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Note:

0  The adjacency matrix A(G) is symmetric.
O The diagonal entries are always 0.
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Recall: Every eigenvalue of a symmetric matrix is real.

Definition. The spectral radius of G is the parameter
p(G) = max;(|\;|), where the maximum is taken over all the
eigenvalues \; of the adjacency matrix A(G).

Definition. The Perron vector of GG is the eigenvector x
associated to the eigenvalue p(G).

Theorem (Perron-Frobenius Theorem). Suppose A is a real
nonnegative n X n matrix whose underlying graph G is
connected. Then, p(A) is a simple eigenvalue of A. If x is an
eigenvector for p, then no entries of x are zero, and all have the
same sign.

[J The Perron vector is a unique (up to scalar multiplication),
positive, unit, and simple vector.
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Matlab)...

{-1.5616, —1.0000, —1.0000, 1.0000, 2.5616 }
——

max; (|A\;])
Thus, we have p(G) = 2.5616,

the associated Perron vector is...

x = {0.3941, 0.3941,0.6154, 0.3941, 0.3941} 7"
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For each 7, let d; denote the degree of each vertex v; in G.
Let D = D(G) be the n x n diagonal matrix, where i}

diagonal entry is d;.

The Laplacian matrix L to be the matrix

L(G) = D(G) — A(G).

The spectral radius of L as the Laplacian spectral radius
of G and denote this by u(G).

The signless Laplacian matrix () to be the matrix

Q(G) = D(G) + A(G).

The spectral radius of () as the signless Laplacian spectral
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[

A pendant vertex in a graph GG is a vertex whose degree is
1.

Let G be a simple graph and take v € V(G). Then, Ng(v)
denotes the set of vertices which are adjacent to the vertex
V.

For a nonnegative integer n and k, 7, denotes the set of
tree graphs with n vertices and k£ pendant vertices.

For any fixed n and k, we define T}, , € 7, to be a tree
graph obtained from a complete bipartite graph (we call this
a star graph) K j, and k paths of almost equal length, by
joining each pendant vertex of K j to an end vertex of one
path.
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[J Start with the star K 5

[] We are attaching five paths to each pendant vertex in K 5
[1 What kind of paths do we need to add? The definition said
“almost equal length” ?!

A Sharp Upper Bounds for Largest Eigenvalue of the Laplacian Matrices of Tree — 13 / 31



Objective

Introduction Example: How can | construct T1g 57

Motivation
> Preliminaries

Objective e P,
Summary
‘‘‘‘‘ —o— o P,
Some Lemmas
Y e - R o—o—o
Main Results o= P
The End N &= ——e—9o— Ps
‘‘‘‘‘ —o— oo P

[1 We want five paths having the same number of vertices as

much as possible, so consider the division algorithm
17=3-5+4 2.
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Objective

Introduction Example: How can | construct T1g 57

Motivation
> Preliminaries

Objective e P,
Summary
‘‘‘‘‘ —o— o P,
Some Lemmas
Y e - R o—o—o
Main Results o= P
The End N oo —o—o Pa
‘‘‘‘‘ —o— oo P

[1 We want five paths having the same number of vertices as
much as possible, so consider the division algorithm
17=3-5+4 2.

[1 This quotient 3 represents the minimum number of vertices
that each path has.
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Objective

Introduction

Motivation

> Preliminaries
Objective
Summary

Some Lemmas

Main Results

The End

Example: How can | construct 11557

<<<<< —o— o P,

o= —o— o P,
<<<<< —o— oo P,
‘‘‘‘‘ o—eo—o—o P

[1 We want five paths having the same number of vertices as
much as possible, so consider the division algorithm
17=3-5+4 2.

[1 This quotient 3 represents the minimum number of vertices
that each path has.

[ ] But we still have two more vertices remaining...
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Objective

Introduction

Motivation

> Preliminaries
Objective
Summary

Some Lemmas

Main Results

The End

Example: How can | construct 11557

[1 We want five paths having the same number of vertices as
much as possible, so consider the division algorithm
17=3-5+4 2.

[1 This quotient 3 represents the minimum number of vertices
that each path has.

[1 But we still have two more vertices remaining...

[] Thus, two paths have an extra vertex.
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Objective

Introduction Example: How can | construct T1g 57

Motivation
> Preliminaries
Objective

Summary

Some Lemmas

Main Results

The End

18,5

[1 Not every path has the same number of vertices, but each has
an “almost equal” number of vertices!
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Objective

ereduction Objective: For any T' € .7, i, its Laplacian spectral radius is
otivation )

Preliminaries bounded by the one for Tn’k That IS,

> Objective

Summary

:LL(T) < U(Tn,k)

Some Lemmas

Main Results

The End
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Summary

Introduction

Motivation
Preliminaries
Objective

> Summary

Some Lemmas

Main Results

The End

Recall that (7)) < u(T, ) for all T € 7, . The following are
notations used in this presentation.

N A I I W A O

[

A(G) : adjacency matrix of G

p(G) : spectral radius of GG

L(G) : Laplacian matrix of G

u(G) : Laplacian spectral radius of GG

Q(G) : signless Laplacian matrix of GG

v(G) : signless Laplacian spectral radius of GG

Ng(v) : set of vertices adjacent to a vertex v in G
Ng(v)\(Ng(u) U{u}) : set of neighbors of v, but do not
include neighbors of u nor u itself

Tk set of tree graphs with n vertices and k£ pendant
vertices

Th. : a tree graph by the construction just explained

)
)
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Introduction

> Some Lemmas

Lemma 1
Lemma 2 and 3
Lemma 4

Main Results

The End

Some Lemmas
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Introduction

Some Lemmas

> Lemma 1
Lemma 2 and 3
Lemma 4

Main Results

The End
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Lemma 1l

Introduction

Some Lemmas

> Lemma 1
Lemma 2 and 3
Lemma 4

Main Results

The End

Lemma 1. If G is a bipartite graph, then D(G) + A(G) and
D(G) — A(G) have the same spectrum.
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Lemma 1l

Introduction

Some Lemmas

> Lemma 1
Lemma 2 and 3
Lemma 4

Main Results

The End

Lemma 1. If G is a bipartite graph, then D(G) + A(G) and
D(G) — A(G) have the same spectrum.
Example: Take..
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Introduction

Some Lemmas

> Lemma 1
Lemma 2 and 3
Lemma 4

Main Results

The End

Lemma 1. If G is a bipartite graph, then D(G) + A(G) and
D(G) — A(G) have the same spectrum.
Example: Take..
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Lemma 1l

Introduction

Some Lemmas

> Lemma 1
Lemma 2 and 3
Lemma 4

Main Results

The End

Lemma 1. If G is a bipartite graph, then D(G) + A(G) and
D(G) — A(G) have the same spectrum.
Example: Take..

