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Abstract

This paper contains results in the field of algebraic graph theory and specifically concerns the spectral

radius of the Laplacian matrix of a tree. Let A(G) denote the adjacency matrix of a simple graph G. Then,

the Laplacian matrix of G is given by L(G) = D(G) − A(G) where D is the diagonal matrix whose diagonal

entries are the vertex degrees. The main result provides an upper bound for the spectral radius of any tree with

n vertices and k pendant vertices.

1 Introduction

In reading through several papers on spectral graph theory, I quickly came to understand
the importance of knowing the spectral radius of the adjacency and/or Laplacian matrices
(we will precisely define these later). Knowing the spectrum allows us to deduce important
properties and structural parameters of a graph (e.g. the lowest eigenvalues tell us the
algebraic connectivity, while the highest and lowest eigenvalues determine the spread of a
graph). In this paper, we specifically focus on an upper bound for the spectrum of the
Laplacian matrix of a tree. The results are from the recent paper of Honga and Zhang
entitled “Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of
trees” [5].

Definitions and Objective

Let G be a simple graph with vertex set V (G) = {v1, v2, . . . , vn}. The adjacency matrix
A = A(G) is defined to be the n × n matrix (aij), where aij = 1 if vi is adjacent to vj, and
aij = 0 otherwise. Also, for each i, let di denote the degree of each vertex vi in G. In this
paper, we let D = D(G) be the n× n diagonal matrix, where ith diagonal entry is di.

We define the spectral radius of G to be the parameter ρ(G) = maxi(|λi|), where the
maximum is taken over all the eigenvalues λi of the adjacency matrix A(G). The adjacency
matrix is a 0,1-symmetric matrix, so that every eigenvalue is real. By the Perron-Frobenius
Theorem (cf. [1] or [3]), the spectral radius ρ(G) is a simple eigenvalue (so the algebraic
and geometric multiplicity is 1), and there is a unique positive (positive for each entry) unit
eigenvector. We refer to such an eigenvector as the Perron vector of G.

We define the Laplacian matrix L to be the matrix L(G) = D(G) − A(G) and the
signless Laplacian matrix Q as Q(G) = D(G) + A(G). We refer to the spectral radius of L
as the Laplacian spectral radius of G and denote this by µ(G). Similarly, we use the term
signless Laplacian spectral radius for the spectral radius of Q(G) and denote this by ν(G).
In this paper, we will provide numerous examples of these parameters that are relevant to
our primary lemmas and theorems. In each of these cases, the spectrum of the adjacency,
Laplacian, and signless Laplacian matrices are obtained by the software Matlab.

The Laplacian matrix is famously known to be a positive semidefinite matrix (cf. [4], for
example). Therefore, we can place each eigenvalue of L(G) in nonincreasing order as follows:

µ(G) = µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) = 0
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Observe that the Laplacian spectral radius is simply the largest eigenvalue of L(G).
By a pendant vertex of G, we mean a vertex whose degree is 1. We also use NG(v) to

denote the set of vertices adjacent to a vertex v in G. We will let Tn,k denote the set of trees
with n vertices and k pendant vertices for fixed n and k.

Now, for any fixed n and k, we define Tn,k to be a tree graph obtained from a complete
bipartite graph (we call this a star graph) K1,k and k paths of almost equal length, by joining
each pendant vertex of K1,k to an end vertex of one path. To construct T18,5, for example,
we would start with the star K1,5 and with five corresponding paths of almost equal length.
Of course, we need to specify what we mean by “almost equal length” for the five paths we
wish to attach to the star. Consider that, by the division algorithm, n−1 = 18−1 = 17 and
q · k + r = 3 · 5 + 2. Besides a single, non-pendant vertex, we need 17 more vertices. Then,
we need each path to have at least 3 vertices (this number is given by quotient, q = 3). Also,
2 paths (this number is given by the remainder r = 2) have one more extra vertex than
the other paths. Using this construction, no two paths differ in length by more than one,
thereby fulfilling the “almost equal length” condition.

To state it more generally, we construct Tn,k by appending k paths to the pendant vertices
of K1,k. The number of vertices in r < k of the paths is q + 1, and the rest contain exactly
q, where the nonnegative parameters are determined by the division algorithm:

n− 1 = qk + r.

The goal for this paper is to show that the Laplacian spectral radius for any tree T ∈ Tn,k

is bounded by the Laplacian spectral radius of Tn,k. That is, the inequality

µ(T ) ≤ µ(Tn,k)

holds, and the equality occurs if and only if T is isomorphic to Tn,k.

2 Sharp upper bound

We begin with a sequence of preliminary lemmas which we need in proving our main results.

