GOLDEN ROOTS OF CHROMATIC POLYNOMIALS

by Troy Parkinson

WHO, WHERE \& WHEN

- Ruth Bari - Johns Hopkins Univ., 1966

- William Tutte - Univ. of Waterloo, Canada, 1968

- Saaty \& Kainen - The FourColor Problem, 1977

WHAT \& WHY - BARI

- Absolute Reducibility of Maps of at Most 19 Regions
- All maps with <20 regions determined up to homeomorphisms

WHAT \& WHY - TUTTE

- 1 negative, non-integral root, $u=(-3+\sqrt{5}) / 2=$ -0.38196601...
- $u+2=\phi=1.618033988 \ldots$
$(3+\sqrt{5}) / 2=2.618033988 \ldots$
$=$ Golden Root $\rightarrow \phi+1$

WHAT \& WHY - SAATY \& KAINEN

- Four-Color Theorem - proved in 1976 by Appel \& Haken
- 1st major theorem to be proved using
 a computer
- Four-Color Problem - Assaults \& conquest.
- $\phi+1$ is never a root of a chromatic polynomial

WHAT \& WHY - PARKINSON ACADEMIC MOTIVATION

TERMINOLOGY

$$
\begin{gathered}
\text { Graph, G: } \\
\{\mathrm{V}, \mathrm{E}, \sim\}
\end{gathered}
$$

Vertices

$V=\{A, B, C, D, E\}$
$|\mathrm{V}|=5$

Edges

$E=\{a, b, c, d\}$

$|E|=4$

$$
|E|=4
$$

Adjacency Relation

All $\mathrm{V}_{\mathrm{i}} \sim \mathrm{V}_{\mathrm{j}}$
$|V|=5,|E|=10$

Vertex Degree: the number of edges at a vertex

SIMPLE GRAPHS

Multi-Edges

All graphs finite and loopless, but multiedges have no effect on outcome.

VERTEX COLORING

- For a Graph, G and a positive integer, k

- X(G,k): number of ways to color G_{B} with k given colors so that no edge has both of its ends the same color

- Not all k colors need be used, Permutations of k colors used gives a new coloring for G

DELETION/ CONTRACTION

Let G :

Deletion: remove an edge, keep its vertices

Contraction: remove an edge and identify their vertices

DELETION/CONTRACTION ALGORITHM

(+)

- Give G a positive value

- While there is a signed graph, and an edge, e, in the signed graph, Do:
- Choose a non-null, signed graph and an
(+)

 edge, e
- Remove \boldsymbol{e} from the graph, while keeping its sign if \boldsymbol{e} was deleted, and negating its sign if e was contracted
- Sum up all $X(G, k)$ of null graphs with the appropriate signs

THEOREM 1: IF G HAS $n>0$ VERTICES AND NO EDGES, THEN $X(G, k)=k^{n}$

- Suppose G is a Null Graph.
- Assume $\exists n$ vertices, k colors
- No Edges \Rightarrow Vertices are not adjacent
- $\mathrm{x}(\mathrm{G}, \mathrm{n})=\mathrm{k} \cdot \mathrm{k} \cdot \mathrm{k} \cdot \ldots$ times $\ldots \mathrm{k} \cdot \mathrm{k}=\mathrm{k}^{\mathrm{n}}$

n vertices, each of color k

THEOREM 2: IF G IS A COMPLETE GRAPH WITH $\mathrm{n}>0$ VERTICES, THEN
$\mathbf{X}\left(\mathrm{K}_{\mathrm{n}}, \mathrm{k}\right)=\mathrm{k}!/(\mathrm{k}-\mathrm{n})$!

- Suppose G is a Complete Graph, K_{n}
- All vertices are adjacent to one another
- Choose any vertex and color it with one of k colors available.
- Next vertex has \boldsymbol{k} - $\mathbf{1}$ remaining colors to choose from and so on.

- $\quad \mathbf{X}\left(\mathrm{K}_{\mathrm{n}}, \mathrm{k}\right)=\mathrm{k}!/(\mathrm{k}-\mathrm{n})$!

