
HYPERGRAPHS WITH A UNIQUE PERFECT MATCHING

AARON SPINDEL

Under the direction of
Dr. John S. Caughman

A Math 501 Project
Submitted in partial fulfillment of the

requirements for the degree of

Master of Science in Mathematics
at

Portland State University

Abstract. Following the article “On the maximum number of edges in a k-uniform hypergraph
with a unique perfect matching” by Deepak Bal, Andrzej Dudek, and Zelealem B. Yilma, this paper
states and proves a tight upper bound for the number of edges in a hypergraph that has a unique
perfect matching. The two main focuses of this paper are constructing a hypergraph realizing the
given bound and proving that the bound applies to all possible hypergraphs with a unique perfect
matching.

Contents

1. Introduction 2
2. Background 3
3. Construction 5
4. Nonuniqueness of Hypergraphs Attaining the Edge Bound 10
5. Coverings and Multiple Matchings 16
6. Example of the Upper Bound 19
7. Proof of Upper Bound 22
8. Miscellaneous Related Results 24
9. Application 25
10. Further Study 26
References 28

Date: February 26, 2012.

1

1. Introduction

A reader possessing basic knowledge of graph theory may read this section to understand the
general goals of this paper. Terms will be formally defined in Section 2.

Imagine a complete graph on six vertices as depicted below.

This graph has many perfect matchings, some of which are depicted by red dashed lines below.

Simply put, having many edges gives a large amount of choices. These choices create enough free-
dom where perfect matchings can be constructed in many ways. In this paper, we focus on graphs
that have exactly one perfect matching. These graphs cannot have too many edges. Otherwise,
the abundance of edges would create more than one perfect matching. In fact, we will show that a
graph with unique perfect matching possessing 2m vertices can have at most m2 edges.

This bound applies to all possible graphs. We will also study particular examples of graphs that
attain this bound. The graph depicted below will be referred to as H∗3.

v

E
u

Every perfect matching in H∗3 must contain edge E since it is the unique edge incident with vertex
v. Because E is included in any perfect matching, no other edge incident with vertex u can be
included in a perfect matching. Erasing these edges from the picture yields:

v

E
u

x F y

Vertex y is now a pendant vertex and acts similarly to vertex v in the previous discussion. Edge F
which is the only edge incident with vertex y must therefore be included in any perfect matching.
No other edge in a perfect matching can be incident with vertex x. Erasing such edges yields:

v

E
u

x F y

Page 2 of 28

The three remaining edges form a perfect matching in H∗3. In fact, the above analysis implies that
this is the only perfect matching in H∗3. Additionally, H∗3 has 6 vertices and 9 edges attaining our
bound.

While the primary ideas can be understood by focusing on graphs, this paper proves results in
a more general fashion. The main result (Corollary 2.2) applies to all k-uniform hypergraphs. The
formula presented in this corollary may seem messy at first. Rather than regarding this formula as
many algebraic symbols, it is best to think of it conceptually as a mixture of combinatorial tools.
The inclusion-exclusion principle plays a notably important role in this theorem.

2. Background

A hypergraph G is a finite set of vertices V along with a set of edges E ⊆ PV \ {∅} (where
PV denotes the power set of V) such that no two edges in E are equal as sets. Note that multiple
edges (pairs of edges containing identical vertices) are prohibited by this definition. Loop edges
(edges that contain exactly one vertex) are in general allowed. When convention requires, V(G)
will denote the vertex set V, and E(G) will denote the edge set E . A k-uniform hypergraph (or
k-graph) is a hypergraph in which every edge E ∈ E has cardinality k.

A pendant vertex is an element v ∈ V that is contained in exactly one edge E ∈ E . A set of

edges {E1, . . . , Ek} are incident with a vertex v if v ∈
⋃k
i=1Ei. We abuse notation and assert that

edge E (without set braces) is incident with v if v ∈ E. Two vertices v and u are adjacent denoted
u ∼ v if there exists an edge containing both v and u. An isomorphism between hypergraphs G
and H is a bijection from V(G) to V(H) such that for any two vertices u, v ∈ V(G), u is adjacent
to v in G if and only if f(u) is adjacent to f(v) in H. If there exists an isomorphism from G to H
we say G is isomorphic to H denoted G ∼= H without specific reference to the isomorphism.

While hypergraphs are defined abstractly as sets, we often represent them graphically. Figure
1 below depicts a hypergraph G. Black and red dots represent vertices while finite closed regions
of the plane represent edges. Vertices u and v are both pendant vertices because they are only
contained in edge E. Moreover, u ∼ v since edge E is incident with both u and v. This hypergraph
is not k-uniform for any value of k since it contains edges of varying cardinality.

vu
E

Figure 1

A subgraph of a hypergraph G is a hypergraph H with V(H) ⊆ V(G) and E(H) ⊆ E(G). Given
V′ ⊆ V, an induced subgraph of a hypergraph G = (V, E) denoted G[V′] is the hypergraph with
vertex set V′ and edge set {E ∈ E : E ⊆ V′}. The induced subgraph G[V′] contains every edge
in G that is not incident with a vertex outside of V′. If E1, . . . , Ek are sets of vertices (such as

edges in a hypergraph), G[E1, . . . , Ek] is defined to mean G[
⋃k
i=1Ei]. If v1, . . . , vk are vertices,

G − {v1, . . . , vk} denotes G[V(G) \ {v1, . . . , vk}]. If E1, . . . , Ek are edges, G − {E1, . . . , Ek} is the
hypergraph with vertex set V(G) and edge set E(G) \ {E1, . . . , Ek}. For a vertex v and edge E, we
abuse notation and use G− v and G− E to denote G− {v} and G− {E} respectively.

If G is the hypergraph in Figure 1 above and V′ is the set of vertices depicted in black, G[V′] is
drawn below in Figure 2.

Page 3 of 28

Figure 2

A matching in a hypergraph G = (V, E) is a set of pairwise disjoint edges {M1, . . . ,Mm}. Any
edge Mi in a matching is referred to as a matching edge. A perfect matching is a matching
{M1, . . . ,Mm} such that V =

⋃m
i=1Mi. In other words, a perfect matching is a collection of edges

that partition the vertex set. In a k-uniform hypergraph,
⋃m
i=1Mi has cardinality km. Hence |V|

must be a multiple of k in a k-uniform hypergraph that has a perfect matching. In a 2-uniform
hypergraph (which is commonly referred to as a graph), a nearly perfect matching is a matching
{M1, . . . ,Mm} such that

⋃m
i=1Mi = V\{v0} for some vertex v0 ∈ V. In other words, a nearly perfect

matching is a set of pairwise disjoint edges that are incident with every vertex in the graph except
v0. Note that a graph must have an odd number of vertices in order to have a nearly perfect
matching.

