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WHO, WHERE & WHEN

Ruth Bari - Johns Hopkins 3
Univ., 1966 :

. :.. "“‘\W William Tutte - Univ. of
\‘ !m]m k ' Ve Waterloo, Canada, 1968

S ‘III RERRRERNATERRARMMRENY

Saaty & Kainen - The Four- S e
Color Problem, 1977
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WHAT & WHY - BARI

Absolute Reducibility

of Maps of at Most 19
Regions

All maps with < 20
regions determined up
to homeomorphisms
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WHAT & WHY - TUTTE

1 negative, non-integral
root, u=(-3+VH)/2=
-0.38196601...

u+2=¢=1.618033988...

(3 +v5)/2=2.618033988...
= Golden Root=?» ¢ + 1
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WHAT & WHY - SAATY &
KAINEN

Four-Color Theorem - proved in 1976 um
by Appel & Haken

1st major theorem to be proved using
a computer

Four-Color Problem - Assaults &
conquest.

d + 1 is never a root of a chromatic
polynomial
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WHAT & WHY - PARKINSON
ACADEMIC MOTIVATION

Color

>
The Tetrahedron The Cube The Octahedron The Dodecohedrea  The lcosshedron

Platonic Solids

Soccer Ball




TERMINOLOGY

Graph, G:
{tV,E, ~}

Vertices Edges Adjacency Relation

A
]

B

Null <
Graph

D E
® ()

V={A,B,C,D,E) E={a,b,c,d} All Vi ~'V;
I'V]=5 B4 'VI=5, |El=10

Vertex Degree: the number of edges at a vertex
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SIMPLE GRAPHS

Loop Multi-Edges

———>

All graphs finite and loopless, but multi-
edges have no effect on outcome.
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VERTEX COLORING

For a Graph, G and X(G,0)=0, X(G1) =0,

a positive integer, k %(G2) =0, X(G,3) =6
C

X(G,k): number of ways to color G B

with k given colors so that no edge

has both of its ends the same color /\

Not all k colors need be used,
Permutations of k colors used
gives a new coloring for G

AA
WANWAN
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DELETION/
CONTRACTION

Let G: €

Deletion: remove an  Contraction: remove an edge
edge, keep its vertices and identify their vertices

B
®
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DELETION/CONTRACTION
ALGORITHM

(+)

Give G a positive value ./.\e
@

While there is a signed graph, and an edge, e,
in the signed graph, Do:

Choose a non-null, signed graph and an
edge, e

Remove e from the graph, while keeping
its sign if e was deleted, and negating its
sign if e was contracted

Sum up all X(G, k) of null graphs with the
appropriate signs
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THEOREM 1: IF G HAS n>0 VERTICES
AND NO EDGES, THEN

X(G, k) =kn

Suppose G is a Null Graph.

Assume 3 n vertices, k colors

No Edges = Vertices are not adjacent

n times

x(G, n) =kkk .. kk=kno
O O @ ... © O

n vertices, each of color k
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THEOREM 2: IF G IS A COMPLETE GRAPH
WITH N>0 VERTICES, THEN

X(Kq, k) = k! /(k-n)!

Suppose G is a Complete
Graph, K,

All vertices are adjacent to one
another

Choose any vertex and color it
with one of k colors available.

Next vertex has k-1 remaining

colors to choose from and so
on.

X(Ky, k) = k!/(k-n)!
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k choices of
color

k-4 k-1
choices of choices of
color color

k-3 k-2
choices of choices of
color color

For n=5, X(Ks, k) = k(k-1)(k-2)(k-3)(k-4)




THEOREM 3: IF G HAS 2 EDGES WITH SAME
PAIR OF VERTICES, THEN THE DELETION OF 1
OF THE EDGES DOES NOT AFFECT THE VALUE

OF X(G, k)

k choices d k-1 choices
of color of color

Suppose G contains multi- A < C >B
edges
a

Delete extra edges
X(G k) = k(k-1)

More or less adjacent has no

etfect on colorings Ag C °

k choices k-1 choices

Unchanged X(G, k) of color of color
X(Gk) = k(k-1)

B
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THEOREM 4: LET G BE THE UNION OF TWO
SUBGRAPHS H AND J WHOSE INTERSECTION IS A

COMPLETE GRAPH. THEN
X(G, k)- X(HN]J, k) = X(H, k)-X(J, k)

