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Introduction

This presentation discusses the paper “On the maximum number of
edges in a hypergraph with a unique perfect matching” written by:

Deepak Bal Andrzej Dudek Zelealem B. Yilma
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Definitions

A graph G is a finite set of vertices V along
with a set of edges E where every edge is a set
containing exactly two vertices.

A hypergraph G is a finite set of vertices V

along with a set of edges E ⊆ PV \ {∅} (where
PV denotes the power set of V) such that no
two edges in E are equal as sets. A hypergraph
is k-uniform if every E ∈ E has cardinality k.
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Definitions

A matching in a hypergraph G = (V, E) is a
set of pairwise disjoint edges {M1, . . . ,Mm}

A perfect matching is a matching
{M1, . . . ,Mm} such that V = ]mi=1Mi. In
other words, a perfect matching is a collec-
tion of edges that partition the vertex set.
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Values of f(k,m)

HHH
HHHk
m

1 2 3 4

2 1 4 9 16

3 1 11 48 130

4 1 36 297 1168

5 1 127 1878 10504
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Construction

We create a sequence of k-uniform hypergraphs attaining the
claimed bound through an iterative construction.

First, define H∗
1 as the hypergraph with k vertices and one edge

containing all the vertices.

To create H∗
m, start with H∗

m−1 and...

Add k − 1 new vertices
Add every edge that intersects at least one of these new
vertices
Add 1 new pendant vertex
Add the edge that contains the k new vertices including the
pendant.
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Start with H∗
1.
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Add k − 1 = 1 new vertex and connect it to all previous vertices.



Example k = 2

Add a pendant vertex and an edge containing “new” vertices.
This is now H∗
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Example k = 2

Repeat the process again to create the next hypergraph.
Add k − 1 = 1 new vertex and connect it to all previous vertices.
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This is now H∗
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1.
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Example k = 3

Add k − 1 = 2 new vertices.
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Example k = 3

Add all edges that contain some “new” vertex.
Add edge {2, 3, 4}.
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Add all edges that contain some “new” vertex.
Add edge {3, 4, 5}.
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Add all edges that contain some “new” vertex.
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Example k = 3

Add a pendant vertex.
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Example k = 3

Add edge {4, 5, 6} containing the “new” vertices.
This is now H∗

2.
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There is a unique perfect matching in H∗
m

[Pictures depict the proof in the 2-uniform case.]
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Theorem

There is a unique perfect matching in H∗
m

E

Proof by induction

Base Case: Trivial. This hypergraph only has one edge which
contains every vertex.

Inductive Step: The edge E incident with the pendant vertex
in H∗

m must be included in any perfect matching.

No other edge in a perfect matching can intersect E. This
excludes all edges incident with some “new” vertex.

After eliminating such edges, we are left with a hypergraph
isomorphic to H∗

m−1 which has a unique perfect matching by
induction hypothesis.



Theorem

The k-uniform hypergraph H∗
m attains the edge bound presented

in the main corollary.

There are two methods to count the number of edges in H∗
m.

Method 1: Directly track the number of edges in the
hypergraphs based upon how they were constructed.

Set up a recurrence relation:

(#Edges in H∗
m) = (#New Edges) + (#Edges in H∗

m−1)

This is reminiscent of
an = (stuff) + an−1

This equation can be solved by induction or by using
recurrence relation solving strategies.
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The k-uniform hypergraph H∗
m attains the edge bound presented

in the main corollary.

Unfortunately, the most obvious way to solve this equation
yields

f(k,m) = m+
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i=1

[(
k(i+ 1)− 1
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(
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This is a true but different formula. We need to show this is
equivalent to the formula presented in the main theorem.
Algebraically showing the equivalence of these two formulas is
difficult because they use summations and include binomial
coefficients.

Additionally, induction-based proofs are rarely enlightening as
to the true meaning of formulas.
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Theorem

The k-uniform hypergraph H∗
m attains the edge bound presented

in the main corollary.

Method 2: Count edges in H∗
m directly based upon the

structure of the hypergraph without comparing it to H∗
m−1.

This requires some clever counting techniques such as the
inclusion-exclusion principle. However, it does properly
establish the correct formula for the number of edges in this
hypergraph.
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Uniqueness of Construction?

Theorem (Lovász)

For k = 2 any graph with a unique perfect matching attaining the
edge bound is isomorphic to H∗

m.

Theorem

For k ≥ 3 and m ≥ 2, there exist hypergraphs which have a unique
perfect matching and attain the edge bound that are not
isomorphic to H∗

m.
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Two-Switch Example:

Suppose the above depicts a portion of a graph that has a
unique perfect matching. The solid edges represent matching
edges.

We cannot include both of the dashed edges in the graph.
Otherwise, the perfect matching would not be unique:

Start with the original perfect matching and discard the solid
edges. Instead, trade them for the dashed edges to create a
distinct perfect matching.

Since we are not allowed to have both of the dashed edges in
the graph, the total number of edges becomes constrained.
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Hypergraph Generalization Example:

Matching Edges Covering Edges

The top left image depicts part of a hypergraph with a perfect
matching. The edges shown are part of the perfect matching.

The top right image depicts the same vertices. Suppose the
edges in this image were also present in the hypergraph.

Start with the perfect matching. Remove the “matching
edges” and include the “covering edges.” This creates a
distinct perfect matching.

