A Sharp Upper Bounds for Largest Eigenvalue of the Laplacian Matrices of Tree

Tomohiro Kawasaki

July 28, 2011
D Introduction

Motivation

Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Introduction

Motivation

Introduction
\triangleright Motivation
Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Spectral Graph Theory :
\square The study of properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated to the graph, such as its adjacency matrix or Laplacian matrix.

Motivation

Introduction
\triangleright Motivation
Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Spectral Graph Theory :
\square The study of properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated to the graph, such as its adjacency matrix or Laplacian matrix.
\square Knowing the spectrum allows us to deduce important properties and structural parameters of a graph.

Motivation

Introduction
\triangleright Motivation
Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Spectral Graph Theory :
\square The study of properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated to the graph, such as its adjacency matrix or Laplacian matrix.
\square Knowing the spectrum allows us to deduce important properties and structural parameters of a graph.
e.g. the lowest eigenvalues \rightarrow the algebraic connectivity the highest and lowest eigenvalues \rightarrow the spread of a graph

Motivation

Introduction
\triangleright Motivation
Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Spectral Graph Theory :

\square The study of properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated to the graph, such as its adjacency matrix or Laplacian matrix.
\square Knowing the spectrum allows us to deduce important properties and structural parameters of a graph.
e.g. the lowest eigenvalues \rightarrow the algebraic connectivity the highest and lowest eigenvalues \rightarrow the spread of a graph
\square In this project, we focus on an upper bound for the spectrum of the Laplacian matrix of a tree.

Preliminaries

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Definition. A graph G is a triple consisting of a vertex set $V(G)$, an edge set $E(G)$, and a relation that associates with each edge two vertices (not necessarily distinct) called its end points.

Preliminaries

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Definition. A graph G is a triple consisting of a vertex set $V(G)$, an edge set $E(G)$, and a relation that associates with each edge two vertices (not necessarily distinct) called its end points.

Examples:

Preliminaries

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Definition. A graph G is a triple consisting of a vertex set $V(G)$, an edge set $E(G)$, and a relation that associates with each edge two vertices (not necessarily distinct) called its end points.

Examples:

Preliminaries

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Some particular type of graphs:

Preliminaries

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Some particular type of graphs:

A Sharp Upper Bounds for Largest Eigenvalue of the Laplacian Matrices of Tree - $5 /$

Preliminaries

Introduction
Motivation
\triangle Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Some particular type of graphs:

In this project, we assume that a graph G is simple connected.

Preliminaries

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Definition. Let G be a simple graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The adjacency matrix $A=A(G)$ is the $n \times n$ matrix $\left(a_{i j}\right)$, where $a_{i j}=1$ if v_{i} is adjacent to v_{j}, and $a_{i j}=0$ otherwise.

Preliminaries

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Definition. Let G be a simple graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The adjacency matrix $A=A(G)$ is the $n \times n$ matrix $\left(a_{i j}\right)$, where $a_{i j}=1$ if v_{i} is adjacent to v_{j}, and $a_{i j}=0$ otherwise.

Example:

Preliminaries

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Definition. Let G be a simple graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The adjacency matrix $A=A(G)$ is the $n \times n$ matrix $\left(a_{i j}\right)$, where $a_{i j}=1$ if v_{i} is adjacent to v_{j}, and $a_{i j}=0$ otherwise.

Example: Take the following graph G with labels.

Preliminaries

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Definition. Let G be a simple graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The adjacency matrix $A=A(G)$ is the $n \times n$ matrix $\left(a_{i j}\right)$, where $a_{i j}=1$ if v_{i} is adjacent to v_{j}, and $a_{i j}=0$ otherwise.

Example: Take the following graph G with labels.

Preliminaries

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Definition. Let G be a simple graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The adjacency matrix $A=A(G)$ is the $n \times n$ matrix $\left(a_{i j}\right)$, where $a_{i j}=1$ if v_{i} is adjacent to v_{j}, and $a_{i j}=0$ otherwise.

Example: Take the following graph G with labels.
$A(G)$
v_{1}
v_{2}
v_{3}
v_{4}
$v_{5}$$\quad\left[\begin{array}{ccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right]$

Preliminaries

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Definition. Let G be a simple graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The adjacency matrix $A=A(G)$ is the $n \times n$ matrix $\left(a_{i j}\right)$, where $a_{i j}=1$ if v_{i} is adjacent to v_{j}, and $a_{i j}=0$ otherwise.

Example: Take the following graph G with labels.

$A(G)$
v_{1}
v_{2}
v_{3}
v_{4}
$v_{5}$$\quad\left[\begin{array}{ccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right]$

Note:
\square The adjacency matrix $A(G)$ is symmetric.

Preliminaries

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Definition. Let G be a simple graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The adjacency matrix $A=A(G)$ is the $n \times n$ matrix $\left(a_{i j}\right)$, where $a_{i j}=1$ if v_{i} is adjacent to v_{j}, and $a_{i j}=0$ otherwise.

Example: Take the following graph G with labels.

$A(G)$
v_{1}
v_{2}
v_{3}
v_{4}
$v_{5}$$\quad\left[\begin{array}{ccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right]$

Note:
\square The adjacency matrix $A(G)$ is symmetric.
$\square \quad$ The diagonal entries are always 0 .

Preliminaries

Introduction
Motivation
\triangle Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Recall: Every eigenvalue of a symmetric matrix is real.

Preliminaries

Introduction
Motivation
\triangle Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Recall: Every eigenvalue of a symmetric matrix is real.
Definition. The spectral radius of G is the parameter $\rho(G)=\max _{i}\left(\left|\lambda_{i}\right|\right)$, where the maximum is taken over all the eigenvalues λ_{i} of the adjacency matrix $A(G)$.

Preliminaries

Introduction
Motivation
\triangle Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Recall: Every eigenvalue of a symmetric matrix is real.
Definition. The spectral radius of G is the parameter $\rho(G)=\max _{i}\left(\left|\lambda_{i}\right|\right)$, where the maximum is taken over all the eigenvalues λ_{i} of the adjacency matrix $A(G)$.

Definition. The Perron vector of G is the eigenvector \mathbf{x} associated to the eigenvalue $\rho(G)$.

Preliminaries

Introduction
Motivation
\triangle Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Recall: Every eigenvalue of a symmetric matrix is real.
Definition. The spectral radius of G is the parameter $\rho(G)=\max _{i}\left(\left|\lambda_{i}\right|\right)$, where the maximum is taken over all the eigenvalues λ_{i} of the adjacency matrix $A(G)$.

Definition. The Perron vector of G is the eigenvector \mathbf{x} associated to the eigenvalue $\rho(G)$.

Theorem (Perron-Frobenius Theorem). Suppose A is a real nonnegative $n \times n$ matrix whose underlying graph G is connected. Then, $\rho(A)$ is a simple eigenvalue of A. If x is an eigenvector for ρ, then no entries of x are zero, and all have the same sign.
\square The Perron vector is a unique (up to scalar multiplication), positive, unit, and simple vector.

Preliminaries

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Example:

Preliminaries

Introduction
Motivation
\triangle Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Example: Take $A(G)$ previously obtained.
$A(G)$
v_{1}
v_{2}
v_{3}
v_{4}
$v_{5}$$\quad\left[\begin{array}{ccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right]$

Preliminaries

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Example: Take $A(G)$ previously obtained.
$A(G)$
v_{1}
v_{2}
v_{3}
v_{4}
$v_{5}$$\quad\left[\begin{array}{ccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right]$

The list of Eigenvalues of $A(G)$ (call spectrum of $A(G)$) are (by Matlab)...

Preliminaries

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Example: Take $A(G)$ previously obtained.
$A(G)$
v_{1}
v_{2}
v_{3}
v_{4}
$v_{5}$$\quad\left[\begin{array}{ccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right]$

The list of Eigenvalues of $A(G)$ (call spectrum of $A(G)$) are (by Matlab)...

$$
\{-1.5616,-1.0000,-1.0000,1.0000,2.5616\}
$$

Preliminaries

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Example: Take $A(G)$ previously obtained.
$A(G)$
v_{1}
v_{2}
v_{3}
v_{4}
$v_{5}$$\quad\left[\begin{array}{ccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right]$

The list of Eigenvalues of $A(G)$ (call spectrum of $A(G)$) are (by Matlab)...

$$
\{-1.5616,-1.0000,-1.0000,1.0000, \underbrace{2.5616}_{\max _{i}\left(\left|\lambda_{i}\right|\right)}\}
$$

Preliminaries

Introduction
Motivation
\triangle Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Example: Take $A(G)$ previously obtained.
$A(G)$
v_{1}
v_{2}
v_{3}
v_{4}
$v_{5}$$\quad\left[\begin{array}{ccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right]$

The list of Eigenvalues of $A(G)$ (call spectrum of $A(G)$) are (by Matlab)...

$$
\{-1.5616,-1.0000,-1.0000,1.0000, \underbrace{2.5616}_{\max _{i}\left(\left|\lambda_{i}\right|\right)}\}
$$

Thus, we have $\rho(G)=2.5616$,

Preliminaries

Introduction
Motivation
\triangle Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Example: Take $A(G)$ previously obtained.
$A(G)$
v_{1}
v_{2}
v_{3}
v_{4}
$v_{5}$$\quad\left[\begin{array}{ccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right]$

The list of Eigenvalues of $A(G)$ (call spectrum of $A(G)$) are (by Matlab)...

$$
\{-1.5616,-1.0000,-1.0000,1.0000, \underbrace{2.5616}_{\max _{i}\left(\left|\lambda_{i}\right|\right)}\}
$$

Thus, we have $\rho(G)=2.5616$, the associated Perron vector is...

Preliminaries

Introduction
Motivation
\triangle Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Example: Take $A(G)$ previously obtained.
$A(G)$
v_{1}
v_{2}
v_{3}
v_{4}
$v_{5}$$\quad\left[\begin{array}{ccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right]$

The list of Eigenvalues of $A(G)$ (call spectrum of $A(G)$) are (by Matlab)...

$$
\{-1.5616,-1.0000,-1.0000,1.0000, \underbrace{2.5616}_{\max _{i}\left(\left|\lambda_{i}\right|\right)}\}
$$

Thus, we have $\rho(G)=2.5616$, the associated Perron vector is...

$$
\mathbf{x}=\{0.3941,0.3941,0.6154,0.3941,0.3941\}^{T}
$$

Preliminaries

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End
Now, we define...

Preliminaries

Introduction
Motivation
\triangle Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Now, we define...
$\square \quad$ For each i, let d_{i} denote the degree of each vertex v_{i} in G.

Preliminaries

Introduction
Motivation
\triangle Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Now, we define...
\square For each i, let d_{i} denote the degree of each vertex v_{i} in G.
$\square \quad$ Let $D=D(G)$ be the $n \times n$ diagonal matrix, where $i^{\text {th }}$ diagonal entry is d_{i}.

Preliminaries

Introduction
Motivation
\triangle Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Now, we define...
\square For each i, let d_{i} denote the degree of each vertex v_{i} in G.
$\square \quad$ Let $D=D(G)$ be the $n \times n$ diagonal matrix, where $i^{\text {th }}$ diagonal entry is d_{i}.
$\square \quad$ The Laplacian matrix L to be the matrix $L(G)=D(G)-A(G)$.
$\square \quad$ The spectral radius of L as the Laplacian spectral radius of G and denote this by $\mu(G)$.

Preliminaries

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Now, we define...
\square For each i, let d_{i} denote the degree of each vertex v_{i} in G.
$\square \quad$ Let $D=D(G)$ be the $n \times n$ diagonal matrix, where $i^{\text {th }}$ diagonal entry is d_{i}.
\square The Laplacian matrix L to be the matrix $L(G)=D(G)-A(G)$.
$\square \quad$ The spectral radius of L as the Laplacian spectral radius of G and denote this by $\mu(G)$.
$\square \quad$ The signless Laplacian matrix Q to be the matrix $Q(G)=D(G)+A(G)$.
\square The spectral radius of Q as the signless Laplacian spectral radius of G and denote this by $\nu(G)$.

Preliminaries

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Example:

A Sharp Upper Bounds for Largest Eigenvalue of the Laplacian Matrices of Tree - 10 / 3131

Preliminaries

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End
Example: Take G as following.

Preliminaries

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Example: Take G as following.

Preliminaries

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Example: Take G as following.

Preliminaries

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Example: Take G as following.

Therefore, we get

Preliminaries

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Example: Take G as following.

G

Therefore, we get
$\left.\left.\begin{array}{c}L(G) \\ v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ v_{5}\end{array} \begin{array}{ccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} \\ 2 & -1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ -1 & -1 & 4 & -1 & -1 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & -1 & 2\end{array}\right] \quad \begin{array}{cc}Q(G) \\ v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ v_{5}\end{array} \begin{array}{cccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} \\ 2 & 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 \\ 1 & 1 & 4 & 1 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 & 2\end{array}\right]$

Preliminaries

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Example: Take G as following.

Therefore, we get
$\left.\left.\begin{array}{c}L(G) \\ v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ v_{5}\end{array} \begin{array}{ccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} \\ 2 & -1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ -1 & -1 & 4 & -1 & -1 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & -1 & 2\end{array}\right] \quad \begin{array}{cc}Q(G) \\ v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ v_{5}\end{array} \begin{array}{cccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} \\ 2 & 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 \\ 1 & 1 & 4 & 1 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 & 2\end{array}\right]$
their spectral radii are...

Preliminaries

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Example: Take G as following.

Therefore, we get
$\left.\left.\begin{array}{c}L(G) \\ v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ v_{5}\end{array} \begin{array}{ccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} \\ 2 & -1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ -1 & -1 & 4 & -1 & -1 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & -1 & 2\end{array}\right] \quad \begin{array}{cc}Q(G) \\ v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ v_{5}\end{array} \begin{array}{cccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} \\ 2 & 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 \\ 1 & 1 & 4 & 1 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 & 2\end{array}\right]$
their spectral radii are...

$$
\mu(G)=5.0000 \quad \text { and } \quad \nu(G)=5.5616
$$

Preliminaries

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Example: Take G as following.