Suppose Graph G=H U Jwhere HN ] =K,

2 disjoint vertex sets, Gu and G;j, whose

colorings not determined by other
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(CONTINUED)THEOREM 4: LET G BE THE UNION OF
TWO SUBGRAPHS H AND J WHOSE INTERSECTION IS A

COMPLETE GRAPH. THEN
X(G/ k)° X(Hﬂ], k) = X(H/ k)'X(J, k)

k-1 choices k choices
of color of color

Hence,

X(H k) = X(Ky, k)-X(Gr, k) =
X(H, k) = k(k-1)---(k-r)(k-r-1)X(Gg, k)

k choices k-1 choices
Similar ly, of color of color

X(J,k) = X(Kn, k)-X(Gy k) =

X(J k) = k(k-1)-(k-r) (k-r-1)X(Gy, k)
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(CONTINUED)THEOREM 4: LET G BE THE UNION OF
TWO SUBGRAPHS H AND J WHOSE INTERSECTION IS A

COMPLETE GRAPH. THEN

Vertex set of H N J is complete, so disjoint from

either Gy or Gy
Thus, X(HN] k) = X(K,, k) and

X(G k)= X(Gn,k)-X(HNJ,k)-X(Gy, k).

k-1 choices % k-1 choices
of color
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(CONCLUDED)THEOREM 4: LET G BE THE UNION OF
TWO SUBGRAPHS H AND J WHOSE INTERSECTION IS A

COMPLETE GRAPH. THEN

X(G k)-X(HNJ k) ={X(Gr k)-X(Gy,k)-X(HNJ,k)}-X(Kq, k)
(2 copies of Ky, )
= X(Gr k) [k(k-1)-(k-r)(k-r-1)] X(Gp,k)-[k(k-1)-+-(k-1)(k-1-1)]

= X(H,k)- X(J,k)

k-1 choices k choices k-1 choices k choices
of color of color of color of color

X(P3,k)=k2(k-1)2 /k
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THEOREM 5: DELETION-
CONTRACTION
X(G, k)= X(G-¢,k)-X(G- ¢,k)

Letd e in G, G-e and G-e . ©

G

k-colorings of G are k-colorings ot
G-e & k-coloring gives distinct

colors to vertices of edge e

Subtract from X(G-e k) number of
k-colorings of G-e that give
endpoint vertices the same color

These colorings correspond to G-€’s
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THEOREM 6: LET V BE A VERTEX THAT IS
ADJACENT TO EVERY OTHER VERTEX IN A

GRAPH, G, THEN X(G, k)= k X(Gy, k-1)

0

v adjacent to all other vertices, no
vertex has same color as v

X(G,k) an arrangement with G

respect to k colors, we selected 1 ot
k colors. X(G, K)= K- X(Gy, K-1)

Rest of arrangement determined by
colorings of G, without use of first k
color chosen
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SPECIFIC GRAPH
EXAMPLES & X(G,k)

Tree, T,: A connected graph I ) I T
that contains no cycles I S

Cycle, Cy: A closed path in a
Wheel, W,: A graph that has
a single vertex adjacent to

every other n vertices of a
cycle

Tuesday, December 8, 2009



Theorem 7: Let Tn be a tree with n vertices, then

X(T», k)= k-(k-1

) n-1

® T, n=1 kcolors

By induction, Base Case for n=1 true

®

Suppose IndHyp. true for some T,-; and 3 e

X (T, k)=k

e

adjacent to leat /\ Tw-1 n-1verts

T-e has two components (note: T2 = T-e)

X(T-e,k)=k-X(T-e,k) by IndHyp.,
X(Ty k)= X(T-e,k)-X(T-e,k) by Theorem 5

X(Ty, k)=k-X(T-e,k)-k(k-1)r2

e (k-1)m2 [k-1]
:k.(k_l)n-l
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Theorem 8: Let C,, be a cycle with n vertices, then

X(Cn, K)=(k-1)"1+(-1)" (k-1)

X(Cz,k) = X(K2,k) = X(T2,k) = k-(k-1),
X(C3,k) = X(K3,k) = k-(k-1)(k-2)

C.. - e is a tree on n vertices, SO
X(Cy, - e, k)=k-(k-1)n1

C.-eis a cycle graph with n-1
vertices, so Del/Con Alg =

X(Cy k) =k-(k-1)1 - X(C, - €,k)

X(Cn, K)=(K-1)"1+(-1)" (K-1)

Using X(C3,k) = (k-1)3- (k-1) as initial
condition to solve recursion or using
characteristic equation
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Theorem 9: Let W, be a wheel with n spokes, then
X(Wy, k)= k(k-2)"+(-1)"(k-2)
Ws.

