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Abstract

We consider a number of related results taken from two papers – one
by W. Lin [1], and the other D. C. Fisher[2]. These articles treat various
forms of graph colorings and the famous Mycielski construction. Recall
that the Mycielskian µ(G) of a simple graph G is a graph whose chromatic
number satisfies χ(µ(G)) = χ(G)+1, but whose largest clique is no larger
than the largest clique in G.

Extending the work of Mycielski, the results presented here investigate
how the Mycielski construction affects a related parameter called the kth

chromatic number χk(G), developing an upper and lower bound for this
parameter when applied to µ(G). We then prove that there are infinite
families of graphs that realize both the upper and lower upper bounds.

Alongside these main results, we also include a remarkable curiosity,
first found by Fisher, that although the fractional chromatic number of
a graph G might be expressible as a/b in lowest terms, that does not
necessarily imply that there exists a proper coloring of G with the b-
element subsets of an a-element set. We also demonstrate that the ratio
χk(G)/k, where χk(G) denotes the k-tuple chromatic number, is not a
strictly decreasing function.

1. Introduction to Graph Colorings

A graph G consists of a finite set V (G) of vertices together with a set E(G)
of 2-element subsets of V (G). The elements of E(G) are referred to as edges.
Note that, with this definition, a graph is necessarily simple, meaning that there
are no loops, multiple edges, or directed edges permitted. Two vertices u and
v contained in an edge are said to be adjacent, and this is denoted a ∼ b. We
also say v is a neighbor of u.

Let G denote a graph and let k denote a positive integer. A k-coloring
of G is a mapping that sends each vertex in V (G) to an element in the set
[k] := {1, 2, . . . , k}. We refer to the elements of [k] as colors. A k-coloring is
called proper if no two adjacent vertices are mapped to the same color. The
chromatic number χ(G) is the smallest k for which a proper k-coloring exists.

There are many variations on the chromatic number of a graph; we mention
two. A proper k-tuple coloring maps each vertex to a k-element set of positive
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integers, such that adjacent vertices are mapped to disjoint sets. The kth chro-
matic number χk(G) is the smallest n such that proper k-tuple coloring exists
that maps each vertex to a k-element subset of [n]. Notice that χ1(G) is just
the usual chromatic number χ(G). The reader may wish to verify, for example,
that when G is a 5-cycle, we have χ2(G) = 5.

χ2(C5) = 5

Now fix any a, b ∈ N with a ≥ b. A proper a/b-coloring maps each vertex to
some b-element subset of [a], such that adjacent vertices are mapped to disjoint
sets. Such colorings differ from k-tuple colorings only in the sense that both set
sizes a and b are determined. So χk(G) can be viewed as the minimum a such
that a proper a/k-coloring exists. By contrast, the fractional chromatic number
χf (G) is the infimum of all the fractions a/b such that there exists a proper
a/b-coloring. The fractional chromatic number is known to be always rational,
but this is not trivial to prove [3].

χf (C5) = 5/2

Curiously, if the fractional chromatic number of a graph is written a/b in
lowest terms, there may not always exist a proper a/b-coloring. For example,
a graph may have a proper 10/4-coloring and have χf (G) = 5/2, but not have
a proper 5/2-coloring. This was first shown by Fisher[2], and will be explored
later in this paper.

2. Homomorphisms and Colorings

Graph homomorphisms offer another way to view the proper colorings of
a graph. Given two graphs X and Y , a mapping f : V (X) → V (Y ) is a
homomorphism if f(x1) is adjacent to f(x2) whenever x1 and x2 are adjacent
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[3]. Graph homomorphisms are a bit different than many other notions of
homomorphism, because the definition is just an “if” statement, rather than an
“if and only if” statement. In particular, x1 ∼ x2 implies f(x1) ∼ f(x2), but
not vice-versa. The figure below illustrates a homomorphism from the graph on
the left to the graph on the right.

In order to connect homomorphisms with graph colorings, we need to define
an important family of graphs. For any positive integers m and k, the Kneser
graph Gm,k, is formed by defining V (Gm,k) to be the set of all k-element sub-
sets of the set [m] := {1, 2, . . . ,m}. Two such subsets are adjacent if their
intersection is empty.