Therefore, we get
$\left.\left.\begin{array}{c}L(G) \\ v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ v_{5}\end{array} \begin{array}{ccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} \\ 2 & -1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ -1 & -1 & 4 & -1 & -1 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & -1 & 2\end{array}\right] \quad \begin{array}{cc}Q(G) \\ v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ v_{5}\end{array} \begin{array}{cccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} \\ 2 & 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 \\ 1 & 1 & 4 & 1 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 & 2\end{array}\right]$
their spectral radii are...

$$
\mu(G)=5.0000 \quad \text { and } \quad \nu(G)=5.5616
$$

Preliminaries

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Example: Take G as following.

Therefore, we get
$\left.\left.\begin{array}{c}L(G) \\ v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ v_{5}\end{array} \begin{array}{ccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} \\ 2 & -1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ -1 & -1 & 4 & -1 & -1 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & -1 & 2\end{array}\right] \quad \begin{array}{cc}Q(G) \\ v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ v_{5}\end{array} \begin{array}{cccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} \\ 2 & 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 \\ 1 & 1 & 4 & 1 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 & 2\end{array}\right]$
their spectral radii are...

$$
\mu(G)=5.0000 \quad \text { and } \quad \nu(G)=5.5616
$$

Objective

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Additional terminologies and notations:

Objective

Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Additional terminologies and notations:
Definition. A graph with no cycle is acyclic. A forest is an acyclic graph. A tree is a connected graph.

Objective

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results

Additional terminologies and notations:
Definition. A graph with no cycle is acyclic. A forest is an acyclic graph. A tree is a connected graph.

Objective

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Additional terminologies and notations:

Objective

Introduction
Motivation
\triangle Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Additional terminologies and notations:
$\square \quad$ A pendant vertex in a graph G is a vertex whose degree is 1.

Objective

Introduction
Motivation
\triangle Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Additional terminologies and notations:
$\square \quad$ A pendant vertex in a graph G is a vertex whose degree is 1.
$\square \quad$ Let G be a simple graph and take $v \in V(G)$. Then, $N_{G}(v)$ denotes the set of vertices which are adjacent to the vertex v.

Objective

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Additional terminologies and notations:
$\square \quad$ A pendant vertex in a graph G is a vertex whose degree is 1.
$\square \quad$ Let G be a simple graph and take $v \in V(G)$. Then, $N_{G}(v)$ denotes the set of vertices which are adjacent to the vertex v.
$\square \quad$ For a nonnegative integer n and $k, \mathscr{T}_{n, k}$ denotes the set of tree graphs with n vertices and k pendant vertices.

Objective

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Additional terminologies and notations:
$\square \quad$ A pendant vertex in a graph G is a vertex whose degree is 1.
$\square \quad$ Let G be a simple graph and take $v \in V(G)$. Then, $N_{G}(v)$ denotes the set of vertices which are adjacent to the vertex v.
$\square \quad$ For a nonnegative integer n and $k, \mathscr{T}_{n, k}$ denotes the set of tree graphs with n vertices and k pendant vertices.
$\square \quad$ For any fixed n and k, we define $T_{n, k} \in \mathscr{T}_{n, k}$ to be a tree graph obtained from a complete bipartite graph (we call this a star graph) $K_{1, k}$ and k paths of almost equal length, by joining each pendant vertex of $K_{1, k}$ to an end vertex of one path.

Objective

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results

The End

Example: How can I construct $T_{18,5}$?

Objective

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Example: How can I construct $T_{18,5}$?

$\mathrm{K}_{1,5}$
\square Start with the star $K_{1,5}$

Objective

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Example: How can I construct $T_{18,5}$?

\square Start with the star $K_{1,5}$
\square We are attaching five paths to each pendant vertex in $K_{1,5}$

Objective

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Example: How can I construct $T_{18,5}$?

\square Start with the star $K_{1,5}$
\square We are attaching five paths to each pendant vertex in $K_{1,5}$
\square What kind of paths do we need to add? The definition said "almost equal length" ?!

Objective

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Example: How can I construct $T_{18,5}$?

\square We want five paths having the same number of vertices as much as possible, so consider the division algorithm $17=3 \cdot 5+2$.

Objective

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Example: How can I construct $T_{18,5}$?

\square We want five paths having the same number of vertices as much as possible, so consider the division algorithm $17=3 \cdot 5+2$.
\square This quotient 3 represents the minimum number of vertices that each path has.

Objective

Introduction
Motivation
\triangle Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Example: How can I construct $T_{18,5}$?

\square We want five paths having the same number of vertices as much as possible, so consider the division algorithm $17=3 \cdot 5+2$.
\square This quotient 3 represents the minimum number of vertices that each path has.
\square But we still have two more vertices remaining...

Objective

Introduction
Motivation
\triangle Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Example: How can I construct $T_{18,5}$?

\square We want five paths having the same number of vertices as much as possible, so consider the division algorithm $17=3 \cdot 5+2$.
\square This quotient 3 represents the minimum number of vertices that each path has.
\square But we still have two more vertices remaining...
\square Thus, two paths have an extra vertex.

Objective

Introduction
Motivation
\triangleright Preliminaries
Objective
Summary
Some Lemmas
Main Results
The End

Example: How can I construct $T_{18,5}$?

\square Not every path has the same number of vertices, but each has an "almost equal" number of vertices!

Objective

Introduction
Motivation
Preliminaries
\triangleright Objective
Summary
Some Lemmas
Main Results
The End

Objective: For any $T \in \mathscr{T}_{n, k}$, its Laplacian spectral radius is bounded by the one for $T_{n, k}$. That is,

$$
\mu(T) \leq \mu\left(T_{n, k}\right)
$$

Summary

Introduction
Motivation
Preliminaries
Objective
\triangleright Summary
Some Lemmas
Main Results
The End

Recall that $\mu(T) \leq \mu\left(T_{n, k}\right)$ for all $T \in \mathscr{T}_{n, k}$. The following are notations used in this presentation.
$\square \quad A(G)$: adjacency matrix of G
$\square \rho(G)$: spectral radius of G
$\square \quad L(G)$: Laplacian matrix of G
$\square \mu(G)$: Laplacian spectral radius of G
$\square \quad Q(G)$: signless Laplacian matrix of G
$\square \quad \nu(G)$: signless Laplacian spectral radius of G
$\square \quad N_{G}(v)$: set of vertices adjacent to a vertex v in G
$\square \quad N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right)$: set of neighbors of v, but do not include neighbors of u nor u itself
$\square \mathscr{T}_{n, k}$: set of tree graphs with n vertices and k pendant vertices
$\square \quad T_{n, k}$: a tree graph by the construction just explained

Introduction
\triangle Some Lemmas
Lemma 1
Lemma 2 and 3
Lemma 4
Main Results
The End

Some Lemmas

A Sharp Upper Bounds for Largest Eigenvalue of the Laplacian Matrices of Tree - 16 / 31

Lemma 1

Introduction
Some Lemmas
\triangle Lemma 1
Lemma 2 and 3
Lemma 4
Main Results
The End

Lemma 1

Introduction
Some Lemmas
\triangle Lemma 1
Lemma 2 and 3
Lemma 4
Main Results
The End

Lemma 1. If G is a bipartite graph, then $D(G)+A(G)$ and $D(G)-A(G)$ have the same spectrum.

Lemma 1

Introduction
Some Lemmas
\triangleright Lemma 1
Lemma 2 and 3
Lemma 4
Main Results
The End

Lemma 1. If G is a bipartite graph, then $D(G)+A(G)$ and $D(G)-A(G)$ have the same spectrum.

Example: Take..

Lemma 1

Introduction
Some Lemmas
\triangleright Lemma 1
Lemma 2 and 3
Lemma 4
Main Results
The End

Lemma 1. If G is a bipartite graph, then $D(G)+A(G)$ and $D(G)-A(G)$ have the same spectrum.
Example: Take..

Introduction
Some Lemmas
\triangle Lemma 1
Lemma 2 and 3
Lemma 4
Main Results
The End

Lemma 1. If G is a bipartite graph, then $D(G)+A(G)$ and $D(G)-A(G)$ have the same spectrum.
Example: Take..

Their signless/Laplacian matrices and spectra are..

Introduction
Some Lemmas
\triangleright Lemma 1
Lemma 2 and 3
Lemma 4
Main Results
The End

Lemma 1. If G is a bipartite graph, then $D(G)+A(G)$ and $D(G)-A(G)$ have the same spectrum.
Example: Take..

Their signless/Laplacian matrices and spectra are..
$\left.\begin{array}{c}L(B) \\ v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ v_{5} \\ v_{6}\end{array} \quad\left[\begin{array}{cccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} \\ 3 & 0 & 0 & -1 & -1 & -1 \\ 0 & 2 & 0 & -1 & -1 & 0 \\ 0 & 0 & 2 & -1 & 0 & -1 \\ -1 & -1 & -1 & 3 & 0 & 0 \\ -1 & -1 & 0 & 0 & 2 & 0 \\ -1 & 0 & -1 & 0 & 0 & 2\end{array}\right] \begin{array}{c}v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ v_{5} \\ v_{6}\end{array} \begin{array}{ccccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} \\ 3 & 0 & 0 & 1 & 1 & 1 \\ 0 & 2 & 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 3 & 0 & 0 \\ 1 & 1 & 0 & 0 & 2 & 0 \\ 1 & 0 & 1 & 0 & 0 & 2\end{array}\right]$

Introduction
Some Lemmas
\triangleright Lemma 1
Lemma 2 and 3
Lemma 4
Main Results
The End

Lemma 1. If G is a bipartite graph, then $D(G)+A(G)$ and $D(G)-A(G)$ have the same spectrum.
Example: Take..

Their signless/Laplacian matrices and spectra are..
$\left.\begin{array}{c}L(B) \\ v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ v_{5} \\ v_{6}\end{array} \quad\left[\begin{array}{cccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} \\ 3 & 0 & 0 & -1 & -1 & -1 \\ 0 & 2 & 0 & -1 & -1 & 0 \\ 0 & 0 & 2 & -1 & 0 & -1 \\ -1 & -1 & -1 & 3 & 0 & 0 \\ -1 & -1 & 0 & 0 & 2 & 0 \\ -1 & 0 & -1 & 0 & 0 & 2\end{array}\right] \begin{array}{c}v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ v_{5} \\ v_{6}\end{array} \begin{array}{ccccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} \\ 3 & 0 & 0 & 1 & 1 & 1 \\ 0 & 2 & 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 3 & 0 & 0 \\ 1 & 1 & 0 & 0 & 2 & 0 \\ 1 & 0 & 1 & 0 & 0 & 2\end{array}\right]$

The spectrum of $L(B)$ is $\{-0.0000,1.0000,2.0000,3.0000,3.0000,5.0000\}$, whereas the spectrum of $Q(B)$ is $\{-0.0000,1.0000,2.0000,3.0000,3.0000,5.0000\}$, as desired.

Lemma 2 and 3

Introduction
Some Lemmas
Lemma 1
\triangleright Lemma 2 and 3 Lemma 4

Main Results

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and $l, G_{k, l}$ denote the graph obtained from G by adding pendant paths of length k and l at u. If $k \geq l \geq 1$, then

$$
\rho\left(G_{k, l}\right)>\rho\left(G_{k+1, l-1}\right) .
$$

Lemma 3. Let u and v be two adjacent vertices of the connected graph G and for nonnegative integers k and $l, G_{k, l}$ denote the graph obtained from G by adding pendant paths of length k and l at u and v, respectively. If $k \geq l \geq 1$, then

$$
\rho\left(G_{k, l}\right)>\rho\left(G_{k+1, l-1}\right) .
$$

Lemma 2 and 3

Introduction
Some Lemmas
Lemma 1
\triangleright Lemma 2 and 3
Lemma 4
Main Results
The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and $l, G_{k, l}$ denote the graph obtained from G by adding pendant paths of length k and l at u. If $k \geq l \geq 1$, then $\rho\left(G_{k, l}\right)>\rho\left(G_{k+1, l-1}\right)$.

Lemma 2 and 3

Introduction
Some Lemmas
Lemma 1
\triangleright Lemma 2 and 3
Lemma 4
Main Results
The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and $l, G_{k, l}$ denote the graph obtained from G by adding pendant paths of length k and l at u. If $k \geq l \geq 1$, then $\rho\left(G_{k, l}\right)>\rho\left(G_{k+1, l-1}\right)$.

Example:

Lemma 2 and 3

Introduction
Some Lemmas
Lemma 1
\triangleright Lemma 2 and 3
Lemma 4
Main Results
The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and $l, G_{k, l}$ denote the graph obtained from G by adding pendant paths of length k and l at u. If $k \geq l \geq 1$, then $\rho\left(G_{k, l}\right)>\rho\left(G_{k+1, l-1}\right)$.

Example:
Let $k=2$ and $l=2$, and take following figures with u labeled.

Lemma 2 and 3

Introduction
Some Lemmas
Lemma 1
\triangleright Lemma 2 and 3
Lemma 4
Main Results
The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and $l, G_{k, l}$ denote the graph obtained from G by adding pendant paths of length k and l at u. If $k \geq l \geq 1$, then $\rho\left(G_{k, l}\right)>\rho\left(G_{k+1, l-1}\right)$.

Example:
Let $k=2$ and $l=2$, and take following figures with u labeled.

H

Lemma 2 and 3

Introduction
Some Lemmas
Lemma 1
\triangleright Lemma 2 and 3
Lemma 4
Main Results
The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and $l, G_{k, l}$ denote the graph obtained from G by adding pendant paths of length k and l at u. If $k \geq l \geq 1$, then $\rho\left(G_{k, l}\right)>\rho\left(G_{k+1, l-1}\right)$.

Example:

Let $k=2$ and $l=2$, and take following figures with u labeled.

