A Sharp Upper Bounds for Largest Eigenvalue of the Laplacian Matrices of Tree

Tomohiro Kawasaki

July 28, 2011

▷ Introduction

Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Introduction

A Sharp Upper Bounds for Largest Eigenvalue of the Laplacian Matrices of Tree – 2 / 31

 \square

Introduction
Motivation

Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Spectral Graph Theory :

The study of properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated to the graph, such as its adjacency matrix or Laplacian matrix.

Introduction

▷ Motivation

Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Spectral Graph Theory :

- The study of properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated to the graph, such as its adjacency matrix or Laplacian matrix.
- □ Knowing the spectrum allows us to deduce important properties and structural parameters of a graph.

Introduction

Motivation

Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Spectral Graph Theory :

- The study of properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated to the graph, such as its adjacency matrix or Laplacian matrix.
- □ Knowing the spectrum allows us to deduce important properties and structural parameters of a graph.

e.g. the lowest eigenvalues \rightarrow the algebraic connectivity the highest and lowest eigenvalues \rightarrow the spread of a graph

 \square

Introduction

Motivation

Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Spectral Graph Theory :

- The study of properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated to the graph, such as its adjacency matrix or Laplacian matrix.
- □ Knowing the spectrum allows us to deduce important properties and structural parameters of a graph.

e.g. the lowest eigenvalues \rightarrow the algebraic connectivity the highest and lowest eigenvalues \rightarrow the spread of a graph

□ In this project, we focus on an upper bound for the spectrum of the Laplacian matrix of a tree.

Introduction

Motivation

▷ Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Definition. A graph G is a triple consisting of a vertex set V(G), an edge set E(G), and a relation that associates with each edge two vertices (not necessarily distinct) called its end points.

Introduction

Motivation

▷ Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Definition. A graph G is a triple consisting of a vertex set V(G), an edge set E(G), and a relation that associates with each edge two vertices (not necessarily distinct) called its end points.

Examples:

Introduction

Motivation

▷ Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Definition. A graph G is a triple consisting of a vertex set V(G), an edge set E(G), and a relation that associates with each edge two vertices (not necessarily distinct) called its end points.

Examples:

A Sharp Upper Bounds for Largest Eigenvalue of the Laplacian Matrices of Tree – 4 / 31

Introduction

Motivation

▷ Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Some particular type of graphs:

Simple graph

A Sharp Upper Bounds for Largest Eigenvalue of the Laplacian Matrices of Tree – 5 / 31

A Sharp Upper Bounds for Largest Eigenvalue of the Laplacian Matrices of Tree – 5 / 31

A Sharp Upper Bounds for Largest Eigenvalue of the Laplacian Matrices of Tree – 5 / 31

Introduction

Motivation

▷ Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Definition. Let G be a simple graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$. The adjacency matrix A = A(G) is the $n \times n$ matrix (a_{ij}) , where $a_{ij} = 1$ if v_i is adjacent to v_j , and $a_{ij} = 0$ otherwise.

Introduction

Motivation

▷ Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Definition. Let G be a simple graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$. The adjacency matrix A = A(G) is the $n \times n$ matrix (a_{ij}) , where $a_{ij} = 1$ if v_i is adjacent to v_j , and $a_{ij} = 0$ otherwise.

Example:

Introduction

Motivation

Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Definition. Let G be a simple graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$. The adjacency matrix A = A(G) is the $n \times n$ matrix (a_{ij}) , where $a_{ij} = 1$ if v_i is adjacent to v_j , and $a_{ij} = 0$ otherwise.

Example: Take the following graph G with labels.

Introduction

Motivation

Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Definition. Let G be a simple graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$. The **adjacency matrix** A = A(G) is the $n \times n$ matrix (a_{ij}) , where $a_{ij} = 1$ if v_i is adjacent to v_j , and $a_{ij} = 0$ otherwise.

Example: Take the following graph G with labels.

A Sharp Upper Bounds for Largest Eigenvalue of the Laplacian Matrices of Tree – 6 / 31

Introduction

Motivation

Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Definition. Let G be a simple graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$. The **adjacency matrix** A = A(G) is the $n \times n$ matrix (a_{ij}) , where $a_{ij} = 1$ if v_i is adjacent to v_j , and $a_{ij} = 0$ otherwise.

Example: Take the following graph G with labels.

A(G)		v_1	v_2	v_3	v_4	v_5
v_1	Г	0	1	1	0	0
v_2		1	0	1	0	0
v_3		1	1	0	1	1
v_4		0	0	1	0	1
v_5	L	0	0	1	1	0

A Sharp Upper Bounds for Largest Eigenvalue of the Laplacian Matrices of Tree – 6 / 31

Introduction

Motivation

Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Definition. Let G be a simple graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$. The adjacency matrix A = A(G) is the $n \times n$ matrix (a_{ij}) , where $a_{ij} = 1$ if v_i is adjacent to v_j , and $a_{ij} = 0$ otherwise.

Example: Take the following graph G with labels.

Note:

 \Box The adjacency matrix A(G) is symmetric.

A Sharp Upper Bounds for Largest Eigenvalue of the Laplacian Matrices of Tree – 6 / 31

Introduction

Motivation

Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Definition. Let G be a simple graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$. The adjacency matrix A = A(G) is the $n \times n$ matrix (a_{ij}) , where $a_{ij} = 1$ if v_i is adjacent to v_j , and $a_{ij} = 0$ otherwise.

Example: Take the following graph G with labels.

Note:

 \Box The adjacency matrix A(G) is symmetric.

 \Box The diagonal entries are always 0.

A Sharp Upper Bounds for Largest Eigenvalue of the Laplacian Matrices of Tree - 6 / 31

Introd	uction

Motivation

 \triangleright Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Recall: Every eigenvalue of a symmetric matrix is real.

Introduction

Motivation

▷ Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Recall: Every eigenvalue of a symmetric matrix is real.

Definition. The spectral radius of G is the parameter $\rho(G) = \max_i(|\lambda_i|)$, where the maximum is taken over all the eigenvalues λ_i of the adjacency matrix A(G).

Introduction

Motivation

▷ Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Recall: Every eigenvalue of a symmetric matrix is real.

Definition. The spectral radius of G is the parameter $\rho(G) = \max_i(|\lambda_i|)$, where the maximum is taken over all the eigenvalues λ_i of the adjacency matrix A(G).

Definition. The **Perron vector** of G is the eigenvector \mathbf{x} associated to the eigenvalue $\rho(G)$.

Introduction

Motivation

▷ Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Recall: Every eigenvalue of a symmetric matrix is real.

Definition. The spectral radius of G is the parameter $\rho(G) = \max_i(|\lambda_i|)$, where the maximum is taken over all the eigenvalues λ_i of the adjacency matrix A(G).

Definition. The **Perron vector** of G is the eigenvector \mathbf{x} associated to the eigenvalue $\rho(G)$.

Theorem (Perron-Frobenius Theorem). Suppose A is a real nonnegative $n \times n$ matrix whose underlying graph G is connected. Then, $\rho(A)$ is a simple eigenvalue of A. If x is an eigenvector for ρ , then no entries of x are zero, and all have the same sign.

 \Box The Perron vector is a unique (up to scalar multiplication), positive, unit, and simple vector.

Introduction	Example:	
Motivation	Example.	
\triangleright Preliminaries		
Objective		
Summary		
Some Lemmas		
Main Results		
The End		

Introduction Motivation	Example: Take $A(G)$ previously obtained.
\triangleright Preliminaries	A(G) and $A(G)$ and $A(G)$
Objective	$v_1 [0 1 1 0 0]$
Summary	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Some Lemmas	v_3 1 1 0 1 1
	$v_4 \begin{bmatrix} 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$
Main Results	v_5 L 0 0 1 1 0 J
The End	

Matlab)...

Introduction Motivation	Example: Take $A(G)$ previously obtained.
Preliminaries	$A(G)$ v_1 v_2 v_3 v_4 v_5
Objective	$v_1 \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$
Summary	v_2 1 0 1 0 0
Some Lemmas	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Main Results	$\begin{bmatrix} v_4 \\ v_5 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$
The End	The list of Eigenvalues of $A(G)$ (call spectrum of $A(G)$) are (by

Introduction Motivation	Example: Take $A(G)$ previously obtained.
Preliminaries Objective	$A(G) \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$
Summary	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Some Lemmas	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
The End	The list of Figenvalues of $A(G)$ (call spectrum of $A(G)$) are (
	$(Can spectrum of \mathcal{I}(O)) are ($

The list of Eigenvalues of A(G) (call spectrum of A(G)) are (by *Matlab*)...

 $\{-1.5616, -1.0000, -1.0000, 1.0000, 2.5616\}$

Introduction

Motivation

▷ Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Example: Take A(G) previously obtained.

 $\begin{array}{ccccccc} A(G) & v_1 & v_2 & v_3 & v_4 & v_5 \\ v_1 & & & & & & & & & \\ v_2 & & & & & & & & & & \\ v_3 & & & & & & & & & & \\ v_4 & & & & & & & & & & & \\ v_5 & & & & & & & & & & & & \\ 0 & 0 & 1 & 0 & 1 & & & & & \\ 0 & 0 & 1 & 1 & 0 & & & & \\ \end{array}$

The list of Eigenvalues of A(G) (call spectrum of A(G)) are (by *Matlab*)...

$$\{-1.5616, -1.0000, -1.0000, 1.0000, \underbrace{2.5616}_{\max_i (|\lambda_i|)}\}$$

Introduction

Motivation

▷ Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Example: Take A(G) previously obtained.

 $\begin{array}{ccccccccccccc} A(G) & v_1 & v_2 & v_3 & v_4 & v_5 \\ v_1 & & & & & & & & & \\ v_2 & & & & & & & & & & \\ v_3 & & & & & & & & & & \\ v_4 & & & & & & & & & & & \\ v_5 & & & & & & & & & & & & \\ 0 & 0 & 1 & 0 & 1 & & & & & \\ \end{array} \right]$

The list of Eigenvalues of A(G) (call spectrum of A(G)) are (by *Matlab*)...

$$\{-1.5616, -1.0000, -1.0000, 1.0000, \underbrace{2.5616}_{\max_i(|\lambda_i|)}\}$$

Thus, we have $\rho(G) = 2.5616$,

Introduction

Motivation

▷ Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Example: Take A(G) previously obtained.

 $\begin{array}{ccccccccccccc} A(G) & v_1 & v_2 & v_3 & v_4 & v_5 \\ v_1 & & & & & & & & & \\ v_2 & & & & & & & & & & \\ v_3 & & & & & & & & & & \\ v_4 & & & & & & & & & & & \\ v_5 & & & & & & & & & & & & \\ 0 & 0 & 1 & 0 & 1 & & & & & \\ \end{array} \right]$

The list of Eigenvalues of A(G) (call spectrum of A(G)) are (by *Matlab*)...

$$\{-1.5616, -1.0000, -1.0000, 1.0000, \underbrace{2.5616}_{\max_i (|\lambda_i|)}\}$$

Thus, we have $\rho(G)=2.5616$,

the associated Perron vector is...

A Sharp Upper Bounds for Largest Eigenvalue of the Laplacian Matrices of Tree - 8 / 31

Introduction

Motivation

▷ Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Example: Take A(G) previously obtained.

