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Chapter 1

Overview

In this paper, we discuss a result about graph colorings from 1995. The paper we

will be investigating is “The Fractional Chromatic Number of Mycielski’s Graphs,”

by Michael Larsen, James Propp and Daniel Ullman [3].

We will begin with some preliminary definitions, examples, and results about

graph colorings. Then we will define fractional colorings and the fractional chro-

matic number, which are the focus of Larsen, Propp and Ullman’s paper. We will

define fractional colorings in two different ways: first in a fairly intuitive, combi-

natorial manner that is characterized in terms of graph homomorphisms, and then

in terms of independent sets, which as we shall see, lends itself to calculation by

means of linear programming. In this second context, we shall also define fractional

cliques, and see how they relate to fractional colorings. This connection between

fractional colorings and fractional cliques is the key to Larsen, Propp and Ullman’s

proof.
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Chapter 2

Preliminaries

2.1 Graphs and graph colorings

The material in this section is based on the exposition found in chapters 1 and 7

in the excellent book by Godsil and Royle [2].

2.1.1 Basic definitions

A graph is defined as a set of vertices and a set of edges joining pairs of vertices.

The precise definition of a graph varies from author to author; in this paper, we

will consider only finite, simple graphs, and shall tailor our definition accordingly.

A graph G is an ordered pair (V (G), E(G)), consisting of a vertex set, V (G),

and an edge set, E(G). The vertex set can be any finite set, as we are considering

only finite graphs. Since we are only considering simple graphs, and excluding

loops and multiple edges, we can define E(G) as a subset of the set of all unordered

pairs of distinct elements of V (G).

2.1.2 Independent sets and cliques

If u and v are elements of V (G), and {u, v} ∈ E(G), then we say that u and v are

adjacent, denoted u ∼ v. Adjacency is a symmetric relation, and in the case of

simple graphs, anti-reflexive. A set of pairwise adjacent vertices in a graph is called

a clique and a set of pairwise non-adjacent vertices is called an independent set.
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For any graph G, we define two parameters: α(G), the independence num-

ber, and ω(G), the clique number. The independence number is the size of the

largest independent set in V (G), and the clique number is the size of the largest

clique.

2.1.3 Examples

As examples, we define two families of graphs, the cycles and the complete graphs.

The cycle on n vertices (n > 1), denoted Cn, is a graph with V (Cn) =

{1, . . . , n} and x ∼ y in Cn if and only if x− y ≡ ±1 (mod n). We often depict Cn

as a regular n-gon. The independence and clique numbers are easy to calculate:

we have α(Cn) = bn
2
c and ω(Cn) = 2 (except for C3, which has a clique number of

3).

The complete graph on n vertices, Kn, is a graph with V (Kn) = {1, . . . , n}
and x ∼ y in V (Kn) for all x 6= y. It is immediate that α(Kn) = 1 and ω(Kn) = n.

The graphs C5 and K5 are shown in Figure 1.

Figure 1: Cycle and complete graph on five vertices

2.1.4 Graph colorings and graph homomorphisms

A proper n-coloring (or simply a proper coloring) of a graph G can be thought

of as a way of assigning, from a set of n “colors”, one color to each vertex, in such
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a way that no adjacent vertices have the same color. A more formal definition of

a proper coloring relies on the idea of graph homomorphisms.

If G and H are graphs, a graph homomorphism from G to H is a mapping

φ : V (G) → V (H) such that u ∼ v in G implies φ(u) ∼ φ(v) in H. A bijective

graph homomorphism whose inverse is also a graph homomorphism is called a

graph isomorphism.

Now we may define a proper n-coloring of a graph G as a graph homomorphism

from G to Kn. This is equivalent to our previous, informal definition, which can

be seen as follows. Given a “color” for each vertex in G, with adjacent vertices

always having different colors, we may define a homomorphism that sends all the

vertices of the same color to the same vertex in Kn. Since adjacent vertices have

different colors assigned to them, they will be mapped to different vertices in Kn,

which are adjacent. Conversely, any homomorphism from G to Kn assigns to each

vertex of G an element of {1, 2, . . . , n}, which may be viewed as colors. Since no

vertex in Kn is adjacent to itself, no adjacent vertices in G will be assigned the

same color.

In a proper coloring, if we consider the inverse image of a single vertex in

Kn, i.e., the set of all vertices in G with a certain color, it will always be an

independent set. This independent set is called a color class associated with the

proper coloring. Thus, a proper n-coloring of a graph G can be thought of as a

covering of the vertex set of G with independent sets.