Their signless/Laplacian matrices and spectra are..
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Lemma 1l

Introduction

Some Lemmas

> Lemma 1
Lemma 2 and 3
Lemma 4

Main Results

The End

Lemma 1. If G is a bipartite graph, then D(G) + A(G) and
D(G) — A(G) have the same spectrum.

Example: Take..

Their signless/Laplacian

L(B) vy v v3g v4
vy [ 3 0 0o -1
vg 0 2 0o -1
v3 0 0 2 -1
vy -1 -1 -1 3
vy —1 —1 0 0
ve L -1 0 —1 0

matrices and spectra are..

vs vg Q(B) vy w2 w3 Y4 U5
-1 —-17 v, [ 3 0 © 1 1
—1 0 vy 0 2 0 1 1
0o -1 vs o o0 2 1 0
0 0 vy 1 1 1 3 0
2 0 vy 1 1 0 0 2
0 2 | w L1 0o 1 0 0

<
o))

NOOH=ROK
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Lemma 1l

Introduction

Some Lemmas

> Lemma 1

Lemma 2 and 3

Lemma 1. If G is a bipartite graph, then D(G) + A(G) and

D(G) — A(G) have the same spectrum.

Example: Take..

Lemma 4
Main Results B v, v,
The End v, Vs

Their signless/Laplacian

matrices and spectra are..

L(B) v v9 vg vy vy vg Q(B) v v9 vg vy vy vg
vl F 3 0 0 —1 —1 —1 7 vl T 3 0 0 1 1 1
v9 0 2 0 —1 —1 0 vy 0 2 0 1 1 0
vg 0 0 2 —1 0 —1 vg 0 0 2 1 0 1
vy —1 —1 —1 3 0 0 vy 1 1 1 3 0 0
vy —1 —1 0 0 2 0 U5 1 1 0 0 2 0
vg | —1 0 -1 0 0 2 ] vg |1 0 1 0 0 2 |

The spectrum of L(B) is {—0.0000, 1.0000, 2.0000, 3.0000, 3.0000, 5.0000},
whereas the spectrum of Q(B) is {—0.0000, 1.0000, 2.0000, 3.0000, 3.0000, 5.0000},

as desired.
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Lemma 2 and 3

Introduction Lemma 2. Let u be a vertex of the connected graph G and for
f::;:elmmas positive integers k and [, Gy denote the graph obtained from G
> Lemma 2 and 3 by adding pendant paths of length k and | atu. Ifk > 12> 1,
Lemma 4

then

Main Results

P(Gr1) > p(Gra1,0-1).

The End

Lemma 3. Let u and v be two adjacent vertices of the
connected graph G and for nonnegative integers k and [, G},
denote the graph obtained from G by adding pendant paths of
length k and | at u and v, respectively. If Kk > 1 > 1, then

P(Gr1) > p(Gry1i-1)-
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Lemma 2 and 3

Introduction

Some Lemmas

Lemma 1
> Lemma 2 and 3
Lemma 4

Main Results

The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and l, G, | denote the

graph obtained from G by adding pendant paths of length k and l at w. If k > | > 1, then

p(Gr,1) > pP(Grt1,1—1)-
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Lemma

2 and 3

Introduction

Some Lemmas

Lemma 1
> Lemma 2 and 3
Lemma 4

Main Results

The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and l, G, | denote the

graph obtained from G by adding pendant paths of length k and l at w. If k > | > 1, then

p(Gr,1) > pP(Grt1,1—1)-

Example:
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Lemma

2 and 3

Introduction

Some Lemmas

Lemma 1
> Lemma 2 and 3
Lemma 4

Main Results

The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and l, G, | denote the

graph obtained from G by adding pendant paths of length k and l at w. If k > | > 1, then

p(Gr,1) > pP(Grt1,1—1)-

Example:
Let £k = 2 and [ = 2, and take following figures with u labeled.
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Lemma

2 and 3

Introduction

Some Lemmas

Lemma 1
> Lemma 2 and 3
Lemma 4

Main Results

The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and l, G, | denote the

graph obtained from G by adding pendant paths of length k and l at w. If k > | > 1, then

p(Gr,1) > pP(Grt1,1—1)-

Example:
Let £k = 2 and [ = 2, and take following figures with u labeled.

u
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Lemma

2 and 3

Introduction

Some Lemmas

Lemma 1
> Lemma 2 and 3
Lemma 4

Main Results

The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and l, G, | denote the

graph obtained from G by adding pendant paths of length k and l at w. If k > | > 1, then

p(Gr,1) > pP(Grt1,1—1)-

Example:
Let £k = 2 and [ = 2, and take following figures with u labeled.
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Lemma

2 and 3

Introduction

Some Lemmas

Lemma 1
> Lemma 2 and 3
Lemma 4

Main Results

The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and l, G, | denote the

graph obtained from G by adding pendant paths of length k and l at w. If k > | > 1, then

p(Gr,1) > pP(Grt1,1—1)-

Example:
Let £k = 2 and [ = 2, and take following figures with u labeled.
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Lemma 2 and 3

Introduction Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and l, G, | denote the
Some Lemmas graph obtained from G by adding pendant paths of length k and l at w. If k > | > 1, then
Lemma 1
> Lemma 2 and 3 p(Gk,l) > p(Gk+1,l—1)'
Lemma 4
Example:
Main Results P

Let £k = 2 and [ = 2, and take following figures with u labeled.
The End

H H272(U) H3’1(u)

H470(u)
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Lemma 2 and 3

Introduction Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and l, G, | denote the
Some Lemmas graph obtained from G by adding pendant paths of length k and l at w. If k > | > 1, then
Lemma 1
> Lemma 2 and 3 p(Gk,l) > p(Gk+1,l—1)'
Lemma 4
Example:
Main Results P

Let £k = 2 and [ = 2, and take following figures with u labeled.
The End

H H272(U) H3’1(u)

H470(u)
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Lemma

2 and 3

Introduction

Some Lemmas

Lemma 1
> Lemma 2 and 3
Lemma 4

Main Results

The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and l, G, | denote the

graph obtained from G by adding pendant paths of length k and l at w. If k > | > 1, then

p(Gr,1) > pP(Grt1,1—1)-

Example:
Let £k = 2 and [ = 2, and take following figures with u labeled.

H Hy 5(W) Hy 1(u)

Hy 0(¥)

Spectral radii of these graphs are...
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Lemma 2 and 3

Introduction Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and l, G, | denote the
Some Lemmas graph obtained from G by adding pendant paths of length k and l at w. If k > | > 1, then
Lemma 1
> Lemma 2 and 3 p(Gk,l) > p(Gk+1,l—1)'
Lemma 4
Example:
Main Results P

Let £k = 2 and [ = 2, and take following figures with u labeled.
The End

H Hy 5(W) Hy 1(u)

Hy 0(¥)

Spectral radii of these graphs are...