For $\mathrm{n}=5, \mathbf{X}\left(\mathrm{~K}_{5}, \mathrm{k}\right)=\mathrm{k}(\mathrm{k}-1)(\mathrm{k}-2)(\mathrm{k}-3)(\mathrm{k}-4)$

THEOREM 3: IF G HAS 2 EDGES WITH SAME PAIR OF VERTICES, THEN THE DELETION OF 1 OF THE EDGES DOES NOT AFFECT THE VALUE OF X(G, k)

k choices of color	d	k-1 choices of color
	A	
a		
$X(G, k)=\mathrm{k}(\mathrm{k}-1)$		
A	C	$\ldots 0^{B}$
k choices of color		k-1 choices of color
$X(G, k)=k(k-1)$		

THEOREM 4: LET G BE THE UNION OF TWO SUBGRAPHS H AND J WHOSE INTERSECTION IS A COMPLETE GRAPH. THEN

$$
X(G, k) \cdot X(H \cap J, k)=X(H, k) \cdot X(J, k)
$$

- Suppose Graph $G=\mathrm{H} \cup \mathrm{J}$ where $\mathrm{H} \cap \mathrm{J}=\mathrm{K}_{\mathrm{n}}$

- $\exists 2$ disjoint vertex sets, G_{H} and G_{J}, whose colorings not determined by other
(CONTINUED)THEOREM 4: LET G BE THE UNION OF TWO SUBGRAPHS H AND J WHOSE INTERSECTION IS A COMPLETE GRAPH. THEN $X(G, k) \cdot X(H \cap J, k)=X(H, k) \cdot X(J, k)$
- Hence,
- $\mathbf{X}(\mathrm{H}, \mathrm{k})=\mathbf{X}\left(\mathrm{K}_{\mathrm{n}}, \mathrm{k}\right) \cdot \mathbf{X}\left(\mathrm{G}_{\mathrm{H}}, \mathrm{k}\right)=$

- $\mathbf{X}(\mathrm{H}, \mathrm{k})=\mathrm{k}(\mathrm{k}-1) \cdots(\mathrm{k}-\mathrm{r})(\mathrm{k}-\mathrm{r}-1) \mathbf{X}\left(\mathrm{G}_{\mathrm{H}}, \mathrm{k}\right)$
- Similarly,
- $X(J, k)=X\left(K_{n}, k\right) \cdot X\left(G_{\mathrm{J}}, \mathrm{k}\right)=$
- $X(\mathrm{~J}, \mathrm{k})=\mathrm{k}(\mathrm{k}-1) \cdots(\mathrm{k}-\mathrm{r})(\mathrm{k}-\mathrm{r}-1) \mathrm{X}(\mathrm{G}, \mathrm{k})$
(CONTINUED)THEOREM 4: LET G BE THE UNION OF TWO SUBGRAPHS H AND J WHOSE INTERSECTION IS A COMPLETE GRAPH. THEN

$$
X(G, k) \cdot X(H \cap J, k)=X(H, k) \cdot X(J, k)
$$

- Vertex set of $\mathrm{H} \cap \mathrm{J}$ is complete, so disjoint from either G_{H} or G_{J}
- Thus, $\mathrm{X}(\mathrm{H} \cap \mathrm{J}, \mathrm{k})=\mathrm{X}\left(\mathrm{K}_{\mathrm{n}}, \mathrm{k}\right)$ and
- $\mathbf{X}(\mathrm{G}, \mathrm{k})=\mathbf{X}\left(\mathrm{G}_{\mathrm{H}}, \mathrm{k}\right) \cdot \mathbf{X}(\mathrm{H} \cap \mathrm{J}, \mathrm{k}) \cdot \mathbf{X}(\mathrm{G}, \mathrm{k})$.

(CONCLUDED)THEOREM 4: LET G BE THE UNION OF TWO SUBGRAPHS H AND J WHOSE INTERSECTION IS A COMPLETE GRAPH. THEN $X(G, k) \cdot X(H \cap J, k)=X(H, k) \cdot X(J, k)$
- $\mathbf{X}(\mathrm{G}, \mathrm{k}) \cdot \mathbf{X}(\mathrm{H} \cap \mathrm{J}, \mathrm{k})=\left\{\mathbf{X}\left(\mathrm{G}_{\mathrm{H}}, \mathrm{k}\right) \cdot \mathbf{X}\left(\mathrm{G}_{\mathrm{J}}, \mathrm{k}\right) \cdot \mathbf{X}(\mathrm{H} \cap \mathrm{J}, \mathrm{k})\right\} \cdot \mathbf{X}\left(\mathrm{K}_{\mathrm{n}}, \mathrm{k}\right)$
(2 copies of K_{n})
- $=\mathbf{X}\left(\mathrm{G}_{\mathrm{H}}, \mathrm{k}\right) \cdot[\mathrm{k}(\mathrm{k}-1) \cdots(\mathrm{k}-\mathrm{r})(\mathrm{k}-\mathrm{r}-1)] \mathbf{X}\left(\mathrm{G}_{\mathrm{J}}, \mathrm{k}\right) \cdot[\mathrm{k}(\mathrm{k}-1) \cdots(\mathrm{k}-\mathrm{r})(\mathrm{k}-\mathrm{r}-1)]$
- $=\mathbf{X}(\mathrm{H}, \mathrm{k}) \cdot \mathbf{X}(\mathrm{J}, \mathrm{k})$
$X\left(P_{3}, k\right)=k^{2}(k-1)^{2} / k$