We define a graph parameter χ(G), the chromatic number of G, as the small-

est positive integer n such that there exists a proper n-coloring of G. Equivalently,

the chromatic number is the smallest number of independent sets required to cover

V (G). Any finite graph with k vertices can certainly be colored with k colors, so

we see that χ(G) is well-defined for a finite graph G, and bounded from above by

|V (G)|. It is also clear that, if we have a proper n-coloring of G, then χ(G) ≤ n.

We can establish some inequalities relating the chromatic number to the other
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parameters we have defined. First, ω(G) ≤ χ(G), since all the vertices in a clique

must be different colors. Also, since each color class is an independent set, we

have |V (G)|
α(G)

≤ χ(G), where equality is attained if and only if each color class in an

optimal coloring is the size of the largest independent set.

We can calculate the chromatic number for our examples. For the complete

graphs, we have χ(Kn) = n, and for the cycles we have χ(Cn) = 2 for n even and

3 for n odd. In Figure 2, we see C5 and K5 colored with three and five colors,

respectively.

Figure 2: The graphs C5 and K5 with proper 3- and 5-colorings, respectively

2.2 Fractional colorings and fractional cliques

2.2.1 Fractional colorings

We now generalize the idea of a proper coloring to that of a fractional coloring (or

a set coloring), which allows us to define a graph’s fractional chromatic number,

denoted χF (G), which can assume non-integer values.

Given a graph, integers 0 < b ≤ a, and a set of a colors, a proper a/b-coloring

is a function that assigns to each vertex a set of b distinct colors, in such a way that

adjacent vertices are assigned disjoint sets. Thus, a proper n-coloring is equivalent

to a proper n/1-coloring.
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The definition of a fractional coloring can also be formalized by using graph

homomorphisms. To this end, we define another family of graphs, the Kneser

graphs. For each ordered pair of positive integers (a, b) with a ≥ b, we define a

graph Ka:b. As the vertex set of Ka:b, we take the set of all b-element subsets

of the set {1, . . . , a}. Two such subsets are adjacent in Ka:b if and only if they

are disjoint. Note that Ka:b is an empty graph (i.e., its edge set is empty) unless

a ≥ 2b.

Just as a proper n-coloring of a graph G can be seen as a graph homomorphism

from G to the graph Kn, so a proper a/b-coloring of G can be seen as a graph

homomorphism from G to Ka:b.

The fractional chromatic number of a graph, χF (G), is the infimum of all

rational numbers a/b such that there exists a proper a/b-coloring of G. From this

definition, it is not immediately clear that χF (G) must be a rational number for

an arbitrary graph. In order to show that it is, we will use a different definition

of fractional coloring, but first, we establish some bounds for χF (G) based on our

current definition.

We can get an upper bound on the fractional chromatic number using the

chromatic number. If we have a proper n-coloring of G, we can obtain a proper

nb
b

coloring for any positive integer b by replacing each individual color with b

different colors. Thus, we have χF (G) ≤ χ(G), or in terms of homomorphisms, we

can simply note the existence of a homomorphism from Kn to Knb:b (namely, map

i to the set of j ≡ i (mod n)).

To obtain one lower bound on the fractional chromatic number, we note that a

graph containing an n-clique has a fractional coloring with b colors on each vertex

only if we have at least n · b colors to choose from; in other words, ω(G) ≤ χF (G).

Just as with proper colorings, we can obtain another lower bound from the

independence number. Since each color in a fractional coloring is assigned to an

independent set of vertices (the fractional color class), we have |V (G)|·b ≤ α(G)·a,
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or |V (G)|
α(G)

≤ χF (G).

Another inequality, which will come in handy later, regards fractional colorings

of subgraphs. A graph H is said to be a subgraph of G if V (H) ⊆ V (G) and

E(H) ⊆ E(G). Notice that if H is a subgraph of G, then any proper a/b-coloring

of G, restricted to V (H), is a proper a/b-coloring of H. This tells us that χF (H) ≤
χF (G).

Figure 3: The graph C5 with a proper 5/2-coloring

2.2.2 Fractional colorings in terms of independent sets

Now we introduce an alternative definition of fractional colorings, one expressed

in terms of independent sets of vertices. This definition is somewhat more general

than the previous one, and we will see how fractional colorings, understood as

homomorphisms, can be consistently reinterpreted in terms of independent sets.