The list of Eigenvalues of A(G) (call spectrum of A(G)) are (by *Matlab*)...

$$\{-1.5616, -1.0000, -1.0000, 1.0000, \underbrace{2.5616}_{\max_i (|\lambda_i|)}\}$$

Thus, we have $\rho(G)=2.5616$,

the associated Perron vector is...

 $\mathbf{x} = \{0.3941, 0.3941, 0.6154, 0.3941, 0.3941\}^T.$

A Sharp Upper Bounds for Largest Eigenvalue of the Laplacian Matrices of Tree – 8 / 31

Now, we define...

Introduction

Motivation

▷ Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

A Sharp Upper Bounds for Largest Eigenvalue of the Laplacian Matrices of Tree – 9 / 31

Introduction

Motivation

 \triangleright Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Now, we define...

 \Box For each *i*, let d_i denote the degree of each vertex v_i in *G*.

Introduction

Motivation

 \triangleright Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Now, we define...

For each i, let d_i denote the degree of each vertex v_i in G. Let D = D(G) be the $n \times n$ diagonal matrix, where i^{th} diagonal entry is d_i .

Motivation

Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Now, we define...

For each i, let d_i denote the degree of each vertex v_i in G. Let D = D(G) be the $n \times n$ diagonal matrix, where i^{th} \square diagonal entry is d_i .

- The **Laplacian matrix** L to be the matrix \square L(G) = D(G) - A(G).
- The spectral radius of L as the Laplacian spectral radius \square of G and denote this by $\mu(G)$.

Motivation

Preliminaries

Objective

```
Summary
```

Some Lemmas

Main Results

The End

Now, we define...

- □ For each *i*, let *d_i* denote the degree of each vertex *v_i* in *G*.
 □ Let *D* = *D*(*G*) be the *n* × *n* diagonal matrix, where *i*th diagonal entry is *d_i*.
- □ The Laplacian matrix L to be the matrix L(G) = D(G) A(G).
- □ The spectral radius of *L* as the **Laplacian spectral radius** of G and denote this by $\mu(G)$.
- □ The signless Laplacian matrix Q to be the matrix Q(G) = D(G) + A(G).
- □ The spectral radius of Q as the **signless Laplacian spectral** radius of G and denote this by $\nu(G)$.
| Introduction | Example: |
|-----------------|----------|
| Motivation | Example. |
| ▷ Preliminaries | |
| Objective | |
| Summary | |
| Some Lemmas | |
| Main Results | |
| The End | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

Motivation

 \triangleright Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Example: Take G as following.

Introduction Motivation	Example: Take G as following.
Objective	
Summary	G v 🔨
Some Lemmas Main Results	
The End	v ₂ v ₅

Introduction Motivation	Example: Take G as following.
Objective	
Summary	G v 🔨
Some Lemmas Main Results	
The End	v ₂ v ₅

Introduction Motivation	Example: Take G as following.
Objective Summary Some Lemmas Main Results The End	G v_1 v_4 v_4 v_5
	Therefore, we get

Introduction Motivation D Preliminaries	Example: Take G as following.
Objective Summary Some Lemmas Main Results The End	G v_1 v_4 v_3 v_5
	Therefore, we get
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Introduction Motivation ▷ Preliminaries Objective Summary Some Lemmas Main Results The End	Example: Take G as following. $G = \int_{v_1}^{v_2} \int_{v_3}^{v_4} \int_{v_5}^{v_4} \int_{v_5}^{v_5} \int_{v_5}$
	Therefore, we get
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Introduction Motivation D Preliminaries	Example: Take G as following.
Objective Summary <u>Some Lemmas</u> <u>Main Results</u> The End	G v_1 v_4 v_3 v_5
	Therefore, we get
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\mu(G) = 5.0000$ and $\nu(G) = 5.5616$

Introduction Motivation D Preliminaries	Example: Take G as following.
Objective Summary <u>Some Lemmas</u> <u>Main Results</u> The End	G v_1 v_4 v_3 v_5
	Therefore, we get
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\mu(G) = 5.0000$ and $\nu(G) = 5.5616$

Introduction Motivation D Preliminaries	Example: Take G as following.
Objective Summary <u>Some Lemmas</u> <u>Main Results</u> The End	G v_1 v_4 v_3 v_5
	Therefore, we get
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\mu(G) = 5.0000$ and $\nu(G) = 5.5616$

Introduction

Motivation

 \triangleright Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Introduction Motivation Preliminaries Objective Summary Some Lemmas

Main Results

The End

Additional terminologies and notations:

Definition. A graph with no cycle is **acyclic**. A **forest** is an acyclic graph. A **tree** is a connected graph.

Introduction

Motivation

▷ Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Additional terminologies and notations:

Definition. A graph with no cycle is **acyclic**. A **forest** is an acyclic graph. A **tree** is a connected graph.

Introduction

Motivation

 \triangleright Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Introduction

Motivation

Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Additional terminologies and notations:

A **pendant vertex** in a graph G is a vertex whose degree is 1.

 \square

Introduction	
Motivation	
Preliminaries	
Objective	
Summary	
Some Lemmas	
Main Results	

The End

- A **pendant vertex** in a graph G is a vertex whose degree is 1.
- □ Let G be a simple graph and take $v \in V(G)$. Then, $N_G(v)$ denotes the set of vertices which are adjacent to the vertex v.

 \square

Introduction
Mativation

1010	liva	lio		
\triangleright	Prel	imi	inar	ies

Ob	ective

Summary

Some Lemmas

Main Results

The End

- A **pendant vertex** in a graph G is a vertex whose degree is 1.
- □ Let G be a simple graph and take $v \in V(G)$. Then, $N_G(v)$ denotes the set of vertices which are adjacent to the vertex v.
- \Box For a nonnegative integer n and k, $\mathscr{T}_{n,k}$ denotes the set of tree graphs with n vertices and k pendant vertices.

 \square

Introduction

Motivation

Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

- A **pendant vertex** in a graph G is a vertex whose degree is 1.
- □ Let G be a simple graph and take $v \in V(G)$. Then, $N_G(v)$ denotes the set of vertices which are adjacent to the vertex v.
- \Box For a nonnegative integer n and k, $\mathscr{T}_{n,k}$ denotes the set of tree graphs with n vertices and k pendant vertices.
- □ For any fixed n and k, we define $T_{n,k} \in \mathscr{T}_{n,k}$ to be a tree graph obtained from a complete bipartite graph (we call this a *star* graph) $K_{1,k}$ and k paths of almost equal length, by joining each pendant vertex of $K_{1,k}$ to an end vertex of one path.

Introduction	
--------------	--

Motivation

▷ Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Example: How can I construct $T_{18,5}$?

Example: How can I construct $T_{18,5}$? Introduction Motivation ▷ Preliminaries Objective Summary Some Lemmas Main Results The End К_{1,5} \Box Start with the star $K_{1,5}$

Introduction Example: How can I construct $T_{18,5}$? Motivation ▷ Preliminaries Objective Summary Some Lemmas Main Results The End Start with the star $K_{1,5}$ \Box We are attaching five paths to each pendant vertex in $K_{1,5}$

P₁

 P_2

 P_5

Introduction

Motivation

▷ Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Example: How can I construct $T_{18,5}$?

 \Box Start with the star $K_{1,5}$

 \Box We are attaching five paths to each pendant vertex in $K_{1,5}$ \Box What kind of paths do we need to add? The definition said "almost equal length"?!

IntroductionMotivation▷ PreliminariesObjectiveSummarySome LemmasMain ResultsThe End

Example: How can I construct $T_{18,5}$?

 \Box We want five paths having the same number of vertices as much as possible, so consider the division algorithm $17 = 3 \cdot 5 + 2$.

IntroductionMotivation▷ PreliminariesObjectiveSummarySome LemmasMain ResultsThe End

Example: How can I construct $T_{18,5}$?

□ We want five paths having the same number of vertices as much as possible, so consider the division algorithm
17 = 3 ⋅ 5 + 2.
□ This quotient 3 represents the minimum number of vertices that each path has.

Introduction Motivation ▷ Preliminaries Objective Summary Some Lemmas Main Results The End

Example: How can I construct $T_{18,5}$?

 \Box We want five paths having the same number of vertices as much as possible, so consider the division algorithm $17 = 3 \cdot 5 + 2$.

 \Box This quotient 3 represents the minimum number of vertices that each path has.

 \Box But we still have two more vertices remaining...

Introduction

Motivation

▷ Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Example: How can I construct $T_{18,5}$?

 \Box We want five paths having the same number of vertices as much as possible, so consider the division algorithm

 $17 = 3 \cdot 5 + 2.$

 \Box This quotient 3 represents the minimum number of vertices that each path has.

 \Box But we still have two more vertices remaining...

 \Box Thus, two paths have an extra vertex.

Introduction					
Motivation					
Preliminaries					
Objective					
Summary					
Some Lemmas					

Main Results

The End

Example: How can I construct $T_{18,5}$?

□ Not every path has the same number of vertices, but each has an "almost equal" number of vertices!

Introduction

Motivation

Preliminaries

 \triangleright Objective

Summary

Some Lemmas

Main Results

The End

Objective: For any $T \in \mathscr{T}_{n,k}$, its Laplacian spectral radius is bounded by the one for $T_{n,k}$. That is,

 $\mu(T) \le \mu(T_{n,k})$

Summary

Introduction	

Motivation

Preliminaries

Objective

Summary

Some Lemmas

Main Results

The End

Recall that $\mu(T) \leq \mu(T_{n,k})$ for all $T \in \mathscr{T}_{n,k}$. The following are notations used in this presentation.

- $\hfill\square$ A(G) : adjacency matrix of G
- $\hfill\square \hfill \rho(G)$: spectral radius of G
 - L(G) : Laplacian matrix of G
- $\hfill\square \hfill \mu(G)$: Laplacian spectral radius of G
- $\hfill\square Q(G)$: signless Laplacian matrix of G
- $\hfill\square\quad \nu(G)$: signless Laplacian spectral radius of G
- \square $N_G(v)$: set of vertices adjacent to a vertex v in G
- $\square \quad N_G(v) \setminus (N_G(u) \cup \{u\}) : \text{ set of neighbors of } v \text{, but do not} \\ \text{ include neighbors of } u \text{ nor } u \text{ itself} \\ \end{array}$
- $\hfill\square$ $\mathscr{T}_{n,k}:$ set of tree graphs with n vertices and k pendant vertices
- \Box $T_{n,k}$: a tree graph by the construction just explained

Introd	luction
	action

▷ Some Lemmas

Lemma 1

Lemma 2 and 3 $\,$

Lemma 4

Main Results

The End

Some Lemmas

Introduction

Some Lemmas

▷ Lemma 1

Lemma 2 and 3

Lemma 4

Main Results

The End

Introduction

Some Lemmas

▷ Lemma 1

Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 1. If G is a bipartite graph, then D(G) + A(G) and D(G) - A(G) have the same spectrum.

Introduction

Some Lemmas

▷ Lemma 1

Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 1. If G is a bipartite graph, then D(G) + A(G) and D(G) - A(G) have the same spectrum. Example: Take..