THEOREM 5: DELETIONCONTRACTION
 $$
X(G, k)=X(G-e, k)-X(G \cdot e, k)
$$

- Let $\exists e$ in $G, G-e$ and $G \cdot e$
- k -colorings of G are k -colorings of $G-e \Leftrightarrow k$-coloring gives distinct colors to vertices of edge e
- Subtract from $X(G-e, k)$ number of k-colorings of G-e that give endpoint vertices the same color
- These colorings correspond to $G \cdot e^{\prime}$ s

$$
\begin{aligned}
& \text { THEOREM 6: LET V BE A VERTEX THAT IS } \\
& \text { ADJACENT TO EVERY OTHER VERTEX IN A } \\
& \text { GRAPH, G, THEN } X(G, k)=k X\left(G_{V}, k-1\right)
\end{aligned}
$$

- v adjacent to all other vertices, no vertex has same color as v
- $X(G, k)$ an arrangement with respect to k colors, we selected 1 of
 k colors.
$X(G, K)=K \cdot X\left(G_{V}, K-1\right)$
- Rest of arrangement determined by colorings of G_{v} without use of first k color chosen

SPECIFIC GRAPH EXAMPLES \& X(G,k)

- Tree, T_{n} : A connected graph that contains no cycles
- Cycle, C_{n} : A closed path in a graph
- Wheel, W_{n} : A graph that has a single vertex adjacent to every other n vertices of a cycle

Theorem 7: Let Tn be a tree with n vertices, then

$$
\mathrm{X}\left(\mathrm{~T}_{n}, \mathrm{k}\right)=\mathrm{k} \cdot(\mathrm{k}-1)^{n-1}
$$

O $T_{n} \mathrm{n}=1 \mathrm{k}$ colors

- By induction, Base Case for $\mathrm{n}=1$ true
- Suppose IndHyp. true for some T_{n-1} and $\exists e$ adjacent to leaf

$$
\mathrm{X}\left(T_{n}, \boldsymbol{k}\right)=\mathrm{k}
$$

- $T-e$ has two components (note: $T_{n-2}=T \cdot e$)
- $\mathrm{X}(T-e, k)=k \cdot X(T \cdot e, k)$ by IndHyp., $X\left(T_{n}, k\right)=X(T-e, k)-X(T \cdot e, k)$ by Theorem 5
- $\quad X\left(T_{n}, k\right)=\mathrm{k} \cdot X(T \cdot e, k)-\mathrm{k}(\mathrm{k}-1)^{\mathrm{n}-2}$
$=\mathrm{k} \cdot(\mathrm{k}-1)^{\mathrm{n}-2} \cdot[\mathrm{k}-1]$
$=k \cdot(k-1)^{n-1}$

Theorem 8: Let C_{n} be a cycle with n vertices, then

$$
\mathrm{X}\left(\mathrm{C}_{n,} \mathrm{k}\right)=(\mathrm{k}-1)^{n-1}+(-1)^{n}(\mathrm{k}-1)
$$

- $\mathrm{X}\left(C_{2}, k\right)=\mathrm{X}\left(K_{2}, k\right)=\mathrm{X}\left(T_{2}, k\right)=\mathrm{k} \cdot(\mathrm{k}-1)$, $\mathrm{X}\left(C_{3}, k\right)=\mathrm{X}\left(K_{3}, k\right)=\mathrm{k} \cdot(\mathrm{k}-1)(\mathrm{k}-2)$