Graph HQ,Q(’U/) H3,1(u) H4,0(u)
S-R 2.6883 2.6751 2.5813
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Lemma 2 and 3

Introduction Lemma 2. Let u be a vertex of the connected graph G and for
f::;:elmmas positive integers k and [, Gy denote the graph obtained from G
> Lemma 2 and 3 by adding pendant paths of length k and | atu. Ifk > 12> 1,
Lemma 4

then

Main Results

P(Gr1) > p(Gra1,0-1).

The End

Lemma 3. Let u and v be two adjacent vertices of the
connected graph G and for nonnegative integers k and [, G},
denote the graph obtained from G by adding pendant paths of
length k and | at u and v, respectively. If Kk > 1 > 1, then

P(Gr1) > p(Gry1i-1)-
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Lemma

2 and 3

Introduction

Some Lemmas

Lemma 1
> Lemma 2 and 3
Lemma 4

Main Results

The End

Lemma 3. Let u and v be two adjacent vertices of the connected graph G and for nonnegative integers k and
l, Gy 1 denote the graph obtained from G by adding pendant paths of length k and | at w and v, respectively.
Ifk > 1 > 1, then p(Gg 1) > p(Gr41,1—1)-

Example:
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Lemma 2 and 3

Introduction

Some Lemmas

Lemma 1
> Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 3. Let u and v be two adjacent vertices of the connected graph G and for nonnegative integers k and
l, Gy 1 denote the graph obtained from G by adding pendant paths of length k and | at w and v, respectively.
Ifk > 1 > 1, then p(Gg 1) > p(Gr41,1—1)-

Example:
Similarly, let k = 2 and [ = 2, but take u and v as shown.
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Lemma 2 and 3

Introduction

Some Lemmas

Lemma 1
> Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 3. Let u and v be two adjacent vertices of the connected graph G and for nonnegative integers k and
l, Gy 1 denote the graph obtained from G by adding pendant paths of length k and | at w and v, respectively.
Ifk > 1 > 1, then p(Gg 1) > p(Gr41,1—1)-

Example:
Similarly, let k = 2 and [ = 2, but take u and v as shown.

H H2‘2(u,v)
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Lemma 2 and 3

Introduction

Some Lemmas

Lemma 1
> Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 3. Let u and v be two adjacent vertices of the connected graph G and for nonnegative integers k and
l, Gy 1 denote the graph obtained from G by adding pendant paths of length k and | at w and v, respectively.
Ifk > 1 > 1, then p(Gg 1) > p(Gr41,1—1)-

Example:
Similarly, let k = 2 and [ = 2, but take u and v as shown.

H H3‘1(u,v)
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Lemma 2 and 3

Introduction

Some Lemmas

Lemma 1
> Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 3. Let u and v be two adjacent vertices of the connected graph G and for nonnegative integers k and
l, Gy 1 denote the graph obtained from G by adding pendant paths of length k and | at w and v, respectively.
Ifk > 1 > 1, then p(Gg 1) > p(Gr41,1—1)-

Example:
Similarly, let k = 2 and [ = 2, but take u and v as shown.
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Lemma 2 and 3

Introduction

Some Lemmas

Lemma 1
> Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 3. Let u and v be two adjacent vertices of the connected graph G and for nonnegative integers k and
l, Gy 1 denote the graph obtained from G by adding pendant paths of length k and | at w and v, respectively.
Ifk > 1 > 1, then p(Gg 1) > p(Gr41,1—1)-

Example:
Similarly, let k = 2 and [ = 2, but take u and v as shown.
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Lemma 2 and 3

Introduction

Some Lemmas

Lemma 1
> Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 3. Let u and v be two adjacent vertices of the connected graph G and for nonnegative integers k and
l, Gy 1 denote the graph obtained from G by adding pendant paths of length k and | at w and v, respectively.
Ifk > 1 > 1, then p(Gg 1) > p(Gr41,1—1)-

Example:
Similarly, let k = 2 and [ = 2, but take u and v as shown.

Spectral radii of these graphs are...
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Lemma 2 and 3

Introduction

Some Lemmas

Lemma 3. Let u and v be two adjacent vertices of the connected graph G and for nonnegative integers k and

Lemma 1
> Lemma 2 and 3 l, Gy 1 denote the graph obtained from G by adding pendant paths of length k and | at w and v, respectively.
Lemma 4 Ifk > 1> 1, then p(Gp 1) > p(Gr41,1—1)-
Main Results
Example:
The End Similarly, let k = 2 and | = 2, but take u and v as shown.

Spectral radii of these graphs are...

Graph | H22(u,v) | H31(u,v) | Hao(u,v)
S-R 2.6989 2.6839 2.5813
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Lemma 4

Introduction

Some Lemmas

Lemma 1
Lemma 2 and 3
> Lemma 4

Main Results

The End

Lemma 4. Let GG be a simple connected graph and Lqa be the
line graph of GG. Then

w(G) <2+ p(La),

where equality holds if and only if GG is a bipartite graph.
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Lemma 4

Introduction

Some Lemmas

Lemma 1
Lemma 2 and 3
> Lemma 4

Main Results

The End

Lemma 4. Let G be a simple connected graph and L be the line graph of G. Then, un(G) < 2+ p(La),

where equality holds if and only if G is a bipartite graph.
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Lemma 4

Introduction

Some Lemmas

Lemma 1
Lemma 2 and 3
> Lemma 4

Main Results

The End

Lemma 4. Let G be a simple connected graph and L be the line graph of G. Then, un(G) < 2+ p(La),

where equality holds if and only if G is a bipartite graph.

Example:
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Lemma 4

Introduction

Some Lemmas

Lemma 1
Lemma 2 and 3
> Lemma 4

Main Results

The End

Lemma 4. Let G be a simple connected graph and L be the line graph of G. Then, un(G) < 2+ p(La),

where equality holds if and only if G is a bipartite graph.

Example: Take a bipartite graph B as the following.
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Lemma 4

Introduction

Some Lemmas

Lemma 1
Lemma 2 and 3
> Lemma 4

Main Results

The End

Lemma 4. Let G be a simple connected graph and L be the line graph of G. Then, un(G) < 2+ p(La),

where equality holds if and only if G is a bipartite graph.

Example: Take a bipartite graph B as the following.
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Introduction

Some Lemmas

Lemma 1
Lemma 2 and 3
> Lemma 4

Main Results

The End

Lemma 4. Let G be a simple connected graph and L be the line graph of G. Then, un(G) < 2+ p(La),

where equality holds if and only if G is a bipartite graph.

Example: Take a bipartite graph B as the following.
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Lemma 4

Introduction

Some Lemmas

Lemma 1
Lemma 2 and 3
> Lemma 4

Main Results

The End

Lemma 4. Let G be a simple connected graph and L be the line graph of G. Then, un(G) < 2+ p(La),

where equality holds if and only if G is a bipartite graph.

Example: Take a bipartite graph B as the following.
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Lemma 4

Introduction Lemma 4. Let G be a simple connected graph and L be the line graph of G. Then, un(G) < 2+ p(La),
Some Lemmas where equality holds if and only if G is a bipartite graph.
Lemma 1
Lemma 2 and 3
> Lemma 4 Bv1 v,
Main Results
V2 Vs
The End
vy A

Example: Take a bipartite graph B as the following.