The graph G6,2

The complete graph Km can be defined as a special case of the Kneser graph
in which k=1, so that Km = Gm,1. Note that, in a complete graph, every pair
of distinct vertices is adjacent.
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The graph K6

It is easy to see that there exists a homomorphism from a graph G to the
Kneser graph Gm,k if and only if there there exists a proper m/k-coloring of
G. The figure below illustrates the homomorphism corresponding to the 5/2-
coloring of the 5-cycle from above.

A homomorphism C5 → G5,2

Similarly, a homomorphism to the complete graph Km corresponds to a
proper m-coloring of G. We note that an isomorphism is, by definition, a
homomorphism that is bijective, and whose inverse is also a homomorphism.

3. Cliques and the Mycielski Construction

A set of k mutually adjacent vertices in a graph is called a k-clique. The
clique number ω(G) of a graph is the size of the largest clique in G. Since the
vertices of a clique must be assigned distinct colors, we have

χ(G) ≥ ω(G).

In other words, one cause for a graph to have a large chromatic number is the
existence of a large clique. It is natural to wonder if this is necessary.

The Mycielski construction gives us a way to increase the chromatic number
by one without increasing the clique number. The Mycielskian µ(G) of a graph
G is defined as follows. Let G be a graph with vertex set V = {v1, v2, . . . , vn}
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and edge set E. Let V 1 be a copy of the vertex set, and u be a single vertex.
Then the Mycielskian µ(G) has the vertex set

V 0 ∪ V 1 ∪ {u}.

The edge set of µ(G) is the set

{v0j v0j′ : vjvj′ ∈ E} ∪ {v0j v1j′ : vjvj′ ∈ E} ∪ {v1ju : ∀v1j ∈ V 1}

For example, the Mycielskian of the 5-cycle C5 is indicated below:

The Mycielskian µ(C5)

This construction can generalized. Let G be a graph with vertex set V =
{v1, v2, . . . , vn} and edge set E, and let p be any positive integer. For each
integer i (0 ≤ i ≤ p) let V i be a copy of the vertices in V , so that V i =
{vi1, vi2, ..., vin}. The p-Mycielskian µp(G) has the vertex set

V 0 ∪ V 1 ∪ V 2 ∪ ... ∪ V p ∪ {u},

where u is a single vertex. The edge set of µp(G) is the set

{v0j v0j′ : vjvj′ ∈ E} ∪

(
p−1⋃
i=0

{
vijv

i+1
j′ : vjvj′ ∈ E

})
∪ {vpju : ∀vpj ∈ V

p}

In other words, V 0 induces a subgraph isomorphic to G, while the other sets V i

contain no edges. Each vertex v1j in V 1 is adjacent to every neighbor of v0j . The

edges between V 0 and V 1 are “copied” between each V i and V i+1, and finally,
vertex u is adjacent to all of V p. An example of this construction is as follows.
Let G be the following graph:

Then µ3(G) would be the following:
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We observe that µ1(G) is just the original Mycielskian µ(G). Furthermore,
we define the graph µ0(G) to be the graph G plus a single new vertex u that is
adjacent to all the vertices of G. Most of our main results concern µ(G).

4. Bounds on χk(µ(G))

Mycielski made the simple observation that χ(µ0(G)) = χ(G) + 1. Indeed,
as we will now see, it is easy to show that, for any k ≥ 1,

χk(µ0(G)) = χk(G) + k.

To see this, notice that µ0(G) introduces one new vertex u which is adjacent
to every vertex of G. Therefore, k new colors must be introduced so that u
can be properly colored with a k-element set that is disjoint from all the colors
assigned to vertices of G.

How do these results look if we replace µ0(G) by µ(G)? Wensong Lin dis-
covered the following.

Theorem 4.1. [1] For any graph G and any integer k ≥ 1,

χk(G) + 1 ≤ χk(µ(G)) ≤ χk(G) + k.