3 cycle, C, surrounding hub vertex, v.

Theorem 6 = X(W,, k)= k -X(G,, k-1)

Assuming v is wheel center, G,= C,and

by Theorem 8,
X(Cn, k)=(k-1)"1+(-1)" (k-1)

(k-2) (k-3)

Substituting (n-1) for n gives us the result

X(W3, k)= k(k-1)(k-2)(k-3)
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CHROMATIC
POLYNOMIAL, X(G, k)

X(G, k) is function counting distinct ways to color G, with k or fewer colors,
and where permutations of colors are also distinct

For

Tuesday, December 8, 2009

G with n vertices, m edges, and t components, Gi, G, ..., Gt:

Coefficient of k" in X(G, k) is 1

Coefficient of k"1 in X(G, k) is -m

Coefficients of kY, k1, kt-1 are all 0

Coefficient of ktis nonzero X(Ky k)= k(k-1)(k-2)(k-3)

X(G,k) = X( G1) X( G2) ... X( Gy) X(Ky k)= k- 6K3 + 11K? - 6k

Coetficients of every X(G, k) alternate in signs



®, THE GOLDEN RATIO

Given a rectangle having
sides in the ratio 1:® 0

® is defined as unique
number such that
partitioning the original
rectangle into a square ¢ —¢d—1=0.
and new rectangle which

also has sides in ratio 1:® d=1/2+5/2

= 1.6180339887498948482045868343...
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®, THE GOLDEN RATIO

a b

If ®2-9-1=0, then R —
b2 = d+1 a+b

a+bistoaasaistob

It kK =o+1

Thenk=®2 k-1=9,
and k-2 = &1




THEOREM 10: LET G BE THE UNION OF TWO
SUBGRAPHS H AND J] WHOSE INTERSECTION IS A

COMPLETE GRAPH WITH 0 < nx < 3 VERTICES. THEN
XG,1+P)=9XH, 1+ D)-X(J, 1+ D)

Where 0= 0, 2, 3 or 2, respectively tonx =0, 1, 2, 3

Proof consists of 4 cases

Casel: 0= 0, nk = 0 = The intersection of H and [ is a
null graph (complete 0-graph), X(J,k)=1 by Theorem
1 and X(H N J,k)=1

Theorem 4 = X(G, 1+ ®)-1=X(H, 1+ ®)-X(], 1+ D)

XG 1+P)=PXH, 1+PD)-X(], 1+ D)
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(CONCLUDED)THEOREM 10: LET G=HUJ, WHERE
HNJ=Kn AND WITH 0 <nx <3 VERTICES. THEN
XG,1+P)=00OXH, 1+D)-X(J, 1+ D)

Case 4: =2, nk =3 = H N ] = K3, and by Theorem 2

X(H N ], K)=k(k-1)(k-2)
XK;3,1+®D) = XKs3,1+D=d2)- d2((d+1)-1)((P+1)-2)=
B()(O-1) - B(D)(®) = ¢

Theorem 4 = X(G, 1+ ®) - P=X(H, 1+ P)-X(], 1+ P)
= X(G,1+P) =02 X(H, 1+PD)-X(], 1+ D)
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PLANAR GRAPHS:Acrarn At

CAN BE DRAWN ON THE PLANE IN SUCH A WAY THAT ITS
EDGES INTERSECT ONLY AT THEIR ENDPOINTS

Planar Non-Planar

Handshaking Lemm
ANESHals ! Bowtie K 3

J

Euler’s Formula

m<23n-6

no triangles, then K4 K
m < 2n-4

if planar, then 3 at least

one vertex of degree 5
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G PLANAR, CONNECTED=G HAS AT
LEAST ONE VERTEX OF DEGREE < 6

By contradiction, let every vertex in G be of
degree > 6

Y O(G) = 2-e < 2(3n-6) = 6n-12, so degree
sum at most 6n-12

average vertex degree

6n — 12 12
L T _6- =<6
n n

526 Contradiction since every vertex had

degree > 6
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THEOREM 11.: vertex v enclosed by cycle C,,
in planar graph, G = X(G, 1+®)=(-1)" 1" X(G,, 1+P)

Cycle enclosing v, inducton |G |=[V [+ | E|

Base Case true since |Gl=1 = 7 cycle, n=0

3 subcases

x1 adjacent to vertex y; = v, but not a
vertex C;in cycle C

x joined to some vertex y, = C;in cycle C
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THEOREM 11: SUBCASE A-
X(G, 140)=(-1)n ®1n X(Gy, 1+0)