By uniqueness of the perfect matching, no such covering is
allowed in the hypergraph, constraining the total number of
possible edges.
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Coverings

Definition

Suppose L = {E1, . . . , E`} with 1 ≤ ` ≤ k is a collection of
disjoint edges. A collection of k-sets C = {C1, . . . , C`} is a
covering of L if

Every k-set in C nontrivially intersects every edge in L and

Both L and C partition the same set of vertices.

Definition

Define L as above and let F ⊆ ∪L be a k-set that intersects every
edge of L. The ordered type of F is ~b = (b1, . . . , b`) where
bi = |F

⋂
Ei| for 1 ≤ i ≤ `.The unordered type (abbreviated

type) of F is the unique rearrangement of the ordered type
(b1, . . . , b`) of F such that the entries appear in nonincreasing
order.
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k-set Ordered Type (Unordered) Type

F1 (1, 3, 2, 2) (3, 2, 2, 1)

F2 (1, 4, 1, 2) (4, 2, 1, 1)



Main Theorem Proof Sketch

M1 M2 M3

Consider a 3-uniform complete hypergraph on 9 vertices. Let
M = {M1,M2,M3} be a perfect matching as depicted above.

In order to make M the unique perfect matching in the
hypergraph, we must remove coverings of M.

To organize our search, we start by considering the possible
types of edges in the hypergraph:
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Main Theorem Proof Sketch

M1 M2 M3

Consider a 3-uniform complete hypergraph on 9 vertices. Let
M = {M1,M2,M3} be a perfect matching as depicted above.

In order to make M the unique perfect matching in the
hypergraph, we must remove coverings of M.

To organize our search, we start by considering the possible
types of edges in the hypergraph:

(1,1,1) (2,1,0) (3,0,0)

Since edges in a covering must intersect every matching edge,
we only consider edges of type (1,1,1).
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M1 M2 M3

We count the number of coverings of {M1,M2,M3} that only
use edges of type (1, 1, 1). Suppose {A,B,C} is such a
covering.
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We count the number of coverings of {M1,M2,M3} that only
use edges of type (1, 1, 1). Suppose {A,B,C} is such a
covering.

We label each vertex by the covering edge that contains it.
After possibly renaming the covering edges, we assume the
vertices in M1 are labeled as above.

There are 6 ways to assign labels to M2 and 6 ways to assign
labels to M3, giving a total of 36 coverings.
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By symmetry, every edge of type (1, 1, 1) is contained in 4
coverings.

Removing 1 edge from the hypergraph breaks 4 coverings.

Removing 2 edges from the hypergraph breaks at most 8
coverings.

Removing 9 edges from the hypergraph breaks at most 36
coverings.

In order to remove all 36 coverings from the hypergraph, we
must remove at least 9 edges of type (1, 1, 1).
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We must also remove coverings of {M1,M2}.
Every edge in a covering of {M1,M2} is of type (2, 1).

To specify an edge E with |E
⋂
M1| = 1 and |E

⋂
M2| = 2,

pick one vertex from M1 and 2 vertices from M2. There are
3 ·
(
3
2

)
= 9 such edges.

All coverings are of the form {E,E} for an edge as previously
described. Hence, there are also 9 coverings.
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Given any edge F of type (2, 1), F lies on exactly one
covering {F, F}. Caution: we may have |F

⋂
M1| = 1 or

|F
⋂

M1| = 2.

In order to break all 9 coverings, we must remove at least 9
edges of type (2, 1).

A symmetric situation occurs for any pair of 2 matching edges
({M1,M2}, {M1,M3}, or {M2,M3}). Hence we must remove
at least

(
3
2

)
· 9 = 27 edges of type (2, 1) from the hypergraph.
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We must remove at least 9 edges of type (1, 1, 1).

We must remove at least 27 edges of type (2, 1).

There are at most 84− 9− 27 = 48 edges remaining in the
hypergraph.
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For k ≥ 2 and m ≥ 1, let

bk,` =
`− 1

`

`−1∑
i=0

(−1)i
(
`

i

)(
k(`− i)

k

)
.

Theorem

Let Hm = (Vm, Em) be a k-uniform hypergraph with km vertices
and unique perfect matching. Then

|Em| ≤ f(k,m)

where

f(k,m) = m+ bk,2

(
m

2

)
+ bk,3

(
m

3

)
+ · · ·+ bk,k

(
m

k

)
.

Moreover, this bound is tight.
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The complete hypergraph has
(
9
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)
= 84 edges.

We must remove at least 9 edges of type (1, 1, 1).

We must remove at least 27 edges of type (2, 1).

There are at most 84− 9− 27 = 48 edges remaining in the
hypergraph.

f(3, 3) = 3 + 9
(
3
2

)
+ 18

(
3
3

)
= 48.
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Electrons in Benzene Molecules

Benzene consists of 6 carbon atoms arranged in a hexagon.

Due to electron interactions along the hexagon, the carbon
atoms tend to pair with a neighbor creating a diatomic
molecule. This is the same as a perfect matching.

This graph has two perfect matchings. By symmetry, both of
these have the same energy. Hence, the molecule resonates in
between the two configurations.

The resonance conjecture posits that resonating between
states increases stability.
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Thank You

Thanks for coming! Special thanks to Dr. John Caughman and
Dr. Gerardo Lafferriere.
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