This new characterization of fractional colorings will lead us to some methods of

computing a graph’s fractional chromatic number.

Let I(G) denote the set of all independent sets of vertices in V (G), and for u ∈
V (G), we let I(G, u) denote the set of all independent sets of vertices containing

u. In this context, a fractional coloring is a mapping f : I(G) → [0, 1] with the

property that, for every vertex u,
∑

J∈I(G,u) f(J) ≥ 1. The sum of the function

values over all independent sets is called the weight of the fractional coloring. The



8

fractional chromatic number of G is the infimum of the weights of all possible

fractional colorings of G.

It may not be immediately clear that this definition has anything to do with

our previous definition, in terms of graph homomorphisms. To see the connection,

consider first a graph G with a proper coloring. Each color class is an independent

set belonging to I(G). We define f : I(G) → [0, 1] mapping each color class to 1

and every other independent set to 0. Since each vertex falls in one color class, we

obtain
∑

J∈I(G,u)

f(J) = 1

for each vertex u. The weight of this fractional coloring is simply the number of

colors.

Next, suppose we have a graph G with a proper a/b coloring as defined above,

with a b-element set of colors associated with each vertex. Again, each color

determines a color class, which is an independent set. If we define a function that

sends each color class to 1
b

and every other independent set to 0, then again, we

have for each vertex u,
∑

J∈I(G,u) f(J) = 1, so we have a fractional coloring by our

new definition, with weight a/b.

Finally, let us consider translating from the new definition to the old one.

Suppose we have a graph G and a function f mapping from I(G) to [0, 1] ∩ Q.

(We will see below why we are justified in restricting our attention to rational

valued functions.) Since the graph G is finite, the set I(G) is finite, and the image

of the function f is a finite set of rational numbers. This set of numbers has a

lowest common denominator, b. Now suppose we have an independent set I which

is sent to the number m/b. Thus, we can choose m different colors, and let the set

I be the color class for each of them. Proceeding in this manner, we will assign

at least b different colors to each vertex, because of our condition that for all u
∑

J∈I(G,u) ≥ 1. If some vertices are assigned more than b colors, we can ignore all
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but b of them, and we have a fractional coloring according to our old definition -

if the weight of f is a/b, and we do not ignore any colors completely, then we will

have obtained a proper a/b coloring. If some colors are ignored, then we actually

have a proper d/b fractional coloring, for some d < a.

2.2.3 Fractional chromatic number as a linear program

The usefulness of this new definition of fractional coloring and fractional chromatic

number in terms of independent sets is that it leads us to a method of calculation

using the tools of linear programming. To this end, we will construct a matrix

representation of a fractional coloring.

For a graph G, define a matrix A(G), with columns indexed by V (G) and

rows indexed by I(G). Each row is essentially the characteristic function of the

corresponding independent set, with entries equal to 1 on columns corresponding

to vertices in the independent set, and 0 otherwise.

Now let f be a fractional coloring of G and let y(G) be the vector indexed by

I(G) with entries given by f . With this notation, and letting 1 denote the all 1’s

vector, the inequality y(G)T A(G) ≥ 1T expresses the condition that

∑

J∈I(G,u)

f(J) ≥ 1

for all u ∈ V (G).

In this algebraic representation of a fractional coloring, the determination of

fractional chromatic number becomes a linear programming problem. The entries

of the vector y(G) are a set of variables, one for each independent set in V (G),

and our task is to minimize the sum of the variables (the weight of the fractional

coloring), subject to the set of constraints that each entry in the vector y(G)T A(G)

be greater than 1, and that each variable be in the interval [0, 1]. This amounts to

minimizing a linear function within a convex polyhedral region in n-dimensional
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space defined by a finite number of linear inequalities, where n = |I(G)|. This

minimum must occur at a vertex of the region. Since each hyperplane forming a

face of the region is determined by a linear equation with integer coefficients, then

each vertex has rational coordinates, so our optimal fractional coloring will indeed

take on rational values, as promised.

The regular, integer chromatic number, can be calculated with the same linear

program by restricting the values in the vector y(G) to 0 and 1. This is equivalent

to covering the vertex set by independent sets that may only have weights of 1 or

0. Although polynomial time algorithms exist for calculating optimal solutions to

linear programs, this is not the case for integer programs or 0-1 programs. In fact,

many such problems have been shown to be NP-hard. In this respect, fractional

chromatic numbers are easier to calculate than integer chromatic numbers.