- $\quad C_{n} \cdot \boldsymbol{e}$ is a cycle graph with $\boldsymbol{n - 1}$ vertices, so Del/Con Alg \Rightarrow
$\mathrm{X}\left(C_{n}, k\right)=\mathrm{k} \cdot(\mathrm{k}-1)^{\mathrm{n}-1}-\mathrm{X}\left(C_{n} \cdot e, k\right)$

$$
\mathrm{X}(\mathrm{C} n, \mathrm{~K})=(\mathrm{K}-1)^{n-1}+(-1)^{n}(\mathrm{~K}-1)
$$

- Using $\mathrm{X}\left(C_{3}, k\right)=(\mathrm{k}-1)^{3}-(\mathrm{k}-1)$ as initial condition to solve recursion or using characteristic equation

Theorem 9: Let W_{n} be a wheel with n spokes, then

$$
X\left(\mathbf{W}_{n}, k\right)=k(k-2)^{n}+(-1)^{n}(k-2)
$$

- \exists cycle, C_{n} surrounding $h u b$ vertex, v.

- Theorem $6 \Rightarrow \mathrm{X}\left(\mathrm{W}_{n}, k\right)=k \cdot \mathrm{X}\left(G_{v}, k-1\right)$
- Assuming v is wheel center, $G_{v}=C_{n}$ and by Theorem 8 , $\mathrm{X}(\mathrm{C} n, k)=(k-1)^{n-1}+(-1)^{n}(k-1)$
- Substituting ($n-1$) for n gives us the result

$$
X\left(W_{3}, k\right)=k(k-1)(k-2)(k-3)
$$

CHROMATIC POLYNOMIAL, X(G,k)

II $\mathrm{X}(\mathrm{G}, k)$ is function counting distinct ways to color G, with k or fewer colors, and where permutations of colors are also distinct

- For G with n vertices, m edges, and t components, $\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots, \mathrm{G}_{\mathrm{t}}$:
- Coefficient of \boldsymbol{k}^{n} in $\mathbf{X}(\mathbf{G}, \boldsymbol{k})$ is $\mathbf{1}$
- Coefficient of \boldsymbol{k}^{n-1} in $X(G, k)$ is $-m$
- Coefficients of $\boldsymbol{k}^{0}, \boldsymbol{k}^{1}, \boldsymbol{k}^{t-1}$ are all 0
- Coefficient of \boldsymbol{k}^{t} is nonzero

$$
\begin{aligned}
& X\left(K_{4}, k\right)=k(k-1)(k-2)(k-3) \\
& X\left(K_{4}, k\right)=k^{4}-6 k^{3}+11 k^{2}-6 k
\end{aligned}
$$

- $\mathrm{X}(\mathrm{G}, k)=\mathrm{X}\left(G_{1}\right) \mathrm{X}\left(G_{2}\right) \ldots \mathrm{X}\left(G_{t}\right)$
- Coefficients of every $\mathbf{X}(\mathrm{G}, k)$ alternate in signs

Φ, THE GOLDEN RATIO

- Given a rectangle having sides in the ratio 1: Φ
- Φ is defined as unique number such that
 partitioning the original rectangle into a square and new rectangle which also has sides in ratio 1: Φ

$$
\begin{gathered}
\frac{\phi}{1}=\frac{1}{\phi-1} \quad \phi^{2}-\phi-1=0 . \\
\phi=1 / 2+\sqrt{5} / 2 \\
=1.6180339887498948482045868343 \ldots
\end{gathered}
$$

Φ, THE GOLDEN RATIO

- If $\Phi^{2}-\Phi-1=0$, then $\Phi^{2}=\Phi+1$

$a+b$ is to a as a is to b
- If $k=\Phi+1$
- Then $k=\Phi^{2}, k-1=\Phi$, and $k-2=\Phi^{-1}$

$$
X(G, 1+\Phi)=\Phi^{-\theta} \mathbf{X}(\mathbf{H}, 1+\Phi) \cdot \mathbf{X}(\mathrm{J}, 1+\Phi)
$$