Figure 3a below depicts a portion of a hypergraph. The entire vertex set is shown. However,
some edges have been omitted. The displayed edges are pairwise disjoint and therefore form a
matching. The displayed edges are not incident with every vertex. Therefore, this is not a perfect
matching. Figure 3b below depicts a portion of a 2-uniform hypergraph. In the case of a 2-
uniform hypergraph, dots represent vertices while edges are depicted as line segments. Similar to
the previous hypergraph, the entire vertex set is shown, but some edges have been omitted. The
edges displayed are pairwise disjoint and therefore form a matching. Since these edges are incident
with every vertex except for v0, this is a nearly perfect matching.

Figure 3a

v0

Figure 3b

The following language is used in the special case of a 2-uniform hypergraph. A path P is a graph
with distinct vertices {v1, . . . , vk} such that E(P) = {{vi, vi+1} : 1 ≤ i ≤ k−1}. For vertices u and v
in a graphG, a u, v-path is a subgraph ofG that is a path with pendant vertices u and v. A cycle C is
a graph with distinct vertices {v1, . . . , vk} such that E(C) = {{vi, vi+1} : 1 ≤ i ≤ k−1}

⋃
{{v1, vk}}.

A graph is connected if given any two distinct vertices u and v, there is a u, v-path. A component
of G is a maximal connected subgraph of G. A cut-edge is an edge whose deletion increases the
number of components of G. An endpoint of an edge E is a vertex contained in E.

The graph in Figure 4 below has two components. Edge E is a cut edge.
Page 4 of 28

E

Figure 4

In a k-uniform hypergraph G = (V, E), any edge E ∈ E is defined to be a k-set (set with
cardinality k) of elements of V. While the notions may coincide in set-theoretical terms, this paper
carefully uses edge and k-set to imply different meanings. An edge is an actual element of the edge
set of a specific hypergraph. A k-set is merely any set with k elements. For example, if F ⊆ V is a
k-set, F might be an element of the edge set E (in which case it represents an edge present in the
hypergraph) or might not be an element of E (in which case it does not represent an edge present
in the hypergraph). It is best to think of k-sets as potential edges. This is contrary to the notation
used in [1].

Let G = (V, E) be a k-uniform hypergraph with km vertices for some m > 1. If G is empty
(with E = ∅), then G lacks perfect matchings. Suppose G is complete (E = {E ∈ PV \ {∅} :
|E| = k}) with vertex set {1, . . . , km}. One example of a perfect matching is the family of edges
Mi = {k(i − 1) + 1, k(i − 1) + 2, . . . , ki} for 1 ≤ i ≤ m. Applying any permutation of vertices to
the matching {M1, . . . ,Mm} (permuting the sets elementwise) yields another set of disjoint edges
(which are in the hypergraph because it is complete) that covers all vertices. Because m > 1,
switching vertices in between two edges of the matching potentially creates a new matching. This
gives many perfect matchings.

Adding edges to a hypergraph G never removes any perfect matchings that initially existed in
G. In fact, adding edges to G makes G closer to a complete hypergraph with many possible perfect
matchings. This suggests that any hypergraph having exactly one perfect matching can only have
a limited number of edges. Above this threshold, a hypergraph is forced to have multiple perfect
matchings. The following makes this intuitive notion precise:

Theorem 2.1. Let Hm = (Vm, Em) be a k-uniform hypergraph with km vertices and unique perfect
matching M = {M1, . . . ,Mm}. Let B` be the set of edges that intersect exactly ` matching edges
for 1 ≤ ` ≤ k. That is, B` = {E ∈ Em : |QE | = `} where QE = {Mi ∈ M : Mi

⋂
E 6= ∅}. Then

|B1| = m and |B`| ≤ bk,`
(
m
l

)
for 2 ≤ ` ≤ k where

bk,` =
`− 1

`

`−1∑
i=0

(−1)i
(
`

i

)(
k(`− i)

k

)
.

Corollary 2.2. Using the same notation as Theorem 2.1, let

f(k,m) = m+ bk,2

(
m

2

)
+ bk,3

(
m

3

)
+ · · ·+ bk,k

(
m

k

)
for k ≥ 2 and m ≥ 1. Then |Em| ≤ f(k,m). (Remember that |Em| is the size of the edge set
of the k-uniform hypergraph Hm that has a unique perfect matching as defined in Theorem 2.1.)
Moreover, this bound is tight.

3. Construction

This section presents an infinite family of k-uniform hypergraphs H∗m with a unique perfect
matching that attain the bound presented in Corollary 2.2. Demonstrating a perfect matching is

Page 5 of 28

sufficient to show that H∗m has at least one perfect matching. However, showing that no other
perfect matchings exist poses a greater challenge. The key observation is that pendant vertices
limit possible matchings.

Suppose we are looking for possible perfect matchings in a hypergraph G = (V, E) that has
pendant vertex v. Any perfect matching must contain an edge incident with every vertex of the
hypergraph. Since there is only one edge Ev incident with v, Ev must be in every perfect matching.
Because edges of a perfect matching are disjoint, no edge nontrivially intersecting Ev can be in the
matching. This suggests an iterative approach to the problem of finding a perfect matching. Let G′

be the hypergraph with vertex set V \Ev and edge set {E ∈ E : E
⋂
Ev = ∅}. The above reasoning

implies that any perfect matching in G corresponds to a perfect matching in G′ along with edge
Ev. Thus, we have reduced the problem to finding perfect matchings in a hypergraph with fewer
vertices. If G′ also has a pendant vertex, we can repeat exactly the same argument to reduce the
problem further.

With this is mind, we define the hypergraphs H∗m recursively in such a way that they predictably
have pendant vertices. First, let H∗1 be the k-graph with vertices {1, . . . , k} and exactly one edge
M1 = {1, . . . , k}. Every vertex in H∗1 is a pendant vertex. Next, suppose that H∗m−1 is a known
hypergraph with vertex set {1, . . . , k(m − 1)} and edge set Em−1. To create H∗m we must add k
vertices expanding the vertex set to {1, . . . , km}. We keep all of the edges in Em−1. In order to
attain the bound in Corollary 2.2, we need to add as many edges as we can without destroying
the uniqueness of the perfect matching. Adding an edge that only contains vertices in the set
{1, . . . , k(m − 1)} would be like adding an edge to H∗m−1. Since H∗m−1 attains the bound in
Corollary 2.2, adding an edge would create a hypergraph that exceeds the bound. Corollary 2.2
(which we have yet to prove) would then imply that the hypergraph would have at least two perfect
matchings. Since this is undesirable, we must avoid adding this type of edge. So, every new edge
ought to contain at least one of the new vertices. Moreover, because pendant vertices control
possible perfect matchings, we should specify one of the new vertices (say km) to be a pendant.