Proof. Assume G has vertices {v1, . . . , vn}. To prove the upper bound we
let m = χk(G) and we construct a proper k-tuple coloring of µ(G) that uses at
most m + k colors. To this end, let c be a proper k-tuple coloring of G that
assigns each vertex to some k-element subset of [m]. We now define a function
h that assigns each vertex of µ(G) to a k-element subset of [m + k]. Define
h(v0i ) = h(v1i ) = c(vi) for all i ∈ [n] and define h(u) = {m+ 1,m+ 2, ...,m+ k}.
To see that this coloring h is proper, recall that every edge of µ(G) either: (i)
has both endpoints in V 0, (ii) has one endpoint in V 0 and the other in V 1, or
(iii) has one endpoint in V 1 and the other endpoint equal to u. Since h agrees
with the proper coloring c when restricted to V 0, each of the edges in case (i)
has disjoint k-tuples assigned to its endpoints. Since each v1i ∈ V 1 is adjacent
to the same vertices in V 0 as v0i , and since h(v1i ) = h(v0i ), it follows that the
edges in case (ii) have disjoint k-tuples assigned to their endpoints. Finally,
observe that h(u) consists of colors not appearing on any other vertex of µ(G).
So the edges in case (iii) have disjoint k-tuples assigned to their endpoints. It
follows that h is a proper k-tuple coloring of µ(G) that uses at most m + k
colors. Therefore χk(µ(G)) ≤ χk(G) + k.
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To prove the lower bound we let t = χk(µ(G)) and let g be a proper k-tuple
coloring of µ(G) that uses at most t colors. Let k0 be one of the colors in
the k-element set g(u). We will construct a proper k-tuple coloring f of G in
which the color k0 is not used. Define f(vj) = g(v0j ) if k0 6∈ g(v0j ), and define

f(vj) = g(v1j ) if k0 ∈ g(v0j ). Note that k0 6∈ g(v1j ) since u ∼ v1j and k0 ∈ g(u).
It follows that for every vertex vj of G, the k-tuple f(vj) does not contain k0.
To see that this coloring f is proper, assume vi ∼ vj . Since both v0i and v1i
are adjacent to v0j in µ(G), it must be the case that both g(v0i ) and g(v1i ) are

disjoint from g(v0j ). So if k0 6∈ g(v0j ), then f(vi) is disjoint from f(vj). Similarly,

f(vi) is disjoint from f(vj) if k0 6∈ g(v0i ). Since g(v0i ) and g(v0j ) are disjoint,
this exhausts all possibilities. Therefore f is a proper k-tuple coloring of G that
uses at least 1 fewer colors than g. So χk(G) ≤ χk(µ(G))− 1 as desired. �

Both bounds are easily achieved, as the following examples illustrate.

Example 4.2. (Upper bound) Let G be a graph consisting of a single isolated
vertex.

Then µ(G) appears as follows.

Notice that the edges in µ(G) force disjointness of the k-element sets assigned
to their endpoints, so χk(µ(G)) = χk(G) + k and the upper bound is reached.

Example 4.3. (Lower bound) Let G = K2 and consider the following proper
2-tuple coloring.

Then µ(G) is a 5-cycle C5 and has a proper 2-tuple coloring that only uses
5 colors.

Since χk(G) + 1 ≤ χk(µ(G)) and χ2(G) + 1 = 5, this must be optimal. So
χ2(µ(G)) = χ2(G) + 1 and the lower bound is reached.
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There are, however, infinite families of graphs that meet these bounds. We
will present the results from [1] that show that the Kneser graphs of the form
Gm,2 meet the upper bound, and the complete graphs Kn meet the lower bound
when n ≥ k.

5. Graphs That Meet the Upper Bound

In order to establish an infinite family of graphs which meet the upper bound,
a proof by induction will be used. We will need two base cases to show that

χ2(µ(Gm,2)) = m+ 2

for all integers m ≥ 5. Therefore, we begin with two lemmas. These will
establish that G5,2 (the well-known Peterson graph) and G6,2 meet the stated
bound.