- Where $\theta=0,2,3$ or 2 , respectively to $n_{k}=0,1,2,3$
- Proof consists of 4 cases
- Case1: $\theta=0, \mathrm{n}_{\mathrm{k}}=0 \Rightarrow$ The intersection of H and J is a null graph (complete 0-graph), $\mathrm{X}(\varnothing, \mathrm{k})=1$ by Theorem 1 and $\mathrm{X}(\mathrm{H} \cap \mathrm{J}, \mathrm{k})=1$
- Theorem $4 \Rightarrow \mathbf{X}(\mathbf{G}, \mathbf{1}+\boldsymbol{\Phi}) \cdot \mathbf{1}=\mathbf{X}(\mathbf{H}, \mathbf{1}+\boldsymbol{\Phi}) \cdot \mathbf{X}(\boldsymbol{J}, \mathbf{1}+\boldsymbol{\Phi})$
- $\mathbf{X}(G, 1+\Phi)=\Phi^{0} \mathbf{X}(H, 1+\Phi) \cdot \mathbf{X}(J, 1+\Phi)$
(CONCLUDED)THEOREM 10: LET G=HUJ, WHERE $\mathrm{H} \cap \mathrm{J}=\mathrm{K}_{\mathrm{n}}$ AND WITH $0 \leq \mathrm{n}_{\mathrm{k}} \leq 3$ VERTICES. THEN

$$
X(G, 1+\Phi)=\Phi^{-\theta} \mathbf{X}(H, 1+\Phi) \cdot X(J, 1+\Phi)
$$

- Case 4: $\theta=2, \mathrm{n}_{\mathrm{k}}=3 \Rightarrow \mathrm{H} \cap \mathrm{J}=\mathrm{K}_{3}$, and by Theorem 2 $\mathrm{X}(\mathrm{H} \cap \mathrm{J}, \mathrm{k})=\mathrm{k}(\mathrm{k}-1)(\mathrm{k}-2)$
- $\mathbf{X}\left(\mathrm{K}_{3}, \mathbf{1}+\boldsymbol{\Phi}\right) \Rightarrow \mathbf{X}\left(\mathrm{K}_{3}, \mathbf{1}+\boldsymbol{\Phi}=\boldsymbol{\Phi}^{2}\right) \cdot \boldsymbol{\Phi}^{2}((\boldsymbol{\Phi}+1)-1)((\boldsymbol{\Phi}+1)-2)=$ $\boldsymbol{\Phi}^{2}(\boldsymbol{\Phi})(\boldsymbol{\Phi}-1)=\boldsymbol{\Phi}^{2}(\boldsymbol{\Phi})\left(\boldsymbol{\Phi}^{-1}\right)=\boldsymbol{\Phi}^{2}$
- Theorem $4 \Rightarrow \mathbf{X}(\mathbf{G}, \mathbf{1}+\boldsymbol{\Phi}) \cdot \boldsymbol{\Phi}^{2}=\mathbf{X}(\mathbf{H}, \mathbf{1}+\boldsymbol{\Phi}) \cdot \mathbf{X}(\mathbf{J}, \mathbf{1}+\boldsymbol{\Phi})$
$\Rightarrow \mathbf{X}(G, 1+\Phi)=\Phi^{-2} \cdot \mathbf{X}(H, 1+\Phi) \cdot \mathbf{X}(J, 1+\Phi)$

PLANAR GRAPHS: agraph that $^{\text {a }}$

 CAN BE DRAWN ON THE PLANE IN SUCH A WAY THAT ITS EDGES INTERSECT ONLY AT THEIR ENDPOINTSPlanar

- Handshaking Lemma
- Euler's Formula
- $m \leq 3 n-6$
- no triangles, then $\mathrm{m} \leq 2 \mathrm{n}-4$
- if planar, then \exists at least one vertex of degree 5

Non-Planar
Bowtie

$K_{3,3}$

G PLANAR, CONNECTED \Rightarrow G HAS AT

LEAST ONE VERTEX OF DEGREE < 6

- By contradiction, let every vertex in G be of degree ≥ 6
- $\quad \Sigma \boldsymbol{\delta}(G)=2 \cdot e \leq 2(3 n-6)=6 n-12$, so degree sum at most 6n-12

- average vertex degree

$$
\frac{6 n-12}{n}=6-\frac{12}{n}<6
$$

- Contradiction since every vertex had degree ≥ 6

THEOREM 11: vertex v enclosed by cycle C_{n}

 in planar graph, $G \Rightarrow X(G, 1+\Phi)=(-1)^{\mathrm{n}} \Phi^{1-\mathrm{n}} \mathrm{X}\left(\mathrm{G}_{\mathrm{v}}, 1+\Phi\right)$- Cycle enclosing v, induct on $|\mathrm{G}|=|\mathrm{V}|+|\mathrm{E}|$
- Base Case true since $|\mathrm{G}|=1 \Rightarrow \nRightarrow$ cycle, $n=0$
- 3 subcases
- x_{0} is not adjacent to any other vertex of G
- x_{1} adjacent to vertex $y_{1} \neq v$, but not a vertex C_{i} in cycle C
- x joined to some vertex $y_{2}=C_{i}$ in cycle C