The two main constraints are: all new edges must contain at least one new vertex and exactly one
edge should be incident with vertex km. Other than these constraints, we add every edge possible
to maximize the number of edges in the hypergraph. We are now ready to precisely define H∗m.
Start with H∗m−1 and add k − 1 new vertices. Include every possible edge that is incident with at
least one of these new vertices. Finally, add another new vertex to act as the pendant vertex. We
must add exactly one edge containing this new vertex. This edge must become part of the perfect
matching in H∗m. The idea is to use the unique perfect matching in H∗m−1 along with this new edge
to form a unique perfect matching in H∗m. Because edges in a perfect matching are disjoint, the
new edge should not intersect H∗m−1. The only remaining possibility is to add the edge containing
the k new vertices that were just added to the hypergraph.

Formally for m ≥ 2 let H∗m = (Vm, Em) be a k-graph with vertices

Vm = {1, . . . , km}

In order to specify the edge set, it is convenient to define a family of k-sets. Let

Mi = {k(i− 1) + 1, . . . , ki} for 1 ≤ i ≤ m.

Note that Mm represents the set of k new vertices that have been added to H∗m−1. Then, the edges
of H∗m = (Vm, Em) are specified by

Em = Em−1
⋃{

E ∈ PVm \ {∅} : |E| = k and E
⋂
Mm 6= ∅ and km 6∈ E

}⋃
{Mm}

Example 3.1. The following depicts the first three graphs described by this construction in the
2-uniform case (k = 2):

Page 6 of 28

H∗1 H∗2 H∗3
Example 3.2. The following depicts H∗1 as described by this construction in the 3-uniform case
(k = 3). Note that edges are represented as triangles in these hypergraphs.

3

2

1

The following sequence of images shows how H∗2 is constructed starting with H∗1.

Step 1 Step 2 Step 3 Step 4

6

43

2

1 5

6

43

2

1 5

6

43

2

1 5

6

43

2

1 5
Add vertices 4, 5, and 6 Add edge {2, 3, 4} Add edge {1, 3, 4} Add edge {1, 2, 4}

Step 5 Step 6 Step 7 Step 8

6

43

2

1 5

6

43

2

1 5

6

43

2

1 5

6

43

2

1 5
Add edge {1, 2, 5} Add edge {1, 3, 5} Add edge {2, 3, 5} Add edge {3, 4, 5}

Step 9 Step 10 Step 11

6

43

2

1 5

6

43

2

1 5

6

43

2

1 5
Add edge {2, 4, 5} Add edge {1, 4, 5} Add edge {4, 5, 6}

Claim 3.3. The k-graph H∗m has a unique perfect matching {M1, . . . ,Mm}.

Proof. We proceed by induction on m.
Base case: H∗1 has only one edge M1. This means, it has only one possible perfect matching.
Moreover, this edge covers all vertices in H∗1. Therefore, M1 is the unique perfect matching in H∗1.
Inductive step: By construction, Mm is added to the edge set of H∗m. (This is needed to guarantee
Mm is an edge in the hypergraph since it was defined as a k-set.) Any perfect matching in H∗m
must contain Mm which is the unique edge incident with the pendant vertex km. No other edge
in the matching can intersect Mm = {k(m − 1) + 1, . . . , km}. Every other matching edge must
only contains vertices in the set {1, . . . , k(m − 1)}. All of these edges are therefore present in the
hypergraph H∗m−1 and form a perfect matching for this hypergraph. By the induction hypothesis,
H∗m−1 has unique perfect matching {M1, . . . ,Mm−1}. Combining this with Mm creates a perfect
matching in H∗m. Since we never had any choice of which edges to include in the perfect matching,
it is unique. �

Page 7 of 28

Claim 3.4. The k-graph H∗m = (Vm, Em) attains the bound in Corollary 2.2. That is, |Em| =
f(k,m).

Proof. Let M = {M1, . . . ,Mm} be the unique perfect matching as above, and let B` be the set
of edges in the hypergraph that intersect exactly ` matching edges for 1 ≤ ` ≤ k. That is,
B` = {E ∈ Em : |QE | = `} where QE = {Mi ∈ M : Mi

⋂
E 6= ∅}. Since the edges of a perfect

matching partition the vertex set of the hypergraph, every edge in the hypergraph nontrivially
intersects at least one matching edge. Additionally, edges which contain k vertices can intersect at
most k matching edges. So, every edge in the hypergraph is contained in some B` for 1 ≤ ` ≤ k.
Since the B` are also disjoint, they partition the edge set of the hypergraph. We count the edges
in each B` in order to count the total number of edges in the hypergraph.

An edge E is in B1 if it intersects exactly one matching edge Mi. If E contained a vertex not
present in Mi, E would intersect Mi and another distinct matching edge. Since this is disallowed,
E ⊆Mi. Also, |E| = |Mi| = k. Hence, E = Mi and B1 = {M1, . . . ,Mm}. (Note that each Mi truly
is an edge in the hypergraph by Claim 3.3.) Hence |B1| = m.

We wish to determine |B`| for 2 ≤ ` ≤ k. To do this, let L = {Mi1 , . . . ,Mi`} be a set of ` distinct

edges from the matching with 1 ≤ i1 < i2 < · · · < i` ≤ m. Let VL =
⋃`
j=1Mij be the set of vertices

contained in some matching edge in L. Because edges in a matching are disjoint, |VL| = k`. Let G
be the set of k-sets that only contain elements in VL and nontrivially intersect every edge in L. In
symbols, G = {F : |F | = k and F ⊆ VL and ∀Mi ∈ L, F

⋂
Mi 6= ∅}. Caution: elements of G need

not be edges in the hypergraph.
We use the inclusion-exclusion principle to compute |G|. A k-element subset of VL can be formed

by choosing k elements from k` possibilities. Naively, there are
(
k`
k

)
ways to create such a k-set.