2.2.4 Fractional cliques

The linear program that calculates a graph’s fractional chromatic number is the

dual of another linear program, in which we attempt to maximize the sum of

elements in a vector x(G), subject to the constraint A(G)x(G) ≤ 1. We can pose

this maximization problem as follows: we want to define a function h : V (G) →
[0, 1], with the condition that, for each independent set in I(G), the sum of function

values on the vertices in that set is no greater than 1. Such a function is called

a fractional clique, the dual concept of a fractional coloring. As with fractional

colorings, we define the weight of a fractional clique to be the sum of its values

over its domain. The supremum of weights of fractional cliques defined for a graph

is a parameter, ωF (G), the fractional clique number.

Just as we saw a fractional coloring as a relaxation of the idea of an integer

coloring, we would like to understand a fractional clique as a relaxation of the

concept of a integer clique to the rationals (or reals). It is fairly straightforward
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to understand an ordinary clique as a fractional clique: we begin by considering a

graph G, and a clique, C ⊆ V (G). We can define a function h : V (G) → [0, 1] that

takes on the value 1 for each vertex in C and 0 elsewhere. This function satisfies

the condition that its values sum to no more than 1 over each independent set, for

no independent set may intersect the clique C in more than one vertex. Thus the

function is a fractional clique, whose weight is the number of vertices in the clique.

Since an ordinary n-clique can be interpreted as a fractional clique of weight

n, we can say that for any graph G, ω(G) ≤ ωF (G).

2.2.5 Equality of χF and ωF

The most important identity we will use to establish our main result is the equality

of the fractional chromatic number and the fractional clique number. Since the

linear programs which calculate these two parameters are dual to each other, we

apply the Strong Duality Theorem of Linear Programming. We state the theorem

in full. The reader is referred to [4] for more information about linear programming.

Suppose we have a primary linear program (LP) of the form:

Maximize cT x

subject to Ax ≤ b

and x ≥ 0

with its dual, of the form:

Minimize yT b

subject to yT A ≥ cT

and y ≥ 0

If both LPs are feasible, i.e., have non-empty feasible regions, then both can

be optimized, and the two objective functions have the same optimal value.



12

In the case of fractional chromatic number and fractional clique number, our

primary LP is that which calculates the fractional clique of a graph G. The vector

c determining the objective function is the all 1s vector, of dimension |V (G)|, and

the constraint vector b is the all 1s vector, of dimension |I(G)|. The matrix A is the

matrix described above, whose rows are the characteristic vectors of the indepen-

dent sets in I(G), defined over V (G). The vector x for which we seek to maximize

the objective function cT x has as its entries the values of a fractional clique at each

vertex. The vector y for which we seek to minimize the objective function yT b has

as its entries the values of a fractional coloring on each independent set.

In order to apply the Strong Duality Theorem, we need only establish that

both LPs are feasible. Fortunately, this is easy: the zero vector is in the feasible

region for the primary LP, and any proper coloring is in the feasible region for the

dual. Thus, we may conclude that both objective functions have the same optimal

value; i.e., that for a graph G, we have ωF (G) = χF (G).

This equality gives us a means of calculating these parameters. Suppose that,

for a graph G, we find a fractional clique with weight equal to r. Since the fractional

clique number is the supremum of weights of fractional cliques, we can say that

r ≤ ωF (G). Now suppose we also find a fractional coloring of weight r. Then, since

the fractional chromatic number is the infimum of weights of fractional colorings,

we obtain χF (G) ≤ r. Combining these with the equality we obtained from duality,

we get that ωF (G) = r = χF (G). This is the method we use to prove our result.
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Chapter 3

Fractional Colorings and

Mycielski’s Graphs

We have noted that the fractional clique number of a graph G is bounded from

below by the integer clique number, and that it is equal to the fractional chromatic

number, which is bounded from above by the integer chromatic number. In other

words,

ω(G) ≤ ωF (G) = χF (G) ≤ χ(G).

Given these relations, one natural question to ask is whether the differences

ωF (G)− ω(G) and χ(G)− χF (G) can be made arbitrarily large. We shall answer

this question in the affirmative, by displaying a sequence of graphs for which both

differences increase without bound.