Introduction

Some Lemmas

▷ Lemma 1

Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 1. If G is a bipartite graph, then D(G) + A(G) and D(G) - A(G) have the same spectrum. Example: Take..

Introduction

Some Lemmas

▷ Lemma 1

Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 1. If G is a bipartite graph, then D(G) + A(G) and D(G) - A(G) have the same spectrum. Example: Take..

Their signless/Laplacian matrices and spectra are..

Introduction

Some Lemmas

▷ Lemma 1

Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 1. If G is a bipartite graph, then D(G) + A(G) and D(G) - A(G) have the same spectrum. Example: Take..

Their signless/Laplacian matrices and spectra are..

L(B)	v_1	v_2	v_3	v_4	v_5	v_6	Q(B)	v_1	v_2	v_3	v_4	v_5	v_6
v_1	Γ 3	0	0	-1	-1	-1 -	v_1	Γ 3	0	0	1	1	1]
v_2	0	2	0	-1	-1	0	v_2	0	2	0	1	1	0
v_3	0	0	2	-1	0	-1	v_3	0	0	2	1	0	1
v_4	-1	-1	-1	3	0	0	v_4	1	1	1	3	0	0
v_5	-1	-1	0	0	2	0	v_5	1	1	0	0	2	0
v_6	$\lfloor -1$	0	-1	0	0	2	v_6	L 1	0	1	0	0	2
Introduction

Some Lemmas

▷ Lemma 1

Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 1. If G is a bipartite graph, then D(G) + A(G) and D(G) - A(G) have the same spectrum. Example: Take..

Their signless/Laplacian matrices and spectra are...

L(B)	v_1	v_2	v_3	v_4	v_5	v_6	Q(B)	v_1	v_2	v_3	v_4	v_5	v_6
v_1	Γ 3	0	0	-1	-1	-1 -	v_1	Γ3	0	0	1	1	ך 1
v_2	0	2	0	-1	-1	0	v_2	0	2	0	1	1	0
v_3	0	0	2	-1	0	-1	v_3	0	0	2	1	0	1
v_4	-1	-1	-1	3	0	0	v_4	1	1	1	3	0	0
v_5	-1	-1	0	0	2	0	v_5	1	1	0	0	2	0
v_6	$\lfloor -1$	0	-1	0	0	2 _		L 1	0	1	0	0	$2 \downarrow$

The spectrum of L(B) is $\{-0.0000, 1.0000, 2.0000, 3.0000, 3.0000, 5.0000\}$, whereas the spectrum of Q(B) is $\{-0.0000, 1.0000, 2.0000, 3.0000, 3.0000, 5.0000\}$, as desired.

Introduction

Some Lemmas

Lemma 1 Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and l, $G_{k,l}$ denote the graph obtained from G by adding pendant paths of length k and l at u. If $k \ge l \ge 1$, then

$$\rho(G_{k,l}) > \rho(G_{k+1,l-1}).$$

Lemma 3. Let u and v be two adjacent vertices of the connected graph G and for nonnegative integers k and l, $G_{k,l}$ denote the graph obtained from G by adding pendant paths of length k and l at u and v, respectively. If $k \ge l \ge 1$, then

$$\rho(G_{k,l}) > \rho(G_{k+1,l-1}).$$

Introduction

Some Lemmas

Lemma 1

 \triangleright Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and l, $G_{k,l}$ denote the graph obtained from G by adding pendant paths of length k and l at u. If $k \ge l \ge 1$, then $\rho(G_{k,l}) > \rho(G_{k+1,l-1}).$

Introduction

Some Lemmas

Lemma 1

 \triangleright Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and l, $G_{k,l}$ denote the graph obtained from G by adding pendant paths of length k and l at u. If $k \ge l \ge 1$, then $\rho(G_{k,l}) > \rho(G_{k+1,l-1}).$

Example:

1	
Introd	luction
111000	action

Some Lemmas

Lemma 1

 \triangleright Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and l, $G_{k,l}$ denote the graph obtained from G by adding pendant paths of length k and l at u. If $k \ge l \ge 1$, then $\rho(G_{k,l}) > \rho(G_{k+1,l-1}).$

Example:

Let k = 2 and l = 2, and take following figures with u labeled.

Introduction

Some Lemmas

Lemma 1

▷ Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and l, $G_{k,l}$ denote the graph obtained from G by adding pendant paths of length k and l at u. If $k \ge l \ge 1$, then $\rho(G_{k,l}) > \rho(G_{k+1,l-1}).$

Example:

Let k = 2 and l = 2, and take following figures with u labeled.

Introduction

Some Lemmas

Lemma 1

▷ Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and l, $G_{k,l}$ denote the graph obtained from G by adding pendant paths of length k and l at u. If $k \ge l \ge 1$, then $\rho(G_{k,l}) > \rho(G_{k+1,l-1}).$

Example:

Let k = 2 and l = 2, and take following figures with u labeled.

Introduction

Some Lemmas

Lemma 1

 \triangleright Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and l, $G_{k,l}$ denote the graph obtained from G by adding pendant paths of length k and l at u. If $k \ge l \ge 1$, then $\rho(G_{k,l}) > \rho(G_{k+1,l-1}).$

Example:

Let k = 2 and l = 2, and take following figures with u labeled.

Introduction

Some Lemmas

Lemma 1

 \triangleright Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and l, $G_{k,l}$ denote the graph obtained from G by adding pendant paths of length k and l at u. If $k \ge l \ge 1$, then $\rho(G_{k,l}) > \rho(G_{k+1,l-1}).$

Example:

Let k = 2 and l = 2, and take following figures with u labeled.

Introduction

Some Lemmas

Lemma 1

 \triangleright Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and l, $G_{k,l}$ denote the graph obtained from G by adding pendant paths of length k and l at u. If $k \ge l \ge 1$, then $\rho(G_{k,l}) > \rho(G_{k+1,l-1}).$

Example:

Let k = 2 and l = 2, and take following figures with u labeled.

Introduction

Some Lemmas

Lemma 1

▷ Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and l, $G_{k,l}$ denote the graph obtained from G by adding pendant paths of length k and l at u. If $k \ge l \ge 1$, then $\rho(G_{k,l}) > \rho(G_{k+1,l-1}).$

Example:

Let k = 2 and l = 2, and take following figures with u labeled.

Spectral radii of these graphs are...

Introduction

Some Lemmas

Lemma 1

▷ Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and l, $G_{k,l}$ denote the graph obtained from G by adding pendant paths of length k and l at u. If $k \ge l \ge 1$, then $\rho(G_{k,l}) > \rho(G_{k+1,l-1}).$

Example:

Let k = 2 and l = 2, and take following figures with u labeled.

Spectral radii of these graphs are...

Graph	$H_{2,2}(u)$	$H_{3,1}(u)$	$H_{4,0}(u)$
$S \cdot R$	2.6883	2.6751	2.5813

Introduction

Some Lemmas

Lemma 1 Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and l, $G_{k,l}$ denote the graph obtained from G by adding pendant paths of length k and l at u. If $k \ge l \ge 1$, then

$$\rho(G_{k,l}) > \rho(G_{k+1,l-1}).$$

Lemma 3. Let u and v be two adjacent vertices of the connected graph G and for nonnegative integers k and l, $G_{k,l}$ denote the graph obtained from G by adding pendant paths of length k and l at u and v, respectively. If $k \ge l \ge 1$, then

$$\rho(G_{k,l}) > \rho(G_{k+1,l-1}).$$

Introduction

Some Lemmas

Lemma 1 Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 3. Let u and v be two adjacent vertices of the connected graph G and for nonnegative integers k and l, $G_{k,l}$ denote the graph obtained from G by adding pendant paths of length k and l at u and v, respectively. If $k \ge l \ge 1$, then $\rho(G_{k,l}) > \rho(G_{k+1,l-1})$.

Example:

Introduction

Some Lemmas

Lemma 1 Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 3. Let u and v be two adjacent vertices of the connected graph G and for nonnegative integers k and l, $G_{k,l}$ denote the graph obtained from G by adding pendant paths of length k and l at u and v, respectively. If $k \ge l \ge 1$, then $\rho(G_{k,l}) > \rho(G_{k+1,l-1})$.

Example:

Similarly, let k = 2 and l = 2, but take u and v as shown.

Introduction

Some Lemmas

Lemma 1 ▷ Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 3. Let u and v be two adjacent vertices of the connected graph G and for nonnegative integers k and l, $G_{k,l}$ denote the graph obtained from G by adding pendant paths of length k and l at u and v, respectively. If $k \ge l \ge 1$, then $\rho(G_{k,l}) > \rho(G_{k+1,l-1})$.

Example:

Similarly, let k = 2 and l = 2, but take u and v as shown.

Introduction

Some Lemmas

Lemma 1 ▷ Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 3. Let u and v be two adjacent vertices of the connected graph G and for nonnegative integers k and l, $G_{k,l}$ denote the graph obtained from G by adding pendant paths of length k and l at u and v, respectively. If $k \ge l \ge 1$, then $\rho(G_{k,l}) > \rho(G_{k+1,l-1})$.

Example:

Similarly, let k = 2 and l = 2, but take u and v as shown.

Introduction

Some Lemmas

Lemma 1 ▷ Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 3. Let u and v be two adjacent vertices of the connected graph G and for nonnegative integers k and l, $G_{k,l}$ denote the graph obtained from G by adding pendant paths of length k and l at u and v, respectively. If $k \ge l \ge 1$, then $\rho(G_{k,l}) > \rho(G_{k+1,l-1})$.

Example:

Similarly, let k = 2 and l = 2, but take u and v as shown.

Introduction

Some Lemmas

Lemma 1 ▷ Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 3. Let u and v be two adjacent vertices of the connected graph G and for nonnegative integers k and l, $G_{k,l}$ denote the graph obtained from G by adding pendant paths of length k and l at u and v, respectively. If $k \ge l \ge 1$, then $\rho(G_{k,l}) > \rho(G_{k+1,l-1})$.

Example:

Similarly, let k = 2 and l = 2, but take u and v as shown.

Introduction

Some Lemmas

Lemma 1 ▷ Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 3. Let u and v be two adjacent vertices of the connected graph G and for nonnegative integers k and l, $G_{k,l}$ denote the graph obtained from G by adding pendant paths of length k and l at u and v, respectively. If $k \ge l \ge 1$, then $\rho(G_{k,l}) > \rho(G_{k+1,l-1})$.

Example:

Similarly, let k = 2 and l = 2, but take u and v as shown.

Spectral radii of these graphs are...

Introduction

Some Lemmas

Lemma 1 ▷ Lemma 2 and 3

Lemma 4

Main Results

The End

Lemma 3. Let u and v be two adjacent vertices of the connected graph G and for nonnegative integers k and l, $G_{k,l}$ denote the graph obtained from G by adding pendant paths of length k and l at u and v, respectively. If $k \ge l \ge 1$, then $\rho(G_{k,l}) > \rho(G_{k+1,l-1})$.

Example:

Similarly, let k = 2 and l = 2, but take u and v as shown.

Spectral radii of these graphs are...