2.1 Some preliminary lemmas

Lemma 2.1. Let A be a nonnegative symmetric matrix and x be a unit vector of Rn. If

ρ(A) = xTAx, then Ax = ρ(A)x.
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Proof. Since A is a real symmetric matrix, every eigenvalue is real. Suppose that the mul-
tiplicity of ρ(A) is a positive integer m, and order each eigenvalue in nonincreasing order.
Then we have

ρ(A) = λ1 = λ2 = · · · = λm > λm+1 ≥ · · · ≥ λn.

Since A is real symmetric, we know that Rn has an orthonormal basis of eigenvectors of A.
Let αi be a unit eigenvector associated with λi (so that αT

i αj = 0 for i 6= j). Thus, a unit
vector x ∈ R

n can be written as a linear combination

x = a1α1 + a2α2 · · ·+ anαn, where ai ∈ R for i = 1, 2, . . . , n.

Given a unit vector x, the fact that αT
i αj = 0 (i 6= j) implies the following:

1 = xT · x = (a1α
T
1 + a2α

T
2 · · ·+ anα

T
n ) · (a1α1 + a2α2 · · ·+ anαn) = a21 + a22 · · ·+ a2n.

By this result, we have

ρ(A) = xTAx = xT (A(a1α1 + a2α2 · · ·+ anαn))

= xT (a1Aα1 + a2Aα2 + · · ·+ anAαn)

= xT (a1λ1α1 + a2λ2α2 + · · ·+ anλnαn)

= (a1α1 + a2α2 · · ·+ anαn)
T (a1λ1α1 + a2λ2α2 + · · ·+ anλnαn)

= a21λ1 + a22λ2 + · · ·+ a2mλm + a2m+1λm+1 · · ·+ a2nλn

≤ a21λ1 + a22λ1 + · · ·+ a2mλ1 + a2m+1λ1 + · · ·+ a2nλ1

= λ1(a
2
1 + a22 + · · ·+ a2n)

= λ1

= ρ(A).

We start and end with ρ(A). Containing the inequality above, this only makes sense if
am+1 = am+2 = · · · = an = 0 holds (otherwise, the inequality is strict and a contradiction
occurs). Thus, we may conclude that x = a1α1 + a2α2 + · · · + amαm. Recall that each
αi (1 ≤ i ≤ m) is an eigenvector associated with ρ(A). Since x is expressible by a linear
combination of such αis, it lies in the eigenspace associated with ρ(A). That is, Ax = ρ(A)x
must hold.

Lemma 2.2. If G is a bipartite graph, then D(G) +A(G) and D(G)−A(G) have the same

spectrum.

Proof. Suppose that G is a bipartite graph with n vertices. Let V1 = {v1, v2, . . . , vk} and V2 =
{vk+1, vk+2, . . . , vn} denote the corresponding sets of vertices in each cell of the bipartition.
We know that each cell is a independent set, so if we arrange the rows and columns of the
adjacency matrix in the order v1, v2, . . . , vk, vk+1, . . . , vn, then we see block matrices of zero
entries, as shown on the left below:
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A(G) v1 ··· vi vi+1 ··· vn

v1

... 0 B

vi

vi+1

... BT 0

vn





































D(G) v1 ··· vi vi+1 ··· vn

v1

... D1 0

vi

vi+1

... 0 D2

vn



















At this point, the submatrix denoted B above will appear as an arbitrary 0,1-submatrix.
Now, let us also represent the matrix D(G) with corresponding block matrices as shown on
the right above. Note that the dimension of these blocks matches the blocks in A(G), so
that the addition of block matrices makes sense. We now have a block matrix representation
for D + A and D − A.

L = D − A =

[

D1 −B
−BT D2

]

Q = D + A =

[

D1 B
BT D2

]

Now, let

S =

[

−I 0
0 I

]

be the block matrix representation of an n×n matrix where I is an appropriate sized identity
matrix. The dimension of each block in S is chosen to match the blocks in L and Q, so that
the multiplication of block matrices makes sense. Now, we see that S is self-inverse, so
S = S−1 holds. Then,

SLS−1 =

[

−I 0
0 I

] [

D1 −B
−BT D2

] [

−I 0
0 I

]

=

[

D1 B
BT D2

]

= Q

which shows that the matrices L and Q are similar. Recall that similar matrices must have
the same eigenvalues. Therefore, the statement holds.

Example. Let us see some examples of the above lemma. Figure 1 below is a non-bipartite
graph, having an odd cycle.

Label vertices in G as it is shown, and notice that the Laplacian and signless Laplacian
matrices of G are the following:
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L(G) v1 v2 v3 v4 v5

v1 1 0 −1 0 0
v2 0 2 −1 0 −1
v3 −1 −1 4 −1 −1
v4 0 0 −1 1 0
v5 0 −1 −1 0 2

























Q(G) v1 v2 v3 v4 v5

v1 1 0 1 0 0
v2 0 2 1 0 1
v3 1 1 4 1 1
v4 0 0 1 1 0
v5 0 1 1 0 2













The spectrum of L(G) is given by (Matlab)

{0.0000, 1.0000, 1.0000, 3.0000, 5.0000},

whereas the spectrum of Q(G) is given by

{0.3187, 1.0000, 1.0000, 2.3579, 5.3234},

which we see that L and Q have very different spectra. Now, let us consider Figure 2. This
graph B contains no odd cycle, so B is a bipartite graph.