G-e and G-e retain planarity since invariant WRT deletions/ contractions
|Gel < |1G-el < |G, (Gy)-e=(G-e), and (Gy) ‘e = (G-e)y

Del/Con = X(G, 1+®) = X(G-¢e, 1+®P) - X(G-e, 1+D)

Ind.Hyp = (-1 11 - X((G-e)o, 1+9) - X((G-e)o, 14®) = (-1)n D11 - X(Go, 1+0)

G 1 Ge G-e

e X1=1Y>2
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THEOREM 11: CASE B- Assume that G has

no other vertices other than type v and C;
X(G, 1+P)=(-1)» I X(Gy, 1+D)

W5

2 subcases

G is equivalent to a wheel
of n spokes and n enclosing
cycle edges

1 edge e whose endpoints
are non-consecutive
vertices C; and C;j of cycle C
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THEOREM 11: SUBCASE B-
X(G, 1+®)=(-1)n ®1-n X(Gy, 1+P)

3 edges e and ejjoining v

to C; and Cj, respectively

Consider complete 3-
graph formed by edges e,
e1 and e;
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(concluded THEOREM 11: SUBCASE B-
X(G, 1+®)=(-1) d1ln X(G,, 1+P)

Planar G = H U J, where H N [ is

cycle v »C; =2 C3=C; "
4
H includes Cj+1 not Cz, J includes C; AKV

not Cji1

Planar G,=H, U J,, where H, N [, is

K2 using e

So Ind.Hyp, Thm 10 = X(G, 1+®) = ‘“

(-1)n @20 X(Hy, 1+9P) - X(Jy, 1+P) =
(-1)n Pl X(Gy, 1+D)
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FINAL SETUP FOR MAIN
THEOREM

Let G be in 2-sphere or closed plane

Regions bounded by cycle in G,
regions are faces of a plane map M of

which G is the 1-section (the face that
bounds all other regions)

Faces are m-gons

Edge or vertex incident with face if it
belongs to bounding cycle of that face

X(G, k) — X(Mn, k)

Planar Triangulations, Z(n), Z(n, m)
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MAIN THEOREM:
(i) If M € Z(n), then | X(M,,, 1+®) | < @>n

(ii) If M € Z(n,m), then | X(M,,,, 1+P) | < p3+mn

My

Induct on | M |: Base case true for n=1, m=0,
and for null graph X(Mz,k)=1

I X(M7, 1+®) [ = [1] < P>n=P>1= P4

I X(Myp, 1+®) | =11 | < @3+mn = p3+0-1 = p2

3 Subcases for 1-section G of M
G has a cycle that is a 2-gon

G may be a complete 3-graph

G wheel-like at v (note M3y does not work)
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MAIN THEOREM:
(ii))lf M € Z(n,m), then | X(Mnm , 1+®) | < P3tm=n

4 subcases for M € Z(n,m)

m=2 = convert by deleting edge of

the 2-gon
m=3 = M in Z(n)
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MAIN THEOREM: SUBCASES
(ii))lf M € Z(n,m), then | X(Mnm , 1+®) | < P3tm=n

M8,4

m= 4 = 9 2 non-consecutive vertices

Add edge to subdivide m-gon into a
triangle and an (m-1)-gon - - Call it N

Identify vertices x and y - Call it Ny

X(M, 1+®) = X(N, 1+®) - X(N1, 1+P) =
IX(M, 1+®) | < [ X(N, 1+®P) | + | X(N1, 1+D) |

For m=4, N € Z(q) and N; € Z(g-1,2) =

| X(M,1+®) | < 54+ ®5(q-D) = Pp7-9 = Pp3+m-q
since m=4
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MAIN THEOREM: SUBCASES
(ii))lf M € Z(n,m), then | X(Mnm , 1+®) | < P3tm=n




EPILOGUE: 1+¢ never arootofa

Chromatic Polynomial

X(G, k)>0if VI iseven, X(G, k) <0if | VI is odd

For K components, 3 (G, k) 3 X(G, k)=k'K!. o(G, k)

(-1)!'VI+K. o(G, k) > 0, for O<k<1
-1)'VI-x(G, k) <0, for O<k<1

1+®=(3+v5)/2 is roote
(3-V5) /2 is root

% since 0< (3-v5)/2 <1

Tuesday, December 8, 2009