Graph	$H_{2,2}(u,v)$	$H_{3,1}(u,v)$	$H_{4,0}(u,v)$
$S \cdot R$	2.6989	2.6839	2.5813

Introduction

Some Lemmas

Lemma 1

Lemma 2 and 3 $\,$

▷ Lemma 4

Main Results

The End

Lemma 4. Let G be a simple connected graph and L_G be the line graph of G. Then

 $\mu(G) \le 2 + \rho(L_G),$

where equality holds if and only if G is a bipartite graph.

Introduction

Some Lemmas

Lemma 1

Lemma 2 and 3 $\,$

▷ Lemma 4

Main Results

The End

Lemma 4. Let G be a simple connected graph and L_G be the line graph of G. Then, $\mu(G) \leq 2 + \rho(L_G)$, where equality holds if and only if G is a bipartite graph.

Introduction

Some Lemmas

Lemma 1

Lemma 2 and 3 $\,$

▷ Lemma 4

Main Results

The End

Lemma 4. Let G be a simple connected graph and L_G be the line graph of G. Then, $\mu(G) \leq 2 + \rho(L_G)$, where equality holds if and only if G is a bipartite graph.

Example:

Introduction

Some Lemmas

Lemma 1

Lemma 2 and 3

▷ Lemma 4

Main Results

The End

Lemma 4. Let G be a simple connected graph and L_G be the line graph of G. Then, $\mu(G) \leq 2 + \rho(L_G)$, where equality holds if and only if G is a bipartite graph.

Example: Take a bipartite graph B as the following.

Introduction

Some Lemmas

Lemma 1

Lemma 2 and 3

▷ Lemma 4

Main Results

The End

Lemma 4. Let G be a simple connected graph and L_G be the line graph of G. Then, $\mu(G) \leq 2 + \rho(L_G)$, where equality holds if and only if G is a bipartite graph.

Example: Take a bipartite graph B as the following.

v,

v₆

В

v₂

V₃

Introduction

Some Lemmas

Lemma 1

Lemma 2 and 3

▷ Lemma 4

Main Results

The End

Lemma 4. Let G be a simple connected graph and L_G be the line graph of G. Then, $\mu(G) \leq 2 + \rho(L_G)$, where equality holds if and only if G is a bipartite graph.

Example: Take a bipartite graph B as the following.

Introduction

Some Lemmas

Lemma 1

Lemma 2 and 3

▷ Lemma 4

Main Results

The End

Lemma 4. Let G be a simple connected graph and L_G be the line graph of G. Then, $\mu(G) \leq 2 + \rho(L_G)$, where equality holds if and only if G is a bipartite graph.

Example: Take a bipartite graph B as the following.

Introduction

Some Lemmas

Lemma 1

Lemma 2 and 3

▷ Lemma 4

Main Results

The End

Lemma 4. Let G be a simple connected graph and L_G be the line graph of G. Then, $\mu(G) \leq 2 + \rho(L_G)$, where equality holds if and only if G is a bipartite graph.

Example: Take a bipartite graph B as the following.

L(B)	v_1	v_2	v_3	v_4	v_5	v_6	$A(L_B)$	e_1	e_2	e_3	e_4	e_5	e_6
v_1	$\Gamma 2$	0	0	-1	-1	0 -	e_1	Γ Ο	1	1	1	0	ך 0
v_2	0	2	0	-1	0	-1	e_2	1	0	0	0	1	0
v_3^-	0	0	2	-1	-1	0	e_3^-	1	0	0	1	0	1
v_4	-1	-1	-1	3	0	0	e_4	1	0	1	0	1	0
v_5	-1	0	-1	0	2	0	e_5	0	1	0	1	0	0
v_6	0	-1	0	0	0	1	en	0	0	1	0	0	0

Introduction

Some Lemmas

Lemma 1

Lemma 2 and 3

▷ Lemma 4

Main Results

The End

Lemma 4. Let G be a simple connected graph and L_G be the line graph of G. Then, $\mu(G) \leq 2 + \rho(L_G)$, where equality holds if and only if G is a bipartite graph.

Example: Take a bipartite graph B as the following.

L(B)	v_1	v_2	v_3	v_4	v_5	v_6	$A(L_B)$	e_1	e_2	e_3	e_4	e_5	e_6
v_1	$\lceil 2$	0	0	-1	-1	0 -	e_1	Γ Ο	1	1	1	0	ך 0
v_2	0	2	0	-1	0	-1	e_2	1	0	0	0	1	0
v_3	0	0	2	-1	-1	0	e_3	1	0	0	1	0	1
v_4	-1	-1	-1	3	0	0	e_4	1	0	1	0	1	0
v_5	-1	0	-1	0	2	0	e_5	0	1	0	1	0	0
v_6	L 0	-1	0	0	0	1	e_6		0	1	0	0	0

spectrum of L(B) is $\{-0.000, 0.438, 2.000, 2.000, 3.000, 4.561\}$

Introduction

Some Lemmas

Lemma 1

Lemma 2 and 3

▷ Lemma 4

Main Results

The End

Lemma 4. Let G be a simple connected graph and L_G be the line graph of G. Then, $\mu(G) \leq 2 + \rho(L_G)$, where equality holds if and only if G is a bipartite graph.

Example: Take a bipartite graph B as the following.

L(B)	v_1	v_2	v_3	v_4	v_5	v_6	$A(L_B)$	e_1	e_2	e_3	e_4	e_5	e_6
v_1	$\lceil 2$	0	0	-1	-1	0 -	e_1	Γ 0	1	1	1	0	ך 0
v_2	0	2	0	-1	0	-1	e_2	1	0	0	0	1	0
v_3	0	0	2	-1	-1	0	e_3	1	0	0	1	0	1
v_4	-1	-1	-1	3	0	0	e_4	1	0	1	0	1	0
v_5	-1	0	-1	0	2	0	e_5	0	1	0	1	0	0
v_6		-1	0	0	0	1 _	e_6		0	1	0	0	0

spectrum of L(B) is $\{-0.000, 0.438, 2.000, 2.000, 3.000, 4.561\}$ spectrum of $A(L_B)$ is $\{-2.000, -1.561, -0.000, 0.000, 1.000, 2.561\}$

Some Lemmas

▷ Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

Case 2

Case 3

Example

The End

Main Results

Introduction Some Lemmas Main Results ▷ Idea Theorem 1 Example Theorem 2 Case 1 Case 2 Case 3 Example The End	\Box Our goal is $\mu(T) \leq \mu(T_{n,k})$ for any $T \in \mathscr{T}_{n,k}$.
Example The End	

Introduction

Some Lemmas

Main Results

▷ Idea

Theorem 1 Example

Theorem 2

Case 1

Case 2

Case 3

Example

The End

Our goal is $\mu(T) \leq \mu(T_{n,k})$ for any $T \in \mathscr{T}_{n,k}$.

The idea is to reconstruct T to $T_{n,k}$ by deleting and adding edges one by one. Then, watching how the (signless) Laplacian spectral radius changes for each step.

Introduction

Some Lemmas

Main Results

▷ Idea

Theorem 1

Example

Theorem 2

Case 1

Case 2

Case 3

Example

The End

For example, take $T \in \mathscr{T}_{8,6}$ as..

 \Box Since $7 = 1 \cdot 6 + 1$, we have... five paths of 1 vertex and one path of 2 vertices.

Introduction

Some Lemmas

Main Results

ldea

▷ Theorem 1

Example

Theorem 2

Case 1

Case 2

Case 3

Example

The End

Introduction

Some Lemmas

Main Results

Idea

▷ Theorem 1

Example

Theorem 2

Case 1

Case 2

Case 3

Example

The End

Theorem. Let u, v be two vertices of G and d_v be the degree of vertex v. Suppose v_1, v_2, \ldots, v_s $(1 \le s \le d_v)$ are some vertices of $N_G(v) \setminus (N_G(u) \cup \{u\})$ and $x = (x_1, x_2, \ldots, x_n)^T$ is the Perron vector of D(G) + A(G), where x_i corresponds to the vertex v_i $(1 \le i \le n)$. Let G^* be the graph obtained from G by deleting the edges (v, v_i) and adding the edges (u, v_i) $(1 \le i \le s)$. If $x_u \ge x_v$, then $\nu(G) < \nu(G^*)$.

Theorem. Let u, v be two vertices of G and d_v be the degree of vertex v. Suppose v_1, v_2, \ldots, v_s $(1 \le s \le d_v)$ are some vertices of $N_G(v) \setminus (N_G(u) \cup \{u\})$ and $x = (x_1, x_2, \ldots, x_n)^T$ is the Perron vector of D(G) + A(G), where x_i corresponds to the vertex v_i $(1 \le i \le n)$. Let G^* be the graph obtained from G by deleting the edges (v, v_i) and adding the edges (u, v_i) $(1 \le i \le s)$. If $x_u \ge x_v$, then $\nu(G) < \nu(G^*)$.

Introduction

Some Lemmas

Main Results

ldea

▷ Theorem 1

Example

Theorem 2

Case 1

Case 2

Case 3

Example

The End

Theorem. Let u, v be two vertices of G and d_v be the degree of vertex v. Suppose v_1, v_2, \ldots, v_s $(1 \le s \le d_v)$ are some vertices of $N_G(v) \setminus (N_G(u) \cup \{u\})$ and $x = (x_1, x_2, \ldots, x_n)^T$ is the Perron vector of D(G) + A(G), where x_i corresponds to the vertex v_i $(1 \le i \le n)$. Let G^* be the graph obtained from G by deleting the edges (v, v_i) and adding the edges (u, v_i) $(1 \le i \le s)$. If $x_u \ge x_v$, then $\nu(G) < \nu(G^*)$.

Some Lemmas

Main Results

ldea

▷ Theorem 1

Example

Theorem 2

Case 1

Case 2

Case 3

Example

The End

Introduction

Some Lemmas

Main Results

ldea

▷ Theorem 1

Example

Theorem 2

Case 1

Case 2

Case 3

Example

The End

Introduction

Some Lemmas

Main Results

ldea

▷ Theorem 1

Example

Theorem 2

Case 1

Case 2

Case 3

Example

The End

Some Lemmas

Main Results

ldea

▷ Theorem 1

Example

Theorem 2

Case 1

Case 2

Case 3

Example

The End

Introduction

Some Lemmas

Main Results

ldea

▷ Theorem 1

Example

Theorem 2

Case 1

Case 2

Case 3

Example

The End

Theorem. Let u, v be two vertices of G and d_v be the degree of vertex v. Suppose v_1, v_2, \ldots, v_s $(1 \le s \le d_v)$ are some vertices of $N_G(v) \setminus (N_G(u) \cup \{u\})$ and $x = (x_1, x_2, \ldots, x_n)^T$ is the Perron vector of D(G) + A(G), where x_i corresponds to the vertex v_i $(1 \le i \le n)$. Let G^* be the graph obtained from G by deleting the edges (v, v_i) and adding the edges (u, v_i) $(1 \le i \le s)$. If $x_u \ge x_v$, then $\nu(G) < \nu(G^*)$.

ldea

▷ Theorem 1

Example

Theorem 2

Case 1

Case 2

Case 3

Example

The End

 \Box The signless Laplacian matrix of G

Q(G)		v_1	v_2	v_3	v_4	v_5	
v_1	Г	2	1	0	0	1	٦
v_2		1	2	1	0	0	
v_3		0	1	3	1	1	
v_4		0	0	1	2	1	
v_5	L	1	0	1	1	3	

 $N_{G}(v) \setminus (N_{G}(u) \cup \{u\})$

Theorem. Let u, v be two vertices of G and d_v be the degree of vertex v. Suppose v_1, v_2, \ldots, v_s $(1 \le s \le d_v)$ are some vertices of $N_G(v) \setminus (N_G(u) \cup \{u\})$ and $x = (x_1, x_2, \ldots, x_n)^T$ is the Perron vector of D(G) + A(G), where x_i corresponds to the vertex v_i $(1 \le i \le n)$. Let G^* be the graph obtained from G by deleting the edges (v, v_i) and adding the edges (u, v_i) $(1 \le i \le s)$. If $x_u \ge x_v$, then $\nu(G) < \nu(G^*)$.

ldea

▷ Theorem 1

Example

Theorem 2

Case 1

Case 2

Case 3

Example

The End

Theorem. Let u, v be two vertices of G and d_v be the degree of vertex v. Suppose v_1, v_2, \ldots, v_s $(1 \le s \le d_v)$ are some vertices of $N_G(v) \setminus (N_G(u) \cup \{u\})$ and $x = (x_1, x_2, \ldots, x_n)^T$ is the Perron vector of D(G) + A(G), where x_i corresponds to the vertex v_i $(1 \le i \le n)$. Let G^* be the graph obtained from G by deleting the edges (v, v_i) and adding the edges (u, v_i) $(1 \le i \le s)$. If $x_u \ge x_v$, then $\nu(G) < \nu(G^*)$.