However, some of these possibilities do not intersect every edge in L. We must exclude the k-sets
that miss at least one edge. A k-set that doesn’t intersect Mij for some j draws k elements from

VL \Mij which has cardinality k(` − 1). There are ` =
(
`
1

)
choices for j, giving

(
`
1

)(k(`−1)
k

)
k-sets

that miss at least one edge.
The inclusion-exclusion principle asserts that “all possible k-sets” minus “k-sets that miss at

least one edge” double counts some k-sets, subtracting “k-sets that miss at least two edges” twice.
We must compensate by adding the number of k-sets that miss at least two edges. Suppose a
k-set is not incident with Miu and Miv for some u, v with u 6= v. Then the k-set draws k vertices

from VL \ {Miu

⋃
Miv} which has cardinality k(` − 2). There are

(
`
2

)
choices for u and v yielding(

`
2

)(k(`−2)
k

)
k-sets that miss at least two edges. Proceeding this way, we find

|G| =
`−1∑
i=0

(−1)i
(
`

i

)(
k(`− i)

k

)
=

(
k`

k

)
︸ ︷︷ ︸

Include all
possible
k-sets

−
(
`

1

)(
k(`− 1)

k

)
︸ ︷︷ ︸

Exclude k-sets
that miss at
least one edge

+

(
`

2

)(
k(`− 2)

k

)
︸ ︷︷ ︸

Include k-sets
that miss at

least two edges

− · · ·+ (−1)`−1
(

`

`− 1

)(
k

k

)
︸ ︷︷ ︸

Include/Exclude
k-sets that miss at
least `− 1 edges

Since no k-set in G misses all ` edges inM, the maximum possible index in the summation is `−1.
The edges in H∗m that only contain vertices in VL are exactly the same as the edges in H∗i` that

only contain vertices in VL. When constructing the hypergraph H∗i` , every edge that intersected
Mi` and did not contain ki` was added to the hypergraph. Every k-set in G intersects Mi` and is
therefore an edge unless it contains vertex ki`.

Conversely, consider a k-set E in G that does contain vertex ki`. Since E intersects ` edges in
the matching for some ` ≥ 2, E 6= Mi` . However, Mi` is the only edge in H∗i` that contains vertex

Page 8 of 28

ki` which was constructed to be a pendant in H∗i` . So, E cannot be an edge in the hypergraph. In
total, a k-set in G is an edge in H∗m if and only if it does not contain ki`.

Every vertex in VL appears symmetrically in the construction of k-sets in G. Therefore, every
vertex belongs to the same number of k-sets of G. Suppose every vertex belongs to η k-sets. Using
this, we count the number of ordered pairs (x,E) where x ∈ E ∈ G in two ways. Any element
of VL may be chosen for x, giving k` choices. Once we pick x, there are η k-sets that contain it.
Therefore, there are k`η ordered pairs. Alternately, we can choose a k-set first, giving |G| choices.
Once a k-set is known, there are k vertices it contains. So, there are |G|k ordered pairs. Equating
these yields η = |G|/`.

The number of edges in G equals |G| minus the number of k-sets in G that contain vertex ki`. By
definition, η k-sets contain ki` in G, giving a formula for the number of the edges in B` on vertex
set VL:

|{E ∈ EM : E ∈ B` and E ⊆ VL}| = |G| − η = |G| − |G|/` =
`− 1

`
|G| = bk,`

where bk,` was defined in Theorem 2.1.
Every edge E in B` intersects exactly ` edges in the matching. First, choose which ` edges E

will intersect in
(
m
`

)
possible ways. Once you have fixed these ` possible matching edges, the above

argument shows there are bk,` possible edges E. So, |B`| = bk,`
(
m
`

)
for 2 ≤ ` ≤ k.

Finally,

|Em| =
k∑
`=1

|B`| = f(k,m)

where f(k,m) was defined in Corollary 2.2. �

The formula given for f(k,m) in Corollary 2.2 uses a double summation. We now have a concrete
interpretation of f(k,m) as the number of edges in H∗m. Using this, we construct another formula
for f(k,m) without the double summation.

Corollary 3.5. For k ≥ 2 and m ≥ 1,

f(k,m) = m+
m−1∑
i=1

[(
k(i+ 1)− 1

k

)
−
(
ki

k

)]
Proof. The edges in H∗m = (Vm, Em) are constructed by adding edges to Em−1, the edge set of
H∗m−1. This process can be described as follows: start with the vertices of H∗m−1 and append k− 1
new vertices. To create Em, first include every single possible edge (of cardinality k) on this set of
km− 1 vertices. (Essentially, we start by considering a complete hypergraph on km− 1 vertices.)

This gives
(
km−1
k

)
edges. However, we have included too many edges in Em. We only want edges

that contain at least one of the k − 1 new vertices. To remedy this, discard edges that only use

vertices originally present in H∗m−1. Since H∗m−1 has k(m − 1) vertices, there are
(k(m−1)

k

)
edges

that must be discarded. In symbols,

∣∣∣{E ∈ PVm \ {∅} : |E| = k and E
⋂
Mm 6= 0 and km 6∈ E

}∣∣∣ =

(
km− 1

k

)
−
(
k(m− 1)

k

)
where Mm = {k(m− 1) + 1, . . . , km} as previously defined. Then,

|Em| =
∣∣∣Em−1⋃{

E ∈ PVm \ {∅} : |E| = k and E
⋂
Mm 6= ∅ and km 6∈ E

}⋃
{Mm}

∣∣∣
= |Em−1|+

(
km− 1

k

)
−
(
k(m− 1)

k

)
+ 1

Page 9 of 28

since the sets in the above union are disjoint. Remembering that |Em| = f(k,m), this equation
becomes

f(k,m) = f(k,m− 1) +

(
km− 1

k

)
−
(
k(m− 1)

k

)
+ 1

This equation is only valid when m ≥ 2 since the index of Em−1 must be at least one. Summing
both sides of this equation from i = 2 to m yields

m∑
i=2

f(k, i) =
m∑
i=2

f(k, i− 1) +
m∑
i=2

[(
ki− 1

k

)
−
(
k(i− 1)