Lemma 2 and 3

Introduction
Some Lemmas
Lemma 1
\triangleright Lemma 2 and 3
Lemma 4
Main Results
The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and $l, G_{k, l}$ denote the graph obtained from G by adding pendant paths of length k and l at u. If $k \geq l \geq 1$, then $\rho\left(G_{k, l}\right)>\rho\left(G_{k+1, l-1}\right)$.

Example:
Let $k=2$ and $l=2$, and take following figures with u labeled.

Lemma 2 and 3

Introduction
Some Lemmas
Lemma 1
\triangleright Lemma 2 and 3
Lemma 4
Main Results
The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and $l, G_{k, l}$ denote the graph obtained from G by adding pendant paths of length k and l at u. If $k \geq l \geq 1$, then $\rho\left(G_{k, l}\right)>\rho\left(G_{k+1, l-1}\right)$.

Example:
Let $k=2$ and $l=2$, and take following figures with u labeled.

Lemma 2 and 3

Introduction
Some Lemmas
Lemma 1
\triangleright Lemma 2 and 3
Lemma 4
Main Results
The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and $l, G_{k, l}$ denote the graph obtained from G by adding pendant paths of length k and l at u. If $k \geq l \geq 1$, then $\rho\left(G_{k, l}\right)>\rho\left(G_{k+1, l-1}\right)$.

Example:
Let $k=2$ and $l=2$, and take following figures with u labeled.

Lemma 2 and 3

Introduction
Some Lemmas
Lemma 1
\triangleright Lemma 2 and 3
Lemma 4
Main Results
The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and $l, G_{k, l}$ denote the graph obtained from G by adding pendant paths of length k and l at u. If $k \geq l \geq 1$, then $\rho\left(G_{k, l}\right)>\rho\left(G_{k+1, l-1}\right)$.

Example:
Let $k=2$ and $l=2$, and take following figures with u labeled.

Spectral radii of these graphs are...

Lemma 2 and 3

Introduction
Some Lemmas
Lemma 1
\triangleright Lemma 2 and 3
Lemma 4
Main Results
The End

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and $l, G_{k, l}$ denote the graph obtained from G by adding pendant paths of length k and l at u. If $k \geq l \geq 1$, then $\rho\left(G_{k, l}\right)>\rho\left(G_{k+1, l-1}\right)$.

Example:
Let $k=2$ and $l=2$, and take following figures with u labeled.

Spectral radii of these graphs are...

Graph	$H_{2,2}(u)$	$H_{3,1}(u)$	$H_{4,0}(u)$
$\mathrm{S} \cdot \mathrm{R}$	2.6883	2.6751	2.5813

Lemma 2 and 3

Introduction
Some Lemmas
Lemma 1
\triangleright Lemma 2 and 3 Lemma 4

Main Results

Lemma 2. Let u be a vertex of the connected graph G and for positive integers k and $l, G_{k, l}$ denote the graph obtained from G by adding pendant paths of length k and l at u. If $k \geq l \geq 1$, then

$$
\rho\left(G_{k, l}\right)>\rho\left(G_{k+1, l-1}\right) .
$$

Lemma 3. Let u and v be two adjacent vertices of the connected graph G and for nonnegative integers k and $l, G_{k, l}$ denote the graph obtained from G by adding pendant paths of length k and l at u and v, respectively. If $k \geq l \geq 1$, then

$$
\rho\left(G_{k, l}\right)>\rho\left(G_{k+1, l-1}\right) .
$$

Lemma 2 and 3

Introduction
Some Lemmas
Lemma 1
\triangleright Lemma 2 and 3
Lemma 4
Main Results
The End

Lemma 3. Let u and v be two adjacent vertices of the connected graph G and for nonnegative integers k and $l, G_{k, l}$ denote the graph obtained from G by adding pendant paths of length k and l at u and v, respectively. If $k \geq l \geq 1$, then $\rho\left(G_{k, l}\right)>\rho\left(G_{k+1, l-1}\right)$.

Example:

Lemma 2 and 3

Introduction
Some Lemmas
Lemma 1
\triangleright Lemma 2 and 3
Lemma 4
Main Results
The End

Lemma 3. Let u and v be two adjacent vertices of the connected graph G and for nonnegative integers k and $l, G_{k, l}$ denote the graph obtained from G by adding pendant paths of length k and l at u and v, respectively. If $k \geq l \geq 1$, then $\rho\left(G_{k, l}\right)>\rho\left(G_{k+1, l-1}\right)$.

Example:
Similarly, let $k=2$ and $l=2$, but take u and v as shown.

Lemma 2 and 3

Introduction
Some Lemmas
Lemma 1
\triangleright Lemma 2 and 3
Lemma 4
Main Results
The End

Lemma 3. Let u and v be two adjacent vertices of the connected graph G and for nonnegative integers k and $l, G_{k, l}$ denote the graph obtained from G by adding pendant paths of length k and l at u and v, respectively. If $k \geq l \geq 1$, then $\rho\left(G_{k, l}\right)>\rho\left(G_{k+1, l-1}\right)$.

Example:
Similarly, let $k=2$ and $l=2$, but take u and v as shown.

H

$H_{2,2}(u, v)$

Lemma 2 and 3

Introduction
Some Lemmas
Lemma 1
\triangleright Lemma 2 and 3
Lemma 4
Main Results
The End

Lemma 3. Let u and v be two adjacent vertices of the connected graph G and for nonnegative integers k and $l, G_{k, l}$ denote the graph obtained from G by adding pendant paths of length k and l at u and v, respectively. If $k \geq l \geq 1$, then $\rho\left(G_{k, l}\right)>\rho\left(G_{k+1, l-1}\right)$.

Example:
Similarly, let $k=2$ and $l=2$, but take u and v as shown.

Lemma 2 and 3

Introduction
Some Lemmas
Lemma 1
\triangleright Lemma 2 and 3
Lemma 4
Main Results
The End

Lemma 3. Let u and v be two adjacent vertices of the connected graph G and for nonnegative integers k and $l, G_{k, l}$ denote the graph obtained from G by adding pendant paths of length k and l at u and v, respectively. If $k \geq l \geq 1$, then $\rho\left(G_{k, l}\right)>\rho\left(G_{k+1, l-1}\right)$.

Example:
Similarly, let $k=2$ and $l=2$, but take u and v as shown.

Lemma 2 and 3

Introduction
Some Lemmas
Lemma 1
\triangleright Lemma 2 and 3
Lemma 4
Main Results
The End

Lemma 3. Let u and v be two adjacent vertices of the connected graph G and for nonnegative integers k and $l, G_{k, l}$ denote the graph obtained from G by adding pendant paths of length k and l at u and v, respectively. If $k \geq l \geq 1$, then $\rho\left(G_{k, l}\right)>\rho\left(G_{k+1, l-1}\right)$.

Example:
Similarly, let $k=2$ and $l=2$, but take u and v as shown.

Lemma 2 and 3

Introduction
Some Lemmas
Lemma 1
\triangleright Lemma 2 and 3
Lemma 4
Main Results
The End

Lemma 3. Let u and v be two adjacent vertices of the connected graph G and for nonnegative integers k and $l, G_{k, l}$ denote the graph obtained from G by adding pendant paths of length k and l at u and v, respectively. If $k \geq l \geq 1$, then $\rho\left(G_{k, l}\right)>\rho\left(G_{k+1, l-1}\right)$.

Example:
Similarly, let $k=2$ and $l=2$, but take u and v as shown.

Spectral radii of these graphs are...

Lemma 2 and 3

Introduction
Some Lemmas
Lemma 1
\triangleright Lemma 2 and 3
Lemma 4
Main Results
The End

Lemma 3. Let u and v be two adjacent vertices of the connected graph G and for nonnegative integers k and $l, G_{k, l}$ denote the graph obtained from G by adding pendant paths of length k and l at u and v, respectively. If $k \geq l \geq 1$, then $\rho\left(G_{k, l}\right)>\rho\left(G_{k+1, l-1}\right)$.

Example:
Similarly, let $k=2$ and $l=2$, but take u and v as shown.

H

$\mathrm{H}_{4,0}(\mathrm{u}, \mathrm{v})$

Spectral radii of these graphs are...

Graph	$H_{2,2}(u, v)$	$H_{3,1}(u, v)$	$H_{4,0}(u, v)$
$\mathrm{S} \cdot \mathrm{R}$	2.6989	2.6839	2.5813

Lemma 4

Introduction
Some Lemmas
Lemma 1
Lemma 2 and 3
\triangleright Lemma 4
Main Results
The End

Lemma 4. Let G be a simple connected graph and L_{G} be the line graph of G. Then

$$
\mu(G) \leq 2+\rho\left(L_{G}\right),
$$

where equality holds if and only if G is a bipartite graph.

Lemma 4

Introduction
Some Lemmas
Lemma 1
Lemma 2 and 3
\triangleright Lemma 4
Main Results
The End

Lemma 4. Let G be a simple connected graph and L_{G} be the line graph of G. Then, $\mu(G) \leq 2+\rho\left(L_{G}\right)$, where equality holds if and only if G is a bipartite graph.

Lemma 4

Introduction
Some Lemmas
Lemma 1
Lemma 2 and 3
\triangleright Lemma 4
Main Results
The End

Lemma 4. Let G be a simple connected graph and L_{G} be the line graph of G. Then, $\mu(G) \leq 2+\rho\left(L_{G}\right)$, where equality holds if and only if G is a bipartite graph.

Example:

Lemma 4

Introduction
Some Lemmas
Lemma 1
Lemma 2 and 3
\triangleright Lemma 4
Main Results
The End

Lemma 4. Let G be a simple connected graph and L_{G} be the line graph of G. Then, $\mu(G) \leq 2+\rho\left(L_{G}\right)$, where equality holds if and only if G is a bipartite graph.

Example: Take a bipartite graph B as the following.

Lemma 4

Introduction
Some Lemmas
Lemma 1
Lemma 2 and 3
\triangleright Lemma 4
Main Results
The End

Lemma 4. Let G be a simple connected graph and L_{G} be the line graph of G. Then, $\mu(G) \leq 2+\rho\left(L_{G}\right)$, where equality holds if and only if G is a bipartite graph.

Example: Take a bipartite graph B as the following.

Lemma 4

Introduction
Some Lemmas
Lemma 1
Lemma 2 and 3
\triangleright Lemma 4
Main Results
The End

Lemma 4. Let G be a simple connected graph and L_{G} be the line graph of G. Then, $\mu(G) \leq 2+\rho\left(L_{G}\right)$, where equality holds if and only if G is a bipartite graph.

Example: Take a bipartite graph B as the following.

Lemma 4

Introduction
Some Lemmas
Lemma 1
Lemma 2 and 3
\triangleright Lemma 4
Main Results
The End

Lemma 4. Let G be a simple connected graph and L_{G} be the line graph of G. Then, $\mu(G) \leq 2+\rho\left(L_{G}\right)$, where equality holds if and only if G is a bipartite graph.

Example: Take a bipartite graph B as the following.

Lemma 4

Introduction
Some Lemmas
Lemma 1
Lemma 2 and 3
\triangleright Lemma 4
Main Results
The End

Lemma 4. Let G be a simple connected graph and L_{G} be the line graph of G. Then, $\mu(G) \leq 2+\rho\left(L_{G}\right)$, where equality holds if and only if G is a bipartite graph.

Example: Take a bipartite graph B as the following.
$L(B)$
v_{1}
v_{2}
v_{3}
v_{4}
v_{5}
v_{6}\(\quad\left[\begin{array}{cccccc}v_{1} \& v_{2} \& v_{3} \& v_{4} \& v_{5} \& v_{6}

2 \& 0 \& 0 \& -1 \& -1 \& 0

0 \& 2 \& 0 \& -1 \& 0 \& -1

0 \& 0 \& 2 \& -1 \& -1 \& 0

-1 \& -1 \& -1 \& 3 \& 0 \& 0

-1 \& 0 \& -1 \& 0 \& 2 \& 0

0 \& -1 \& 0 \& 0 \& 0 \& 1\end{array}\right]\)| $A\left(L_{B}\right)$ |
| :---: |
| e_{1} |
| e_{2} |
| e_{3} |
| e_{4} |
| e_{5} |
| e_{6} |\(\quad\left[\begin{array}{ccccccc}e_{1} \& e_{2} \& e_{3} \& e_{4} \& e_{5} \& e_{6}

0 \& 1 \& 1 \& 1 \& 0 \& 0

1 \& 0 \& 0 \& 0 \& 1 \& 0

1 \& 0 \& 0 \& 1 \& 0 \& 1

1 \& 0 \& 1 \& 0 \& 1 \& 0

0 \& 1 \& 0 \& 1 \& 0 \& 0

0 \& 0 \& 1 \& 0 \& 0 \& 0\end{array}\right]\)

Lemma 4

Introduction
Some Lemmas
Lemma 1
Lemma 2 and 3
\triangleright Lemma 4
Main Results
The End

Lemma 4. Let G be a simple connected graph and L_{G} be the line graph of G. Then, $\mu(G) \leq 2+\rho\left(L_{G}\right)$, where equality holds if and only if G is a bipartite graph.

Example: Take a bipartite graph B as the following.
$L(B)$
v_{1}
v_{2}
v_{3}
v_{4}
v_{5}
v_{6}\(\quad\left[\begin{array}{cccccc}v_{1} \& v_{2} \& v_{3} \& v_{4} \& v_{5} \& v_{6}

2 \& 0 \& 0 \& -1 \& -1 \& 0

0 \& 2 \& 0 \& -1 \& 0 \& -1

0 \& 0 \& 2 \& -1 \& -1 \& 0

-1 \& -1 \& -1 \& 3 \& 0 \& 0

-1 \& 0 \& -1 \& 0 \& 2 \& 0

0 \& -1 \& 0 \& 0 \& 0 \& 1\end{array}\right]\)| $A\left(L_{B}\right)$ |
| :---: |
| e_{1} |
| e_{2} |
| e_{3} |
| e_{4} |
| e_{5} |
| e_{6} |\(\quad\left[\begin{array}{ccccccc}e_{1} \& e_{2} \& e_{3} \& e_{4} \& e_{5} \& e_{6}

0 \& 1 \& 1 \& 1 \& 0 \& 0

1 \& 0 \& 0 \& 0 \& 1 \& 0

1 \& 0 \& 0 \& 1 \& 0 \& 1

1 \& 0 \& 1 \& 0 \& 1 \& 0

0 \& 1 \& 0 \& 1 \& 0 \& 0

0 \& 0 \& 1 \& 0 \& 0 \& 0\end{array}\right]\)
spectrum of $L(B)$ is $\{-0.000,0.438,2.000,2.000,3.000,4.561\}$

Lemma 4

Introduction
Some Lemmas
Lemma 1
Lemma 2 and 3
\triangleright Lemma 4
Main Results
The End

Lemma 4. Let G be a simple connected graph and L_{G} be the line graph of G. Then, $\mu(G) \leq 2+\rho\left(L_{G}\right)$, where equality holds if and only if G is a bipartite graph.