Theorem. Let u, v be two vertices of G and d_v be the degree of vertex v. Suppose v_1, v_2, \ldots, v_s $(1 \le s \le d_v)$ are some vertices of $N_G(v) \setminus (N_G(u) \cup \{u\})$ and $x = (x_1, x_2, \ldots, x_n)^T$ is the Perron vector of D(G) + A(G), where x_i corresponds to the vertex v_i $(1 \le i \le n)$. Let G^* be the graph obtained from G by deleting the edges (v, v_i) and adding the edges (u, v_i) $(1 \le i \le s)$. If $x_u \ge x_v$, then $\nu(G) < \nu(G^*)$.

Theorem. Let u, v be two vertices of G and d_v be the degree of vertex v. Suppose v_1, v_2, \ldots, v_s $(1 \le s \le d_v)$ are some vertices of $N_G(v) \setminus (N_G(u) \cup \{u\})$ and $x = (x_1, x_2, \ldots, x_n)^T$ is the Perron vector of D(G) + A(G), where x_i **corresponds to the vertex** v_i $(1 \le i \le n)$. Let G^* be the graph obtained from G by deleting the edges (v, v_i) and adding the edges (u, v_i) $(1 \le i \le s)$. If $x_u \ge x_v$, then $\nu(G) < \nu(G^*)$.

Theorem. Let u, v be two vertices of G and d_v be the degree of vertex v. Suppose v_1, v_2, \ldots, v_s $(1 \le s \le d_v)$ are some vertices of $N_G(v) \setminus (N_G(u) \cup \{u\})$ and $x = (x_1, x_2, \ldots, x_n)^T$ is the Perron vector of D(G) + A(G), where x_i **corresponds to the vertex** v_i $(1 \le i \le n)$. Let G^* be the graph obtained from G by deleting the edges (v, v_i) and adding the edges (u, v_i) $(1 \le i \le s)$. If $x_u \ge x_v$, then $\nu(G) < \nu(G^*)$.

ldea

▷ Theorem 1

Example

Theorem 2

Case 1

Case 2

Case 3

Example

The End

Introduction

Some Lemmas

Main Results

ldea

▷ Theorem 1

Example

Theorem 2

Case 1

Case 2

Case 3

Example

The End

Theorem. Let u, v be two vertices of G and d_v be the degree of vertex v. Suppose v_1, v_2, \ldots, v_s $(1 \le s \le d_v)$ are some vertices of $N_G(v) \setminus (N_G(u) \cup \{u\})$ and $x = (x_1, x_2, \ldots, x_n)^T$ is the Perron vector of D(G) + A(G), where x_i corresponds to the vertex v_i $(1 \le i \le n)$. Let G^* be the graph obtained from G by deleting the edges (v, v_i) and adding the edges (u, v_i) $(1 \le i \le s)$. If $x_u \ge x_v$, then $\nu(G) < \nu(G^*)$.

Theorem. Let u, v be two vertices of G and d_v be the degree of vertex v. Suppose v_1, v_2, \ldots, v_s $(1 \le s \le d_v)$ are some vertices of $N_G(v) \setminus (N_G(u) \cup \{u\})$ and $x = (x_1, x_2, \ldots, x_n)^T$ is the Perron vector of D(G) + A(G), where x_i corresponds to the vertex v_i $(1 \le i \le n)$. Let G^* be the graph obtained from G by deleting the edges (v, v_i) and adding the edges (u, v_i) $(1 \le i \le s)$. If $x_u \ge x_v$, then $\nu(G) < \nu(G^*)$.

Theorem. Let u, v be two vertices of G and d_v be the degree of vertex v. Suppose v_1, v_2, \ldots, v_s $(1 \le s \le d_v)$ are some vertices of $N_G(v) \setminus (N_G(u) \cup \{u\})$ and $x = (x_1, x_2, \ldots, x_n)^T$ is the Perron vector of D(G) + A(G), where x_i corresponds to the vertex v_i $(1 \le i \le n)$. Let G^* be the graph obtained from G by deleting the edges (v, v_i) and adding the edges (u, v_i) $(1 \le i \le s)$. If $x_u \ge x_v$, then $\nu(G) < \nu(G^*)$.

Some Lemmas

Idea

▷ Theorem 1

Example

Theorem 2

Case 1

Case 2

Case 3

Example

The End

 \Box We see that $x_u = 0.5914 \ge 0.5914 = x_v$, satisfying the assumption.

Theorem. Let u, v be two vertices of G and d_v be the degree of vertex v. Suppose v_1, v_2, \ldots, v_s $(1 \le s \le d_v)$ are some vertices of $N_G(v) \setminus (N_G(u) \cup \{u\})$ and $x = (x_1, x_2, \ldots, x_n)^T$ is the Perron vector of D(G) + A(G), where x_i corresponds to the vertex v_i $(1 \le i \le n)$. Let G^* be the graph obtained from G by deleting the edges (v, v_i) and adding the edges (u, v_i) $(1 \le i \le s)$. If $x_u \ge x_v$, then $\nu(G) < \nu(G^*)$.

Some Lemmas

Main Results

ldea

▷ Theorem 1

Example

Theorem 2

Case 1

Case 2

Case 3

Example

The End

Theorem. Let u, v be two vertices of G and d_v be the degree of vertex v. Suppose v_1, v_2, \ldots, v_s $(1 \le s \le d_v)$ are some vertices of $N_G(v) \setminus (N_G(u) \cup \{u\})$ and $x = (x_1, x_2, \ldots, x_n)^T$ is the Perron vector of D(G) + A(G), where x_i corresponds to the vertex v_i $(1 \le i \le n)$. Let G^* be the graph obtained from G by deleting the edges (v, v_i) and adding the edges (u, v_i) $(1 \le i \le s)$. If $x_u \ge x_v$, then $\nu(G) < \nu(G^*)$.

Some Lemmas

Main Results

▷ Theorem 1

Example

Theorem 2

Case 1

Case 2

Case 3

Example

The End

 \Box Its spectrum is...

 $\{1.000, 1.000, 1.438, 3.000, \underline{5.561}\}$

Theorem. Let u, v be two vertices of G and d_v be the degree of vertex v. Suppose v_1, v_2, \ldots, v_s $(1 \le s \le d_v)$ are some vertices of $N_G(v) \setminus (N_G(u) \cup \{u\})$ and $x = (x_1, x_2, \ldots, x_n)^T$ is the Perron vector of D(G) + A(G), where x_i corresponds to the vertex v_i $(1 \le i \le n)$. Let G^* be the graph obtained from G by deleting the edges (v, v_i) and adding the edges (u, v_i) $(1 \le i \le s)$. If $x_u \ge x_v$, then $\nu(G) < \nu(G^*)$.

Some Lemmas

Main Results

ldea

▷ Theorem 1

Example

Theorem 2

Case 1

Case 2

Case 3

Example

The End

Therefore, we have

$$\nu(G) = 5.114 < 5.561 = \nu(G^*)$$

Theorem. Let u, v be two vertices of G and d_v be the degree of vertex v. Suppose v_1, v_2, \ldots, v_s $(1 \le s \le d_v)$ are some vertices of $N_G(v) \setminus (N_G(u) \cup \{u\})$ and $x = (x_1, x_2, \ldots, x_n)^T$ is the Perron vector of D(G) + A(G), where x_i corresponds to the vertex v_i $(1 \le i \le n)$. Let G^* be the graph obtained from G by deleting the edges (v, v_i) and adding the edges (u, v_i) $(1 \le i \le s)$. If $x_u \ge x_v$, then $\nu(G) < \nu(G^*)$.

Introduction	
Some Lemmas	
Main Results	
ldea	
Theorem 1	
▷ Example	
Theorem 2	
Case 1	
Case 2	
Case 3	
Example	
The End	\Box Take the following figure with labels.

Take the following figure with labels.
Its signless Laplacian matrix is...

Introduction

Some Lemmas

Main Results

Theorem 1

▷ Example

Theorem 2

Case 1

Case 2 Case 3 Example

The End

Idea

Q(T) w_3 w_4 w_8 w_1 w_2 w_5 w_6 w_7 Íw₂ ۱_{w5} w_1 w_2 w_3 w₈ w₁ w_4 w₃ w₆ w_5 w_6 w_7 w₇ w₄ Т w_8

Take the following figure with labels.
Its signless Laplacian matrix is...

Introduction

The End

Introduction

Example

The End

Then, its spectrum is...

 $\{0.000, 0.354, 1.000, 1.000, 1.000, 1.000, 4.000, \underline{5.646}\}$

Introduction

Some Lemmas

Main Results Idea

Theorem 1 \triangleright Example

Theorem 2

Case 1

Case 2

Case 3

Example

The End

Then, its spectrum is...

 $\{0.000, 0.354, 1.000, 1.000, 1.000, 1.000, 4.000, \underline{5.646}\}$

so, $\nu(T) = 5.646$.

Introduction

Some Lemmas

Main Results

Theorem 1

▷ Example

Theorem 2

Case 1

Case 2 Case 3 Example

The End

Idea

Q(T) w_3 w_1 w_2 w_2 w₅ 1 1 0 w_1 0 1 1 w_2 41 1 w_3 w₈ w₁ 0 0 1 w_4 W₂ w₆ 0 0 0 w_5 1 0 0 w_6 0 0 0 w_7 w₇ w₄ 0 0 0 Т w_8

Then, its spectrum is...