L(B) w1 w2 w3 w4 w5

w1 2 −1 −1 0 0
w2 −1 2 0 0 −1
w3 −1 0 3 −1 −1
w4 0 0 −1 1 0
w5 0 −1 −1 0 2

























Q(B) w1 w2 w3 w4 w5

w1 2 1 1 0 0
w2 1 2 0 0 1
w3 1 0 3 1 1
w4 0 0 1 1 0
w5 0 1 1 0 2













The spectra of both L(B) and Q(B) are given by

{0.0000, 0.8299, 2.0000, 2.6889, 4.4812}

which is what is asserted by the lemma.

Lemma 2.3 (Li and Feng [6]). Let u be a vertex of the connected graph G and for positive

integers k and l, let Gk,l denote the graph obtained from G by adding pendant paths of length

k and l at u. If k ≥ l ≥ 1, then

ρ(Gk,l) > ρ(Gk+1,l−1).

Lemma 2.4 (Li and Feng [6]). Let u and v be two adjacent vertices of the connected graph

G, and for nonnegative integers k and l, Gk,l denote the graph obtained from G by adding

pendant paths of length k and l at u and v, respectively. If k ≥ l ≥ 1, then

ρ(Gk,l) > ρ(Gk+1,l−1).

These lemmas are similar except that, where Lemma 2.3 allows us to consider paths joined
at a single vertex, Lemma 2.4 enables us to choose two distinct vertices (but they need to
be adjacent). For an example, first take a “house graph” with labels as shown (see Figure
1 below). Then, let u = v1, k = 2 and l = 2, and observe that H2,2(u) designates the new
graph formed by following by the procedure of Lemma 2.3 (see Figure 2).
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Following the lemma, we expect H2,2(u) to have the largest spectral radius of all three graphs.





























A(H2,2(u)) v1 v2 v3 v4 v5 v6 v7 v8 v9

v1 0 1 1 0 0 1 0 1 0
v2 1 0 1 1 0 0 0 0 0
v3 1 1 0 0 1 0 0 0 0
v4 0 1 0 0 1 0 0 0 0
v5 0 0 1 1 0 0 0 0 0
v6 1 0 0 0 0 0 1 0 0
v7 0 0 0 0 0 1 0 0 0
v8 1 0 0 0 0 0 0 0 1
v9 0 0 0 0 0 0 0 1 0

























































A(H3,1(u)) v1 v2 v3 v4 v5 v6 v7 v8 v9

v1 0 1 1 0 0 1 0 1 0
v2 1 0 1 1 0 0 0 0 0
v3 1 1 0 0 1 0 0 0 0
v4 0 1 0 0 1 0 0 0 0
v5 0 0 1 1 0 0 0 0 0
v6 1 0 0 0 0 0 1 0 0
v7 0 0 0 0 0 1 0 0 1
v8 1 0 0 0 0 0 0 0 0
v9 0 0 0 0 0 0 1 0 0

























































A(H4,0(u)) v1 v2 v3 v4 v5 v6 v7 v8 v9

v1 0 1 1 0 0 1 0 0 0
v2 1 0 1 1 0 0 0 0 0
v3 1 1 0 0 1 0 0 0 0
v4 0 1 0 0 1 0 0 0 0
v5 0 0 1 1 0 0 0 0 0
v6 1 0 0 0 0 0 1 0 0
v7 0 0 0 0 0 1 0 1 0
v8 0 0 0 0 0 0 1 0 1
v9 0 0 0 0 0 0 0 1 0





























According to the above matrices, their spectral radii are

ρ(H2,2(u)) = 2.6883, ρ(H3,1(u)) = 2.6751, and ρ(H4,0(u)) = 2.5813

which is as desired.

Next, take the house graph again, and let u = v1 and v = v3 (shown below).
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Similar to the previous lemma, we expect H2,2(u, v) to have the largest spectral radius. The
two matrices below are the adjacency matrices of H2,2(u, v) and H3,1(u, v). Take the matrix
A(H4,0(u)) for A(H4,0(u, v)) since H4,0(u) is the same graph as H4,0(u, v).





