Lemma 5.1. [1] The graph G5,2 satisfies

χ2(µ(G5,2)) = 7

Before we present the proof of this result, we make a few observations. By
Theorem 4.1, we know that

6 = χ2(G5,2) + 1 ≤ χ2(µ(G5,2)) ≤ χ2(G5,2) + 2 = 7.

Therefore the kth chromatic number is either 6 or 7.
We would like to take this opportunity to illustrate the coloring described

in the proof of Theorem 4.1. That construction, when applied to this graph,
should produce a proper 2-tuple coloring of µ(G5,2) that uses 7 colors from any
given proper 2-tuple coloring of G5,2 that uses 5 colors. The following is a proper
2-tuple coloring of G5,2.

Below we illustrate the associated proper 2-tuple coloring of µ(G5,2) given
by the theorem.
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This particular 2-tuple coloring is not by any means unique. For example,
below is an equally valid proper 2-tuple coloring that is different from the one
above.

In any case, it is clearly true from the above that χ2(µ(G5,2)) ≤ 7. To show
that χ2(µ(G5,2)) = 7, we will assume that there is a proper 2-tuple coloring of
the graph that only uses 6 colors, and we will obtain a contradiction. Before
embarking on this task, it is convenient to make two observations.

Observation 5.2. [3] The graphs Gm,k are all vertex-transitive and G5,2 has
diameter 2.

Remark. Recall that a graph G is vertex-transitive if, for any pair of vertices x
and y, there is an isomorphism from G to itself that maps x to y. The diameter
of a graph is the maximum value of the path-length distance function when
maximized over all pairs of vertices.

Proof. (of Observation 5.2) To see that Gm,k is vertex-transitive, pick any two
vertices x and y. Then x and y are k-element subsets of [m]. Let f be any
permutation of m that sends x to y. Then f(x) is disjoint from f(y) iff x and
y are disjoint. So f is an isomorphism.

Since the elements of G5,2 are 2-element subsets of [5], any two vertices are
either: (i) identical, (ii) disjoint, or (iii) intersect in 1 element. It follows that
the two vertices are at distance 0, 1, or 2, respectively. (To see that vertices in
case (iii) are distance 2 apart, let a, b, c, d, e be distinct elements of [5]. Notice
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that ab and bc share 1 element, but ab is disjoint from de and de is disjoint from
bc. So ab ∼ de ∼ bc.) �

Since the Petersen graph P = G5,2 is vertex-transitive, each vertex will give
rise to a distance-partition of the following general form.

It easy to verify, for example, that when the permutation (123) is applied to
the vertices, the form of the distance partition will remain the same.

Observation 5.3. [1] Suppose h is a proper 2-tuple coloring of µ(G5,2) that
uses at most 6 colors. Then every odd cycle C in V 0 will have at least one
vertex x such that h(x) is disjoint from h(u).

Proof. Assume there is no x ∈ C such that h(x) ∩ h(u) = ∅. Then all of the
vertices of C have one or two colors in common with h(u). If a vertex has two
colors in common with h(u) then any vertex in C that is adjacent to that vertex
must be disjoint from h(u), a contradiction. So all the vertices of C must have
one color in common with h(u). Without loss of generality, let h(u) = {1, 2}.
Then the vertices in the cycle C will have either a one or a two in their coloring.
But this would imply that C is bipartite, which is a contradiction since this
is an odd cycle. Therefore, at least one vertex must have a coloring which is
disjoint from h(u). �

We are now ready to prove Lemma 5.1. For clarity, we label the vertices of
G5,2, which are 2-element subsets of [5], as follows:

vij := {i, j}.

With this convention, the Mycielskian µ(G5,2) has vertices {v0ij}, {v1ij}, and u,
where i and j are distinct elements of [5].

Proof. (of Lemma 5.1) By way of contradiction, assume h is a proper 2-tuple
coloring of µ(G5,2) that uses at most 6 colors. By Observation 2, and since
G5,2 has odd cycles, there exists a vertex v ∈ V 0 such that h(v)∩ h(u) = ∅. By
Observation 1, it doesn’t matter which vertex, so we suppose it is v012. Renaming
the colors if necessary, we assume that h(u) = {1, 2} and h(v012) = {5, 6}. Since
v135, v

1
34, and v145 are adjacent to both v012 and u, it must be the case that

h(v135) = h(v134) = h(v145) = {3, 4}.