3.1 The Mycielski transformation

The sequence of graphs we will consider is obtained by starting with a single edge

K2, and repeatedly applying a graph transformation, which we now define. Sup-

pose we have a graph G, with V (G) = {v1, v2, . . . , vn}. The Mycielski transfor-

mation of G, denoted µ(G), has for its vertex set the set {x1, x2, . . . , xn, y1, y2, . . . , yn, z}
- for a total of 2n + 1 vertices. As for adjacency, we put

xi ∼ xj in µ(G) if and only if vi ∼ vj in G,

xi ∼ yj in µ(G) if and only if vi ∼ vj in G,
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and yi ∼ z in µ(G) for all i ∈ {1, 2, . . . , n}. See Figure 4 below.

Figure 4: The Mycielski transformation

The theorem that we shall prove states that this transformation, applied to a

graph G with at least one edge, results in a graph µ(G) with

(a) ω(µ(G)) = ω(G),

(b) χ(µ(G)) = χ(G) + 1, and

(c) χF (µ(G)) = χF (G) + 1
χF (G)

.

3.2 Main result

We prove each of the three statements above in order:

3.2.1 Proof of part (a)

First we note that the vertices x1, x2, . . . , xn form a subgraph of µ(G) which is

isomorphic to G. Thus, any clique in G also appears as a clique in µ(G), so we
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have that ω(µ(G)) ≥ ω(G).

To obtain the opposite inequality, consider cliques in µ(G). First, any clique

containing the vertex z can contain only one other vertex, since z is only adjacent

to the y vertices, none of which are adjacent to each other. Now consider a clique

{xi(1), . . . , xi(r), yj(1), . . . , yj(s)}. From the definition of the Mycielski transforma-

tion, we can see that the sets {i(1), . . . , i(r)} and {j(1), . . . , j(s)} are disjoint, and

that the set {vi(1), . . . , vi(r), vj(1), . . . , vj(s)} is a clique in G. Thus, having consid-

ered cliques with and without vertex z, we see that for every clique in µ(G), there

is a clique of equal size in G, or in other words, ω(µ(G)) ≤ ω(G).

Combining these inequalities, we have ω(µ(G)) = ω(G), as desired.

3.2.2 Proof of part (b)

Suppose we have that χ(G) = k. We must show that χ(µ(G)) = k + 1. First, we

shall construct a proper k+1-coloring of µ(G), which will show that χ(µ(G)) ≤
k + 1. Suppose that f is a proper k-coloring of G, understood as a mapping

f : V (G) → {1, . . . , k}. We define a proper k + 1-coloring, h : V (µ(G)) →
{1, . . . , k + 1} as follows. We set h(xi) = h(yi) = f(vi), for each i ∈ {1, . . . , n}.
Now set h(z) = k + 1. From the way µ(G) was constructed, we can see that this

is a proper coloring, so we have χ(µ(G)) ≤ k + 1.

For the inequality in the opposite direction, we will show that, given any col-

oring of µ(G), we can obtain a coloring of G with one color fewer. Since the

chromatic number of G is k, this will show that χ(µ(G))− 1 ≥ k, or equivalently,

χ(µ(G)) ≥ k + 1. So, consider a proper coloring h of µ(G). We define a function

f on the vertices of G as follows: f(vi) = h(xi) if h(xi) 6= h(z), and f(vi) = h(yi)

if h(xi) = h(z). From the construction of µ(G), it should be clear that this is a

proper coloring. It does not use the color h(z), so it uses one color fewer than h

uses, and thus we have that χ(µ(G)) ≥ k + 1.



16

Again, combining our two inequalities, we obtain χ(µ(G)) = χ(G) + 1, as

desired.

3.2.3 Proof of part (c)

Now we will show that χF (µ(G)) = χF (G) + 1
χF (G)

, or in other words, we want to

show that if χF (G) = a
b
, then χF (µ(G)) = a2+b2

ab
. Our strategy will be to construct

a fractional coloring and a fractional clique on µ(G), each with the appropriate

weight, and then invoke our strong duality result.

