = Φ2

3 Subcases for 1-section G of M

G has a cycle that is a 2-gon

G may be a complete 3-graph

G wheel-like at v (note M20 does not work)  

M9

M20

M4
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MAIN THEOREM:                                         
(ii)If M ∈ Z(n,m), then |χ(Mn,m , 1+Φ)| ≤ Φ3+m-n                          

4 subcases for M ∈ Z(n,m)

m=2 ⇒ convert by deleting edge of 

the 2-gon

m=3 ⇒ M in Z(n) 
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MAIN THEOREM: SUBCASES                                         
(ii)If M ∈ Z(n,m), then |χ(Mn,m , 1+Φ)| ≤ Φ3+m-n                          

m= 4 ⇒ ∃ 2 non-consecutive vertices 

Add edge to subdivide m-gon into a 
triangle and an (m-1)-gon - - Call it N

Identify vertices x and y - Call it N1 

χ(M, 1+Φ) = χ(N, 1+Φ) - χ(N1, 1+Φ) ⇒     

|χ(M, 1+Φ)|≤|χ(N, 1+Φ)|+|χ(N1, 1+Φ)|

For m=4, N ∈ Z(q) and N1 ∈ Z(q-1,2) ⇒   

|χ(M,1+Φ)| ≤ Φ5-q + Φ5-(q-1) = Φ7-q = Φ3+m-q 
since m=4

e

x

y
x

y

4-gon

a ∆ and 3-gon

x
y

N
M8,4

N1

→
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MAIN THEOREM: SUBCASES                                         
(ii)If M ∈ Z(n,m), then |χ(Mn,m , 1+Φ)| ≤ Φ3+m-n                          

e

yx

yx

yx

N1

→

N

M10,5

For m = 5

→
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EPILOGUE: 1+Φ never a root of a 
Chromatic Polynomial

χ(G, k) > 0 if |V| is even, χ(G, k) < 0 if |V| is odd

For K components, ∃ σ(G, k) ∋ χ(G, k)= k|K| · σ(G, k)

(-1)|V|+K · σ(G, k) > 0, for 0<k<1

(-1)|V| · χ(G, k) < 0, for 0<k<1

1+Φ=(3+√5)/2 is root⇔                                                  

(3-√5)/2 is root 

✾ since 0< (3-√5)/2 <1
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