k

)]
+

m∑
i=2

1

=
m−1∑
i=1

f(k, i) +
m−1∑
i=1

[(
k(i+ 1)− 1

k

)
−
(
ki

k

)]
+m− 1

Hence

f(k,m) +

m−1∑
i=2

f(k, i) =

m−1∑
i=2

[f(k, i)] + f(k, 1) +

m−1∑
i=1

[(
k(i+ 1)− 1

k

)
−
(
ki

k

)]
+m− 1

Using the fact that f(k, 1) = 1, this becomes

f(k,m) = m+
m−1∑
i=1

[(
k(i+ 1)− 1

k

)
−
(
ki

k

)]
�

4. Nonuniqueness of Hypergraphs Attaining the Edge Bound

While the construction in Section 3 does provide a k-uniform hypergraph with unique perfect
matching that attains the bound of Corollary 2.2 for every sensible number of vertices, it does
not provide a comprehensive list of all k-uniform hypergraphs with a unique perfect matching
that attain this bound. For example, consider the case k ≥ 3 and m = 2. As previously shown,
H∗2 = (V2, E2) has a unique perfect matching {M1,M2} and attains the maximum number of
possible edges. Create another hypergraph Ha2 by modifying H∗2. Fix an edge E ∈ E2 \ {M1,M2}.
Note that E = {1, 2, . . . , 2k} \ E has cardinality k meaning that it could be allowed as an edge in
a k-uniform hypergraph. If E ∈ E2, E and E would form a perfect matching in H∗2 distinct from
{M1,M2}. This would violate the uniqueness of the perfect matching in H∗2. Therefore E 6∈ E2.
Additionally, since 2k is a pendant in H∗2, 2k 6∈ E. Hence, 2k ∈ E.

Define E ′ = {E}
⋃

(E2 \ {E}). We have removed one edge that previously was in E2 and added
one edge that previously was absent in E2. Thus, |E ′| = |E2|. Let Ha2 be the hypergraph with vertex
set V2 and edge set E ′. Since Ha2 and H∗2 have the same number of edges and vertices, Ha2 also
attains the bound in Corollary 2.2.

For vertices v ∈ {1, . . . , k} in H∗2, let v+ = v + 1 if v < k and v+ = 1 if v = k. (This
is similar to arithmetic mod k, but v+ never equals 0.) Then M1, {k + 1}

⋃
(M1 \ {v+}), and

{k+ 2}
⋃

(M1 \ {v+}) are three edges in H∗2 that contain vertex v. (Notice that k ≥ 3 implies that
2k = k + k > k + 2. Hence, k + 2 is not the pendant vertex and these k-sets truly are edges in
H∗2.) For v ∈ {k + 1, . . . , 2k − 1}, {1, k + 1, k + 2, . . . , 2k − 1}, {2, k + 1, k + 2, . . . , 2k − 1}, and
{3, k+ 1, k+ 2, . . . , 2k− 1} are three edges in H∗2 containing v. (Since k ≥ 3, k+ 1 > 3 and each of
these sets contains k distinct elements. These k-sets intersect edge M2 and do not contain vertex
2k. Thus, they are edges in H∗2.) Finally, vertex 2k is on edge M2 and no others in H∗2.

Any vertex in {1, . . . , 2k − 1} is contained in at least 3 edges in H∗2. When creating Ha2, we
remove exactly one edge E. Hence any vertex in {1, . . . , 2k − 1} is contained in at least 2 edges in
Ha2. Vertex 2k is contained in edges E and M2 in Ha2. Since every vertex in Ha2 is contained in at

Page 10 of 28

least two edges, Ha2 lacks pendant vertices. Therefore, Ha2 cannot be isomorphic to H∗2 which has
pendant vertex 2k.

Any perfect matching in Ha2 would necessarily contain an edge incident with vertex 2k. The only
edges in Ha2 incident with vertex 2k are E and M2. This means that any perfect matching in Ha2
must use M2 or E as an edge. The edges M1 and M2 form a perfect matching in Ha2. The only
edge that could possibly form a perfect matching with E is E. Since E 6∈ E ′, no edge in Ha2 pairs
with E to form a perfect matching. Thus, Ha2 has a unique perfect matching.

The case k = 3 is depicted below. Figure 1 shows H∗2 as constructed in Example 3.2. Figure 2
shows the unique perfect matching {M1,M2} in H∗2. Figure 3 shows an edge E distinct from M1

and M2 and its complement E. Swapping edge E for E creates a new hypergraph Ha2 depicted in
Figure 4. The hypergraph Ha2 is not isomorphic to H∗2. However, Ha2 still contains a unique perfect
matching and attains the edge bound in Corollary 2.2.

6

43

2

1 5

Figure 1

6

43

2

1 5

M1 M2

Figure 2

6

43

2

1 5

E

E

Figure 3

6

43

2

1 5

Figure 4

Theorem 4.1. For k ≥ 3 and m ≥ 2, there exists a k-uniform hypergraph Ham with a unique perfect
matching Ma = {Ma

1 , . . . ,M
a
m} that attains the edge bound of Corollary 2.2 and is not isomorphic

to the hypergraph H∗m which was constructed in Section 3.

Proof. Define the family of hypergraphs Ham recursively. Ha2 was defined above. Once Ham−1
is known with m ≥ 3, create Ham by following the same steps used to create H∗m from H∗m−1.
Formally,

V(Ham) = {1, . . . , km}

and

E(Ham) = E(Ham−1)
⋃{

E ∈ PVm \ {∅} : |E| = k and E
⋂
Mm 6= ∅ and km 6∈ E

}⋃
{Mm}

where

Mm = {k(m− 1) + 1, . . . , km}

An induction argument shows thatHam has a unique perfect matching. The base case was checked
above when we verified that Ha2 has a unique perfect matching. The inductive step is identical to
the inductive step in Claim 3.3.

Next we verify that Ham has the correct number of vertices and edges to attain the edge bound in
Corollary 2.2. Again, we proceed by induction. As a base case, we have verified |V(Ha2)| = |V(H∗2)|
and |E(Ha2)| = |E(H∗2)| when discussing Ha2 above. Next suppose |V(Ham−1)| = |V(H∗m−1)| and
|E(Ham−1)| = |E(H∗m−1)| and consider Ham. Because the recursive process used to construct Ham
from Ham−1 is identical to the process used to construct H∗m from H∗m−1,

V(Ham) \ V(Ham−1) = V(H∗m) \ V(H∗m−1) = Mm

and

E(Ham) \ E(Ham−1) = E(H∗m) \ E(H∗m−1)

=
{
E ∈ PVm \ {∅} : |E| = k and E

⋂
Mm 6= ∅ and km 6∈ E

}⋃
{Mm}

Page 11 of 28

Applying the induction hypothesis gives:

|V(Ham)| = |V(Ham−1)|+ |V(Ham) \ V(Ham−1)|
= |V(H∗m−1)|+ |V(H∗m) \ V(H∗m−1)|
= |V(H∗m)|

and

|E(Ham)| = |E(Ham−1)|+ |E(Ham) \ E(Ham−1)|
= |E(H∗m−1)|+ |E(H∗m) \ E(H∗m−1)|
= |E(H∗m)|