Suppose we have a proper a/b-coloring of G, understood in terms of sets of

colors assigned to each vertex. Thus, each vertex in G is assigned some subset of b

colors out of a set of size a. We suppose, somewhat whimsically, that each of the a

colors has a “offspring”, b of them “male” and a− b of them “female”. Taking all

of these offspring as distinct, we have obtained a2 offspring colors. To these, add

a set of b2 new colors, and we have a total of a2 + b2 colors with which to color

the vertices of µ(G). We assign them as follows. To each of vertex xi, we assign

all the offspring of all the colors associated with vertex vi, a offspring of each of b

colors for a total of ab colors. To each vertex yi, we assign all the female offspring

of all the colors associated with vi (there are b(a − b)), and all of the new colors

(there are b2). To vertex z, we assign all of the male offspring of all the original

colors, which is ab distinct colors. We see that we have assigned ab colors to each

vertex, and it is easy to check that the coloring is a proper (a2 + b2)/ab-coloring

of µ(G). The existence of this coloring proves that χF (µ(G)) ≤ a2+b2

ab
.

Our final, and most complicated, step is to construct a fractional clique of

weight ωF (G) + 1
ωF (G)

on µ(G). Suppose we have a fractional clique on G that

achieves the optimal weight ωF (G). Recall that this fractional clique is understood

as a mapping f : V (G) → [0, 1] which sums to at most 1 on each independent

set, and whose values all together sum to ωF (G). Now we define a mapping
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g : V (µ(G)) → [0, 1] as follows:

g(xi) =

(
1− 1

ωF (G)

)
f(vi)

g(yi) =
1

ωF (G)
f(vi)

g(z) =
1

ωF (G)

We must show that this is a fractional clique. In other words, we must establish

that it maps its domain into [0, 1], and that its values sum to at most 1 on each

independent set in µ(G). The codomain is easy to establish: the range of f lies

between 0 and 1, and since ωF (G) ≥ ω(G) ≥ 2 > 1, then 0 < 1
ωF (G)

< 1. Thus

each expression in the definition of g yields a number between 0 and 1. It remains

to show that the values of g are sufficiently bounded on independent sets.

We introduce a notation: for M ⊆ V (G), we let x(M) = {xi|vi ∈ M} and

y(M) = {yi|vi ∈ M}. Now we will consider two types of independent sets in µ(G):

those containing z and those not containing z.

Any independent set S ⊆ V (µ(G)) that contains z cannot contain any of the

yi vertices, so it must be of the form S = {z} ∪ x(M) for some independent set

M in V (G). Summing the values of g over all vertices in the independent set, we

obtain:

∑
v∈S

g(v) = g(z) +
∑

v∈x(M)

g(v)

=
1

ωF (G)
+

(
1− 1

ωF (G)

) ∑
v∈M

f(v)

≤ 1

ωF (G)
+

(
1− 1

ωF (G)

)
= 1

Now consider an independent set S ⊆ V (µ(G)) with z /∈ S. We can therefore

say S = x(M)∪y(N) for some subsets of V (G), M and N , and we know that M is

an independent set. Since S is independent, then no vertex in y(N) is adjacent to
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any vertex in x(M), so we can express N as the union of two sets A and B, with

A ⊆ M and with none of the vertices in B adjacent to any vertex in M . Now we

can sum the values of g over the vertices in S = x(M)∪y(N) = x(M)∪y(A)∪y(B):

∑
v∈S

g(v) =

(
1− 1

ωF (G)

) ∑
v∈M

f(v) +
1

ωF (G)

∑
v∈N

f(v)

=

(
1− 1

ωF (G)

) ∑
v∈M

f(v) +
1

ωF (G)

∑
v∈A

f(v) +
1

ωF (G)

∑
v∈B

f(v)

≤
(

1− 1

ωF (G)

) ∑
v∈M

f(v) +
1

ωF (G)

∑
v∈M

f(v) +
1

ωF (G)

∑
v∈B

f(v)

=
∑
v∈M

f(v) +
1

ωF (G)

∑
v∈B

f(v)

The first two equalities above are simply partitions of the sum into sub-sums

corresponding to subsets. The inequality holds because A ⊆ M , and the final

equality is just a simplification. It will now suffice to show that the final expression

obtained above is less than or equal to 1.

Let us consider H, the subgraph of G induced by B. The graph H has some

fractional chromatic number, say r/s. Suppose we have a proper r/s-coloring of

H. Recall that the color classes of a fractional coloring are independent sets, so

we have r independent sets of vertices in V (H) = B; let us call them C1, . . . , Cr.

Not only is each of the sets Ci independent in H, but it is also independent in G,

and also Ci ∪M is independent in G as well, because Ci ⊆ B.