L(B) vy vg v3 vyg vg vg A(LpB) e] ey ez e4 e5  eg
vy [ 2 0 0 —1 —1 0 7 e -0 1 1 1 0 0 T
vg 0 2 o -1 o0 -1 e 1 0o 0 ©0 1 0
v3 0 0 2 -1 -1 0 es 1 o o0 1 o0 1
vy -1 -1 -1 3 0 0 ey 1 0o 1 0 1 0
vy —1 0 —1 0 2 0 es 0 1 0 1 0 0
vg | 0 —1 0 0 0 1 eg | O 0 1 0 0 0o
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Lemma 4

Introduction Lemma 4. Let G be a simple connected graph and L be the line graph of G. Then, un(G) < 2+ p(La),
Some Lemmas where equality holds if and only if G is a bipartite graph.
Lemma 1
Lemma 2 and 3
> Lemma 4 Bv1 v,
Main Results
V2 Vs
The End
vy A

Example: Take a bipartite graph B as the following.

L(B) vy vg v3 vyg vg vg A(LpB) e] ey ez e4 e5  eg
vy [ 2 0 0 —1 —1 0 7 e -0 1 1 1 0 0 T
vg 0 2 o -1 o0 -1 e 1 0o 0 ©0 1 0
v3 0 0 2 -1 -1 0 es 1 o o0 1 o0 1
vy -1 -1 -1 3 0 0 ey 1 0o 1 0 1 0
vy —1 0 —1 0 2 0 es 0 1 0 1 0 0
vg | 0 —1 0 0 0 1 eg | O 0 1 0 0 0o

spectrum of L(B) is {—0.000, 0.438, 2.000, 2.000, 3.000,4.561}
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Lemma 4

Introduction Lemma 4. Let G be a simple connected graph and L be the line graph of G. Then, un(G) < 2+ p(La),
Some Lemmas where equality holds if and only if G is a bipartite graph.
Lemma 1
Lemma 2 and 3
> Lemma 4 Bv1 v,
Main Results
V2 Vs
The End

Example: Take a bipartite graph B as the following.

L(B) vy vg v3 vyg vg vg A(LpB) e] ey ez e4 e5  eg
vy [ 2 0 0 —1 —1 0 7 e -0 1 1 1 0 0 T
vg 0 2 o -1 o0 -1 e 1 0o 0 ©0 1 0
v3 0 0 2 -1 -1 0 es 1 o o0 1 o0 1
vy -1 -1 -1 3 0 0 ey 1 0o 1 0 1 0
vy —1 0 —1 0 2 0 es 0 1 0 1 0 0
vg | 0 —1 0 0 0 1 eg | O 0 1 0 0 0o

spectrum of L(B) is {—0.000, 0.438, 2.000, 2.000, 3.000,4.561}
spectrum of A(Lp) is {—2.000, —1.561, —0.000, 0.000, 1.000, 2.561}
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Introduction

Some Lemmas

> Main Results

Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example

The End

Main Results
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Idea

Introduction

Some Lemmas

Main Results

D> Idea

Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example

The End

O Our goal is (1) < p(Th k) for any T' € T, k.
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Idea

Introduction

Some Lemmas

Main Results

D> Idea

Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example

The End

O Our goal is (1) < p(Th k) for any T' € T, k.

O The idea is to reconstruct T to T}, j, by deleting and adding
edges one by one. Then, watching how the (signless)
Laplacian spectral radius changes for each step.
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Introduction
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Main Results

D> Idea

Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example

The End

For example, take 1" € T3¢ as..
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Idea

Introduction

Some Lemmas

Main Results

D> Idea

Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example

The End

For example, take 1" € T3¢ as..

T:n=8,k=6
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For example, take 1" € T3¢ as..

T:n=8,k=6

LI First, construct T3 ¢.
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For example, take 1" € T3¢ as..

T:n=8,k=6

LI First, construct T3 ¢.
L] Having n = 8 and k£ = 6, We start with K.
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For example, take 1" € T3¢ as..

T:n=8,k=6

[1Since 7=1-6+1, we have...
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The End

For example, take 1" € T3¢ as..

T:n=8,k=6

[1Since 7=1-6+ 1, we have... five paths of 1 vertex and one
path of 2 vertices.
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For example, take 1" € T3¢ as..

T:n=8,k=6

[1 Rearranging this graph, we obtain...
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The End

For example, take 1" € T3¢ as..

T:n=8,k=6

[ ] Rearranging this graph, we obtain... T3¢
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For example, take 1" € T3¢ as..

7’ .
s : delete

P Py - 'y
@

T:n=8,k=6

8,6

[ ] Back to T" above,
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The End

For example, take 1" € T3¢ as..

T:n=8,k=6 T

8,6

[1 Back to 1" above,
[1 If we delete and add edges as follows,
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For example, take 1" € T3¢ as..

T:n=8,k=6

8,6

[1 Back to 1" above,
[1 If we delete and add edges as follows,
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For example, take 1" € T3¢ as..

T:n=8,k=6

8,6

[1 Back to 1" above,
[1 If we delete and add edges as follows,
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The End

For example, take 1" € T3¢ as..

T:n=8,k=6

8,6

L] Then, we just reconstructed 1" to 1, k.
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The End

For example, take 1" € T3¢ as..

T:n=8,k=6

8,6

[1 Now, their Laplacian spectral radii are...
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Example
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Case 1
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Example

The End

For example, take 1" € T3¢ as..

T:n=8,k=6 T

8,6

[1 Now, their Laplacian spectral radii are...
[0 w(T) = 5.6458, u(Th) = 6.1413, and (13 6) = 7.0340, as
desired.
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Introduction Theorem. Let u,v be two vertices of G and d, be the degree of
2ome Lemmas vertex v. Suppose v1,vs,...,vs (1 < s <d,) are some vertices
a esuts of Na(v)\(Ng(u) U {u}) and x = (x1,22,...,2,)" is the

E Theorem 1 Perron vector of D(G) 4+ A(G), where x; corresponds to the
Theorem 2 vertex v; (1 <7 <mn). Let G* be the graph obtained from G by
! deleting the edges (v,v;) and adding the edges (u, v;)

Case 3 (1 <i<s). Ifxy > xy, then v(G) < v(GY).