A(H2,2(u, v)) v1 v2 v3 v4 v5 v6 v7 v8 v9

v1 0 1 1 0 0 1 0 0 0
v2 1 0 1 1 0 0 0 0 0
v3 1 1 0 0 1 0 0 1 0
v4 0 1 0 0 1 0 0 0 0
v5 0 0 1 1 0 0 0 0 0
v6 1 0 0 0 0 0 1 0 0
v7 0 0 0 0 0 1 0 0 0
v8 0 0 1 0 0 0 0 0 1
v9 0 0 0 0 0 0 0 1 0

























































A(H3,1(u, v)) v1 v2 v3 v4 v5 v6 v7 v8 v9

v1 0 1 1 0 0 1 0 0 0
v2 1 0 1 1 0 0 0 0 0
v3 1 1 0 0 1 0 0 1 0
v4 0 1 0 0 1 0 0 0 0
v5 0 0 1 1 0 0 0 0 0
v6 1 0 0 0 0 0 1 0 0
v7 0 0 0 0 0 1 0 0 1
v8 0 0 1 0 0 0 0 0 0
v9 0 0 0 0 0 0 1 0 0





























The spectral radii are given by

ρ(H2,2(u, v)) = 2.6989, ρ(H3,1(u, v)) = 2.6839, and ρ(H4,0(u, v)) = 2.5813.

which is as desired.

Lemma 2.5 (Shu et al [8]). Let G be a simple connected graph and LG be the line graph of

G. Then

µ(G) ≤ 2 + ρ(LG),

where equality holds if and only if G is a bipartite graph.

Example. Take again the house graph H with edge labels shown below. Let LH denote its
line graph.

The matrix on the left below is the Laplacian matrix for H , and the matrix on the right is
the adjacency matrix for LH .













L(H) v1 v2 v3 v4 v5

v1 2 −1 −1 0 0
v2 −1 3 −1 −1 0
v3 −1 −1 3 0 −1
v4 0 −1 0 2 −1
v5 0 0 −1 −1 2





























A(LH ) ve1 ve2 ve3 ve4 ve5 ve6

ve1 0 1 1 1 0 0
ve2 1 0 1 0 0 1
ve3 1 1 0 1 0 1
ve4 1 0 1 0 1 0
ve5 0 0 0 1 0 1
ve6 0 1 1 0 1 0
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The above matrices give us the result that µ(H) = 4.6180 and ρ(LH) = 6.4081. Since
4.6180 ≤ 2 + 6.4081, the inequality µ(H) ≤ 2 + ρ(LH) holds as desired.

Example. Take a bipartite graph B, as shown in Figure 1. For convenience, we redraw this
graph, and label the edges as shown in Figure 2. Finally, Figure 3 is its line graph.

Their matrices are

















L(B) v1 v2 v3 v4 v5 v6

v1 1 0 0 −1 0 0
v2 0 3 0 −1 −1 −1
v3 0 0 2 −1 0 −1
v4 −1 −1 −1 3 0 0
v5 0 −1 0 0 1 0
v6 0 −1 −1 0 0 2

































A(LB) ve1 ve2 ve3 ve4 ve5 ve6

ve1 0 1 1 0 0 0
ve2 1 0 1 1 1 0
ve3 1 1 0 0 0 1
ve4 0 1 0 0 1 0
ve5 0 1 0 1 0 1
ve6 0 0 1 0 1 0

















.

According to matrices above, we have µ(B) = 4.8136 and ρ(LB) = 2.8136. Since µ(B) =
4.8136 = 2 + 2.8136 = ρ(LB), we see that the equality holds for a bipartite graph.

2.2 Main Results

To give a bound for the Laplacian spectral radius of T ∈ Tn,k and Tn,k, we might want to
reconstruct (e.g., deleting and adding edges) Tn,k from T , step by step, and watch how each
step affects the Laplacian spectral radius.

If a certain inequality is guaranteed for each step of reconstruction, then we are much
closer to our goal. The coming theorem gives a result for the signless Laplacian spectral
radius. Because the construction might be complicated at first, let us begin with an example
demonstrating each step.

Example. Take a graph H with labels (Figure 1). We call this the house graph.
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First, we find the signless Laplacian matrix Q(H) and its spectral radius ν(H). The matrix
is shown below and we obtain ν(H) = 5.1149.













Q(H) v1 v2 v3 v4 v5

v1 2 1 1 0 0
v2 1 3 1 1 0
v3 1 1 3 0 1
v4 0 1 0 2 1
v5 0 0 1 1 2













Recall that we have its associated positive unit eigenvector x (Perron vector):

x =

[

x1 x2 x3 x4 x5

0.3797 0.5914 0.5914 0.2796 0.2796

]T

Label each entry of x as xi (for 0 ≤ i ≤ 5) as shown. Then, let xi correspond to vi (e.g.,
x3 corresponds to v3 because they share the same index). Now, take two distinct vertices
u, v ∈ {v1, v2, v3, v4, v5} such that xu ≥ xv holds. For example, let us choose u = v2 and
v = v3, so that xu ≥ xv is preserved. Now, consider the set of vertices NH(v)\(NH(u)∪{u}).
Looking at Figure 2 above, we see that the neighbors of v are v1, v2, and v5. However, we
do not count v1 and v2, since v1 ∈ N(u) and v2 = u. We have v5 ∈ N(v)\(N(u) ∪ {u}) but
v1, v2 /∈ N(v)\(N(u) ∪ {u}).