Example: Take a bipartite graph B as the following.
$L(B)$
v_{1}
v_{2}
v_{3}
v_{4}
v_{5}
v_{6}\(\quad\left[\begin{array}{cccccc}v_{1} \& v_{2} \& v_{3} \& v_{4} \& v_{5} \& v_{6}

2 \& 0 \& 0 \& -1 \& -1 \& 0

0 \& 2 \& 0 \& -1 \& 0 \& -1

0 \& 0 \& 2 \& -1 \& -1 \& 0

-1 \& -1 \& -1 \& 3 \& 0 \& 0

-1 \& 0 \& -1 \& 0 \& 2 \& 0

0 \& -1 \& 0 \& 0 \& 0 \& 1\end{array}\right]\)| $A\left(L_{B}\right)$ |
| :---: |
| e_{1} |
| e_{2} |
| e_{3} |
| e_{4} |
| e_{5} |
| e_{6} |\(\quad\left[\begin{array}{ccccccc}e_{1} \& e_{2} \& e_{3} \& e_{4} \& e_{5} \& e_{6}

0 \& 1 \& 1 \& 1 \& 0 \& 0

1 \& 0 \& 0 \& 0 \& 1 \& 0

1 \& 0 \& 0 \& 1 \& 0 \& 1

1 \& 0 \& 1 \& 0 \& 1 \& 0

0 \& 1 \& 0 \& 1 \& 0 \& 0

0 \& 0 \& 1 \& 0 \& 0 \& 0\end{array}\right]\)
spectrum of $L(B)$ is $\{-0.000,0.438,2.000,2.000,3.000,4.561\}$
spectrum of $A\left(L_{B}\right)$ is $\{-2.000,-1.561,-0.000,0.000,1.000,2.561\}$

Introduction
Some Lemmas
\triangle Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

Main Results

A Sharp Upper Bounds for Largest Eigenvalue of the Laplacian Matrices of Tree - $20 / 31$

Idea

Introduction
Some Lemmas
Main Results
\triangle Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End
$\square \quad$ Our goal is $\mu(T) \leq \mu\left(T_{n, k}\right)$ for any $T \in \mathscr{T}_{n, k}$.

Idea

Introduction
Some Lemmas
Main Results
\triangle Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End
$\square \quad$ Our goal is $\mu(T) \leq \mu\left(T_{n, k}\right)$ for any $T \in \mathscr{T}_{n, k}$.
$\square \quad$ The idea is to reconstruct T to $T_{n, k}$ by deleting and adding edges one by one. Then, watching how the (signless) Laplacian spectral radius changes for each step.

Idea

Introduction
Some Lemmas
Main Results
\triangle Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

For example, take $T \in \mathscr{T}_{8,6}$ as..

Idea

Introduction
Some Lemmas
Main Results
\triangle Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

For example, take $T \in \mathscr{T}_{8,6}$ as..

Idea

Introduction
Some Lemmas
Main Results
\triangle Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

For example, take $T \in \mathscr{T}_{8,6}$ as..

First, construct $T_{8,6}$.

Idea

Introduction
Some Lemmas
Main Results
\triangle Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

For example, take $T \in \mathscr{T}_{8,6}$ as..

First, construct $T_{8,6}$.
\square Having $n=8$ and $k=6$, We start with $K_{1,6}$.

Idea

Introduction
Some Lemmas
Main Results
\triangle Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

For example, take $T \in \mathscr{T}_{8,6}$ as..

First, construct $T_{8,6}$.
\square Having $n=8$ and $k=6$, We start with $K_{1,6}$.

Idea

Introduction
Some Lemmas
Main Results
\triangle Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

For example, take $T \in \mathscr{T}_{8,6}$ as..

\square Since $7=1 \cdot 6+1$, we have...

Idea

Introduction
Some Lemmas
Main Results
\triangle Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

For example, take $T \in \mathscr{T}_{8,6}$ as..

\square Since $7=1 \cdot 6+1$, we have... five paths of 1 vertex and one path of 2 vertices.

Idea

Introduction
Some Lemmas
Main Results
\triangle Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

For example, take $T \in \mathscr{T}_{8,6}$ as..

\square Rearranging this graph, we obtain...

Idea

Introduction
Some Lemmas
Main Results
\triangle Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

For example, take $T \in \mathscr{T}_{8,6}$ as..

Rearranging this graph, we obtain... $T_{8,6}$

Idea

Introduction
Some Lemmas
Main Results
\triangle Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

For example, take $T \in \mathscr{T}_{8,6}$ as..

\square Back to T above,

Idea

Introduction
Some Lemmas
Main Results
\triangle Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

For example, take $T \in \mathscr{T}_{8,6}$ as..

\square Back to T above,
\square If we delete and add edges as follows,

Idea

Introduction
Some Lemmas
Main Results
\triangle Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

For example, take $T \in \mathscr{T}_{8,6}$ as..

\square Back to T above,
\square If we delete and add edges as follows,

Idea

Introduction
Some Lemmas
Main Results
\triangle Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

For example, take $T \in \mathscr{T}_{8,6}$ as..

\square Back to T above,
\square If we delete and add edges as follows,

Idea

Introduction
Some Lemmas
Main Results
\triangle Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

For example, take $T \in \mathscr{T}_{8,6}$ as..

\square Then, we just reconstructed T to $T_{n, k}$.

Idea

Introduction
Some Lemmas
Main Results
\triangle Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

For example, take $T \in \mathscr{T}_{8,6}$ as..

Now, their Laplacian spectral radii are...

Idea

Introduction
Some Lemmas
Main Results
\triangle Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

For example, take $T \in \mathscr{T}_{8,6}$ as..

Now, their Laplacian spectral radii are...
$\square \mu(T)=5.6458, \mu\left(T_{1}\right)=6.1413$, and $\mu\left(T_{8,6}\right)=7.0340$, as desired.

Theorem 1

Introduction
Some Lemmas
Main Results
Idea
\triangleright Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

Theorem. Let u, v be two vertices of G and d_{v} be the degree of vertex v. Suppose $v_{1}, v_{2}, \ldots, v_{s}\left(1 \leq s \leq d_{v}\right)$ are some vertices of $N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right)$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the Perron vector of $D(G)+A(G)$, where x_{i} corresponds to the vertex $v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges $\left(v, v_{i}\right)$ and adding the edges (u, v_{i}) $(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\nu(G)<\nu\left(G^{*}\right)$.

Introduction
Some Lemmas
Main Results
Idea
\triangleright Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

Theorem. Let u, v be two vertices of G and d_{v} be the degree of vertex v. Suppose $v_{1}, v_{2}, \ldots, v_{s}\left(1 \leq s \leq d_{v}\right)$ are some vertices of $N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right)$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the Perron vector of $D(G)+A(G)$, where x_{i} corresponds to the vertex $v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges $\left(v, v_{i}\right)$ and adding the edges $\left(u, v_{i}\right)(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\nu(G)<\nu\left(G^{*}\right)$.

Introduction
Some Lemmas
Main Results
Idea
\triangleright Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

G

Theorem. Let u, v be two vertices of G and d_{v} be the degree of vertex v. Suppose $v_{1}, v_{2}, \ldots, v_{s}\left(1 \leq s \leq d_{v}\right)$ are some vertices of $N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right)$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the Perron vector of $D(G)+A(G)$, where x_{i} corresponds to the vertex $v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges $\left(v, v_{i}\right)$ and adding the edges $\left(u, v_{i}\right)(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\nu(G)<\nu\left(G^{*}\right)$.

Introduction
Some Lemmas
Main Results
Idea
\triangleright Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

Theorem. Let u, v be two vertices of G and d_{v} be the degree of vertex v. Suppose $v_{1}, v_{2}, \ldots, v_{s}\left(1 \leq s \leq d_{v}\right)$ are some vertices of $N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right)$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the Perron vector of $D(G)+A(G)$, where x_{i} corresponds to the vertex $v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges $\left(v, v_{i}\right)$ and adding the edges $\left(u, v_{i}\right)$ $(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\nu(G)<\nu\left(G^{*}\right)$.

Introduction
Some Lemmas
Main Results
Idea
\triangleright Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

Theorem. Let u, v be two vertices of G and d_{v} be the degree of vertex v. Suppose $v_{1}, v_{2}, \ldots, v_{s}\left(1 \leq s \leq d_{v}\right)$ are some vertices of $N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right)$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the Perron vector of $D(G)+A(G)$, where x_{i} corresponds to the vertex $v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges (v, v_{i}) and adding the edges (u, v_{i}) $(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\nu(G)<\nu\left(G^{*}\right)$.

Introduction
Some Lemmas
Main Results
Idea
\triangleright Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

Theorem. Let u, v be two vertices of G and d_{v} be the degree of vertex v. Suppose $v_{1}, v_{2}, \ldots, v_{s}\left(1 \leq s \leq d_{v}\right)$ are some vertices of $N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right)$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the Perron vector of $D(G)+A(G)$, where x_{i} corresponds to the vertex $v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges (v, v_{i}) and adding the edges (u, v_{i}) $(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\nu(G)<\nu\left(G^{*}\right)$.

Introduction
Some Lemmas
Main Results
Idea
\triangleright Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

Theorem. Let u, v be two vertices of G and d_{v} be the degree of vertex v. Suppose $v_{1}, v_{2}, \ldots, v_{s}\left(1 \leq s \leq d_{v}\right)$ are some vertices of $N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right)$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the Perron vector of $D(G)+A(G)$, where x_{i} corresponds to the vertex $v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges $\left(v, v_{i}\right)$ and adding the edges (u, v_{i}) $(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\nu(G)<\nu\left(G^{*}\right)$.

Introduction
Some Lemmas
Main Results
Idea
\triangleright Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

Theorem. Let u, v be two vertices of G and d_{v} be the degree of vertex v. Suppose $v_{1}, v_{2}, \ldots, v_{s}\left(1 \leq s \leq d_{v}\right)$ are some vertices of $N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right)$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the Perron vector of $D(G)+A(G)$, where x_{i} corresponds to the vertex $v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges $\left(v, v_{i}\right)$ and adding the edges $\left(u, v_{i}\right)$ $(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\nu(G)<\nu\left(G^{*}\right)$.

Introduction
Some Lemmas
Main Results
Idea
\triangleright Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

Theorem. Let u, v be two vertices of G and d_{v} be the degree of vertex v. Suppose $v_{1}, v_{2}, \ldots, v_{s}\left(1 \leq s \leq d_{v}\right)$ are some vertices of $N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right)$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the Perron vector of $D(G)+A(G)$, where x_{i} corresponds to the vertex $v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges $\left(v, v_{i}\right)$ and adding the edges $\left(u, v_{i}\right)(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\nu(G)<\nu\left(G^{*}\right)$.

Introduction
Some Lemmas
Main Results
Idea
\triangleright Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

The signless Laplacian matrix of G
$Q(G)$
v_{1}
v_{2}
v_{3}
v_{4}
$v_{5}$$\quad\left[\begin{array}{ccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} \\ 2 & 1 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 3 & 1 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 1 & 0 & 1 & 1 & 3\end{array}\right]$

Theorem. Let u, v be two vertices of G and d_{v} be the degree of vertex v. Suppose $v_{1}, v_{2}, \ldots, v_{s}\left(1 \leq s \leq d_{v}\right)$ are some vertices of $N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right)$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the Perron vector of $D(G)+A(G)$, where x_{i} corresponds to the vertex $v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges $\left(v, v_{i}\right)$ and adding the edges $\left(u, v_{i}\right)(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\nu(G)<\nu\left(G^{*}\right)$.

Introduction
Some Lemmas
Main Results
Idea
\triangleright Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

Theorem. Let u, v be two vertices of G and d_{v} be the degree of vertex v. Suppose $v_{1}, v_{2}, \ldots, v_{s}\left(1 \leq s \leq d_{v}\right)$ are some vertices of $N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right)$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the Perron vector of $D(G)+A(G)$, where x_{i} corresponds to the vertex $v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges $\left(v, v_{i}\right)$ and adding the edges $\left(u, v_{i}\right)(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\nu(G)<\nu\left(G^{*}\right)$.

Introduction
Some Lemmas
Main Results
Idea
\triangleright Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

Theorem. Let u, v be two vertices of G and d_{v} be the degree of vertex v. Suppose $v_{1}, v_{2}, \ldots, v_{s}\left(1 \leq s \leq d_{v}\right)$ are some vertices of $N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right)$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the Perron vector of $D(G)+A(G)$, where x_{i} corresponds to the vertex $v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges $\left(v, v_{i}\right)$ and adding the edges $\left(u, v_{i}\right)(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\nu(G)<\nu\left(G^{*}\right)$.

Introduction
Some Lemmas
Main Results
Idea
\triangleright Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

Theorem. Let u, v be two vertices of G and d_{v} be the degree of vertex v. Suppose $v_{1}, v_{2}, \ldots, v_{s}\left(1 \leq s \leq d_{v}\right)$ are some vertices of $N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right)$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the Perron vector of $D(G)+A(G)$, where x_{i} corresponds to the vertex $v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges $\left(v, v_{i}\right)$ and adding the edges $\left(u, v_{i}\right)(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\nu(G)<\nu\left(G^{*}\right)$.