Finally, it remains to show that Ham 6∼= H∗m for m ≥ 2. As usual with a recursive construction,
we proceed by induction. When constructing Ha2 we noted that Ha2 6∼= H∗2 establishing the base
case. Now suppose that Ham−1 6∼= H∗m−1. Also, suppose for a contradiction that Ham ∼= H∗m.
Let f : V(Ham) → V(H∗m) be an isomorphism. We are allowed to assume m ≥ 3 since the base
case already establishes the result when m = 2. When m ≥ 3, Ham has a pendant vertex km
by construction. Because isomorphisms preserve pendant vertices and H∗m only has one pendant
vertex, we must have f(km) = km. The vertices in Mm \ {km} = {k(m− 1) + 1, . . . , km− 1} are
adjacent to km in Ham. Hence, all of the vertices in {f(k(m − 1) + 1), . . . , f(km − 1)} must be
adjacent to km in H∗m. Since km is a pendant vertex in H∗m, the vertices adjacent to it are exactly
the vertices in Mm\{km}. In total, {f(k(m−1)+1), . . . , f(km−1)} ⊆ {k(m−1)+1, . . . , km−1} ⇒
{f(k(m− 1) + 1), . . . , f(km− 1)} = {k(m− 1) + 1, . . . , km− 1} since f is a bijection.

Let g be the restriction of f to domain {1, . . . , k(m− 1)} and codomain {1, . . . , k(m− 1)} which
is a well-defined bijection by the above argument. Since g is the restriction of an isomorphism, g
is an isomorphism between Ham−1 and H∗m−1. This contradicts our inductive hypothesis. �

Contrasting this, uniqueness does hold for the case k = 2 as demonstrated by the following
results. First, we start with a lemma proved in [4]:

Lemma 4.2. In a 2-uniform hypergraph G, an edge is a cut-edge if and only if it is not contained
in any cycle.

Proof. Let E = {x, y} be an edge in G. Focus on the component H of G that contains E. Deleting
edge E does not effect any component other than H. Hence, we prove that H − E is connected if
and only if E is contained in a cycle.

If H − E is connected, it contains an x, y-path. Adding edge E to this path completes a cycle.
Conversely, suppose that E is contained in a cycle C. Let u and v be vertices in H. Since H is

connected, it contains a u, v-path P. If P avoids edge E, it is still a u, v-path in H−E. Otherwise,
E is contained in path P. In this case, suppose without loss of generality that vertex x is in between
u and y in P. Then create a u, v-walk in H −E as follows: first, start at u and follow path P until
you reach vertex x. Next, follow cycle C from x to y while avoiding edge E. Finally, follow path
P from y to v. Since H − E contains a u, v-walk, it also contains a u, v-path and is connected.

x yu vE

P

C

�

The remaining results in this section are due to Lovász in [2].
Page 12 of 28

Definition 4.3. Let G be a connected 2-uniform hypergraph that lacks cut-edges. Two edges E1

and E2 in G are equivalent if E1 = E2 or if removing edges E1 and E2 from G disconnects the
graph.

Lemma 4.4. Edge equivalence is an equivalence relation.

Proof. By definition, equivalence of edges is reflexive and symmetric. To see it is also transitive,
suppose E1 is equivalent to E2 and E2 is equivalent to E3. If E1 = E2 or E2 = E3, we trivially
have E1 is equivalent to E3. Otherwise, E1, E2, and E3 are distinct.

Since G lacks cut-edges, both G − E1 and G − E2 are connected. However, G − {E1, E2} is
disconnected. Hence G−{E1, E2} consists of two components C1 and C2. Both E1 and E2 connect
C1 to C2 as depicted below.

E1

E2

C1 C2

Edge Ei has an endpoint in C1 and an endpoint in C2 for i = 1, 2. Removing edge E3 from
G−{E1, E2} cannot join distinct components. Hence, endpoints of Ei are in different components
of G−{E1, E2, E3} for i = 1, 2. Similarly, the endpoints of E3 also appear in different components
of G− {E1, E2, E3}.

If G − {E1, E2, E3} only had two components C1 and C2, E1, E2, and E3 would all connect C1

to C2. In this case, G− {E1, E2} would consist of C1 connected to C2 by E3. Then, G− {E1, E2}
would still be connected contrary to the equivalence of E1 and E2. Hence, G− {E1, E2, E3} must
have at least three components.

Since G lacks cut-edges, every component of G−{E1, E2, E3} must be incident with at least two
of E1, E2, and E3. (A component is incident with an edge if there is some vertex in that component
incident with the edge.) The only way this can happen is if G has exactly three components as
depicted below:

E2

E3

E1

C2 C3

C1

Therefore, removing edges E1 and E3 disconnects the graph. That is, E1 is equivalent to E3. �

We partition the edges of a graph G into equivalence classes under the above equivalence relation.
Denote the equivalence classes by K1, . . . ,Kr, L1, . . . , Lp where |Ki| = 1 for 1 ≤ i ≤ r and |Lj | > 1
for 1 ≤ j ≤ p. Note that any two distinct edges E1 and E2 in some common Li are equivalent.
Hence G− {E1, E2} is disconnected.

Lemma 4.5. Let G be a connected 2-uniform hypergraph that lacks cut-edges and let K1, . . . ,Kr,
L1, . . . , Lp be equivalence classes of edges as above. Create a new graph by removing all the edges
of Li from G for some fixed i. Then, the components of G−Li have no cut-edges and are incident
with exactly two edges in Li.

Page 13 of 28

Proof. As noted in Lemma 4.4, any edge in Li lies in between two components of G−Li. Create a
new graph G′ which has one vertex for every component of G−Li. Two vertices in G′ are adjacent
if there is an edge E ∈ Li connecting the corresponding components in G − Li. Since removing a
single edge from Li cannot disconnect G, G′ lacks cut-edges. However, any two edges from Li are
equivalent. Hence, removing any two edges in G′ disconnects the graph.

Since G′ lacks cut-edges, Lemma 4.2 implies every edge in G′ is part of a cycle. Fix some edge E1

in G′, and let C1 be a cycle containing E1. Suppose there exists an edge E2 outside of C1. Because
E2 is contained in some cycle, removing E2 does not disconnect G′. Moreover, C1 remains in the
graph even after removing edge E2. So, E1 is on a cycle in G′ − E2. This means that removing
E1 from G − E2 leaves a connected graph. In total, G′ − {E1, E2} is connected graph, contrary
to our assumptions. Hence, every edge in the graph must be contained in cycle C1. Because G′ is
connected, G′ itself is a cycle. Hence, every component of G − Li (represented by a vertex in G′)
is incident with exactly two edges in Li.