Now, we delete an edge (v, v5) and add (u, v5) (shown in Figure 3), and we denote this
graph as H∗. The construction ends here. Then, the next theorem guarantees the inequality
ν(H) < ν(H∗).

Let us see this in our example. The matrix below is the signless Laplacian matrix for
H∗.













Q(H∗) v1 v2 v3 v4 v5

v1 2 1 1 0 0
v2 1 4 1 1 1
v3 1 1 2 0 0
v4 0 1 0 2 1
v5 0 1 0 1 2













where its spectral radius is 5.5616, which we see ν(H) = 5.1149 < 5.5616 = ν(H∗).
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Now, we are ready to state the theorem which generalizes the example above.

Theorem 2.1. Let u, v be two vertices of G and dv be the degree of vertex v. Suppose

v1, v2, . . . , vs (1 ≤ s ≤ dv) are some vertices of NG(v)\(NG(u)∪{u}) and x = (x1, x2, . . . , xn)
T

is the Perron vector of D(G) + A(G), where xi corresponds to the vertex vi (1 ≤ i ≤ n).
Let G∗ be the graph obtained from G by deleting the edges (v, vi) and adding the edges (u, vi)
(1 ≤ i ≤ s). If xu ≥ xv, then ν(G) < ν(G∗).

Proof. Let G be an n-vertex graph and let V (G) = {v1, . . . , vn}. Relabel if necessary, so
that {v1, . . . , vs} are some vertices of NG(v)\(NG(u)∪{u}). We need to verify the inequality
between ν(G) and ν(G)∗, so let us first investigate the signless Laplacian matrices of G and
G∗.

Without loss of generality, let vs+1 = u and vs+2 = v.



























Q(G) v1 ··· vs u v vs+3 ··· vn

v1 d1 ∗ 0 1
...

. . .
...

... A1

vs ∗ ds 0 1
u 0 · · · 0 du ∗ r1
v 1 · · · 1 ∗ dv r2

vs+3 ds+3 ∗
... AT

1 rT1 rT2
. . .

vn ∗ dn



























The off-diagonal entries are either 0 or 1, which are determined by A(G). However, the 1st

to sth entries of the uth and vth columns (and also rows) are completely determined by the
assumption that vi ∈ NG(v)\(NG(u)∪{u}) for 1 ≤ i ≤ s. Vertices u and v may be adjacent,
so leave this entry undetermined as ∗. We denote the rest of the blocks by A1, r1, and r2.

We next describe Q(G∗) (or Q∗ as an abbreviation) for the new graph. Note that deleting
edges (v, vi) and adding (u, vi) will not affect any entries other than the uth and vth columns
(and also rows), and the degrees of u and v.



























Q(G∗) v1 ··· vs u v vs+3 ··· vn

v1 d1 ∗ 1 0
...

. . .
...

... A1

vs ∗ ds 1 0
u 1 · · · 1 d∗u ∗ r1
v 0 · · · 0 ∗ d∗v r2

vs+3 ds+3 ∗
... AT

1 rT1 rT2
. . .

vn ∗ dn



























Let d∗u and d∗v denotes the degree of u and v in G∗. Deleting (v, vi) for 1 ≤ i ≤ s, we have
d∗v = dv − s. Similarly, adding (u, vi) for 1 ≤ i ≤ s would give d∗u = du + s.
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Having two matrix representations, now consider Q∗ −Q which is shown below.



























Q∗−Q v1 ··· vs u v vs+3 ··· vn

v1 1 −1
... 0

...
... 0

vs 1 −1
u 1 · · · 1 s 0 0

v −1 · · · −1 0 −s 0

vs+3

... 0 0 0 0

vn



























Most of the blocks have the same entries for Q and Q∗. This yields several 0 blocks in
Q∗ −Q. Now, let x = {x1, x2, . . . , xs, xs+1, xs+2, xs+3, . . . , xn} be the Perron vector given by
the assumption, and consider xTQ∗x− xTQx. (Note: we use xu = xs+1 and xv = xs+2 from
now on.) Computation is now easy by looking at the above matrices.

xTQ∗x− xTQx = xT (Q∗ −Q)x = 2

s
∑

i=1

xi(xu − xv) + s(x2
u − x2

v)

The assumption xu ≥ xv yields 2
∑s

i=1 xi(xu−xv)+s(x2
u−x2

v) ≥ 0, so that xTQ∗x−xTQx ≥ 0.
Thus, we have xTQ∗x ≥ xTQx. Then, the Rayleigh quotient with this result yields the
following:

ν(G∗) = max
‖y‖=1

yTQ∗y ≥ xTQ∗x ≥ xTQx = ν(G).

Now, we show that this inequality is strict, by way of contradiction. If equality holds, then
we must have ν(G∗) = xTQ∗x = xTQx = ν(G) by the above expression. Also, the preceding
lemma implies that we have ν(G∗)x = Q∗x and ν(G)x = Qx. Consider the vth entry of the
vector ν(G∗)x.