10



Consider the diagram of µ(G5,2) depicted below. In this diagram, the top 3 cells
represent the distance partition of the vertices in V 0 according to their distance
from v012. (Recall that G5,2 has diameter 2.) The 3 cells below this are the
corresponding vertices in V 1, and the bottom vertex is u. The sets appearing
by each cell describe the colors that are available to color those vertices. The
proper 2-coloring h must assign to vertices in each cell only pairs of colors from
the indicated subsets of [5].

We can narrow the possibilities for how the vertices are colored in the top-
rightmost cell of the above diagram. These are vertices in V 0 that are distance
2 from v012. Below is the subgraph of µ(G5,2) that is induced on the vertices in
the top-rightmost cell and the middle cell of the second row. Specifically, this
is the subgraph induced on the vertices v013, v024, v015, v023, v014, v025, v145, v134, and
v135.
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If h(v013) = {5, 6} (a similar argument holds for {1, 2}) the subgraph must
be colored in the following way:

But if the central vertices v145, v134, and v134 are replaced by v045, v034, and v034,
respectively, the induced subgraph is the same. So v045, v034, and v034 must all be
colored {3, 4}. These are the vertices in the middle cell of the top row. This
further forces the available colors in the rest for the graph in the following way:

To see that this is impossible, note that v013 ∼ v124 and v023 ∼ v115. Also,
h(v124) = h(v115) = {56}, but one of v013 and v024 must be colored {5, 6}, as
they are opposite on the above 6-cycle. A similar argument shows that h(v01,3)
cannot be {1, 2}. It follows that |h(v013)∩ {1, 2}| = |h(v013)∩ {5, 6}| = 1 and, by
symmetry, all vertices distance 2 away from v012 in the set V 0 must satisfy the
above condition.

Notice that if all the vertices in the middle cell of the top row are colored
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{3, 4}, in other words, if h(v035) = h(v034) = h(v045) = {3, 4}, then the vertices in
the rightmost cell of the middle row must all be colored {5, 6}. In particular,
h(v124) = {5, 6}. This is impossible, however, since v013 ∼ v124 and |h(v013) ∩
{5, 6}| = 1. Therefore, one of the vertices v035, v034, v045 must have a nonempty
intersection with h(u) = {5, 6}.

However, regardless of which of the vertices v035, v034, v045 has a nonempty
intersection with h(u) = {5, 6}, there will be a 5-cycle containing that vertex
and 4 of the vertices in the top-rightmost cell. For example, v035, v014, v023, v015,
v024 form a 5-cycle. But none of the vertices of such a cycle are disjoint from
{5, 6}, which contradicts Observation 2.

Therefore there is no proper 2-tuple coloring of µ(G5,2) that only uses 6
colors. It follows that χ2(µ(G5,2)) = 7. �

In order to determine the 2-tuple number of µ(Gm,2), we will need to cite
two related results. It is well known (see [3] and [Johnson, Holroyd, Stahl]),
although not trivial to show, that for any positive integers m and k,

χ(Gm,k) = m− 2k + 2 and χk(Gm,k) = m. (1)

Using these two results, we are now in a position to prove the following.

Lemma 5.4. [1] The graph G6,2 satisfies

χ2(µ(G6,2)) = 8.

Proof. By (??), we know that χ(G6,2) = 4 and χ2(G6,2) = 6. Now, by
Theorem 4.1, we know that

7 = χ2(G) + 1 ≤ χ2(µ(G)) ≤ χ2(G) + 2 = 8.