Example

The End
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Theorem. Let u,v be two vertices of G and d, be the degree of vertex v. Suppose
v1,v2,...,0s (1 < s < dy) are some vertices of N (v)\(Ng(u) U{u}) and

r = (x1,22,...,2n)T is the Perron vector of D(G) + A(G), where x; corresponds
to the vertex v; (1 < i < n). Let G* be the graph obtained from G by deleting the
edges (v,v;) and adding the edges (u,v;) (1 < i <'s). If xy > xy, then

v(G) < v(G*).
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AN

Theorem. Let u,v be two vertices of G and d, be the degree of vertex v. Suppose
v1,v2,...,0s (1 < s < dy) are some vertices of N (v)\(Ng(u) U{u}) and

r = (x1,22,...,2n)T is the Perron vector of D(G) + A(G), where x; corresponds
to the vertex v; (1 < i < n). Let G* be the graph obtained from G by deleting the
edges (v,v;) and adding the edges (u,v;) (1 < i <'s). If xy > xy, then

v(G) < v(G*).
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AN

d, = deg(v) =3

Theorem. Let u,v be two vertices of G and d, be the degree of
vertex v. Suppose vi,va,...,vs (1 < s <d,) are some vertices of
Ng()\(Ng(vw) U{u}) and x = (x1,x2,...,2,)" is the Perron vector of

D(G) + A(G), where x; corresponds to the vertex v; (1 < i < n). Let G* be the
graph obtained from GG by deleting the edges (v, v;) and adding the edges (u,v;)
(1<i<s). Ifxy > xy, then v(G) < V(G*).
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The End

Theorem. Let u,v be two vertices of G and d, be the degree of vertex v.
Suppose v1,v9,...,vs (1 < s <d,) are some vertices of
Ng(v)\(N(;(u) U {u}) and z = (x1,%2,...,xn)T is the Perron vector of
D(G) + A(G), where x; corresponds to the vertex v; (1 < i < n). Let G* be the

graph obtained from G by deleting the edges (v, v;) and adding the edges (u,v;)
(1<i<s). Ifxy > xy, then v(G) < V(G*).
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——o¢

NG(u)U{u}

Theorem. Let u,v be two vertices of G and d, be the degree of vertex v.
Suppose v1, v, ...,vs (1 < s <d,) are some vertices of
Ng(v)\(N(;(u) U {u}) and z = (x1,%2,...,xn)T is the Perron vector of
D(G) + A(G), where x; corresponds to the vertex v; (1 < i < n). Let G* be the

graph obtained from G by deleting the edges (v, v;) and adding the edges (u,v;)
(1<i<s). Ifxy > xy, then v(G) < V(G*).
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Example
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Example

The End

AN

6 -4

N\ (Ng(u)u{u})

Theorem. Let u,v be two vertices of G and d, be the degree of vertex v.
Suppose v1,v9,...,vs (1 < s <d,) are some vertices of
Ng(v)\(N(;(u) U {u}) and z = (x1,%2,...,xn)T is the Perron vector of
D(G) + A(G), where x; corresponds to the vertex v; (1 < i < n). Let G* be the

graph obtained from G by deleting the edges (v, v;) and adding the edges (u,v;)
(1<i<s). Ifxy > xy, then v(G) < V(G*).
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Example

The End

[1 vy is only the vertex which belongs to
N (v)\(Ne(u) U{u})

Vo @ — Vi

N\ (Ng(u)u{u})

Theorem. Let u,v be two vertices of G and d, be the degree of vertex v.
Suppose v1, v, ...,vs (1 < s <d,) are some vertices of
Ng(v)\(N(;(u) U {u}) and z = (x1,%2,...,xn)T is the Perron vector of
D(G) + A(G), where x; corresponds to the vertex v; (1 < i < n). Let G* be the

graph obtained from G by deleting the edges (v, v;) and adding the edges (u,v;)
(1<i<s). Ifxy > xy, then v(G) < V(G*).
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Example
Theorem 2
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Case 3

Example

The End

N\ (Ng(u)u{u})

Theorem. Let u,v be two vertices of G and d, be the degree of vertex v. Suppose
v1,v2,...,0s (1 < s < dy) are some vertices of N (v)\(Ng(u) U{u}) and

r = (x1,%2,...,2,)" is the Perron vector of D(G) + A(G), where
x; corresponds to the vertex v; (1 < i < n). Let G* be the graph obtained from G
by deleting the edges (v, v;) and adding the edges (u,v;) (1 <11 <s). If Ty > xy,
then v(G) < v(G*).
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4
/\ [1 The signless Laplacian matrix of GG
Q(G) vy v2  v3  v4 U5
v1 2 1 0 0 1
o 1 2 1 0 0
vs o 1 3 1 1
vy o o0 1 2 1
Vo @ S 7 v 1 o 1 1 3

N\ (Ng(u)u{u})

Theorem. Let u,v be two vertices of G and d, be the degree of vertex v. Suppose
v1,v2,...,0s (1 < s < dy) are some vertices of N (v)\(Ng(u) U{u}) and

r = (x1,%2,...,2,)" is the Perron vector of D(G) + A(G), where
x; corresponds to the vertex v; (1 < i < n). Let G* be the graph obtained from G
by deleting the edges (v, v;) and adding the edges (u,v;) (1 <11 <s). If Ty > xy,
then v(G) < v(G*).
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4
. /\ y=y_ LI Its spectrum is...

{0.382,1.139, 2.618, 2.745, 5.114}

N\ (Ng(u)u{u})

Theorem. Let u,v be two vertices of G and d., be the degree of vertex v. Suppose
v1,v2,...,0s (1 < s < dy) are some vertices of N (v)\(Ng(u) U{u}) and

r = (x1,%2,...,2,)" is the Perron vector of D(G) + A(G), where
x; corresponds to the vertex v; (1 < i < n). Let G* be the graph obtained from G
by deleting the edges (v, v;) and adding the edges (u,v;) (1 <11 <s). If Ty > xy,
then v(G) < v(G*).
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Example
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Example

The End

4
Vy=u /\ v=vg Ll Its Perron vector is...
— ] T2 xs3 x4 x5
x 0.2796 0.2796 0.5914 0.3797 0.5914
V2 @ - vy

N\ (Ng(u)u{u})

Theorem. Let u,v be two vertices of G and d, be the degree of vertex v. Suppose
v1,02,...,0s (1 < s < dy) are some vertices of N (v)\(Ng(u) U{u}) and

r = (x1,%2,...,2,)" is the Perron vector of D(G) + A(G), where
x; corresponds to the vertex v; (1 < i < n). Let G* be the graph obtained from G
by deleting the edges (v, v;) and adding the edges (u,v;) (1 <11 <s). If Ty > xy,
then v(G) < v(G*).
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The End

Va
Vy=u /\ v=vg Ll Its Perron vector is...
— ] T2 xs3 x4 x5
x 0.2796 0.2796 0.5914 0.3797 0.5914
V2 @ - vy

N\ (Ng(u)u{u})

Theorem. Let u,v be two vertices of G and d, be the degree of vertex v. Suppose
v1,02,...,0s (1 < s < dy) are some vertices of N (v)\(Ng(u) U{u}) and

= (x1,%2,...,Tn) " is the Perron vector of D(G) + A(G), where X;
corresponds to the vertex v; (1 <1 < n). Let G* be the graph obtained
from GG by deleting the edges (v,v;) and adding the edges (u,v;) (1 <11 <s). If
Ty > Ty, then v(G) < v(G*).
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Example

The End

1l
c
>
<

I

v [ lts Perron vector is...