(ν(G∗)x)v = (Q∗x)v = d∗v · xv +
∑

vi∈NG∗ (v)

xi = (dv − s)xv +
∑

vi∈NG∗ (v)

xi

Similarly, the vth entry of the vector ν(G)x is

(ν(G)x)v = (Qx)v = dv · xv +
∑

vi∈NG(v)

xi

Then, refer to the vth row of matrices Q and Q∗, and we get the following:

∑

vi∈NG(v)

xi =
s

∑

i=1

xi +
∑

vi∈NG∗ (v)

xi
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which yields that

(ν(G)x)v = dv · xv +
s

∑

i=1

xi +
∑

vi∈NG∗(v)

xi

Now, compare (ν(G∗)x)v and (ν(G)x)v. Since each entry in the Perron vector is positive, we
must have (ν(G∗)x)v < (ν(G)x)v, from which we can deduce ν(G) < ν(G∗). However, this
contradicts our assumption, and therefore, the inequality must be strict.

Example. Let us again consider the house graph, and this time, we take u = v5 and v = v2.
Recall the Perron vector from the above example. We have xu < xv, which does not satisfy
the assumption.

The above figure shows that applying the construction would derive a new graph H∗ which
is the same as H . Thus, Q(H∗) must have the same spectral radius, and we see that the
theorem does not hold.

Example. Now, let us consider the figure below.

The signless Laplacian matrix Q(G) is shown on the left below:













Q(G) v1 v2 v3 v4 v5

v1 2 1 1 0 0
v2 1 2 1 0 0
v3 1 1 4 1 1
v4 0 0 1 2 1
v5 0 0 1 1 2

























Q(G∗) v1 v2 v3 v4 v5

v1 3 1 1 1 0
v2 1 2 1 0 0
v3 1 1 4 1 1
v4 1 0 1 2 0
v5 0 0 1 0 2













12



Taking this matrix, we find that ν(G) = 5.5616, and its Perron vector is given by

x =

[

x1 x2 x3 x4 x5

0.3077 0.3077 0.7882 0.3077 0.3077

]T

We take v = v5 and u = v1, so that xu ≥ xv is preserved. A graph G∗ is shown on the
right above, and its signless Laplacian matrix Q(G∗) is also shown on the right above. The
spectral radius of Q(G∗) is 5.7785. The statement ν(G) < ν(G∗) therefore holds.

Theorem 2.2. Let T be a tree with n vertices and k pendant vertices. Then

µ(T ) ≤ µ(Tn,k),

where equality holds if and only if T is isomorphic to Tn,k.

Proof. Let t be the number of vertices whose degrees are at least 3 (let us call such a vertex
a branch vertex). We divide the argument into cases.

Case 1: If t = 0, then the tree does not have any branches. Each vertex has degree at
most 2 so the graph must be a path. Notice that any path can be expressed as Tn,2, and
thus, T = Tn,2 shows µ(T ) = µ(Tn,2).

Case 2: If t = 1, then consider its line graph LT . Note that the edges which are incident
to the branch vertex would form a clique (complete subgraph) in the line graph.

Let k be the degree of the branch vertex. Then, the line graph contains a complete graph
Kk. Now, we see that this line graph can be obtained by adding paths P1, P2, . . . , Pk to each
vertex of Kk. Then, notice that by applying Lemmas 2.3 and 2.4 (repeatedly if necessary),
we obtain the line graph of Tn,k with inequality ρ(LT ) < ρ(LTn,k

).
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Since the trees T and Tn,k are bipartite, µ(T ) = 2+ ρ(LT ) and µ(Tn,k) = ρ(LTn,k
) by Lemma

2.5. Therefore, we have the following inequality:

µ(T ) = 2 + ρ(LT ) < 2 + ρ(LTn,k
) = µ(Tn,k).

In addition, applying the constructions of Lemmas 2.3 and 2.4 would give the strict inequality.
Thus, equality holds if and only if T is isomorphic to Tn,k.

Case 3: If t > 1, then let x = (x1, x2, . . . , xn)
T be the Perron vector of the Laplacian

matrix of T . Similar to the proof of Theorem 2.1, each xi corresponds to vertex vi (1 ≤ i ≤ n).
Assuming t > 1, let u and v be two branch vertices. Then, without loss of generality, let
xu ≥ xv. Since T is a tree, there is a unique path P between u and v. Let w be the vertex
which is the neighbor of v along the path P .

Now, let dv be the degree of the vertex v, and consider the proper subset {v1, v2, . . . , vdv−2} ⊂
NG(v)\{w}. We delete the edges (v, vi) and add the edges (u, vi) for 1 ≤ i ≤ dv − 2. Let T ∗

1

denote this new graph. Then, ν(T ) < ν(T ∗
1 ) holds by Theorem 2.1, and thus, µ(T ) < µ(T ∗

1 )
holds by Lemma 2.2.