 $\{0.000, 0.354, 1.000, 1.000, 1.000, 1.000, 4.000, 5.646\}$

 w_8

0

0

0

0

0

1

0

1

 w_4

0

0

1

1

0

0

0

0

 w_5

0

0

0

0

0

 w_6

0

0

1

0

U 1 4 1

1

 w_7

0

0

0

0

0

1

1

0

so, $\nu(T) = 5.646$. Its associated Perron vector is...

Introduction

Some Lemmas

Main Results

Theorem 1

▷ Example

Theorem 2

Case 1

Case 2 Case 3 Example

The End

Idea

Q(T) w_3 w_8 w_1 w_2 w_4 w_5 w_6 w_7 1w₅ w_2 1 0 1 0 0 0 0 0 w_1 0 1 1 0 0 0 0 0 w_2 1 1 1 1 40 0 0 w_3 w₈ w₁ 1 0 0 0 0 1 0 0 w_4 W₂ w₆ 1 1 0 0 0 1 0 0 0 w_5 4 0 0 1 0 1 1 w_6 0 0 0 1 1 0 0 0 w_7 w₇ w₄ 0 0 0 0 0 1 0 1 Т w_8

 \Box Then, its spectrum is...

 $\{0.000, 0.354, 1.000, 1.000, 1.000, 1.000, 4.000, 5.646\}$ so, $\nu(T) = 5.646$. Its associated Perron vector is...

$$\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\ 0.142 & 0.142 & 0.662 & 0.142 & 0.142 & 0.662 & 0.142 & 0.142 \end{bmatrix}^T$$

Introduction

Some Lemmas ۱_{w5} [w₂ Main Results W₆ Wa W₇ w₄ т

The End

 $\{0.000, 0.354, 1.000, 1.000, 1.000, 1.000, 4.000, 5.646\}$ so, $\nu(T) = 5.646$. Its associated Perron vector is... $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ 0.142 & 0.142 & 0.662 & 0.142 & 0.142 \end{bmatrix}$ $\begin{array}{ccc} x_6 & x_7 \\ 0.662 & 0.142 \end{array}$ $egin{array}{c} x_8 \ 0.142 \end{array}$ \Box For this example, let us choose $w_3 = u$ and $w_6 = v$, so that $x_u \geq x_v$ is preserved.

A Sharp Upper Bounds for Largest Eigenvalue of the Laplacian Matrices of Tree – 25 / 31

Then, its spectrum is...

Idea

Theorem 1

 \triangleright Example

Theorem 2

Case 1

Case 2

Case 3

Example

Introduction

Some Lemmas

Main Results

Theorem 1

▷ Example

Theorem 2

Case 1

Case 2

Case 3

Example

The End

Then, its spectrum is...

 $x_u \geq x_v$ is preserved.

 $\{0.000, 0.354, 1.000, 1.000, 1.000, 1.000, 4.000, \underline{5.646}\}$ so, $\nu(T) = 5.646$. Its associated Perron vector is... $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\ 0.142 & 0.142 & 0.662 & 0.142 & 0.662 & 0.142 & 0.142 \end{bmatrix}^T$ \Box For this example, let us choose $w_3 = u$ and $w_6 = v$, so that

Introduction

Some Lemmas Main Results Idea Theorem 1 ▷ Example Theorem 2 Case 1 Case 2 Case 3 Example

The End

Then, its spectrum is...

 $\{0.000, 0.354, 1.000, 1.000, 1.000, 1.000, 4.000, \underline{5.646}\}$ so, $\nu(T) = 5.646$. Its associated Perron vector is... $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\ 0.142 & 0.142 & 0.662 & 0.142 & 0.662 & 0.142 & 0.142 \end{bmatrix}^T$ \Box For this example, let us choose $w_3 = u$ and $w_6 = v$, so that $x_u \ge x_v$ is preserved.

Introduction

Some Lemmas Main Results Idea Theorem 1 > Example Theorem 2 Case 1 Case 2

Case 3 Example

The End

Then, its spectrum is...

 $\{0.000, 0.354, 1.000, 1.000, 1.000, 1.000, 4.000, \underline{5.646}\}$ so, $\nu(T) = 5.646$. Its associated Perron vector is... $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\ 0.142 & 0.142 & 0.662 & 0.142 & 0.662 & 0.142 & 0.142 \end{bmatrix}^T$ \Box For this example, let us choose $w_3 = u$ and $w_6 = v$, so that $x_u \ge x_v$ is preserved.

Introduction

Some Lemmas Main Results Idea Theorem 1 ▷ Example Theorem 2 Case 1 Case 2 Case 3

The End

Example

Then, its spectrum is...

 $\{0.000, 0.354, 1.000, 1.000, 1.000, 1.000, 4.000, \underline{5.646}\}$ so, $\nu(T) = 5.646$. Its associated Perron vector is... $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\ 0.142 & 0.142 & 0.662 & 0.142 & 0.662 & 0.142 & 0.142 \end{bmatrix}^T$ \Box For this example, let us choose $w_3 = u$ and $w_6 = v$, so that $x_u \ge x_v$ is preserved.

Introduction

Some Lemmas

Main Results Idea Theorem 1

▷ Example

Theorem 2

Case 1

Case 2

Case 3

Example

The End

Then, its spectrum is...

 $\{0.000, 0.354, 1.000, 1.000, 1.000, 1.000, 4.000, \underline{5.646}\}$ so, $\nu(T) = 5.646$. Its associated Perron vector is... $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\ 0.142 & 0.142 & 0.662 & 0.142 & 0.662 & 0.142 & 0.142 \end{bmatrix}^T$ \Box For this example, let us choose $w_3 = u$ and $w_6 = v$, so that $x_u \ge x_v$ is preserved.

Introduction

Some Lemmas Main Results Idea Theorem 1 ▷ Example Theorem 2 Case 1 Case 2

Case 3 Example

The End

Then, its spectrum is...

 $\{0.000, 0.354, 1.000, 1.000, 1.000, 1.000, 4.000, \underline{5.646}\}$ so, $\nu(T) = 5.646$. Its associated Perron vector is... $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\ 0.142 & 0.142 & 0.662 & 0.142 & 0.662 & 0.142 & 0.142 \end{bmatrix}^T$ \Box For this example, let us choose $w_3 = u$ and $w_6 = v$, so that $x_u \ge x_v$ is preserved.

Introduction

Some Lemmas Main Results Idea Theorem 1 ▷ Example Theorem 2 Case 1

Case 2

Case 3

Example The End

Then, its spectrum is...

 $\{0.000, 0.354, 1.000, 1.000, 1.000, 1.000, 4.000, \underline{5.646}\}$ so, $\nu(T) = 5.646$. Its associated Perron vector is... $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\ 0.142 & 0.142 & 0.662 & 0.142 & 0.662 & 0.142 & 0.142 \end{bmatrix}^T$ \Box For this example, let us choose $w_3 = u$ and $w_6 = v$, so that $x_u \ge x_v$ is preserved.

Introduction

Some Lemmas

Main Results Idea

Theorem 1

▷ Example

Theorem 2

Case 1

Case 2

Case 3

Example

The End

Then, its spectrum is...

 $\{0.000, 0.354, 1.000, 1.000, 1.000, 1.000, 4.000, \underline{5.646}\}$ so, $\nu(T) = 5.646$. Its associated Perron vector is... $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\ 0.142 & 0.142 & 0.662 & 0.142 & 0.662 & 0.142 & 0.142 \end{bmatrix}^T$ \Box For this example, let us choose $w_3 = u$ and $w_6 = v$, so that $x_u \ge x_v$ is preserved.

Introduction

Some Lemmas

Main Results Idea

Theorem 1

▷ Example

Theorem 2

Case 1

Case 2

Case 3

Example

The End

Then, its spectrum is...

 $\{0.000, 0.354, 1.000, 1.000, 1.000, 1.000, 4.000, \underline{5.646}\}$ so, $\nu(T) = 5.646$. Its associated Perron vector is... $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\ 0.142 & 0.142 & 0.662 & 0.142 & 0.662 & 0.142 & 0.142 \end{bmatrix}^T$ \Box For this example, let us choose $w_3 = u$ and $w_6 = v$, so that $x_u \ge x_v$ is preserved.

Introduction

Some Lemmas

Main Results Idea Theorem 1

▷ Example

Theorem 2

Case 1

Case 2

Case 3

Example

The End

 \Box Now, the signless Laplacian Matrix for T_1 is...

Introduction

Some Lemmas

Main Results Idea Theorem 1 ▷ Example Theorem 2

Case 1

Case 2

Case 3

Example

The End

 \Box Now, the signless Laplacian Matrix for T_1 is...

 $\{0.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, \underline{8.000}\}$

Introduction

Some Lemmas

Main Results Idea Theorem 1 ▷ Example

Theorem 2

Case 1

Case 2

Case 3

Example

The End

 \Box Now, the signless Laplacian Matrix for T_1 is...

 $\{0.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, \underline{8.000}\}$

so, $\nu(T_1) = 8.000$, which we see that

Introduction

Some Lemmas

Main Results Idea Theorem 1 ▷ Example Theorem 2

Case 1

Case 2

Case 3 Example

The End

 \Box Now, the signless Laplacian Matrix for T_1 is...

 $\{0.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, \underline{8.000}\}$

so, $\nu(T_1) = 8.000$, which we see that

 $\nu(T) = 5.646 < 8.000 = \nu(T_1)$

Introduction

Some Lemmas

Main Results Idea Theorem 1 ▷ Example Theorem 2

Case 1

Case 2

Case 3

Example

The End

 \Box Now, the signless Laplacian Matrix for T_1 is...

 $\{0.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, \underline{8.000}\}$

so, $\nu(T_1) = 8.000$, which we see that

 $\nu(T) = 5.646 < 8.000 = \nu(T_1)$

implied by the theorem!

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

▷ Theorem 2

Case 1

Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then

 $\mu(T) \le \mu(T_{n,k}),$

where equality holds if and only if T is isomorphic to $T_{n,k}$.

Introduction

Some Lemmas

Main Results

ldea

Theorem 1

Example

▷ Theorem 2

Case 1

Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then

 $\mu(T) \le \mu(T_{n,k}),$

where equality holds if and only if T is isomorphic to $T_{n,k}$.

Combine all lemmas and the theorem, now how does this statement hold?

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

▷ Theorem 2

Case 1

Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then

 $\mu(T) \le \mu(T_{n,k}),$

where equality holds if and only if T is isomorphic to $T_{n,k}$.

Combine all lemmas and the theorem, now how does this statement hold?

Idea:

Introduction

Some Lemmas

Main Results

ldea

Theorem 1

Example

▷ Theorem 2

Case 1

Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then

 $\mu(T) \le \mu(T_{n,k}),$

where equality holds if and only if T is isomorphic to $T_{n,k}$.

Combine all lemmas and the theorem, now how does this statement hold?

Idea: Let t be the number of vertices whose degree is greater than 2.

Introduction

Some Lemmas

Main Results

ldea

Theorem 1

Example

▷ Theorem 2

Case 1

Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then

 $\mu(T) \le \mu(T_{n,k}),$

where equality holds if and only if T is isomorphic to $T_{n,k}$.

Combine all lemmas and the theorem, now how does this statement hold?