THEOREM 11: SUBCASE A$\mathrm{X}(\mathrm{G}, 1+\Phi)=(-1)^{\mathrm{n}} \boldsymbol{\phi}^{1-\mathrm{n}} \mathrm{X}\left(\mathrm{G}_{\mathrm{v}}, 1+\Phi\right)$

- $G-e$ and $G \cdot e$ retain planarity since invariant WRT deletions/ contractions
- $|G \cdot e|<|G-e|<|G|,\left(G_{v}\right)-e=(G-e)_{v}$ and $\left(G_{v}\right) \cdot e=(G \cdot e)_{v}$
- $\mathrm{Del} / \mathrm{Con} \Rightarrow \mathbf{X}(G, 1+\Phi)=\mathbf{X}(G-e, 1+\Phi)-\mathbf{X}(G \cdot e, 1+\boldsymbol{1})$
- Ind.Hyp $\Rightarrow(-1)^{\mathrm{n}} \Phi^{1-\mathrm{n}} \cdot \mathrm{x}\left((G-e)_{v}, 1+\Phi\right)-\mathrm{X}\left((G \cdot e)_{v}, 1+\Phi\right)=(-1)^{\mathrm{n}} \Phi^{1-\mathrm{n}} \cdot \mathrm{x}\left(G_{v}, 1+\Phi\right)$

G•e

$$
x_{1}=y_{2}
$$

THEOREM 11: CASE B-Assume that G has no other vertices other than type v and C_{i}

$$
X(G, 1+\Phi)=(-1)^{\mathrm{n}} \Phi^{1-\mathrm{n}} \mathrm{X}\left(\mathrm{G}_{\mathrm{v}}, 1+\Phi\right)
$$

- 2 subcases
- G is equivalent to a wheel of n spokes and n enclosing
 cycle edges
- \exists edge e whose endpoints are non-consecutive vertices C_{i} and C_{j} of cycle C

THEOREM 11: SUBCASE B$\mathrm{X}(\mathrm{G}, 1+\Phi)=(-1)^{\mathrm{n}} \boldsymbol{\Phi}^{1-\mathrm{n}} \mathrm{X}\left(\mathrm{G}_{\mathrm{v}}, 1+\Phi\right)$

- \exists edges \boldsymbol{e}_{1} and \boldsymbol{e}_{j} joining v to C_{1} and C_{j}, respectively
- Consider complete 3graph formed by edges e, \boldsymbol{e}_{1} and \boldsymbol{e}_{j}

(concluded)THEOREM 11: SUBCASE B-

 $\mathrm{X}(\mathrm{G}, 1+\Phi)=(-1)^{\mathrm{n}} \Phi^{1-\mathrm{n}} \mathrm{X}\left(\mathrm{G}_{\mathrm{V}}, 1+\Phi\right)$- Planar $G=H \cup \boldsymbol{J}$, where $\boldsymbol{H} \cap \boldsymbol{J}$ is cycle $v \rightarrow C_{1} \rightarrow C_{3}=C_{j}$
- H includes C_{j+1} not C_{2}, J includes C_{2} not C_{j+1}

- Planar $G_{v}=H_{v} \cup J_{v}$, where $H_{v} \cap J_{v}$ is K_{2} using e
- So Ind.Hyp, Thm $10 \Rightarrow X(G, 1+\Phi)=$ $(-1)^{\mathrm{n}} \boldsymbol{\Phi}^{-2-\mathrm{n}} \mathbf{X}\left(\mathrm{H}_{\mathrm{V}}, 1+\Phi\right) \cdot \mathbf{X}\left(\mathrm{J}_{\mathrm{v}}, 1+\Phi\right)=$ $(-1)^{\mathrm{n}} \boldsymbol{\Phi}^{1-\mathrm{n}} \mathbf{X}\left(\mathrm{G}_{\mathrm{V}}, 1+\Phi\right)$