Note that this construction preserves the number of pendant vertices, and the number of
branch vertices becomes t− 1. If t− 1 > 1, then take T ∗

1 and repeat this construction until
the number of branches becomes 1. Then, we have the increasing sequence of inequalities

µ(T ∗
1 ) < µ(T ∗

2 ) < · · · < µ(T ∗
t−1).

Note that the number of branch vertices is 1 in T ∗
t−1, so that the argument in Case 2 can be

applied. Thus, µ(T ∗
t−1) < µ(Tn,k) must hold, and therefore, we conclude µ(T ) ≤ µ(Tn,k).
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Example (Case 3 construction for Theorem 2.2). Let us consider a tree T with t = 3 as
depicted in the following figure with labels.

Among three vertices, we need to find the Perron vector and specify u and v such that
xu ≥ xv holds. First, the matrix below is the signless Laplacian matrix of T .

































































Q(T ) a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18

a1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a2 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a3 0 1 4 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0
a4 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a5 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0
a6 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
a7 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
a8 0 0 1 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0
a9 0 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 0 0
a10 0 0 0 0 0 0 0 0 1 6 1 0 1 1 0 1 1 0
a11 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0
a12 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
a13 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
a14 0 0 0 0 0 0 0 0 0 1 0 0 0 2 1 0 0 0
a15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
a16 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
a17 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 1
a18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

































































This matrix gives ν(T ) = 7.1329, and its associated eigenvector (Perron vector) is

x =

[

v1 v2 v3 v4 v5 v6 v7 v8 v9 · · ·
0.0005 0.0031 0.0155 0.0025 0.0041 0.0007 0.0007 0.0388 0.1839 · · ·

· · · v10 v11 v12 v13 v14 v15 v16 v17 v18
· · · 0.9049 0.1821 0.0297 0.1475 0.1821 0.0297 0.1475 0.1821 0.0297

]T
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The vertex a10 (corresponding to x10) is associated to the largest value of Perron vector.
Thus, let u = a10 and v = a3, so that xu ≥ xv is preserved. The vertex w = a8 is uniquely
determined, and then relabel {v1, v2, v3} ⊂ NG(v)\{w} as in Figure 2. Now delete (v, vi)
and add (u, vi) for 1 ≤ i ≤ dv − 2 where dv − 2 = da3 − 2 = 4− 2 = 2 (Figure 3).

Rearrange and relabel T ∗
1 (Figure 4). Now, this graph has two branch vertices, a5 and a10.

Before we move on to the next construction, let us find the Laplacian spectral radius. The
signless Laplacian matrix for T ∗

1 is shown below.

































































Q(T ∗

1 ) a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18

a1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a2 1 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
a3 0 0 2 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
a4 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
a5 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0
a6 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
a7 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
a8 0 0 1 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0
a9 0 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 0 0
a10 0 1 0 1 0 0 0 0 1 8 1 0 1 1 0 1 1 0
a11 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0
a12 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
a13 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
a14 0 0 0 0 0 0 0 0 0 1 0 0 0 2 1 0 0 0
a15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
a16 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
a17 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 1
a18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

































































This matrix gives ν(T ∗
1 ) = 9.0891. Recall that Lemma 2.2 implies that the spectral radius

of D + A and D − A are the same, so we have

µ(T ) = ν(T ) = 7.1329 < 9.0891 = ν(T ∗
1 ) = µ(T ∗

1 )
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as desired. Now, the Perron vector associated with ν(T ∗
1 ) is the following:

x =

[

v1 v2 v3 v4 v5 v6 v7 v8 v9 · · ·
0.0165 0.1338 0.0028 0.1152 0.0005 0.0001 0.0001 0.0193 0.1342 · · ·

· · · v10 v11 v12 v13 v14 v15 v16 v17 v18
· · · 0.9322 0.1338 0.0165 0.1152 0.1338 0.0165 0.1152 0.1338 0.0165

]T

Again, the vertex a10 is associated with the largest value in the Perron vector. We apply the
same construction as previous which is illustrated in Figures 5 and 6 below.

The matrix below is the signless Laplacian matrix for T ∗
2 .

































































L̂(T ∗

2 ) a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18

a1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a2 1 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
a3 0 0 2 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
a4 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
a5 0 0 1 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0
a6 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
a7 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
a8 0 0 1 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0
a9 0 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 0 0
a10 0 1 0 1 0 1 0 0 1 9 1 0 1 1 0 1 1 0
a11 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0
a12 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
a13 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
a14 0 0 0 0 0 0 0 0 0 1 0 0 0 2 1 0 0 0
a15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
a16 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
a17 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 1
a18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

































































This matrix gives ν(T ∗
2 ) = 10.0695, so that we have µ(T ) < µ(T ∗

1 ) < µ(T ∗
2 ) as desired.
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Example. Let us consider Figure 1 below.