For each i, we note that f is a fractional clique on G, and sum over the inde-

pendent set Ci ∪M to obtain:

∑
v∈M

f(v) +
∑
v∈Ci

f(v) ≤ 1

Summing these inequalities over each Ci, we get:

r
∑
v∈M

f(v) + s
∑
v∈B

f(v) ≤ r
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The second term on the left side of the inequality results because each vertex in B

belongs to s different color classes in our proper r/s-coloring. Now we divide by r

to obtain:
∑
v∈M

f(v) +
s

r

∑
v∈B

f(v) ≤ 1

Since r/s is the fractional chromatic number of H, and H is a subgraph of G,

we can say that r
s
≤ χF (G) = ωF (G), or equivalently, 1

ωF (G)
≤ s

r
. Thus:

∑
v∈M

f(v) +
1

ωF (G)

∑
v∈B

f(v) ≤
∑
v∈M

f(v) +
s

r

∑
v∈B

f(v) ≤ 1,

as required. We have shown that the mapping g that we defined is indeed a

fractional clique on µ(G). We now check its weight.

∑

v∈V (µ(G))

g(v) =
n∑

i=1

h(xi) +
n∑

i=1

h(yi) + h(z)

=

(
1− 1

ωF (G)

) ∑

v∈V (G)

f(v) +
1

ωF (G)

∑

v∈V (G)

f(v) +
1

ωF (G)

=
∑

v∈V (G)

f(v) +
1

ωF (G)

= ωF (G) +
1

ωF (G)
= χF (G) +

1

χF (G)

This is the required weight, so we have constructed a fractional coloring and a

fractional clique on µ(G), both with weight χF (G) + 1
χF (G)

. We can now write the

inequality

χF (µ(G)) ≤ χF (G) +
1

χF (G)
≤ ωF (G)

and invoke strong duality to declare the terms at either end equal to each other,

and thus to the middle term. 2



20

3.3 Discussion of main result

Now that we have a theorem telling us how the Mycielski transformation affects

the three parameters of clique number, chromatic number, and fractional chro-

matic number, let us apply this result in a concrete case, and iterate the My-

cielski transformation to obtain a sequence of graphs {Gn}, with Gn+1 = µ(Gn)

for n > 2. For our starting graph G2 we take a single edge, K2, for which

ω(G) = χF (G) = χ(G) = 2.

Applying our theorem, first to clique numbers, we see that ω(Gn) = 2 for all n.

Considering chromatic numbers, we have χ(G2) = 2 and χ(Gn+1) = χ(Gn)+1; thus

χ(Gn) = n for all n. Finally, the fractional chromatic number of Gn is determined

by a sequence {an}n∈{2,3,...} given by the recurrence: a2 = 2 and an+1 = an + 1
an

.

This sequence has been studied (see [5] or [1]), and it is known that for all n:

√
2n ≤ an ≤

√
2n +

1

2
ln n.

Clearly, an grows without bound, but less quickly than any sequence of the form

nr for r > 1
2
. Thus, the difference between the fractional clique number and the

clique number grows without limit, as does the difference between the chromatic

number and the fractional chromatic number.



21

Chapter 4

The Zykov graphs

We have been considering a sequence of graphs, and the resulting sequences of

clique numbers, fractional chromatic numbers, and chromatic numbers. In the

sequence of Mycielski graphs, we saw that the clique number is constant at 2,

while the chromatic number increases by 1 at each step. We now consider another

sequence of graphs in which the clique numbers and chromatic numbers are the

same as they are for the Mycielski sequence. We will obtain some evidence that

this new sequence’s fractional chromatic numbers are also the same as for the

Mycielski graphs.

Zykov (see [6, p.215] or [7]) described a sequence of graphs as follows: We begin

with Z1, a single vertex. In order to construct Zn, we begin with disjoint copies

of Z1, . . . , Zn−1. We add to the union of these graphs a set of new vertices, equal

in number to the product |V (Z1)| · . . . · |V (Zn−1)|. For each sequence of vertices

v1, . . . , vn−1 with vi being a vertex in our copy of Zi, we connect one of the new

vertices to each vertex in the sequence. See Figure 5 for the first four graphs in

this sequence.