FINAL SETUP FOR MAIN THEOREM

- Let G be in 2-sphere or closed plane
- Regions bounded by cycle in G, regions are faces of a plane map M of which G is the 1 -section (the face that bounds all other regions)
- Faces are m-gons

- Edge or vertex incident with face if it belongs to bounding cycle of that face
- $X(G, k)=X\left(M_{n}, k\right)$
- Planar Triangulations, $\mathbf{Z}(n), \mathbf{Z}(n, m)$

MAIN THEOREM:

(i) If $M \in Z(n)$, then $\left|X\left(M_{n}, 1+\Phi\right)\right| \leq \Phi^{5-n}$
(ii) If $M \in Z(n, m)$, then $\left|X\left(M_{n, m}, 1+\Phi\right)\right| \leq \Phi^{3+m-n}$

- Induct on $|M|$: Base case true for $n=1, m=0$, and for null graph $X\left(\boldsymbol{M}_{1}, \mathrm{k}\right)=1$
- $\left|X\left(M_{1}, 1+\Phi\right)\right|=|1| \leq \Phi^{5-\mathrm{n}}=\Phi^{5-1}=\Phi^{4}$
- $\left|X\left(M_{1,0}, 1+\Phi\right)\right|=|1| \leq \Phi^{3+m-n}=\Phi^{3+0-1}=\Phi^{2}$
- 3 Subcases for 1-section G of \boldsymbol{M}
- G has a cycle that is a 2-gon
- G may be a complete 3-graph
- G wheel-like at v (note M_{20} does not work)

-

MAIN THEOREM:

(ii)If $M \in \mathrm{Z}(n, m)$, then $\left|\mathrm{X}\left(\mathrm{M}_{\mathrm{n}, \mathrm{m}}, 1+\Phi\right)\right| \leq \Phi^{3+m-n}$

- 4 subcases for $M \in Z(n, m)$
- $m=2 \Rightarrow$ convert by deleting edge of

the 2-gon
- $m=3 \Rightarrow M$ in $Z(n)$

MAIN THEOREM: SUBCASES (ii)If $M \in \mathrm{Z}(n, m)$, then $\left|\mathrm{X}\left(\mathrm{M}_{\mathrm{n}, \mathrm{m}}, 1+\Phi\right)\right| \leq \Phi^{3+m-n}$

- $\mathrm{m}=4 \Rightarrow \exists 2$ non-consecutive vertices
- Add edge to subdivide m-gon into a triangle and an (m-1)-gon - - Call it N
- Identify vertices x and y - Call it N_{1}
- $\mathrm{X}(\mathrm{M}, 1+\Phi)=\mathrm{X}(\mathrm{N}, 1+\Phi)-\mathrm{x}\left(\mathrm{N}_{1}, 1+\Phi\right) \Rightarrow$ $|\mathrm{X}(\mathrm{M}, 1+\Phi)| \leq|\mathrm{X}(\mathrm{N}, 1+\Phi)|+\left|\mathrm{X}\left(N_{1}, 1+\Phi\right)\right|$
- For $m=4, N \in Z(q)$ and $N_{1} \in Z(q-1,2) \Rightarrow$ $|\mathrm{X}(\mathrm{M}, 1+\Phi)| \leq \Phi^{5-\mathrm{q}}+\Phi^{5-(\mathrm{q}-1)}=\Phi^{7-\mathrm{q}}=\Phi^{3+\mathrm{m}-\mathrm{q}}$ since $m=4$

MAIN THEOREM: SUBCASES

(ii)If $M \in \mathrm{Z}(n, m)$, then $\left|\mathrm{X}\left(\mathrm{M}_{\mathrm{n}, \mathrm{m}}, 1+\Phi\right)\right| \leq \Phi^{3+m-n}$

EPILOGUE: 1+Ф never a root of a Chromatic Polynomial

- $X(G, k)>0$ if $|V|$ is even, $X(G, k)<0$ if $|V|$ is odd
- For K components, $\exists \sigma(G, k) \ni \chi(G, k)=k^{|K|} \cdot \sigma(G, k)$
- (-1) |V|+K. $\sigma(G, k)>0$, for $0<k<1$
- $(-1)^{|V|} \cdot X(G, k)<0$, for $0<k<1$
- $1+\Phi=(3+\sqrt{5}) / 2$ is root \Leftrightarrow $(3-\sqrt{5}) / 2$ is root
© since $0<(3-\sqrt{5}) / 2<1$