Since T has t = 2 (branch vertices v2 and v6), we find the signless Laplacian spectral radius
and its associated Perron vector.

























1 1 0 0 0 0 0 0
1 3 1 0 1 0 0 0
0 1 2 1 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 2 1 0 0
0 0 0 0 1 3 1 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 1

























This matrix gives ν(T ) = 4.4763 and the Perron vector

x =

[

x1 x2 x3 x4 x5 x6 x7 x8

0.1780 0.6186 0.2826 0.0813 0.4527 0.5024 0.1445 0.1445

]T

.

We see that x2 is the larger than x6, so let u = v2 and v = v6. Let each vertex label be as in
Figure 2, and then delete edge (v, v1) and add (u, v1). Let T ∗

1 denote the new graph shown
in Figure 3.

Label T ∗
1 as shown, and we get µ(T ∗

1 ) = 5.1732. Now, T ∗
1 is a tree with t = 1. We then find

its line graph (Figure 4). Note that this graph can be obtained by adding two paths to a
complete graph K4.
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Now, the following figures are the graph T8,4 and its line graph LT8,4 .

Notice that, by applying Lemma 2.4 to LT ∗

1
, we obtain LT8,4 . Now, with all results together,

we have
µ(T ) < µ(T ∗

1 ) = 2 + ρ(LT ∗

1
) < 2 + ρ(LT8,4) = µ(T8,4)

which is the desired inequality.

2.3 Consequences

The rest of paper is devoted to several consequences of our main result.
Let G be a connected graph. A cut vertex in G is a vertex whose deletion breaks G

into at least two parts. Let Φn,k be the set of all connected graphs on n vertices that have
exactly k cut vertices. The graph Gn,k is obtained by adding paths P1, . . . , Pn−k of almost
equal length (by the length of a path, we mean the number of its vertices) to the vertices of
the complete graph Kn−k.

The construction of Gn,k is similar to the one for Tn,k. We are connecting n − k paths
to vertices of a complete graph, Kn−k. “Almost equal length” is again determined by the
quotient q and the remainder r, given by the division algorithm with n and n − k. Thus,
we are connecting n− k paths of q vertices, and among these n− k paths, there are r paths
with an extra vertex.

Take n = 9 and k = 5, for example. Since n − k = 9 − 5 = 4, we start with a complete
graph K4. Since 9 = 2 · 4 + 1, the number of vertices in each of the paths is at least 2, and
among the three paths, 1 path has an extra vertex.
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We see that G9,5 really has 9 vertices and 5 cut vertices. Now, we can prove the following
corollary as a consequence of our main results.

Corollary 2.1 (Berman and Zhang [2]). Of all the connected graphs on n vertices and k cut

vertices, the maximal spectral radius is obtained uniquely at Gn,k.

Proof. Take any G ∈ Φn,k. We need to show that ρ(G) ≤ ρ(Gn,k) with equality only when
G = Gn,k. The adjacency matrix of a connected graph is irreducible. Thus, adding an edge e
to G would increase the spectral radius (stated in [2], or we can see this holds by the Perron
Frobenius theorem in [4]). Recall that G has n vertices and k cut vertices. If the above is
true, then the spectral radius of A(G) is maximized when each cut vertex connects exactly
two blocks which are cliques. Thus, we assume that G is such a graph as just explained, and
we will show that ρ(G) ≤ ρ(Gn,k) is still preserved.

Recall line graphs from Lemma 2.5 or Theorem 2.2. In a tree, we see that the edges which
are incident to a branch vertex would form a complete subgraph in the line graph. That is,
there exists a tree T whose line graph is isomorphic to G.
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There are n vertices in G and G ∼= LT . Thus, the number of edges in T must be n, and since
T is a tree, there are exactly n + 1 vertices. In addition, each cut vertex in G connects two
blocks, So there are k + 1 blocks, and thus, T has k + 1 branch vertices.

Note that, in T , there are no vertices of degree 2. Otherwise, consider its line graph.

In LT , blocks of cliques are connected by an edge, not a vertex. However, this line graph
cannot be isomorphic to G as explained above. Therefore, the claim must hold, and thus, T
must consist only of pendant vertices and branch vertices.

Recall that a non-cut vertex in a tree is exactly a pendant vertex. The number of pendant
vertices in T is now given by (n + 1)− (k + 1) = n− k.

Now, consider a tree Tn+1,n−k. Recall that this graph consists of one branch vertex with
n − k paths of almost equal length, so that its line graph LTn+1,n−k

must be isomorphic to
Gn,k.

Then, applying Lemma 2.5 and Theorem 2.2 repeatedly, we get

ρ(G) = ρ(LT ) = µ(T )− 2 ≤ µ(Tn+1,n−k)− 2 = 2 + ρ(LTn+1,n−k
)− 2 = ρ(Gn,k)

as desired. By the construction, the equality holds only when G ∼= Gn,k.
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