It remains to show that a component of G − Li lacks cut-edges. Suppose for a contradiction
that component G0 of G−Li has a cut-edge E. The previous part of this proof implies that G0 is
incident with exactly two edges in Li. Call them E1 and E2. If E1 and E2 are incident with the
same component of G0 − E, E would be a cut edge in G as depicted below:

E1 E2

E

This contradicts the assumption that G lacks cut edges. Alternately, E1 and E2 may be incident
with separate components of G0 − E:

E1

E2

E

In this case, G − {E1, E} is disconnected, so E1 is equivalent to E. Hence, E should be in Li.
However, E is in G−Li by assumption. In all cases we reach a contradiction and no such cut-edge
E can exist. �

Definition 4.6. An edge E in a 2-uniform hypergraph G is an allowed edge if it is contained in
some maximum matching. Otherwise, E is a forbidden edge.

Theorem 4.7. Let G be a 2-uniform hypergraph. If G has a unique perfect matching M, then
there is an edge E ∈M that is a cut-edge of G.

Proof. Suppose for a contradiction that there exists a graph with a unique perfect matching which
lacks allowed cut-edges. Let G be such a counterexample with the smallest possible number of
edges. If G is not connected, there would be a component G0 of G with fewer edges than G.
Then {E ∈ M : E ∈ E(G0)} forms a perfect matching in G0. Moreover, any perfect matching in
G0 can be extended to a perfect matching in G by including matchings in the other components.
Hence, G0 must also have a unique perfect matching. Since G0 has fewer edges than the minimal
counterexample, G0 would necessarily have a cut-edge as part of its unique perfect matching which

Page 14 of 28

is a subset ofM. However, this would also be a cut-edge in G which is disallowed. Hence, G must
be connected.

Suppose G contained a forbidden cut-edge E. Then, a component G0 of G − E would have a
unique perfect matching and fewer edges than G. Hence G0 would contain a cut-edge that was also
a matching edge. This edge would still be both a cut-edge and a matching edge in G. Hence, G
lacks forbidden cut-edges. Since G also lacks allowed cut-edges, G does not contain any cut-edge
at all.

Let Ki and Li be equivalence classes of edges of G as previously defined prior to Lemma 4.5.
We claim the Ki’s do not contain any forbidden edges. To see this, suppose E ∈ Ki is a forbidden
edge for some i. Since |Ki| = 1, edge E does not pair with any other edge to disconnect the graph.
Removing edge E from G does not create any new cut-edges. Moreover, removing edge E from
G does not affect the unique perfect matching in G since E is a forbidden edge. However, by
minimality, G − E has an allowed cut-edge F . Hence F must be a cut-edge in the original graph
G which lacks cut-edges. Therefore every forbidden edge has to be contained in some Li.

Next I show that Li for a fixed i contains at least as many allowed edges as forbidden edges.
Let G0, . . . , Gs be the components of G− Li. Fix some j with 0 ≤ j ≤ s and consider component
Gj . Lemma 4.5 implies that Gj must be incident with exactly two edges E and E′ in Li. Suppose
both E and E′ are forbidden edges so that the perfect matching in G avoids using them. Then,
{E ∈ M : E ∈ E(Gj)} forms a unique perfect matching in the component Gj . By the minimality
of G, Gj must contain a cut-edge belonging to its unique perfect matching contradicting Lemma
4.5. Thus any component Gj is incident with at least one allowed edge in Li. Accordingly, any
component Gj is incident with at most one forbidden edge in Li. Since any edge in Li is incident
with exactly two components of G− Li,

2|{E ∈ Li : E is forbidden}| =
s∑
j=0

|{Edges E ∈ Li incident with Gj : E is forbidden}|

≤
s∑
j=0

|{Edges E ∈ Li incident with Gj : E is allowed}|

= 2|{E ∈ Li : E is allowed}|

We can extend this result to all of G. The Ki’s and Li’s partition E(G), and the Ki’s lack forbidden
edges. So,

number of forbidden edges in G =

p∑
i=1

number of forbidden edges in Li

≤
p∑
i=1

number of allowed edges in Li

≤ number of allowed edges in G

This means that G itself has at least as many allowed edges as forbidden edges.
Because G has a unique perfect matching, there are |V (G)|/2 allowed edges. There are at most

|V (G)|/2 forbidden edges in G. Hence G has at most |V (G)| edges. Additionally, G lacks cut-
edges so that every edge is contained in some cycle by Lemma 4.2. Since G is connected, the only
remaining possibility is that G itself is a cycle. Because G has a perfect matching, it must be
an even cycle. However, even cycles have two perfect matchings, contradicting our assumptions.
Hence no such counterexample exists. �

Theorem 4.8. Let G be a 2-uniform hypergraph with 2m vertices and m2 edges. If G has a unique
perfect matching, G ∼= H∗m.

Page 15 of 28

Proof. I proceed by induction on m.
Base case: When m = 1, G contains 2 vertices and 1 edge connecting the two vertices. This is
exactly the same as H∗1.
Inductive step: Suppose that the statement holds for all graphs with fewer than 2m vertices, and
let G be a graph with 2m vertices and unique perfect matching M. By Theorem 4.7, there is
some edge E = {x, y} ∈ M that is a cut-edge in G. Form a new graph G′ = G − {x, y} by
removing vertices x and y from G. Note that M\{E} is a perfect matching in G′. Moreover, any
perfect matching in G′ can be extended to a perfect matching in G by appending edge E. By the
uniqueness of the perfect matching in G, this means G′ also has a unique perfect matching. Then,
by the induction hypothesis, G′ ∼= H∗m−1.

Reform G from G′ by adding in vertices x and y and edges incident with these vertices. We must
add |E(G)| − |E(H∗m−1)| = m2 − (m− 1)2 = 2m− 1 edges incident with x or y. One of these edges
is E connecting x to y. The 2m− 2 other edges connect x and y to vertices in H∗m−1. We cannot
simultaneously create edges {x, v} and {y, u} for some u, v ∈ V(H∗m−1). Otherwise, E would no
longer be a cut-edge since H∗m−1 is connected as depicted below:

x y
E

H∗
m−1

Hence, at most one of x and y is connected by an edge to a vertex in H∗m−1. After renaming,
suppose x is not on a common edge with any vertex of H∗m−1. Then, all of the remaining 2m − 2
edges must be incident with y. Because H∗m−1 only contains 2m− 2 vertices, an edge must join y
to every previous vertex that exists in H∗m−1. Since this exactly mirrors the construction of H∗m,
G ∼= H∗m. �

5. Coverings and Multiple Matchings

In this section we create some tools that will be useful when proving Theorem 2.1. We start by
considering situations which lead to multiple perfect matchings.