Idea: Let t be the number of vertices whose degree is greater than 2. We prove the statement for t = 0, t = 1, and t > 1.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

▷ Case 1

Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Introduction

Some Lemmas

Main Results Idea Theorem 1 Example Theorem 2 ▷ Case 1 Case 2 Case 3 Example The End **Theorem.** Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

 \Box t is the number of vertices whose degree is greater than 2.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

▷ Case 1

Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

 \Box t is the number of vertices whose degree is greater than 2.

Introduction

Some Lemmas

Main Results

ldea

Theorem 1

Example

Theorem 2

▷ Case 1

Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

 \Box t is the number of vertices whose degree is greater than 2.

Case 1: t = 0.
Introduction

Some Lemmas

Main Results

Idea

Theorem 1 Example Theorem 2 ▷ Case 1

Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

 \Box t is the number of vertices whose degree is greater than 2.

Case 1: t = 0. Then T must be a path with n vertices.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

▷ Case 1

Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

 \Box t is the number of vertices whose degree is greater than 2.

Case 1: t = 0. Then T must be a path with n vertices. Notice that $T_{n,2}$ is a tree with n vertices and 2 pendant vertices.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

▷ Case 1

Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

 \Box t is the number of vertices whose degree is greater than 2.

Case 1: t = 0. Then T must be a path with n vertices. Notice that $T_{n,2}$ is a tree with n vertices and 2 pendant vertices.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

▷ Case 1

Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

 \Box t is the number of vertices whose degree is greater than 2.

Case 1: t = 0. Then T must be a path with n vertices. Notice that $T_{n,2}$ is a tree with n vertices and 2 pendant vertices.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

▷ Case 1

Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

 \Box t is the number of vertices whose degree is greater than 2.

Case 1: t = 0. Then T must be a path with n vertices. Notice that $T_{n,2}$ is a tree with n vertices and 2 pendant vertices. Thus, $T_n, 2$ is a path with n vertices as well.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

▷ Case 1

Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

 \Box t is the number of vertices whose degree is greater than 2.

Case 1: t = 0. Then T must be a path with n vertices. Notice that $T_{n,2}$ is a tree with n vertices and 2 pendant vertices. Thus, $T_n, 2$ is a path with n vertices as well.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

▷ Case 1

Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

 \Box t is the number of vertices whose degree is greater than 2.

Case 1: t = 0. Then T must be a path with n vertices. Notice that $T_{n,2}$ is a tree with n vertices and 2 pendant vertices. Thus, $T_n, 2$ is a path with n vertices as well. $\Rightarrow T$ is isomorphic to $T_{n,2}$

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

▷ Case 1

Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

 \Box t is the number of vertices whose degree is greater than 2.

Case 1: t = 0. Then T must be a path with n vertices. Notice that $T_{n,2}$ is a tree with n vertices and 2 pendant vertices. Thus, $T_{n,2}$ is a path with n vertices as well. $\Rightarrow T$ is isomorphic to $T_{n,2} \Rightarrow \mu(T) = \mu(T_{n,2})$.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

▷ Case 1

Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

 \Box t is the number of vertices whose degree is greater than 2.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

▷ Case 1

Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

 \Box t is the number of vertices whose degree is greater than 2.

CASE1 \checkmark

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 2: t = 1.

Introduction

Some Lemmas

Main Results

ldea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 2: t = 1.

Introduction

Main Results

Some Lemmas

ldea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Т

 \Box Let us call such vertex as a **branch vertex**, and let k be its degree.

IntroductionTheorem. Let
holds if and onlySome LemmasMain ResultsIdeaIdeaTheorem 1ExampleTheorem 2Case 1▷ Case 2●Case 3●

The End

Example

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 2: t = 1.

 \Box Let us call such vertex as a **branch vertex**, and let k be its degree.

Introduction Some Lemmas

Main Results Idea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

Case 2: t = 1.

 \Box Let us call such vertex as a **branch vertex**, and let k be its degree. Then, consider the line graph of T.

Introduction Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

Case 2: t = 1.

 \Box Let us call such vertex as a **branch vertex**, and let k be its degree. Then, consider the line graph of T.

Introduction Some Lemmas

Main Results

ldea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 2: t = 1.

 \Box Let us call such vertex as a **branch vertex**, and let k be its degree. Then, consider the line graph of T.

 \Box Edges incident to a branch vertex would form a clique (complete subgraph in L_T).

Introduction

Some Lemmas

Main Results

ldea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

Case 2: t = 1.

 \Box Let us call such vertex as a **branch vertex**, and let k be its degree. Then, consider the line graph of T.

 \Box Edges incident to a branch vertex would form a clique (complete subgraph in L_T).

Introduction

Some Lemmas

Main Results

ldea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

Case 2: t = 1.

 \Box Let us call such vertex as a **branch vertex**, and let k be its degree. Then, consider the line graph of T.

 \Box Edges incident to a branch vertex would form a clique (complete subgraph in L_T).

 \Box Note that L_T can be seen as K_k and connecting k paths P_1, P_2, \ldots, P_k to each vertex in K_k .

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 2: t = 1.

 \Box Let us call such vertex as a **branch vertex**, and let k be its degree. Then, consider the line graph of T.

 \Box Edges incident to a branch vertex would form a clique (complete subgraph in L_T).

 \Box Note that L_T can be seen as K_k and connecting k paths P_1, P_2, \ldots, P_k to each vertex in K_k .

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 2: t = 1.

 \Box Let us call such vertex as a **branch vertex**, and let k be its degree. Then, consider the line graph of T.

 \Box Edges incident to a branch vertex would form a clique (complete subgraph in L_T).

 \Box Note that L_T can be seen as K_k and connecting k paths P_1, P_2, \ldots, P_k to each vertex in K_k .

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 2: t = 1.

Introduction Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 2: t = 1.

 \Box Also, consider $T_{n,k}$ and its line graph $L_{T_{n,k}}$.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 2: t = 1.

 \Box Also, consider $T_{n,k}$ and its line graph $L_{T_{n,k}}$.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 2: t = 1.

 \Box Also, consider $T_{n,k}$ and its line graph $L_{T_{n,k}}$.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 2: t = 1.

 \Box Also, consider $T_{n,k}$ and its line graph $L_{T_{n,k}}$.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 2: t = 1.

 \Box Also, consider $T_{n,k}$ and its line graph $L_{T_{n,k}}$.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

 \Box Also, consider $T_{n,k}$ and its line graph $L_{T_{n,k}}$.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

 \Box Also, consider $T_{n,k}$ and its line graph $L_{T_{n,k}}$.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 2: t = 1.

 \Box Also, consider $T_{n,k}$ and its line graph $L_{T_{n,k}}$.

Introduction Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 2: t = 1.

 \Box Also, consider $T_{n,k}$ and its line graph $L_{T_{n,k}}$.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 2: t = 1. \Box Also, consider $T_{n,k}$ and its line graph $L_{T_{n,k}}$. \Box Now, compare L_T and $L_{T_{n,k}}$.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 2: t = 1.

 \Box Also, consider $T_{n,k}$ and its line graph $L_{T_{n,k}}$. \Box Now, compare L_T and $L_{T_{n,k}}$.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 2: t = 1.

 \Box Also, consider $T_{n,k}$ and its line graph $L_{T_{n,k}}$. \Box Now, compare L_T and $L_{T_{n,k}}$.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

 $\mathsf{Example}$

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 2: t = 1.

□ Also, consider $T_{n,k}$ and its line graph $L_{T_{n,k}}$. □ Now, compare L_T and $L_{T_{n,k}}$. □ Notice that applying lemma 3 or 4 (repeatedly, if necessarily)...
Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 2: t = 1.

□ Also, consider $T_{n,k}$ and its line graph $L_{T_{n,k}}$. □ Now, compare L_T and $L_{T_{n,k}}$. □ Notice that applying lemma 3 or 4 (repeatedly, if necessarily)...

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

Case 2

Case 3

Example

The End

┕⊤

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

U

 $L_{T_{9,4}} \cong L_{T}$

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

∟т

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

U

 $L_{T_{9,4}} \cong L_{T}$

Case 2: t = 1. \Box Also, consider $T_{n,k}$ and its line graph $L_{T_{n,k}}$. \Box Now, compare L_T and $L_{T_{n,k}}$. \Box Notice that applying lemma 3 or 4 (repeatedly, if necessarily)... \Box We get $\rho(L_{T_{n,k}}) > \rho(L_T)$.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 2: t = 1. Having $\rho(L_{T_{n,k}}) > \rho(L_T)$, recall lemma 5.

 $\mu(T) = 2 + \rho(L_T) \qquad \mu(T_{n,k}) = 2 + \rho(L_{T_{n,k}})$

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 2: t = 1. Having $\rho(L_{T_{n,k}}) > \rho(L_T)$, recall lemma 5.

$$\mu(T) = 2 + \rho(L_T) \qquad \mu(T_{n,k}) = 2 + \rho(L_{T_{n,k}})$$

Therefore, we get

$$\mu(T) = 2 + \rho(L_T) < 2 + \rho(L_{T_{n,k}}) = \mu(T_{n,k}).$$

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

▷ Case 2

Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

CASE2 \surd

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

Case 2

▷ Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Introduction

Some Lemmas

Main Results

ldea

Theorem 1

Example

Theorem 2

Case 1

Case 2

▷ Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 3: t > 1.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

Case 2

▷ Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 3: t > 1. The idea is...

Introduction

Some Lemmas

Main Results

ldea

Theorem 1

Example

Theorem 2

Case 1

Case 2

▷ Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 3: t > 1. The idea is...

Reconstruct T based on the method in theorem 1, so that the number of branch vertices can be reduced to 1, and then apply argument of case 2 (the proof for t = 1).

Introduction

Some Lemmas

Main Results

ldea

Theorem 1

Example Theorem 2

Theore

Case 1

Case 2

▷ Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 3: t > 1. The idea is...

Reconstruct T based on the method in theorem 1, so that the number of branch vertices can be reduced to 1, and then apply argument of case 2 (the proof for t = 1).

Let us see little bit more detail with an example.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

Case 2

▷ Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 3: t > 1.

Introduction

Some Lemmas

Main Results

ldea

Theorem 1

Example

Theorem 2

Case 1

Case 2

▷ Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 3: t > 1.

Introduction

Some Lemmas

Main Results

ldea

Theorem 1

Example

Theorem 2

Case 1

Case 2

▷ Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 3: t > 1.

 \Box To apply the method from theorem 1, label two branch vertices as u and v, and assume $x_u \ge x_v$.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

Case 2

▷ Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 3: t > 1.

 \Box To apply the method from theorem 1, label two branch vertices as u and v, and assume $x_u \ge x_v$.

Introduction

Some Lemmas

Main Results

ldea

Theorem 1

Example

Theorem 2

Case 1

Case 2

▷ Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 3: t > 1.

 \Box Recall: selecting two vertices in a tree graph determines a unique path.

Introduction

Some Lemmas

Main Results

ldea

Theorem 1

Example

Theorem 2

Case 1

Case 2

▷ Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 3: t > 1.

 \Box Recall: selecting two vertices in a tree graph determines a unique path. \Box Let w be a vertex which is a neighbor of v and on the u, v-path.

Introduction

Some Lemmas

Main Results

ldea

Theorem 1

Example

Theorem 2

Case 1

Case 2

▷ Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 3: t > 1.