V3
U1 U2 v3 (o U5
T T T T T

Tq T xs T4 x5

0.2796 0.2796 0.5914 0.3797 0.5914

N\ (Ng(u)u{u})

Theorem. Let u,v be two vertices of G and d, be the degree of vertex v. Suppose
v1,02,...,0s (1 < s < dy) are some vertices of N (v)\(Ng(u) U{u}) and

= (x1,%2,...,Tn) " is the Perron vector of D(G) + A(G), where X;
corresponds to the vertex v; (1 <1 < n). Let G* be the graph obtained
from GG by deleting the edges (v,v;) and adding the edges (u,v;) (1 <11 <s). If
Ty > Ty, then v(G) < v(G*).
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Introduction

Some Lemmas 4
Main Results
Idea Vg = U v=vg Ll Its Perron vector is...
> Theorem 1 v1 v v vy vs
Example 0 ) 0 0 0
Theorem 2 . xq o x3 T4 x5 T
Case 1 x 0.2796 0.2796 0.5914 0.3797 0.5914
Case 2 V2 ® _l V1
Case 3
Example

N(W)\ (Ng(u)uiu})
The End

Theorem. Let u,v be two vertices of G and d, be the degree of vertex v. Suppose
v1,02,...,0s (1 < s < dy) are some vertices of N (v)\(Ng(u) U{u}) and

r = (x1,22,...,2n)7 is the Perron vector of D(G) + A(G), where x; corresponds
to the vertex v; (1 <i<n). Let G* be the graph obtained from G by
deleting the edges (v,v;) and adding the edges (u, v;)

(1 <1< S). If x, > x4, then v(G) < V(G*).
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u /\ v [] lts Perron vector is...

: v1 V2 v3 V4 v5
. delete i i i i i
s (v,vy) _ x1 2 x3 x4 x5 T

0.2796 0.2796 0.5914 0.3797 0.5914

[ .V1

N\ (Ng(u)U{u})

Theorem. Let u,v be two vertices of G and d, be the degree of vertex v. Suppose
v1,02,...,0s (1 < s < dy) are some vertices of N (v)\(Ng(u) U{u}) and

r = (x1,22,...,2n)7 is the Perron vector of D(G) + A(G), where x; corresponds
to the vertex v; (1 <i<n). Let G* be the graph obtained from G by
deleting the edges (v,v;) and adding the edges (u, v;)

(1 <1< S). If x, > x4, then v(G) < V(G*).

A Sharp Upper Bounds for Largest Eigenvalue of the Laplacian Matrices of Tree — 24 / 31



Theorem 1

Introduction

Some Lemmas

Main Results
Idea u v [ Its Perron vector is...
> Theorem 1 v1 vo va v4 v
Example > delete T T T T T
Theorem 2 L (vvq) x — T T2 T3 T4 T5 T
Case 1 : 0.2796 0.2796 0.5914 0.3797 0.5914
Case 2 Vv
Case 3 1
Example

N\ (Ng(u)U{u})
The End

Theorem. Let u,v be two vertices of G and d, be the degree of vertex v. Suppose
v1,02,...,0s (1 < s < dy) are some vertices of N (v)\(Ng(u) U{u}) and

r = (x1,22,...,2n)7 is the Perron vector of D(G) + A(G), where x; corresponds
to the vertex v; (1 <i<n). Let G* be the graph obtained from G by
deleting the edges (v,v;) and adding the edges (u, v;)

(1 <1< S). If x, > x4, then v(G) < V(G*).
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Idea u v [] Its Perron vector is...
> Theorem 1 v1 v v vy vs
Example 0 ) 0 0 0
Theorem 2 . xq o x3 T4 x5 T
Case 1 x 0.2796 0.2796 0.5914 0.3797 0.5914
Case 2

{
Case 3
Example G*
The End

Theorem. Let u,v be two vertices of G and d, be the degree of vertex v. Suppose
v1,02,...,0s (1 < s < dy) are some vertices of N (v)\(Ng(u) U{u}) and

r = (x1,22,...,2n)7 is the Perron vector of D(G) + A(G), where x; corresponds
to the vertex v; (1 <i<n). Let G* be the graph obtained from G by
deleting the edges (v,v;) and adding the edges (u, v;)

(1 <1< S). If x, > x4, then v(G) < V(G*).
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Idea u v [] lts Perron vector is...
> Theorem 1 v1 v v vy vs
Example 0 ) 0 0 0
Theorem 2 . T1 T2 T3 T4 T5 r
Case 1 *= 0.2796 0.2796 0.5914 0.3797 0.5914
Case 2

([
Case 3
Example G*
The End

Theorem. Let u,v be two vertices of G and d, be the degree of vertex v. Suppose
v1,02,...,0s (1 < s < dy) are some vertices of N (v)\(Ng(u) U{u}) and

r = (x1,22,...,2n)7 is the Perron vector of D(G) + A(G), where x; corresponds
to the vertex v; (1 <i < n). Let G* be the graph obtained from GG by deleting the

edges (v,v;) and adding the edges (u,v;) (1 <4 <s). If x,, > x,, then
V(G < (G*).
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Example

The End

[ 1 We see that

Theorem. Let u,v be two vertices of G and d, be the degree of vertex v. Suppose
v1,v2,...,0s (1 < s < dy) are some vertices of N (v)\(Ng(u) U{u}) and

r = (x1,22,...,2n)T is the Perron vector of D(G) + A(G), where x; corresponds
to the vertex v; (1 < i < n). Let G* be the graph obtained from G by deleting the

edges (v,v;) and adding the edges (u,v;) (1 <4 <s). If x,, > x,, then
V(G < (G*).
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> Theorem 1
Example
Theorem 2
Case 1

Case 2
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Example

The End

[ 1 We see that
r, = 0.5914 > 0.5914 = z,,

Theorem. Let u,v be two vertices of G and d, be the degree of vertex v. Suppose
v1,v2,...,0s (1 < s < dy) are some vertices of N (v)\(Ng(u) U{u}) and

r = (x1,22,...,2n)T is the Perron vector of D(G) + A(G), where x; corresponds
to the vertex v; (1 < i < n). Let G* be the graph obtained from G by deleting the

edges (v,v;) and adding the edges (u,v;) (1 <4 <s). If x,, > x,, then
V(G < (G*).
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> Theorem 1
Example
Theorem 2
Case 1

Case 2

Case 3

Example

The End

[1 We see that
x, = 0.5914 > 0.5914 = «,,,
satisfying the assumption.