Introduction
Some Lemmas
Main Results
Idea
\triangleright Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

Theorem. Let u, v be two vertices of G and d_{v} be the degree of vertex v. Suppose $v_{1}, v_{2}, \ldots, v_{s}\left(1 \leq s \leq d_{v}\right)$ are some vertices of $N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right)$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the Perron vector of $D(G)+A(G)$, where x_{i} corresponds to the vertex $v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges $\left(v, v_{i}\right)$ and adding the edges $\left(u, v_{i}\right)(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\nu(G)<\nu\left(G^{*}\right)$.

Introduction
Some Lemmas
Main Results
Idea
\triangleright Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

Theorem. Let u, v be two vertices of G and d_{v} be the degree of vertex v. Suppose $v_{1}, v_{2}, \ldots, v_{s}\left(1 \leq s \leq d_{v}\right)$ are some vertices of $N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right)$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the Perron vector of $D(G)+A(G)$, where x_{i} corresponds to the vertex $v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges $\left(v, v_{i}\right)$ and adding the edges $\left(u, v_{i}\right)$ $(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\nu(G)<\nu\left(G^{*}\right)$.

Introduction
Some Lemmas
Main Results
Idea
\triangleright Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

$N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right)$

Theorem. Let u, v be two vertices of G and d_{v} be the degree of vertex v. Suppose $v_{1}, v_{2}, \ldots, v_{s}\left(1 \leq s \leq d_{v}\right)$ are some vertices of $N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right)$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the Perron vector of $D(G)+A(G)$, where x_{i} corresponds to the vertex $v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges $\left(v, v_{i}\right)$ and adding the edges $\left(u, v_{i}\right)$ $(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\nu(G)<\nu\left(G^{*}\right)$.

Introduction
Some Lemmas
Main Results
Idea
\triangleright Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

$N_{G}(v) \backslash\left(N_{G}(u) U\{u\}\right)$

Theorem. Let u, v be two vertices of G and d_{v} be the degree of vertex v. Suppose $v_{1}, v_{2}, \ldots, v_{s}\left(1 \leq s \leq d_{v}\right)$ are some vertices of $N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right)$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the Perron vector of $D(G)+A(G)$, where x_{i} corresponds to the vertex $v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges $\left(v, v_{i}\right)$ and adding the edges $\left(u, v_{i}\right)$ $(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\nu(G)<\nu\left(G^{*}\right)$.

Introduction
Some Lemmas
Main Results
Idea
\triangleright Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

\square Its Perron vector is...
$\mathbf{x}=\left[\begin{array}{ccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} \\ \mathfrak{\imath} & \mathfrak{\imath} & \mathfrak{\imath} & \mathfrak{\imath} & \mathfrak{\imath} \\ x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\ 0.2796 & 0.2796 & 0.5914 & 0.3797 & 0.5914\end{array}\right]^{T}$

Theorem. Let u, v be two vertices of G and d_{v} be the degree of vertex v. Suppose $v_{1}, v_{2}, \ldots, v_{s}\left(1 \leq s \leq d_{v}\right)$ are some vertices of $N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right)$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the Perron vector of $D(G)+A(G)$, where x_{i} corresponds to the vertex $v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges $\left(v, v_{i}\right)$ and adding the edges $\left(u, v_{i}\right)$ $(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\nu(G)<\nu\left(G^{*}\right)$.

Introduction
Some Lemmas
Main Results
Idea
\triangleright Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

\square Its Perron vector is...

v_{3}
\downarrow
x_{3}
0.5914
$\left.\begin{array}{cc}v_{4} & v_{5} \\ \imath & \uparrow \\ x_{4} & x_{5} \\ 0.3797 & 0.5914\end{array}\right]^{T}$

Theorem. Let u, v be two vertices of G and d_{v} be the degree of vertex v. Suppose $v_{1}, v_{2}, \ldots, v_{s}\left(1 \leq s \leq d_{v}\right)$ are some vertices of $N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right)$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the Perron vector of $D(G)+A(G)$, where x_{i} corresponds to the vertex $v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges $\left(v, v_{i}\right)$ and adding the edges $\left(u, v_{i}\right)(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\nu(G)<\nu\left(G^{*}\right)$.

Introduction
Some Lemmas
Main Results
Idea
\triangleright Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

Theorem. Let u, v be two vertices of G and d_{v} be the degree of vertex v. Suppose $v_{1}, v_{2}, \ldots, v_{s}\left(1 \leq s \leq d_{v}\right)$ are some vertices of $N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right)$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the Perron vector of $D(G)+A(G)$, where x_{i} corresponds to the vertex $v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges $\left(v, v_{i}\right)$ and adding the edges $\left(u, v_{i}\right)(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\nu(G)<\nu\left(G^{*}\right)$.

Introduction
Some Lemmas
Main Results
Idea
\triangleright Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

Theorem. Let u, v be two vertices of G and d_{v} be the degree of vertex v. Suppose $v_{1}, v_{2}, \ldots, v_{s}\left(1 \leq s \leq d_{v}\right)$ are some vertices of $N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right)$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the Perron vector of $D(G)+A(G)$, where x_{i} corresponds to the vertex $v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges $\left(v, v_{i}\right)$ and adding the edges $\left(u, v_{i}\right)(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\nu(G)<\nu\left(G^{*}\right)$.

Introduction
Some Lemmas
Main Results
Idea
\triangleright Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

\square We see that $x_{u}=0.5914 \geq 0.5914=x_{v}$, satisfying the assumption.

Theorem. Let u, v be two vertices of G and d_{v} be the degree of vertex v. Suppose $v_{1}, v_{2}, \ldots, v_{s}\left(1 \leq s \leq d_{v}\right)$ are some vertices of $N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right)$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the Perron vector of $D(G)+A(G)$, where x_{i} corresponds to the vertex $v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges $\left(v, v_{i}\right)$ and adding the edges $\left(u, v_{i}\right)(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\nu(G)<\nu\left(G^{*}\right)$.

Introduction
Some Lemmas
Main Results
Idea
\triangleright Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

$\square Q\left(G^{*}\right)$ is...

Theorem. Let u, v be two vertices of G and d_{v} be the degree of vertex v. Suppose $v_{1}, v_{2}, \ldots, v_{s}\left(1 \leq s \leq d_{v}\right)$ are some vertices of $N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right)$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the Perron vector of $D(G)+A(G)$, where x_{i} corresponds to the vertex $v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges $\left(v, v_{i}\right)$ and adding the edges $\left(u, v_{i}\right)(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\nu(G)<\nu\left(G^{*}\right)$.

Introduction
Some Lemmas
Main Results
Idea
\triangleright Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

\square Its spectrum is...
$\{1.000,1.000,1.438,3.000, \underline{5.561}\}$

Theorem. Let u, v be two vertices of G and d_{v} be the degree of vertex v. Suppose $v_{1}, v_{2}, \ldots, v_{s}\left(1 \leq s \leq d_{v}\right)$ are some vertices of $N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right)$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the Perron vector of $D(G)+A(G)$, where x_{i} corresponds to the vertex $v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges $\left(v, v_{i}\right)$ and adding the edges $\left(u, v_{i}\right)(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\nu(G)<\nu\left(G^{*}\right)$.

Introduction
Some Lemmas
Main Results
Idea
\triangleright Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

Therefore, we have

$$
\nu(G)=5.114<5.561=\nu\left(G^{*}\right)
$$

Theorem. Let u, v be two vertices of G and d_{v} be the degree of vertex v. Suppose $v_{1}, v_{2}, \ldots, v_{s}\left(1 \leq s \leq d_{v}\right)$ are some vertices of $N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right)$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the Perron vector of $D(G)+A(G)$, where x_{i} corresponds to the vertex $v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges $\left(v, v_{i}\right)$ and adding the edges $\left(u, v_{i}\right)(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\nu(G)<\nu\left(G^{*}\right)$.

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
\triangleright Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End
\square Take the following figure with labels.

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
\triangleright Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

\square Take the following figure with labels.

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
\triangleright Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

\square Take the following figure with labels.
\square Its signless Laplacian matrix is...

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
\triangleright Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

\square Take the following figure with labels.
\square Its signless Laplacian matrix is...

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
\triangleright Example
Theorem 2
Case 1
Case 2
Case 3
Example

The End
Then, its spectrum is...

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
\triangleright Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End
T

$\left.\begin{array}{cccccccc}w_{1} & w_{2} & w_{3} & w_{4} & w_{5} & w_{6} & w_{7} & w_{8} \\ {\left[\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 4 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array} 0\right.} & 4 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0\end{array}\right]$
\square Then, its spectrum is...

$$
\{0.000,0.354,1.000,1.000,1.000,1.000,4.000, \underline{5.646}\}
$$

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
\triangleright Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

Then, its spectrum is...

$$
\{0.000,0.354,1.000,1.000,1.000,1.000,4.000, \underline{5.646}\}
$$

so, $\nu(T)=5.646$.

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
\triangleright Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

Then, its spectrum is...

$$
\{0.000,0.354,1.000,1.000,1.000,1.000,4.000, \underline{5.646}\}
$$

so, $\nu(T)=5.646$. Its associated Perron vector is...

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
\triangleright Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

Then, its spectrum is...

$$
\{0.000,0.354,1.000,1.000,1.000,1.000,4.000, \underline{5.646}\}
$$

so, $\nu(T)=5.646$. Its associated Perron vector is...

$$
\mathbf{x}=\left[\begin{array}{cccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} \\
0.142 & 0.142 & 0.662 & 0.142 & 0.142 & 0.662 & 0.142 & 0.142
\end{array}\right]^{T}
$$

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
\triangleright Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

$$
\begin{gathered}
Q(T) \\
w_{1} \\
w_{2} \\
w_{3} \\
w_{4} \\
w_{5} \\
w_{6} \\
w_{7} \\
w_{8}
\end{gathered}
$$

$\left[\begin{array}{cccc}w_{1} & w_{2} & w_{3} & w_{4} \\ {\left[\begin{array}{cc}1 & 0\end{array}\right.} & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 4 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right.$
$\left.\begin{array}{cccc}w_{5} & w_{6} & w_{7} & w_{8} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 4 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]$

Then, its spectrum is...

$$
\{0.000,0.354,1.000,1.000,1.000,1.000,4.000, \underline{5.646}\}
$$

so, $\nu(T)=5.646$. Its associated Perron vector is...

$$
\mathbf{x}=\left[\begin{array}{cccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} \\
0.142 & 0.142 & 0.662 & 0.142 & 0.142 & 0.662 & 0.142 & 0.142
\end{array}\right]^{T}
$$

\square For this example, let us choose $w_{3}=u$ and $w_{6}=v$, so that $x_{u} \geq x_{v}$ is preserved.

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
\triangleright Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

$Q(T)$
w_{1}
w_{2}
w_{3}
w_{4}
w_{5}
w_{6}
w_{7}
w_{8}
w_{1}
$\left[\begin{array}{cccc} & w_{2} & w_{3} & w_{4} \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 4 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
$\left.\begin{array}{cccc}w_{5} & w_{6} & w_{7} & w_{8} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 4 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]$

Then, its spectrum is...

$$
\{0.000,0.354,1.000,1.000,1.000,1.000,4.000, \underline{5.646}\}
$$

so, $\nu(T)=5.646$. Its associated Perron vector is...

$$
\mathbf{x}=\left[\begin{array}{cccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} \\
0.142 & 0.142 & 0.662 & 0.142 & 0.142 & 0.662 & 0.142 & 0.142
\end{array}\right]^{T}
$$

\square For this example, let us choose $w_{3}=u$ and $w_{6}=v$, so that $x_{u} \geq x_{v}$ is preserved.

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
\triangleright Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

Then, its spectrum is...

$$
\{0.000,0.354,1.000,1.000,1.000,1.000,4.000, \underline{5.646}\}
$$

so, $\nu(T)=5.646$. Its associated Perron vector is...

$$
\mathbf{x}=\left[\begin{array}{cccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} \\
0.142 & 0.142 & 0.662 & 0.142 & 0.142 & 0.662 & 0.142 & 0.142
\end{array}\right]^{T}
$$

\square For this example, let us choose $w_{3}=u$ and $w_{6}=v$, so that $x_{u} \geq x_{v}$ is preserved.

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
\square Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

$Q(T)$
w_{1}
w_{2}
w_{3}
w_{4}
w_{5}
w_{6}
w_{7}
w_{8}

w_{1}	w_{2}	w_{3}	w_{4}
$\left[\begin{array}{ccc}1 & 0 & 1\end{array}\right.$	0		
0	1	1	0
1	1	4	1
0	0	1	1
0	0	0	0
0	0	1	0
0	0	0	0
0	0	0	0

$\left.\begin{array}{cccc}w_{5} & w_{6} & w_{7} & w_{8} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 4 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]$

Then, its spectrum is...

$$
\{0.000,0.354,1.000,1.000,1.000,1.000,4.000, \underline{5.646}\}
$$

so, $\nu(T)=5.646$. Its associated Perron vector is...

$$
\mathbf{x}=\left[\begin{array}{cccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} \\
0.142 & 0.142 & 0.662 & 0.142 & 0.142 & 0.662 & 0.142 & 0.142
\end{array}\right]^{T}
$$

\square For this example, let us choose $w_{3}=u$ and $w_{6}=v$, so that $x_{u} \geq x_{v}$ is preserved.

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
\square Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

Then, its spectrum is...

$$
\{0.000,0.354,1.000,1.000,1.000,1.000,4.000, \underline{5.646}\}
$$

so, $\nu(T)=5.646$. Its associated Perron vector is...

$$
\mathbf{x}=\left[\begin{array}{cccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} \\
0.142 & 0.142 & 0.662 & 0.142 & 0.142 & 0.662 & 0.142 & 0.142
\end{array}\right]^{T}
$$

\square For this example, let us choose $w_{3}=u$ and $w_{6}=v$, so that $x_{u} \geq x_{v}$ is preserved.