Assume, for a contradiction, that χ2(µ(G6,2)) = 7 and let h be a proper 2-tuple
coloring of µ(G6,2) that uses at most 7 colors. Without loss of generality let
h(u) = {1, 2}. Notice that any two adjacent vertices in G6,2 have a unique com-
mon neighbor. So any v0i ,v0j ∈ V 0 of µ(G6,2) have a unique common neighbor

in V 0, call it v0k. Notice that v1k is adjacent to v0i , v
0
j and u. Therefore either

h(v0i ) or h(v0j ) must intersect h(u) or else v1k can not be properly colored with a

2-element set disjoint from all of v0i , v
0
j and u. Therefore the set I0 of all vertices

v ∈ V 0 for which h(v) is disjoint from h(u) must form an independent set. There-
fore V 0 can be partitioned into independent sets I0 = {v ∈ V 0 : h(v)∩h(u) = ∅},
I1 = {v ∈ V 0 : 1 ∈ h(v)∩h(u)}, and I2 = {v ∈ V 0 : h(v)∩h(u) = {2}} meaning
that the subgraph induced on V 0 is 3-colorable which is a contradiction that
χ(G6,2) = 4. Therefore χ2(µ(G6,2)) = 8. �

We now have completed the base cases for an inductive proof of the following.
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Theorem 5.5. [1] For any integer m ≥ 5,

χ2(µ(Gm,2)) = m+ 2.

Proof. Proof by induction on m. Lemmas 2 and 3 verify the base cases. So
by (??) and Theorem 4.1, we know that

m+ 1 = χ2(Gm,2) + 1 ≤ χ2(µ(Gm,2)) ≤ χ2(Gm,2) + 2 = m+ 2.

Assume, for a contradiction, that h is a proper 2-tuple coloring of µ(Gm,2) that
uses m + 1 colors. Without loss of generality let h(u) = {1, 2}. If no vertex in
V 0 were disjoint from h(u) then the subgraph induced on V 0 would be bipartite,
with bipartition

A = {v ∈ V 0 : {2} = h(v) ∩ h(u)}

B = {v ∈ V 0 : 1 ∈ h(v) ∩ h(u)}.

So there must exist a vertex vi ∈ V 0 such that h(vi) is disjoint from h(u).
Without loss of generality we assume h(vi) = {m,m+1}. Look at the following
graph:

Note that the subgraph induced N(vi) ∪ {u} is isomorphic to µ(Gm−2,2).
This is clear from the construction of Gm,2, since N(vi)∩ V 0 corresponds to all
2-element subsets of an m-element set minus the 2-element subset that repre-
sents vi. Since vi is adjacent to all N(vi) and h(vi) is disjoint from u by selec-
tion of the vertex vi, this subgraph must be colored with m − 1 colors which
is a contradiction of the induction hypothesis χ2(µ(Gm−2,2) = m. Therefore
χ2(µ(Gm,2)) = m+ 5 for integers m ≥ 5. �

6. Graphs That Meet the Lower Bound

The previous section established an infinite family of graphs that meet the
upper bound for Theorem 4.1. In this section we consider the k-tuple colorings
of the complete graphs on n vertices, where n ≥ k. With these graphs, we
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will find that χk increases only by one when the Mycielskian is applied, so the
lower bound is met. In fact, Lin [1] has proven a more general result about the
p-Mycielskian which simplifies, when p = 1, to the results we are interested in
for this paper.

Theorem 6.1. [1] For any integers p ≥ 0, n ≥ 3, and k ≥ 1, we have

χk(µp(Kn)) = nk +

⌈
(n− 2)k

(n− 1)p+1 − 1

⌉
Since this paper is primarily concerned with the case p = 1, the formula

above simplifies to

χk(µ(Kn)) = nk +

⌈
(n− 2)k

(n− 1)2 − 1

⌉
Also note that if k ≤ n then n2 − 2n ≥ (n− 2)k, meaning that

⌈
(n−2)k

(n−1)2−1

⌉
= 1.

For any k there will be an infinite number of Kn, where n ≥ k that will meet
the lower bound of Theorem 4.1. This is our goal, and so it is in this form that
we will prove the result.

Lemma 6.2. For any integers n ≥ k ≥ 1, we have

χk(µ(Kn)) = nk + 1.

Proof. By Theorem 4.1 we know that

kn+ 1 = χk(Kn)) + 1 ≤ χk(µ(Kn)).