We observe that the vertex sets of these graphs get very large quickly. The

sequence {ai = |V (Zi)| | i = 1, 2, . . .} is described by the recurrence relation:

a1 = 1

an+1 =
n∑

k=1

ak +
n∏

k=1

ak

This sequence begins 1, 2, 5, 18, 206, 37312, 1383566504, . . .. We have investi-

gated the first 5 graphs in the sequence in some detail.
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Figure 5: The first four Zykov graphs

It is easy to show that the graphs in this sequence are all triangle-free, so they

all have clique number equal to 2. It also follows from the construction of these

graphs that χ(Zn) = n for all n. The first three graphs are already known to us:

Z1 is a single vertex, or K1 (χF (Z1) = 1), Z2 is the same as K2 (χF (Z2) = 2), and

Z3 is the same as C5 (χF (Z3) = 5/2).

The first interesting case is Z4 (pictured above), which has 18 vertices and 2960

independent sets. The abundance of independent sets makes direct calculation

of χF (Z4) by means of linear programming prohibitive. However, we have two

different techniques for reducing the size of the problem.

First, we can restrict ourselves to looking at maximal independent sets. That

this restriction is justified is clear if we consider the dual linear program, which

calculates fractional clique number. The constraints in this program specify that

the “weights” assigned to the vertices in each independent set add up to no more

than 1. If A and B are independent sets with B ⊆ A, and if the weights on the
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vertices in A add up to no more than 1, then total weight on B must also fall short

of 1. Thus, the constraints corresponding to non-maximal independent sets are

redundant, and the LP using only maximal sets as contstraints will be satisfied by

the same optimal solution as the LP that takes all independent sets into account.

The dual of the program that uses only maximal independent sets is a program

that calculates a fractional coloring in which only maximal independent sets may

serve as color classes. By the Strong Duality theorem, this LP will have the same

optimal value as its dual, which has the same optimal value as our original LP.

Restricting ourselves to maximal independent sets, the study of Z4 becomes

much more accessible: of the 2960 independent sets, only 43 are maximal. Using

Maple, we obtained a fractional clique and a fractional coloring for Z4, both with

weight equal to 29
10

, which is the same as the weight of the Mycielski transformation

of the 5-cycle.

In pursuit of a pattern by which colorings and cliques for Zykov graphs may

be generated, we found it desirable to calculate a fractional clique and fractional

coloring for Z5. This graph has 206 vertices and 98143 maximal independent

sets. In order to analyze it, we employed another technique, this one relying on

symmetries in the graph.

The Zykov graphs have some automorphisms which can be discovered by in-

spection of the first few graphs, particularly Z4. Naturally, these automorphisms

map vertices to vertices, and independent sets to independent sets. We set up

equivalence relations on V (Z4) and I(Z4), whereby vertices (and independent sets)

are considered equivalent if a graph automorphism carries one to the other. In-

stead of considering individual vertices and independent sets, we can work with

equivalence classes of vertices and independent sets, and ask whether we can still

calculate fractional cliques and fractional colorings.

In order to “fold” the symmetries out of our LP, as it were, we simply redefine

the vectors b and c and the matrix A that we used in Section 2.2.5. Vector b
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in indexed by the equivalence classes of independent sets, and ith element is the

number of independent sets in the ith equivalence class. Vector c, in the same way,

counts the vertices in each equivalence class in our partition of V (G). In matrix A

we let entry (i, j) be the number of vertices of class j occuring in each independent

set of class i, multiplied by the number of independent sets of in class i.

The matrix and vectors we have just described define an LP and its dual,

which calculate fractional cliques and fractional colorings that are invariant under

automorphisms. Such solutions must exist and be equal, due to the Strong Duality

Theorem, just as before. Now we can handle the calculation of χF (Z5). Although

Z5 has 98143 maximal independent sets, they fall into a mere 295 equivalence

classes under graph automorphisms. Likewise, the 206 vertices fall into 11 classes,

and we have a much more tractable problem. Running the resulting LP through

Maple, we were able to determine that the fractional chromatic number of Z5 is 941
290

,

equal to the fractional chromatic number of the second Mycielski transformation

of the 5-cycle.

Thus, we have Z2, Z3, Z4 and Z5 with the same parameter values as K2,

µ(K2) = C5, µ(C5) and µ(µ(C5)), as far as clique number, chromatic number, and

fractional chromatic number. We conjecture that this pattern continues. More

formally:

4.0.1 Conjecture. For all n ∈ {1, 2, . . .}, the following hold:

ω(Zn) = 2

χ(Zn) = n

χF (Zn) = an

where an is determined by the recurrence a1 = 1, an+1 = an + a−1
n .

The first two statements, regarding clique number and chromatic number, are

easy to prove. We have verified the third for n = 1, 2, 3, 4 and 5.
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