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
\triangleright Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

Then, its spectrum is...

$$
\{0.000,0.354,1.000,1.000,1.000,1.000,4.000, \underline{5.646}\}
$$

so, $\nu(T)=5.646$. Its associated Perron vector is...

$$
\mathbf{x}=\left[\begin{array}{cccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} \\
0.142 & 0.142 & 0.662 & 0.142 & 0.142 & 0.662 & 0.142 & 0.142
\end{array}\right]^{T}
$$

\square For this example, let us choose $w_{3}=u$ and $w_{6}=v$, so that $x_{u} \geq x_{v}$ is preserved.

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
\triangleright Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

Then, its spectrum is...

$$
\{0.000,0.354,1.000,1.000,1.000,1.000,4.000, \underline{5.646}\}
$$

so, $\nu(T)=5.646$. Its associated Perron vector is...

$$
\mathbf{x}=\left[\begin{array}{cccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} \\
0.142 & 0.142 & 0.662 & 0.142 & 0.142 & 0.662 & 0.142 & 0.142
\end{array}\right]^{T}
$$

\square For this example, let us choose $w_{3}=u$ and $w_{6}=v$, so that $x_{u} \geq x_{v}$ is preserved.

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
\triangleright Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

$\left.\begin{array}{cccc}w_{5} & w_{6} & w_{7} & w_{8} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 4 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]$

Then, its spectrum is...

$$
\{0.000,0.354,1.000,1.000,1.000,1.000,4.000, \underline{5.646}\}
$$

so, $\nu(T)=5.646$. Its associated Perron vector is...

$$
\mathbf{x}=\left[\begin{array}{cccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} \\
0.142 & 0.142 & 0.662 & 0.142 & 0.142 & 0.662 & 0.142 & 0.142
\end{array}\right]^{T}
$$

\square For this example, let us choose $w_{3}=u$ and $w_{6}=v$, so that $x_{u} \geq x_{v}$ is preserved.

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
\triangleright Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

$Q(T)$
w_{1}
w_{2}
w_{3}
w_{4}
w_{5}
w_{6}
w_{7}
w_{8}
$\left[\begin{array}{cccc}w_{1} & w_{2} & w_{3} & w_{4} \\ {\left[\begin{array}{cc}1 & 0\end{array}\right.} & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 4 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right.$
$\left.\begin{array}{cccc}w_{5} & w_{6} & w_{7} & w_{8} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 4 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]$

Then, its spectrum is...

$$
\{0.000,0.354,1.000,1.000,1.000,1.000,4.000, \underline{5.646}\}
$$

so, $\nu(T)=5.646$. Its associated Perron vector is...

$$
\mathbf{x}=\left[\begin{array}{cccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} \\
0.142 & 0.142 & 0.662 & 0.142 & 0.142 & 0.662 & 0.142 & 0.142
\end{array}\right]^{T}
$$

\square For this example, let us choose $w_{3}=u$ and $w_{6}=v$, so that $x_{u} \geq x_{v}$ is preserved.

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
\triangleright Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

Then, its spectrum is...

$$
\{0.000,0.354,1.000,1.000,1.000,1.000,4.000, \underline{5.646}\}
$$

so, $\nu(T)=5.646$. Its associated Perron vector is...

$$
\mathbf{x}=\left[\begin{array}{cccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} \\
0.142 & 0.142 & 0.662 & 0.142 & 0.142 & 0.662 & 0.142 & 0.142
\end{array}\right]^{T}
$$

\square For this example, let us choose $w_{3}=u$ and $w_{6}=v$, so that $x_{u} \geq x_{v}$ is preserved.

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
\triangleright Example
Theorem 2
Case 1
Case 2
Case 3
Example

The End
Now, the signless Laplacian Matrix for T_{1} is...

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
\triangleright Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

$Q\left(T_{1}\right)$
w_{1}
w_{2}
w_{3}
w_{4}
w_{5}
w_{6}
w_{7}
$w_{8}$$\quad\left[\begin{array}{ccc}w_{1} & w_{2} & w_{3} \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 7 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right.$
$\left.\begin{array}{ccccc}w_{4} & w_{5} & w_{6} & w_{7} & w_{8} \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$

Now, the signless Laplacian Matrix for T_{1} is...

$$
\{0.000,1.000,1.000,1.000,1.000,1.000,1.000, \underline{8.000}\}
$$

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
\triangleright Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

$Q\left(T_{1}\right)$
w_{1}
w_{2}
w_{3}
w_{4}
w_{5}
w_{6}
w_{7}
$w_{8}$$\quad\left[\begin{array}{ccc}w_{1} & w_{2} & w_{3} \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 7 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right.$
$\left.\begin{array}{ccccc}w_{4} & w_{5} & w_{6} & w_{7} & w_{8} \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$

Now, the signless Laplacian Matrix for T_{1} is...

$$
\{0.000,1.000,1.000,1.000,1.000,1.000,1.000, \underline{8.000}\}
$$

so, $\nu\left(T_{1}\right)=8.000$, which we see that

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
\triangleright Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

Now, the signless Laplacian Matrix for T_{1} is...

$$
\{0.000,1.000,1.000,1.000,1.000,1.000,1.000, \underline{8.000}\}
$$

so, $\nu\left(T_{1}\right)=8.000$, which we see that

$$
\nu(T)=5.646<8.000=\nu\left(T_{1}\right)
$$

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
\triangleright Example
Theorem 2
Case 1
Case 2
Case 3
Example
The End

Now, the signless Laplacian Matrix for T_{1} is...

$$
\{0.000,1.000,1.000,1.000,1.000,1.000,1.000, \underline{8.000}\}
$$

so, $\nu\left(T_{1}\right)=8.000$, which we see that

$$
\nu(T)=5.646<8.000=\nu\left(T_{1}\right)
$$

implied by the theorem!

Theorem 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
\triangleright Theorem 2
Case 1
Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then

$$
\mu(T) \leq \mu\left(T_{n, k}\right),
$$

where equality holds if and only if T is isomorphic to $T_{n, k}$.

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
\triangleright Theorem 2
Case 1
Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then

$$
\mu(T) \leq \mu\left(T_{n, k}\right),
$$

where equality holds if and only if T is isomorphic to $T_{n, k}$.
Combine all lemmas and the theorem, now how does this statement hold?

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
\triangle Theorem 2
Case 1
Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then

$$
\mu(T) \leq \mu\left(T_{n, k}\right),
$$

where equality holds if and only if T is isomorphic to $T_{n, k}$.
Combine all lemmas and the theorem, now how does this statement hold?

Idea:

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
\triangleright Theorem 2
Case 1
Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then

$$
\mu(T) \leq \mu\left(T_{n, k}\right),
$$

where equality holds if and only if T is isomorphic to $T_{n, k}$.
Combine all lemmas and the theorem, now how does this statement hold?

Idea: Let t be the number of vertices whose degree is greater than 2.

Theorem 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
\triangle Theorem 2
Case 1
Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then

$$
\mu(T) \leq \mu\left(T_{n, k}\right),
$$

where equality holds if and only if T is isomorphic to $T_{n, k}$.
Combine all lemmas and the theorem, now how does this statement hold?

Idea: Let t be the number of vertices whose degree is greater than 2 . We prove the statement for $t=0, t=1$, and $t>1$.

Case 1

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
\triangle Case 1
Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 1

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
\triangle Case 1
Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.
$\square t$ is the number of vertices whose degree is greater than 2 .

Case 1

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
\triangle Case 1
Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.t is the number of vertices whose degree is greater than 2.

Case 1

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
\triangleright Case 1
Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.t is the number of vertices whose degree is greater than 2.

Case 1: $t=0$.

Case 1

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
\triangleright Case 1
Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.t is the number of vertices whose degree is greater than 2.

Case 1: $t=0$. Then T must be a path with n vertices.

Case 1

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
\triangle Case 1
Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.t is the number of vertices whose degree is greater than 2 .

Case 1: $t=0$. Then T must be a path with n vertices. Notice that $T_{n, 2}$ is a tree with n vertices and 2 pendant vertices.

Case 1

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
\triangleright Case 1
Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.t is the number of vertices whose degree is greater than 2 .

Case 1: $t=0$. Then T must be a path with n vertices. Notice that $T_{n, 2}$ is a tree with n vertices and 2 pendant vertices.

Case 1

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
\triangle Case 1
Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.t is the number of vertices whose degree is greater than 2.

Case 1: $t=0$. Then T must be a path with n vertices. Notice that $T_{n, 2}$ is a tree with n vertices and 2 pendant vertices.

Case 1

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
\triangle Case 1
Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.t is the number of vertices whose degree is greater than 2.
Case 1: $t=0$. Then T must be a path with n vertices. Notice that $T_{n, 2}$ is a tree with n vertices and 2 pendant vertices. Thus, $T_{n}, 2$ is a path with n vertices as well.

Case 1

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
\triangle Case 1
Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.t is the number of vertices whose degree is greater than 2 .
Case 1: $t=0$. Then T must be a path with n vertices. Notice that $T_{n, 2}$ is a tree with n vertices and 2 pendant vertices. Thus, $T_{n}, 2$ is a path with n vertices as well.

$\mathrm{T}_{\mathrm{n}, 2} \cong \mathrm{P}_{\mathrm{n}}$

Case 1

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
\triangle Case 1
Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.t is the number of vertices whose degree is greater than 2 .
Case 1: $t=0$. Then T must be a path with n vertices. Notice that $T_{n, 2}$ is a tree with n vertices and 2 pendant vertices. Thus, $T_{n}, 2$ is a path with n vertices as well. $\Rightarrow T$ is isomorphic to $T_{n, 2}$

$\mathrm{T}_{\mathrm{n}, 2} \cong \mathrm{P}_{\mathrm{n}}$

Case 1

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
\triangle Case 1
Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.t is the number of vertices whose degree is greater than 2 .
Case 1: $t=0$. Then T must be a path with n vertices. Notice that $T_{n, 2}$ is a tree with n vertices and 2 pendant vertices. Thus, $T_{n, 2}$ is a path with n vertices as well. $\Rightarrow T$ is isomorphic to $T_{n, 2} \Rightarrow \mu(T)=\mu\left(T_{n, 2}\right)$.

$T_{n, 2} \cong P_{n}$

Case 1

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
\triangle Case 1
Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.t is the number of vertices whose degree is greater than 2.

Case 1

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
\triangle Case 1
Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.t is the number of vertices whose degree is greater than 2 .

CASE1 $\sqrt{ }$

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\triangle Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\triangle Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 2: $t=1$.

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\triangle Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 2: $t=1$.

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\triangle Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 2: $t=1$.

Let us call such vertex as a branch vertex, and let k be its degree.

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\triangle Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 2: $t=1$.

Let us call such vertex as a branch vertex, and let k be its degree.

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\triangle Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 2: $t=1$.

Let us call such vertex as a branch vertex, and let k be its degree. Then, consider the line graph of T.

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\square Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 2: $t=1$.

Let us call such vertex as a branch vertex, and let k be its degree. Then, consider the line graph of T.

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\square Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 2: $t=1$.
Let us call such vertex as a branch vertex, and let k be its degree. Then, consider the line graph of T.Edges incident to a branch vertex would form a clique (complete subgraph in L_{T}).

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\square Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 2: $t=1$.

Let us call such vertex as a branch vertex, and let k be its degree. Then, consider the line graph of T.Edges incident to a branch vertex would form a clique (complete subgraph in L_{T}).

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\square Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 2: $t=1$.

Let us call such vertex as a branch vertex, and let k be its degree. Then, consider the line graph of T.Edges incident to a branch vertex would form a clique (complete subgraph in L_{T}).Note that L_{T} can be seen as K_{k} and connecting k paths $P_{1}, P_{2}, \ldots, P_{k}$ to each vertex in K_{k}.

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\square Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 2: $t=1$.

Let us call such vertex as a branch vertex, and let k be its degree. Then, consider the line graph of T.Edges incident to a branch vertex would form a clique (complete subgraph in L_{T}).Note that L_{T} can be seen as K_{k} and connecting k paths $P_{1}, P_{2}, \ldots, P_{k}$ to each vertex in K_{k}.

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\triangle Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Attaching four paths to each vertex in K_{4}

Case 2: $t=1$.

Let us call such vertex as a branch vertex, and let k be its degree. Then, consider the line graph of T.Edges incident to a branch vertex would form a clique (complete subgraph in L_{T}).Note that L_{T} can be seen as K_{k} and connecting k paths $P_{1}, P_{2}, \ldots, P_{k}$ to each vertex in K_{k}.

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\triangle Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 2: $t=1$.

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\triangle Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 2: $t=1$.Also, consider $T_{n, k}$ and its line graph $L_{T_{n, k}}$.

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\square Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 2: $t=1$.Also, consider $T_{n, k}$ and its line graph $L_{T_{n, k}}$.

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\triangle Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 2: $t=1$.Also, consider $T_{n, k}$ and its line graph $L_{T_{n, k}}$.

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\triangle Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 2: $t=1$.Also, consider $T_{n, k}$ and its line graph $L_{T_{n, k}}$.

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\triangle Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 2: $t=1$.Also, consider $T_{n, k}$ and its line graph $L_{T_{n, k}}$.

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\triangle Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 2: $t=1$.
\square Also, consider $T_{n, k}$ and its line graph $L_{T_{n, k}}$.

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\square Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 2: $t=1$.Also, consider $T_{n, k}$ and its line graph $L_{T_{n, k}}$.

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\triangle Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 2: $t=1$.Also, consider $T_{n, k}$ and its line graph $L_{T_{n, k}}$.

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\triangle Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 2: $t=1$.Also, consider $T_{n, k}$ and its line graph $L_{T_{n, k}}$.

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\square Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 2: $t=1$.Also, consider $T_{n, k}$ and its line graph $L_{T_{n, k}}$.Now, compare L_{T} and $L_{T_{n, k}}$.

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\square Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 2: $t=1$.Also, consider $T_{n, k}$ and its line graph $L_{T_{n, k}}$.Now, compare L_{T} and $L_{T_{n, k}}$.