Theorem. Let u,v be two vertices of G and d., be the degree of vertex v. Suppose
v1,v2,...,0s (1 < s < dy) are some vertices of N (v)\(Ng(u) U{u}) and

r = (x1,22,...,2n)T is the Perron vector of D(G) + A(G), where x; corresponds
to the vertex v; (1 < i < n). Let G* be the graph obtained from G by deleting the

edges (v,v;) and adding the edges (u,v;) (1 <4 <s). If x,, > x,, then
V(G < (G*).
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Wy
%k .
O Q(G*) is...
W3 Ws
Q(G™) w1 wo ws wy wg
w1 2 1 1 0 0
wo 1 2 1 0 0
w3 1 1 4 1 1
® wy 0 0 1 2 1
W2 W1 wr 0 0 1 1 2
G

Theorem. Let u,v be two vertices of G and d., be the degree of vertex v. Suppose
v1,v2,...,0s (1 < s < dy) are some vertices of N (v)\(Ng(u) U{u}) and

r = (x1,22,...,2n)7 is the Perron vector of D(G) + A(G), where x; corresponds
to the vertex v; (1 < i < n). Let G* be the graph obtained from GG by deleting the
edges (v,v;) and adding the edges (u,v;) (1 <4 <s). If x,, > x,, then

V(G < v(G).
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[] lts spectrum is...

W3 Ws

{1.000, 1.000, 1.438, 3.000, 5.561}

Theorem. Let u,v be two vertices of G and d., be the degree of vertex v. Suppose
v1,v2,...,0s (1 < s < dy) are some vertices of N (v)\(Ng(u) U{u}) and

r = (x1,22,...,2n)7 is the Perron vector of D(G) + A(G), where x; corresponds
to the vertex v; (1 < i < n). Let G* be the graph obtained from GG by deleting the

edges (v,v;) and adding the edges (u,v;) (1 <4 <s). If x,, > x,, then
V(G < (G*).
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W Therefore, we have
3 Ws

v(G) = 5.114 < 5.561 = v(G™)

Theorem. Let u,v be two vertices of G and d, be the degree of vertex v. Suppose
v1,02,...,0s (1 < s < dy) are some vertices of N (v)\(Ng(u) U{u}) and

r = (x1,22,...,2n)7 is the Perron vector of D(G) + A(G), where x; corresponds
to the vertex v; (1 < i < n). Let G* be the graph obtained from G by deleting the

edges (v,v;) and adding the edges (u,v;) (1 <4 <s). If x,, > x,, then
V(G < (G*).
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[1 Take the following figure with labels.

The End
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[1 Take the following figure with labels.

The End

[1 Its signless Laplacian matrix is...
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o 1 wy o o o o0 0 1 1 0
w, w,
Case 2 T ® ® wg | 0 0 0 0 0 1 0 1 ]
Case 3
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[1 Then, its spectrum is...
The End
{0.000, 0.354,1.000, 1.000, 1.000, 1.000, 4.000, 5.646 }
so, V(') = 5.646. Its associated Perron vector is...
_ x1 T2 T3 T4 x5 Te x7 rg L
* 0.142 0.142 0.662 0.142 0.142 0.662 0.142 0.142
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Case 3
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[1 Then, its spectrum is...
The End
{0.000, 0.354,1.000, 1.000, 1.000, 1.000, 4.000, 5.646 }
so, V(') = 5.646. Its associated Perron vector is...
_ x1 T2 T3 T4 x5 Te x7 rg L
*= 0.142 0.142 0.662 0.142 0.142 0.662 0.142 0.142

[1 For this example, let us choose w3 = u and wg = v, so that
Xy > Ty IS preserved.
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Ez; Combine all lemmas and the theorem, now how does this
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The End

ldea: Let ¢ be the number of vertices whose degree is greater
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Theorem. Let T' be a tree with n vertices and k pendant vertices. Then pu(T) < p(T), 1), where equality
holds if and only if T' is isomorphic to T, ..
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Case 2: t = 1.

[] Let us call such vertex as a branch vertex, and let k£ be its degree.
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[] Let us call such vertex as a branch vertex, and let k£ be its degree. Then,
consider the line graph of T.

[0 Edges incident to a branch vertex would form a clique (complete subgraph in
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[] Note that L1 can be seen as K and connecting k paths Py, P, ..., P, to each
vertex in Ky,.
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Theorem. Let T' be a tree with n vertices and k pendant vertices. Then pu(T) < p(T), 1), where equality
holds if and only if T' is isomorphic to T, ..

Attaching four paths to each vertex in K,

Case 2: t = 1.

[] Let us call such vertex as a branch vertex, and let k£ be its degree. Then,
consider the line graph of T.

[0 Edges incident to a branch vertex would form a clique (complete subgraph in
Lr).

[] Note that L1 can be seen as K and connecting k paths Py, P, ..., P, to each
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[J Also, consider T7, x and its line graph L .
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Case 2: t = 1.

[J Also, consider T7, x and its line graph L .
[J Now, compare L and Lt _, .
[0 Notice that applying lemma 3 or 4 (repeatedly, if necessarily)...
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Case 2: t = 1.

[ Also, consider T, ;. and its line graph LTn,k:'

[J Now, compare L and Lt _, .

[] Notice that applying lemma 3 or 4 (repeatedly, if necessarily)...
O We get p(Lr, ,.) > p(LT).
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Case 2: t = 1.
Having p(L1,_ ,) > p(LT), recall lemma 5.

w(T)=2+p(Lr) p(Thr)=2+p(Lr, )
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Case 2: t = 1.
Having p(L1,_ ,) > p(LT), recall lemma 5.

w(T)=2+p(Lr) p(Thr)=2+p(Lr, )

Therefore, we get

pw(T) =2+ p(Lr) <2+ p(Lr, ;) = w(Tn,k).
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Theorem. Let T' be a tree with n vertices and k pendant vertices. Then pu(T) < p(T), 1), where equality
holds if and only if T' is isomorphic to T, ..

Case 3: t > 1. The idea is...

A Sharp Upper Bounds for Largest Eigenvalue of the Laplacian Matrices of Tree — 29 / 31



Case 3

Introduction

Some Lemmas

Main Results

Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

> Case 3

Example

The End

Theorem. Let T' be a tree with n vertices and k pendant vertices. Then pu(T) < p(T), 1), where equality
holds if and only if T' is isomorphic to T, ..

Case 3: t > 1. The idea is...

Reconstruct T" based on the method in theorem 1, so that the number of branch
vertices can be reduced to 1, and then apply argument of case 2 (the proof for
t=1).
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The End

Theorem. Let T' be a tree with n vertices and k pendant vertices. Then pu(T) < p(T), 1), where equality
holds if and only if T' is isomorphic to T, ..

Case 3: t > 1. The idea is...

Reconstruct T" based on the method in theorem 1, so that the number of branch
vertices can be reduced to 1, and then apply argument of case 2 (the proof for
t=1).

Let us see little bit more detail with an example.
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Theorem. Let T' be a tree with n vertices and k pendant vertices. Then pu(T) < p(T), 1), where equality
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Case 3: t > 1.

[1 To apply the method from theorem 1, label two branch vertices as u and v, and
assume T, > Ty .
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[] Recall: selecting two vertices in a tree graph determines a unique path.
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[] Let w be a vertex which is a neighbor of v and on the u, v-path.