To see that equality holds, it suffices to demonstrate that µ(Kn) has a proper
k-tuple coloring with nk + 1 colors. To this end, let c(Kn) be a proper k-tuple
coloring of Kn which uses kn colors. Define a k-tuple coloring of µ(Kn) by
h(v0i ) = c(vi) for all i (1 ≤ i ≤ n) and let h(v1i ) = c(vi), except replace the first
color in this set with the color nk + 1, and let

h(u) = {1, k + 1, 2k + 1..., (k − 1)k + 1}.

This a proper coloring of the graph µ(Kn) as shown in the following figure:
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With the demonstration of a proper k-tuple coloring using nk+ 1 colors, we
have completed our proof. �

We have seen in this section that there exists an infinite family of graphs (the
complete graphs) that meet the lower bound of Theorem 4.1, and, in the previous
section, we found an infinite family that meets the lower bound. Therefore the
bounds established are the best possible.

7. Fractional Colorings of Mycielskians

Although the focus of this paper has concerned k-tuple colorings, rather
than fractional colorings, it is important to understand some of the history that
motivates these results. For example, it has been shown [1] that, for any graph
G, the fractional chromatic number of the Mycielskian must satisfy

χf (µ(G)) = χf (G) +
1

χf (G)
.

One consequence of this result is that, when combined with Mycielski’s original
result that χ(µ(G)) = χ(G) + 1, it reveals that the gap between the chromatic
number and the fractional chromatic number can be arbitrarily large.

The above result was later generalized [cite] to the p-Mycielskian, so that

χf (µp(G)) = χf (G) +
1∑p

k=0(χf (G)− 1)k
.

Observe that, in the case p = 1, this equation reduces to the result above.
As mentioned earlier, however, the reduced fractions a/b that represent the

fractional chromatic number of a graph might not be realized by a proper a/b-
coloring of the graph [2]. This curious phenomenon led researchers to explore
further the kth chromatic number.

8. A Curiosity

In this section, we expound upon the curious phenomenon described above.
Notice that the chromatic numbers of the 5-cycle C5 satisfy

χ2(C5) = 5, and χf (C5) = 5/2.

In this case, the fraction that is the fractional chromatic number does correspond
to a proper a/b-coloring. However, this is not always the case. We consider the
following graph whose fractional chromatic number is 3

1 , and yet there is no
proper 1-tuple coloring that only uses 3 colors:
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To show there is no proper 3/1-coloring, we will prove that all colorings using
only 3 colors must be improper. To start, there is a 3-cycle around the outside.
Without loss of generality assign it colors as follows:

Looking at the vertex colored {1}, there is another 3-cycle containing it
which can be colored in two ways, both leading to a contradiction. One way is
as follows:

As you can see, after coloring the upper inner triangle, the colors of the two
inner vertices are forced to be {1}. These vertices are adjacent, however. So
this is an improper coloring, and the upper triangle must be colored differently.
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This coloring of the upper triangle forces another pair of adjacent inner
vertices to be colored {1}, therefore this is also an improper coloring. Therefore
there is no way to 1-tuple color the graph only using 3 colors. However, there
is a proper 2-tuple coloring of the graph that uses 6 colors as follows:

Therefore it is possible that the fractional chromatic number may, in lowest
terms, be a/b without there existing a proper a/b-coloring of the graph!

9. The Value χk(G)/k Does Not Strictly Decrease

In this section we make an observation about the behavior of the ratio
χk(G)/k as the value of k increases. In [2], Fisher points out that the frac-
tional chromatic number is related to the k-tuple colorings as follows:

χf = lim
k→∞

χk(G)/k.

However, we would like to illustrate by example the fact that the sequence
χk(G)/k is not strictly decreasing. Observe the following k-colorings of the
5-cycle C5:
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χ1(C5)/1 = 3

χ2(C5)/2 = 5/2

χ3(C5)/3 = 8/3

We notice that
χ2(C5) = 5/2 ≤ 8/3 = χ3(C5).

Therefore it is not a strictly decreasing sequence. In fact it is not difficult to

show that χ2n(C5) = 5/2 and χ2n+1(C5) = d2.5·(2n+1)e
2n+1 . This implies that the

sequence of χk(C5)/k will oscillate as it converges to 5/2.
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