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\square Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 2: $t=1$.Also, consider $T_{n, k}$ and its line graph $L_{T_{n, k}}$.Now, compare L_{T} and $L_{T_{n, k}}$.

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\triangle Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 2: $t=1$.Also, consider $T_{n, k}$ and its line graph $L_{T_{n, k}}$.Now, compare L_{T} and $L_{T_{n, k}}$.Notice that applying lemma 3 or 4 (repeatedly, if necessarily)...

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\triangle Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

L_{T}

$\mathrm{L}_{\mathrm{T}_{9,4}}$

Case 2: $t=1$.Also, consider $T_{n, k}$ and its line graph $L_{T_{n, k}}$.Now, compare L_{T} and $L_{T_{n, k}}$.Notice that applying lemma 3 or 4 (repeatedly, if necessarily)...

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\triangle Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

L_{T}

$$
\mathrm{L}_{\mathrm{T}_{9,4}} \cong \mathrm{~L}_{\mathrm{T}}
$$

Case 2: $t=1$.Also, consider $T_{n, k}$ and its line graph $L_{T_{n, k}}$.Now, compare L_{T} and $L_{T_{n, k}}$.Notice that applying lemma 3 or 4 (repeatedly, if necessarily)...

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\triangle Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

L_{T}

$\mathrm{L}_{\mathrm{T}_{9,4}} \cong \mathrm{~L}_{\mathrm{T}}$

$$
\mathrm{L}_{\mathrm{T}_{9,4}} \cong \mathrm{~L}_{\mathrm{T}}
$$

Case 2: $t=1$.Also, consider $T_{n, k}$ and its line graph $L_{T_{n, k}}$.Now, compare L_{T} and $L_{T_{n, k}}$.Notice that applying lemma 3 or 4 (repeatedly, if necessarily)...We get $\rho\left(L_{T_{n, k}}\right)>\rho\left(L_{T}\right)$.

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\triangle Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

L_{T}

$$
\mathrm{L}_{\mathrm{T}_{9,4}} \cong \mathrm{~L}_{\mathrm{T}}
$$

Case 2: $t=1$.
Having $\rho\left(L_{T_{n, k}}\right)>\rho\left(L_{T}\right)$, recall lemma 5 .

$$
\mu(T)=2+\rho\left(L_{T}\right) \quad \mu\left(T_{n, k}\right)=2+\rho\left(L_{T_{n, k}}\right)
$$

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\triangle Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

$$
\mathrm{L}_{\mathrm{T}_{9,4}} \cong \mathrm{~L}_{\mathrm{T}}
$$

Case 2: $t=1$.
Having $\rho\left(L_{T_{n, k}}\right)>\rho\left(L_{T}\right)$, recall lemma 5 .

$$
\mu(T)=2+\rho\left(L_{T}\right) \quad \mu\left(T_{n, k}\right)=2+\rho\left(L_{T_{n, k}}\right)
$$

Therefore, we get

$$
\mu(T)=2+\rho\left(L_{T}\right)<2+\rho\left(L_{T_{n, k}}\right)=\mu\left(T_{n, k}\right)
$$

Case 2

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
\triangle Case 2
Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

CASE2 $\sqrt{ }$

Case 3

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
D Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 3

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

- Case 3

Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 3: $t>1$.

Case 3

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

- Case 3

Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 3: $t>1$. The idea is...

Case 3

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
\triangleright Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 3: $t>1$. The idea is...
Reconstruct T based on the method in theorem 1, so that the number of branch vertices can be reduced to 1 , and then apply argument of case 2 (the proof for $t=1$).

Case 3

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
\triangleright Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 3: $t>1$. The idea is...
Reconstruct T based on the method in theorem 1, so that the number of branch vertices can be reduced to 1 , and then apply argument of case 2 (the proof for $t=1$).

Let us see little bit more detail with an example.

Case 3

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
D Case 3
Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 3: $t>1$.

Case 3

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

- Case 3

Example
The End
Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 3: $t>1$.

Case 3

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

- Case 3

Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 3: $t>1$.
To apply the method from theorem 1, label two branch vertices as u and v, and assume $x_{u} \geq x_{v}$.

Case 3

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

- Case 3

Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 3: $t>1$.
To apply the method from theorem 1, label two branch vertices as u and v, and assume $x_{u} \geq x_{v}$.

Case 3

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

- Case 3

Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 3: $t>1$.Recall: selecting two vertices in a tree graph determines a unique path.

Case 3

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

- Case 3

Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 3: $t>1$.Recall: selecting two vertices in a tree graph determines a unique path.Let w be a vertex which is a neighbor of v and on the u, v-path.

Case 3

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

- Case 3

Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 3: $t>1$.Recall: selecting two vertices in a tree graph determines a unique path.Let w be a vertex which is a neighbor of v and on the u, v-path.

Case 3

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

- Case 3

Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 3: $t>1$.Recall: selecting two vertices in a tree graph determines a unique path.Let w be a vertex which is a neighbor of v and on the u, v-path.Then, consider the proper subset $\left\{v_{1}, v_{2}, \ldots, v_{d_{v}-2}\right\} \subset N_{G}(v) \backslash\{w\}$.

Case 3

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

- Case 3

Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 3: $t>1$.Recall: selecting two vertices in a tree graph determines a unique path.Let w be a vertex which is a neighbor of v and on the u, v-path.Then, consider the proper subset $\left\{v_{1}, v_{2}, \ldots, v_{d_{v}-2}\right\} \subset N_{G}(v) \backslash\{w\}$.

Case 3

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

- Case 3

Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 3: $t>1$.Recall: selecting two vertices in a tree graph determines a unique path.Let w be a vertex which is a neighbor of v and on the u, v-path.Then, consider the proper subset $\left\{v_{1}, v_{2}, \ldots, v_{d_{v}-2}\right\} \subset N_{G}(v) \backslash\{w\}$.Now, delete $\left(v, v_{i}\right)$ and add $\left(u, v_{i}\right)$ for $1 \leq i \leq d_{v}-2$.

Case 3

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

- Case 3

Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

$$
d_{v}=4, \quad d_{v}-2=4-2=2
$$

Case 3: $t>1$.Recall: selecting two vertices in a tree graph determines a unique path.Let w be a vertex which is a neighbor of v and on the u, v-path.Then, consider the proper subset $\left\{v_{1}, v_{2}, \ldots, v_{d_{v}-2}\right\} \subset N_{G}(v) \backslash\{w\}$.Now, delete $\left(v, v_{i}\right)$ and add $\left(u, v_{i}\right)$ for $1 \leq i \leq d_{v}-2$.

Case 3

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

- Case 3

Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 3: $t>1$.Recall: selecting two vertices in a tree graph determines a unique path.Let w be a vertex which is a neighbor of v and on the u, v-path.Then, consider the proper subset $\left\{v_{1}, v_{2}, \ldots, v_{d_{v}-2}\right\} \subset N_{G}(v) \backslash\{w\}$.Now, delete $\left(v, v_{i}\right)$ and add $\left(u, v_{i}\right)$ for $1 \leq i \leq d_{v}-2$.

Case 3

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

- Case 3

Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 3: $t>1$.Recall: selecting two vertices in a tree graph determines a unique path.Let w be a vertex which is a neighbor of v and on the u, v-path.Then, consider the proper subset $\left\{v_{1}, v_{2}, \ldots, v_{d_{v}-2}\right\} \subset N_{G}(v) \backslash\{w\}$.Now, delete $\left(v, v_{i}\right)$ and add $\left(u, v_{i}\right)$ for $1 \leq i \leq d_{v}-2$.

Case 3

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

- Case 3

Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 3: $t>1$.Recall: selecting two vertices in a tree graph determines a unique path.Let w be a vertex which is a neighbor of v and on the u, v-path.Then, consider the proper subset $\left\{v_{1}, v_{2}, \ldots, v_{d_{v}-2}\right\} \subset N_{G}(v) \backslash\{w\}$.Now, delete $\left(v, v_{i}\right)$ and add $\left(u, v_{i}\right)$ for $1 \leq i \leq d_{v}-2$.

Case 3

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

- Case 3

Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 3: $t>1$.Recall: selecting two vertices in a tree graph determines a unique path.Let w be a vertex which is a neighbor of v and on the u, v-path.Then, consider the proper subset $\left\{v_{1}, v_{2}, \ldots, v_{d_{v}-2}\right\} \subset N_{G}(v) \backslash\{w\}$.Now, delete $\left(v, v_{i}\right)$ and add $\left(u, v_{i}\right)$ for $1 \leq i \leq d_{v}-2$.

Case 3

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

- Case 3

Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 3: $t>1$.
Since $x_{u} \geq x_{v}$, theorem 1 must be applied.

Case 3

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

- Case 3

Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 3: $t>1$.
Since $x_{u} \geq x_{v}$, theorem 1 must be applied.

$$
\Rightarrow \nu(T)<\nu\left(T_{1}^{*}\right)
$$

Case 3

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

- Case 3

Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 3: $t>1$.
Since $x_{u} \geq x_{v}$, theorem 1 must be applied.

$$
\begin{aligned}
& \Rightarrow \nu(T)<\nu\left(T_{1}^{*}\right) \\
& \Rightarrow \mu(T)<\mu\left(T_{1}^{*}\right)
\end{aligned}
$$

Case 3

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

- Case 3

Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 3: $t>1$.If $t=1$, then we are done (go to case 2 argument).

Case 3

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

- Case 3

Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 3: $t>1$.If $t=1$, then we are done (go to case 2 argument).If $t>1$, then apply the same construction, and we see that..

Case 3

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

- Case 3

Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 3: $t>1$.If $t=1$, then we are done (go to case 2 argument).If $t>1$, then apply the same construction, and we see that..

$$
\mu(T)<\mu\left(T_{1}^{*}\right)<\cdots<\mu\left(T_{t-1}^{*}\right)
$$

Case 3

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

- Case 3

Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

Case 3: $t>1$.If $t=1$, then we are done (go to case 2 argument).If $t>1$, then apply the same construction, and we see that..

$$
\mu(T)<\mu\left(T_{1}^{*}\right)<\cdots<\mu\left(T_{t-1}^{*}\right)
$$

Then the statement holds.

Case 3

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2

- Case 3

Example
The End

Theorem. Let T be a tree with n vertices and k pendant vertices. Then $\mu(T) \leq \mu\left(T_{n, k}\right)$, where equality holds if and only if T is isomorphic to $T_{n, k}$.

CASE3 $\sqrt{ }$

Example

```
Introduction Example (case 3)
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
\ Example
The End
Take \(T \in \mathscr{T}_{19,10}\) as shown.
```


Example

Example

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
D Example
The End

Example (case 3)
Take $T \in \mathscr{T}_{19,10}$ as shown.First, find the signless Laplacian spectral radius and associated Perron vector.

Example

Example

Some Lemmas

Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3

- Example

The End

$$
\nu(T)=6.1700
$$

$$
\mathbf{x}=\left[\begin{array}{ccccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} \\
0.8724 & 0.2194 & 0.1688 & 0.2330 & 0.2309 & 0.0424 & 0.0993 & 0.1688 & 0.0902
\end{array}\right]
$$

$$
\left.\begin{array}{cccccccccc}
x_{10} & x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} & x_{17} & x_{18} & x_{19} \\
0.0192 & 0.0624 & 0.0324 & 0.0227 & 0.0121 & 0.0121 & 0.0121 & 0.0063 & 0.0063 & 0.0044
\end{array}\right]^{T}
$$

Example

Introduction

Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
D Example
The End

Example (case 3)

$$
\nu(T)=6.1700
$$

$$
\mathbf{x}=\left[\begin{array}{ccccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} \\
0.8724 & 0.2194 & 0.1688 & 0.2330 & 0.2309 & 0.0424 & 0.0993 & 0.1688 & 0.0902
\end{array} \cdots\right.
$$

$$
\left.\begin{array}{ccccccccc}
x_{10} & x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} & x_{17} & x_{18} \\
0.0192 & 0.0624 & 0.0324 & 0.0227 & 0.0121 & 0.0121 & 0.0121 & 0.0063 & 0.0063
\end{array} x_{19} 0.0044\right]^{T}
$$

For each branch vertex, look at the corresponding entry in the Perron vector.

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
\triangleright Example
The End

Example (case 3)
Take $u=a_{1}$ and $v=a_{12}$ so that $x_{u} \geq x_{v}$ is preserved.The vertex w is uniquely determined.Label the rest of neighbors as v_{1} and $v_{2}$$d_{v}-2=d_{a_{12}}-2=3-2=1$, so we delete $\left(v, v_{1}\right)$ and add $\left(u, v_{1}\right)$.

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
\triangleright Example
The End

Example (case 3)
Take $u=a_{1}$ and $v=a_{12}$ so that $x_{u} \geq x_{v}$ is preserved.The vertex w is uniquely determined.Label the rest of neighbors as v_{1} and $v_{2}$$d_{v}-2=d_{a_{12}}-2=3-2=1$, so we delete $\left(v, v_{1}\right)$ and add $\left(u, v_{1}\right)$.

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
\triangleright Example
The End

Example (case 3)
Take $u=a_{1}$ and $v=a_{12}$ so that $x_{u} \geq x_{v}$ is preserved.The vertex w is uniquely determined.Label the rest of neighbors as v_{1} and $v_{2}$$d_{v}-2=d_{a_{12}}-2=3-2=1$, so we delete $\left(v, v_{1}\right)$ and add $\left(u, v_{1}\right)$.

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
\triangleright Example
The End

Example (case 3)
Take $u=a_{1}$ and $v=a_{12}$ so that $x_{u} \geq x_{v}$ is preserved.The vertex w is uniquely determined.Label the rest of neighbors as v_{1} and $v_{2}$$d_{v}-2=d_{a_{12}}-2=3-2=1$, so we delete $\left(v, v_{1}\right)$ and add $\left(u, v_{1}\right)$.

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
D Example
The End

Example (case 3)
Take $u=a_{1}$ and $v=a_{12}$ so that $x_{u} \geq x_{v}$ is preserved.The vertex w is uniquely determined.Label the rest of neighbors as v_{1} and $v_{2}$$\square d_{v}-2=d_{a_{12}}-2=3-2=1$, so we delete $\left(v, v_{1}\right)$ and $\operatorname{add}\left(u, v_{1}\right)$.