[J Then, consider the proper subset {v1,v2,...,v4,—2} C Ng(v)\{w}.
[J Now, delete (v,v;) and add (u,v;) for 1 < i < d, — 2.

A Sharp Upper Bounds for Largest Eigenvalue of the Laplacian Matrices of Tree — 29 / 31



Case 3

Introduction

Some Lemmas

Main Results

Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

> Case 3
Example

The End

Theorem. Let T' be a tree with n vertices and k pendant vertices. Then pu(T) < p(T), 1), where equality
holds if and only if T' is isomorphic to T, ..

Case 3: ¢t > 1.

[] Recall: selecting two vertices in a tree graph determines a unique path.
[] Let w be a vertex which is a neighbor of v and on the u, v-path.

[J Then, consider the proper subset {v1,v2,...,v4,—2} C Ng(v)\{w}.
[J Now, delete (v,v;) and add (u,v;) for 1 < i < d, — 2.

A Sharp Upper Bounds for Largest Eigenvalue of the Laplacian Matrices of Tree — 29 / 31



Case 3

Introduction

Some Lemmas

Main Results

Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

> Case 3
Example

The End

Theorem. Let T' be a tree with n vertices and k pendant vertices. Then pu(T) < p(T), 1), where equality
holds if and only if T' is isomorphic to T, ..

Case 3: ¢t > 1.

[] Recall: selecting two vertices in a tree graph determines a unique path.
[] Let w be a vertex which is a neighbor of v and on the u, v-path.

[J Then, consider the proper subset {v1,v2,...,v4,—2} C Ng(v)\{w}.
[J Now, delete (v,v;) and add (u,v;) for 1 < i < d, — 2.

A Sharp Upper Bounds for Largest Eigenvalue of the Laplacian Matrices of Tree — 29 / 31



Case 3

Introduction

Some Lemmas

Main Results

Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

> Case 3
Example

The End

Theorem. Let T' be a tree with n vertices and k pendant vertices. Then pu(T) < p(T), 1), where equality
holds if and only if T' is isomorphic to T, ..

®
Vi
[ ® ® °
\Y; w
V2 Y
Case 3: ¢t > 1.

[] Recall: selecting two vertices in a tree graph determines a unique path.
[] Let w be a vertex which is a neighbor of v and on the u, v-path.

[J Then, consider the proper subset {v1,v2,...,v4,—2} C Ng(v)\{w}.
[J Now, delete (v,v;) and add (u,v;) for 1 < i < d, — 2.

A Sharp Upper Bounds for Largest Eigenvalue of the Laplacian Matrices of Tree — 29 / 31



Case 3

Introduction

Some Lemmas

Main Results

Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

> Case 3
Example

The End

Theorem. Let T' be a tree with n vertices and k pendant vertices. Then pu(T) < p(T), 1), where equality
holds if and only if T' is isomorphic to T, ..

Case 3: ¢t > 1.

[] Recall: selecting two vertices in a tree graph determines a unique path.
[] Let w be a vertex which is a neighbor of v and on the u, v-path.

[J Then, consider the proper subset {v1,v2,...,v4,—2} C Ng(v)\{w}.
[J Now, delete (v,v;) and add (u,v;) for 1 < i < d, — 2.

A Sharp Upper Bounds for Largest Eigenvalue of the Laplacian Matrices of Tree — 29 / 31



Case 3

Introduction

Some Lemmas

Main Results

Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

> Case 3

Example

The End

Theorem. Let T' be a tree with n vertices and k pendant vertices. Then pu(T) < p(T), 1), where equality
holds if and only if T' is isomorphic to T, ..

° ¢ P P P o o °
T e T
Case 3: t > 1.
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Case 3: t > 1.

[1 Since x,, > x,, theorem 1 must be applied.
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Case 3: t > 1.

[1 Since x,, > x,, theorem 1 must be applied.
= v(T) < v(Ty)

= u(T) < p(17)
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[0 If t =1, then we are done (go to case 2 argument).
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Then the statement holds.
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[0 Take T' € 19,10 as shown.
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The End

[0 Take T' € 19,10 as shown.
[1 First, find the signless Laplacian spectral radius and associated Perron vector.
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v(T) = 6.1700
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The End v(T) = 6.1700

. 1 To T3 T4 Ts5 Te T7 s T9
x*= 0.8724 0.2194 0.1688 0.2330 0.2309 0.0424 0.0993 0.1688 0.0902

10 11 12 13 Z14 Z15 z16 17 18 19
0.0192 0.0624 0.0324 0.0227 0.0121 0.0121 0.0121 0.0063 0.0063 0.0044
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The End v(T) = 6.1700

. 1 To T3 T4 Ts5 Te T7 s T9
x*= 0.8724 0.2194 0.1688 0.2330 0.2309 0.0424 0.0993 0.1688 0.0902

10 11 12 13 Z14 Z15 z16 17 18 19
0.0192 0.0624 0.0324 0.0227 0.0121 0.0121 0.0121 0.0063 0.0063 0.0044

[] For each branch vertex, look at the corresponding entry in the Perron vector.
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The End

[1 Take v = a1 and v = a12 so that x,, > x, Iis preserved.

[] The vertex w is uniquely determined.

[] Label the rest of neighbors as v1 and v2

Ody —2=dg, —2=3—2=1, so we delete (v,v1) and add (u,v1).
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Example (case 3)

a

TN

- AT
A
T, e 1

[1 For this new graph, 77, find v and associated Perron vector.
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[1 For this new graph, 77, find v and associated Perron vector.

v(Ty) = 7.1074
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v(T) = 6.1700 v(T1) = 7.1074 v(Ts) = 8.0740 v(T3) = 10.0426 v(Ty) = 11.0448

Therefore,

w(T) = 6.1700 w(Ty) = 7.1074 p(Tz) = 8.0740 w(Ts) = 10.0426 v(Ty) = 11.0448
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(1 Apply the argument of case 2 now.

[J Construct the line graph of T4, L,

[1 Then, apply lemma 3 few times.

[] Notice that this is a complete graph K10 and 10 “almost equal length” paths.
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(1 Apply the argument of case 2 now.

[J Construct the line graph of T4, L,

[1 Then, apply lemma 3 few times.

[] Notice that this is a complete graph K10 and 10 “almost equal length” paths.
[J The line graph of Tig 10 is...
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[] Recall lemma 4, we have

w(Ta) =2+ p(Lty) <2+ p(Lryg 1) = #(T19,10)
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[] Recall lemma 4, we have

w(Ta) =2+ p(Lty) <2+ p(Lryg 1) = #(T19,10)

[ In fact, pu(T4) = 11.0448 whereas u(7T19,10) = 18.8615.
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[1 Finally,

Graph T T Ty Ts Ty T19,10
U 6.1700 | 7.1074 | 8.0740 | 10.0426 | 11.0448 | 18.8615
Therefore,

w(T) < 1(Tho,10)

as expected.
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