 \Box Recall: selecting two vertices in a tree graph determines a unique path. \Box Let w be a vertex which is a neighbor of v and on the u, v-path.

Introduction

Some Lemmas

Main Results

ldea

Theorem 1

Example

Theorem 2

Case 1

Case 2

▷ Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 3: t > 1.

□ Recall: selecting two vertices in a tree graph determines a unique path. □ Let w be a vertex which is a neighbor of v and on the u, v-path. □ Then, consider the proper subset $\{v_1, v_2, \ldots, v_{d_v-2}\} \subset N_G(v) \setminus \{w\}$.

Introduction

Some Lemmas

Main Results

ldea

Theorem 1

Example

Theorem 2

Case 1

Case 2

▷ Case 3

Example The End **Theorem.** Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 3: t > 1.

□ Recall: selecting two vertices in a tree graph determines a unique path. □ Let w be a vertex which is a neighbor of v and on the u, v-path. □ Then, consider the proper subset $\{v_1, v_2, \ldots, v_{d_v-2}\} \subset N_G(v) \setminus \{w\}$.

Introduction

Some Lemmas

Main Results

ldea

Theorem 1

Example

Theorem 2

Case 1

Case 2

Case 3 Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 3: t > 1.

□ Recall: selecting two vertices in a tree graph determines a unique path. □ Let w be a vertex which is a neighbor of v and on the u, v-path. □ Then, consider the proper subset $\{v_1, v_2, \ldots, v_{d_v-2}\} \subset N_G(v) \setminus \{w\}$. □ Now, delete (v, v_i) and add (u, v_i) for $1 \le i \le d_v - 2$.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

Case 2

▷ Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

 $d_v = 4$, $d_v - 2 = 4 - 2 = 2$

Case 3: t > 1.

□ Recall: selecting two vertices in a tree graph determines a unique path. □ Let w be a vertex which is a neighbor of v and on the u, v-path. □ Then, consider the proper subset $\{v_1, v_2, \ldots, v_{d_v-2}\} \subset N_G(v) \setminus \{w\}$. □ Now, delete (v, v_i) and add (u, v_i) for $1 \le i \le d_v - 2$.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

Case 2

Case 3 Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 3: t > 1.

□ Recall: selecting two vertices in a tree graph determines a unique path. □ Let w be a vertex which is a neighbor of v and on the u, v-path. □ Then, consider the proper subset $\{v_1, v_2, \ldots, v_{d_v-2}\} \subset N_G(v) \setminus \{w\}$. □ Now, delete (v, v_i) and add (u, v_i) for $1 \le i \le d_v - 2$.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

Case 2

 \triangleright Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 3: t > 1.

□ Recall: selecting two vertices in a tree graph determines a unique path. □ Let w be a vertex which is a neighbor of v and on the u, v-path. □ Then, consider the proper subset $\{v_1, v_2, \ldots, v_{d_v-2}\} \subset N_G(v) \setminus \{w\}$. □ Now, delete (v, v_i) and add (u, v_i) for $1 \le i \le d_v - 2$.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

Case 2

▷ Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 3: t > 1.

□ Recall: selecting two vertices in a tree graph determines a unique path. □ Let w be a vertex which is a neighbor of v and on the u, v-path. □ Then, consider the proper subset $\{v_1, v_2, \ldots, v_{d_v-2}\} \subset N_G(v) \setminus \{w\}$. □ Now, delete (v, v_i) and add (u, v_i) for $1 \le i \le d_v - 2$.

Introduction

Some Lemmas

Main Results

ldea

Theorem 1

Example

Theorem 2

Case 1

Case 2

▷ Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 3: t > 1.

□ Recall: selecting two vertices in a tree graph determines a unique path. □ Let w be a vertex which is a neighbor of v and on the u, v-path. □ Then, consider the proper subset $\{v_1, v_2, \ldots, v_{d_v-2}\} \subset N_G(v) \setminus \{w\}$. □ Now, delete (v, v_i) and add (u, v_i) for $1 \le i \le d_v - 2$.

Introduction

Some Lemmas

Main Results

ldea

Theorem 1

Example

Theorem 2

Case 1

Case 2

▷ Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

 \Box Since $x_u \ge x_v$, theorem 1 must be applied.

Introduction

Some Lemmas

Main Results

ldea

Theorem 1

Example

Theorem 2

Case 1

Case 2

▷ Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Introduction

Some Lemmas

Main Results

ldea

Theorem 1

Example

Theorem 2

Case 1

Case 2

▷ Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Introduction

Some Lemmas

Main Results

ldea

Theorem 1

Example

Theorem 2

Case 1

Case 2

▷ Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 3: t > 1.

 \Box If t = 1, then we are done (go to case 2 argument).

Introduction

Some Lemmas

Main Results

ldea

Theorem 1

Example

Theorem 2

Case 1

Case 2

▷ Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 3: t > 1.

 \Box If t = 1, then we are done (go to case 2 argument). \Box If t > 1, then apply the same construction, and we see that..

Introduction

Some Lemmas

Main Results

ldea

Theorem 1

Example

Theorem 2

Case 1

Case 2

▷ Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 3: t > 1.

 \Box If t = 1, then we are done (go to case 2 argument). \Box If t > 1, then apply the same construction, and we see that..

 $\mu(T) < \mu(T_1^*) < \dots < \mu(T_{t-1}^*)$

Introduction

Some Lemmas

Main Results

ldea

Theorem 1

Example

Theorem 2

Case 1

Case 2

▷ Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

Case 3: t > 1.

 \Box If t = 1, then we are done (go to case 2 argument). \Box If t > 1, then apply the same construction, and we see that..

$$\mu(T) < \mu(T_1^*) < \dots < \mu(T_{t-1}^*)$$

Then the statement holds.

Introduction

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

Case 2

▷ Case 3

Example

The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu(T_{n,k})$, where equality holds if and only if T is isomorphic to $T_{n,k}$.

CASE3 \checkmark

Example

Example (case 3)
\Box Take $T\in\mathscr{T}_{19,10}$ as shown.

Example

IntroductionExample (case 3)Some LemmasExample (case 3)Main ResultsIdeaIdeaInforem 1ExampleInforem 2Case 1Inforem 2Case 2Inforem 2Case 3Inforem 2Case 3Inforem 2De ExampleInforem 2The EndInforem 2

IntroductionExample (case 3)Some LemmasMain ResultsIdeaIdeaTheorem 1ExampleTheorem 2Case 1Case 2Case 3> ExampleThe End

Introduction Example (case 3) Some Lemmas Main Results Idea Theorem 1 Example a_e a₇ Theorem 2 a₁₁ a₁₃ Case 1 a₁₂ Case 2 T_4 Case 3 a₁₈ a₁₄ a₁₅ a₁₇ a₁₉ \triangleright Example The End $\nu(T) = 6.1700 \ \nu(T_1) = 7.1074 \ \nu(T_2) = 8.0740 \ \nu(T_3) = 10.0426 \ \nu(T_4) = 11.0448$ Therefore, $\mu(T) = 6.1700 \ \mu(T_1) = 7.1074 \ \mu(T_2) = 8.0740 \ \mu(T_3) = 10.0426 \ \nu(T_4) = 11.0448$

Introduction	Example (case 2)		
Introduction	Example (case 2)		
Some Lemmas			
Main Results			
ldea			
Theorem 1			
Example			
Theorem 2			
Case 1			
Case 2			
Case 3			
Example			
The End			

Example (case 2) Introduction Some Lemmas Main Results Idea Theorem 1 Example Theorem 2 Case 1 Case 2 Case 3 T_4 \triangleright Example The End \Box Apply the argument of case 2 now.

Introduction

Example (case 2)

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

Case 2

Case 3

 \triangleright Example

The End

 \Box Apply the argument of case 2 now. \Box Construct the line graph of T_4 , L_{T_4}

Introduction Example (case 2) Some Lemmas Main Results Idea Theorem 1 Example Theorem 2 Case 1 Case 2 Case 3 L_{T_4} \triangleright Example The End \Box Apply the argument of case 2 now. \Box Construct the line graph of T_4 , L_{T_4} \Box Then, apply lemma 3 few times.

Introduction Example (case 2) Some Lemmas Main Results Idea Theorem 1 Example Theorem 2 Case 1 Case 2 Case 3 \triangleright Example The End \Box Apply the argument of case 2 now. \Box Construct the line graph of T_4 , L_{T_4} \Box Then, apply lemma 3 few times.

Introduction

Example (case 2)

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

Case 2

Case 3

▷ Example

The End

□ Apply the argument of case 2 now. □ Construct the line graph of T_4 , L_{T_4} □ Then, apply lemma 3 few times.
Introduction

Example (case 2)

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

Case 2

Case 3

▷ Example

The End

□ Apply the argument of case 2 now. □ Construct the line graph of T_4 , L_{T_4} □ Then, apply lemma 3 few times.

Introduction

Example (case 2)

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

Case 2

Case 3

▷ Example

The End

V V

□ Apply the argument of case 2 now. □ Construct the line graph of T_4 , L_{T_4} □ Then, apply lemma 3 few times.

Introduction

Example (case 2)

Some Lemmas

Main Results

Idea

Theorem 1

Example

Theorem 2

Case 1

Case 2

Case 3

▷ Example

The End

□ Apply the argument of case 2 now. □ Construct the line graph of T_4 , L_{T_4} □ Then, apply lemma 3 few times.

Introduction Example (case 2) Some Lemmas Main Results Idea Theorem 1 Example Theorem 2 Case 1 Case 2 Case 3 ▷ Example The End \Box Apply the argument of case 2 now. \Box Construct the line graph of T_4 , L_{T_4} \Box Then, apply lemma 3 few times.

Introduction Example (case 2) Some Lemmas Main Results Idea Theorem 1 Example Theorem 2 Case 1 Case 2 Case 3 ▷ Example The End \Box Apply the argument of case 2 now. \Box Construct the line graph of T_4 , L_{T_4} \Box Then, apply lemma 3 few times.

Introduction Example (case 2) Some Lemmas Main Results Idea Theorem 1 Example Theorem 2 Case 1 Case 2 Case 3 ▷ Example The End \Box Apply the argument of case 2 now. \Box Construct the line graph of T_4 , L_{T_4} \Box Then, apply lemma 3 few times.

Introduction	Example (case 2)
Main Results Idea Theorem 1 Example Theorem 2 Case 1 Case 2 Case 3	
The End	 Apply the argument of case 2 now. □ Construct the line graph of T₄, L_{T₄} □ Then, apply lemma 3 few times. □ Notice that this is a complete graph K₁₀ and 10 "almost equal length" paths.

 \Box Recall lemma 4, we have

 $\mu(T_4) = 2 + \rho(L_{T_4}) < 2 + \rho(L_{T_{19,10}}) = \mu(T_{19,10})$

 \Box Recall lemma 4, we have

 $\mu(T_4) = 2 + \rho(L_{T_4}) < 2 + \rho(L_{T_{19,10}}) = \mu(T_{19,10})$

 \Box In fact, $\mu(T_4) = 11.0448$ whereas $\mu(T_{19,10}) = 18.8615$.

Introduction

Some Lemmas

Main Results

 \triangleright The End

The End