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
\triangleright Example
The End

Example (case 3)
Take $u=a_{1}$ and $v=a_{12}$ so that $x_{u} \geq x_{v}$ is preserved.The vertex w is uniquely determined.Label the rest of neighbors as v_{1} and $v_{2}$$d_{v}-2=d_{a_{12}}-2=3-2=1$, so we delete $\left(v, v_{1}\right)$ and add $\left(u, v_{1}\right)$.

Example

Example

```
Introduction Example (case 3)
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
\ Example
The End
Example (case 3)
```



```For this new graph, \(T_{1}\), find \(\nu\) and associated Perron vector.
\[
\nu\left(T_{1}\right)=7.1074
\]
```


Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
\triangleright Example
The End

Example (case 3)

For this new graph, T_{1}, find ν and associated Perron vector.

$$
\nu\left(T_{1}\right)=7.1074
$$

$$
\mathbf{x}=\left[\begin{array}{ccccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} \\
0.8724 & 0.2194 & 0.1688 & 0.2330 & 0.2309 & 0.0424 & 0.0993 & 0.1688 & 0.0902
\end{array}\right]
$$

$$
\begin{array}{ccccccccc}
x_{10} & x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} & x_{17} & x_{18} \\
0.0192 & 0.0624 & 0.0324 & 0.0227 & 0.0121 & 0.0121 & 0.0121 & 0.0063 & 0.0063
\end{array}
$$

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
\triangleright Example
The End

Example (case 3)

For this new graph, T_{1}, find ν and associated Perron vector.

$$
\nu\left(T_{1}\right)=7.1074
$$

$$
\mathbf{x}=\left[\begin{array}{ccccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} \\
0.8724 & 0.2194 & 0.1688 & 0.2330 & 0.2309 & 0.0424 & 0.0993 & 0.1688 & 0.0902
\end{array}\right) \cdots .
$$

$$
\begin{array}{ccccccccc}
x_{10} & x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} & x_{17} & x_{18} \\
0.0192 & 0.0624 & 0.0324 & 0.0227 & 0.0121 & 0.0121 & 0.0121 & 0.0063 & 0.0063
\end{array}
$$

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
\triangleright Example
The End

Example (case 3)

For this new graph, T_{1}, find ν and associated Perron vector.

$$
\nu\left(T_{1}\right)=7.1074
$$

$$
\mathbf{x}=\left[\begin{array}{ccccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} \\
0.8724 & 0.2194 & 0.1688 & 0.2330 & 0.2309 & 0.0424 & 0.0993 & 0.1688 & 0.0902
\end{array}\right]
$$

$$
\begin{array}{ccccccccc}
x_{10} & x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} & x_{17} & x_{18} \\
0.0192 & 0.0624 & 0.0324 & 0.0227 & 0.0121 & 0.0121 & 0.0121 & 0.0063 & 0.0063
\end{array}
$$

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
D Example
The End

Example (case 3)

For this new graph, T_{1}, find ν and associated Perron vector.

$$
\nu\left(T_{1}\right)=7.1074
$$

$$
\mathbf{x}=\left[\begin{array}{ccccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} \\
0.8724 & 0.2194 & 0.1688 & 0.2330 & 0.2309 & 0.0424 & 0.0993 & 0.1688 & 0.0902
\end{array} \cdots .\right.
$$

$$
\begin{array}{ccccccccc}
x_{10} & x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} & x_{17} & x_{18} \\
0.0192 & 0.0624 & 0.0324 & 0.0227 & 0.0121 & 0.0121 & 0.0121 & 0.0063 & 0.0063
\end{array}
$$

Example

Introduction Example (case 3)

Some Lemmas

Main Results

Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3

D Example
The End

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
\triangleright Example
The End

Example (case 3)

$$
\begin{aligned}
& \nu\left(T_{2}\right)=8.0740 \\
& \mathbf{x}=\left[\begin{array}{ccccccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} & \cdots \\
0.8724 & 0.2194 & 0.1688 & 0.2330 & 0.2309 & 0.0424 & 0.0993 & 0.1688 & 0.0902 & \cdots \\
x_{10} & x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} & x_{17} & x_{18} & x_{19} \\
0.0192 & 0.0624 & 0.0324 & 0.0227 & 0.0121 & 0.0121 & 0.0121 & 0.0063 & 0.0063 & 0.0044
\end{array}\right]^{T}
\end{aligned}
$$

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example (case 3)
\triangleright Example
The End

$$
\begin{aligned}
& \nu\left(T_{2}\right)=8.0740 \\
& \mathbf{x}=\left[\begin{array}{ccccccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} & \cdots \\
0.8724 & 0.2194 & 0.1688 & 0.2330 & 0.2309 & 0.0424 & 0.0993 & 0.1688 & 0.0902 & \cdots \\
x_{10} & x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} & x_{17} & x_{18} & x_{19} \\
0.0192 & 0.0624 & 0.0324 & 0.0227 & 0.0121 & 0.0121 & 0.0121 & 0.0063 & 0.0063 & 0.0044
\end{array}\right]^{T}
\end{aligned}
$$

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example (case 3)

\triangle Example
The End

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example (case 3)

\triangleright Example
The End

Example

Introduction Example (case 3)

Some Lemmas

Main Results

Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3

D Example
The End

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
\triangleright Example
The End

Example (case 3)

$$
\begin{aligned}
& \nu\left(T_{3}\right)=10.0426 \\
& \mathbf{x}=\left[\begin{array}{ccccccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} & \cdots \\
0.8724 & 0.2194 & 0.1688 & 0.2330 & 0.2309 & 0.0424 & 0.0993 & 0.1688 & 0.0902 & \cdots \\
x_{10} & x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} & x_{17} & x_{18} & x_{19} \\
0.0192 & 0.0624 & 0.0324 & 0.0227 & 0.0121 & 0.0121 & 0.0121 & 0.0063 & 0.0063 & 0.0044
\end{array}\right]^{T}
\end{aligned}
$$

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example (case 3)

$$
\nu\left(T_{3}\right)=10.0426
$$

$$
\mathbf{x}=\left[\begin{array}{ccccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} \\
0.8724 & 0.2194 & 0.1688 & 0.2330 & 0.2309 & 0.0424 & 0.0993 & 0.1688 & 0.0902
\end{array}\right]
$$

$$
\left.\begin{array}{cccccccccc}
x_{10} & x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} & x_{17} & x_{18} & x_{19} \\
0.0192 & 0.0624 & 0.0324 & 0.0227 & 0.0121 & 0.0121 & 0.0121 & 0.0063 & 0.0063 & 0.0044
\end{array}\right]^{T}
$$

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example (case 3)

\triangleright Example
The End
$\mathbf{x}=\left[\begin{array}{ccccccccc}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} \\ 0.8724 & 0.2194 & 0.1688 & 0.2330 & 0.2309 & 0.0424 & 0.0993 & 0.1688 & 0.0902\end{array}\right]$
$\left.\begin{array}{ccccccccc}x_{10} & x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} & x_{17} & x_{18} \\ 0.0192 & 0.0624 & 0.0324 & 0.0227 & 0.0121 & 0.0121 & 0.0121 & 0.0063 & 0.0063 \\ 0.0044\end{array}\right]^{T}$

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
Example (case 3)

\triangleright Example
The End
$\mathbf{x}=\left[\begin{array}{ccccccccc}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} \\ 0.8724 & 0.2194 & 0.1688 & 0.2330 & 0.2309 & 0.0424 & 0.0993 & 0.1688 & 0.0902\end{array}\right]$
$\left.\begin{array}{ccccccccc}x_{10} & x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} & x_{17} & x_{18} \\ 0.0192 & 0.0624 & 0.0324 & 0.0227 & 0.0121 & 0.0121 & 0.0121 & 0.0063 & 0.0063 \\ 0.0049\end{array}\right]^{T}$

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
\triangleright Example
The End

Example (case 3)

$$
\nu\left(T_{3}\right)=10.0426
$$

$$
\mathbf{x}=\left[\begin{array}{ccccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} \\
0.8724 & 0.2194 & 0.1688 & 0.2330 & 0.2309 & 0.0424 & 0.0993 & 0.1688 & 0.0902
\end{array}\right]
$$

$$
\left.\begin{array}{cccccccccc}
x_{10} & x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} & x_{17} & x_{18} & x_{19} \\
0.0192 & 0.0624 & 0.0324 & 0.0227 & 0.0121 & 0.0121 & 0.0121 & 0.0063 & 0.0063 & 0.0044
\end{array}\right]^{T}
$$

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
\triangleright Example
Example (case 3)

$$
\nu(T)=6.1700 \nu\left(T_{1}\right)=7.1074 \nu\left(T_{2}\right)=8.0740 \nu\left(T_{3}\right)=10.0426 \nu\left(T_{4}\right)=11.0448
$$

Example

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
\triangleright Example
The End

Example (case 3)

$$
\nu(T)=6.1700 \nu\left(T_{1}\right)=7.1074 \nu\left(T_{2}\right)=8.0740 \nu\left(T_{3}\right)=10.0426 \nu\left(T_{4}\right)=11.0448
$$

Therefore,

$$
\mu(T)=6.1700 \mu\left(T_{1}\right)=7.1074 \mu\left(T_{2}\right)=8.0740 \mu\left(T_{3}\right)=10.0426 \nu\left(T_{4}\right)=11.0448
$$

Example

```
Introduction Example (case 2)
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
\ Example
The End

\section*{Example}


\section*{Example}
\begin{tabular}{|c|c|}
\hline Introduction & \multirow[t]{2}{*}{Example (case 2)} \\
\hline Some Lemmas & \\
\hline \multicolumn{2}{|l|}{Main Results} \\
\hline Idea &  \\
\hline Theorem 1 & Y 0 \\
\hline Example & - 0 \\
\hline Theorem 2 & \(\cdots \ldots\) \\
\hline Case 1 & \(\bigcirc\) \\
\hline Case 2 & \()^{\circ}\) \\
\hline Case 3 &  \\
\hline \(\triangle\) Example & - \\
\hline \multicolumn{2}{|l|}{The End} \\
\hline & \(\square\) Apply the argument of case 2 now. \\
\hline & \(\square\) Construct the line graph of \(T_{4}, L_{T_{4}}\) \\
\hline
\end{tabular}

\section*{Example}


\section*{Example}

\section*{Introduction}

Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
\(\triangleright\) Example
The End

Example (case 2)
Apply the argument of case 2 now.Construct the line graph of \(T_{4}, L_{T_{4}}\)Then, apply lemma 3 few times.Notice that this is a complete graph \(K_{10}\) and 10 "almost equal length" paths.The line graph of \(T_{19,10}\) is...

\section*{Example}

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
D Example
The End

Example (case 2)
Apply the argument of case 2 now.Construct the line graph of \(T_{4}, L_{T_{4}}\)Then, apply lemma 3 few times.Notice that this is a complete graph \(K_{10}\) and 10 "almost equal length" paths.The line graph of \(T_{19,10}\) is...

\section*{Example}

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
D Example
The End

Example (case 2)
Apply the argument of case 2 now.Construct the line graph of \(T_{4}, L_{T_{4}}\)Then, apply lemma 3 few times.Notice that this is a complete graph \(K_{10}\) and 10 "almost equal length" paths.The line graph of \(T_{19,10}\) is...

\section*{Example}

Introduction
Some Lemmas
Main Results
Idea
Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
\(\triangleright\) Example
The End

Example (case 2)
Apply the argument of case 2 now.Construct the line graph of \(T_{4}, L_{T_{4}}\)Then, apply lemma 3 few times.Notice that this is a complete graph \(K_{10}\) and 10 "almost equal length" paths.The line graph of \(T_{19,10}\) is...

\section*{Example}
Introduction
Some Lemmas \(\quad\) Example (case 2)

Main Results

\section*{Idea}

Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
\(\triangleright\) Example
The End
Recall lemma 4, we have

\section*{Example}
Introduction
Some Lemmas \(\quad\) Example (case 2)

Main Results

\section*{Idea}

Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
D Example
The End


Recall lemma 4, we have
\[
\mu\left(T_{4}\right)=2+\rho\left(L_{T_{4}}\right)<2+\rho\left(L_{T_{19,10}}\right)=\mu\left(T_{19,10}\right)
\]

\section*{Example}

Introduction
Some Lemmas
Main Results

\section*{Idea}

Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
D Example
The End

Example (case 2)
Recall lemma 4, we have
\[
\mu\left(T_{4}\right)=2+\rho\left(L_{T_{4}}\right)<2+\rho\left(L_{T_{19,10}}\right)=\mu\left(T_{19,10}\right)
\]In fact, \(\mu\left(T_{4}\right)=11.0448\) whereas \(\mu\left(T_{19,10}\right)=18.8615\).

\section*{Example}


\section*{Example}

Introduction

\section*{Some Lemmas}

Main Results

\section*{Idea}

Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
D Example
The End

Example (case 2)


Finally,
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Graph & \(T\) & \(T_{1}\) & \(T_{2}\) & \(T_{3}\) & \(T_{4}\) & \(T_{19,10}\) \\
\hline\(\mu\) & 6.1700 & 7.1074 & 8.0740 & 10.0426 & 11.0448 & 18.8615 \\
\hline
\end{tabular}

\section*{Example}

Introduction

\section*{Some Lemmas}

Main Results

\section*{Idea}

Theorem 1
Example
Theorem 2
Case 1
Case 2
Case 3
D Example
The End

Example (case 2)


Finally,
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Graph & \(T\) & \(T_{1}\) & \(T_{2}\) & \(T_{3}\) & \(T_{4}\) & \(T_{19,10}\) \\
\hline\(\mu\) & 6.1700 & 7.1074 & 8.0740 & 10.0426 & 11.0448 & 18.8615 \\
\hline
\end{tabular}

Therefore,
\[
\mu(T)<\mu\left(T_{19,10}\right)
\]
as expected.

\section*{The End}```