Example 5.1. Consider a 2-uniform hypergraph G with unique perfect matching that has at least
two matching edges. The image below depicts a portion of G. The solid lines depict two matching
edges. The dotted lines represent 2-sets that might be edges in G.

One perfect matching in G exists using the solid edges. If the dashed 2-sets were included in G
as well, we could construct a second perfect matching. Start with the original perfect matching and
discard the solid edges. Instead, trade them for the dashed edges in the picture. This is a perfect
matching in G distinct from the original one, violating the uniqueness of the matching. Since we
are not allowed to have both of the dashed edges in G, the total number of edges in G becomes
constrained.

Example 5.2. Example 5.1 directly generalizes. Let G be a 6-uniform hypergraph with a unique
perfect matching {M1, . . . ,Mm} where m ≥ 5. Let V =

⋃5
i=1Mi be the vertices that appear in the

Page 16 of 28

first five matching edges. These vertices along with M1, . . . ,M5 are depicted on the left below. The
edges M1, . . . ,M5 partition the vertices in V.

M1 M2 M3 M4 M5

Edges from
a perfect matching

E1

E2

E3

E4

E5

Edges form a covering
of the perfect matching

The same vertex set V is depicted in the right above along with 6-sets E1, . . . , E5. Suppose
E1, . . . , E5 are edges in the hypergraph G. These edges are distinct from the original matching
edges and partition V. Informally, {E1, . . . , E5} is said to be a covering of {M1, . . . ,M5} because
they both partition the same vertex set. Using the same strategy as before, start with the perfect
matching {M1, . . . ,Mm} in G. Discard edges M1, . . . ,M5 and include edges E1, . . . , E5. Both
{E1, . . . , E5,M6, . . . ,Mm} and {M1, . . . ,Mm} are perfect matchings violating uniqueness. Thus,
we cannot have all of E1, . . . , E5 as edges in G. Essentially, coverings are disallowed as they lead
to multiple perfect matchings.

In order to employ this strategy in the proof of our main results, it is helpful to establish better
language. Throughout the remainder of this section let Hm = (Vm, Em) be an arbitrary k-uniform
hypergraph on km vertices with unique perfect matchingM = {M1, . . . ,Mm}. We must formalize
the intuitive notion of covering.

Definition 5.3. Suppose L = {E1, . . . , E`} with 1 ≤ ` ≤ k is a collection of disjoint edges in Hm.
A collection of k-sets C = {C1, . . . , C`} is a covering of L if

• Ci
⋂
Ej 6= ∅ for all 1 ≤ i, j ≤ ` and

•
⋃`
i=1Ci =

⋃`
i=1Ei.

Since |C1| = k and the Ei are disjoint, C1 can intersect at most k possible Ei. Since C1 must

intersect every Ei, ` = |{E1, . . . , E`}| ≤ k. Additionally, note that
∣∣∣⋃`

i=1Ci

∣∣∣ =
∣∣∣⋃`

i=1Ei

∣∣∣ = `k.

If the k-sets in C intersected, their union would contain fewer that `k elements. Therefore, the
elements of C must be pairwise disjoint.

Definition 5.4. Define L as in Definition 5.3 and let F ⊆ ∪L be a k-set that intersects every edge

of L. The ordered type of F is ~b = (b1, . . . , b`) where bi = |F
⋂
Ei| for 1 ≤ i ≤ `.

Definition 5.5. Define L as in Definition 5.3 and let F ⊆ ∪L be a k-set that intersects every
edge of L. The unordered type (abbreviated type) of F is ~a = (a1, . . . , a`) where (a1, . . . , a`)
is the unique rearrangement of the ordered type (b1, . . . , b`) of F such that the entries appear in
nonincreasing order. Formally, let ai = bσ(i) where σ is a permutation of {1, . . . , `} such that
bσ(i) ≥ bσ(i+1) for 1 ≤ i ≤ `− 1.

Example 5.6. Consider an 8-uniform hypergraph and let L = {E1, E2, E3, E4} be the edges depicted
below. Additionally consider the 8-sets F1 and F2 also depicted below.

Page 17 of 28

E1 E2 E3 E4

L

F1

F2

The ordered type of F1 is (1, 3, 2, 2), and the (unordered) type of F1 is (3, 2, 2, 1). The ordered type
of F2 is (1, 4, 1, 2), and the (unordered) type of F2 is (4, 2, 1, 1). Note that the ordered type depends
upon how we labeled the edges of L. For example, switching the labels E1 and E2 would make F1

have ordered type (3, 1, 2, 2).

Define L as in Definition 5.3 and let F ⊆ ∪L be a k-set that intersects every edge of L. Suppose F
is of type (a1, . . . , a`). Note that ai > 0 for 1 ≤ i ≤ ` since F intersects every edge in L. Additionally,
since F ⊆ ∪L and the elements of L = {E1, . . . , E`} are disjoint, F

⋂
E1, F

⋂
E2, . . . , F

⋂
E` is a

partition of F . Hence
∑`

i=1 ai = |F | = k.
Let Ak,` = {(a1, . . . , a`) : a1 ≥ a2 ≥ · · · ≥ a` ≥ 1 and a1 + a2 + · · · + a` = k}. That is, let Ak,`

be the set of vectors that could potentially be the type of a k-set. Let C~a be the set of all coverings
of L that only contain k-sets of type ~a. In symbols, C~a = {C : C is a covering of L and every C ∈
C is of type ~a}.

Example 5.7. In Example 5.2, C = {E1, . . . , E5} forms a covering of L = {M1, . . . ,M5}. Since
every 6-set in C is of type (2, 1, 1, 1, 1), C ∈ C(2,1,1,1,1).

Claim 5.8. For every ~a ∈ Ak,`, C~a 6= ∅.

Proof. Given a vector ~a = (a1, . . . , a`), we construct a cover of L = {E1, . . . , E`} that is of type ~a.
Create a table that contains all ` cyclic permutations of (a1, . . . , a`):

Page 18 of 28

a1 a2 a3 . . . a`−1 a`

a` a1 a2 . . . a`−2 a`−1

a`−1 a` a1 . . . a`−3 a`−2

...
...

...
...

...
...

a2 a3 a4 . . . a` a1

Notice that every row and column sums to k. Let wi,j be the entry in the ith row and jth column
of this table. Form C1 by picking w1,j elements from Ej for 1 ≤ j ≤ `. The cardinality of
C1 is the sum of the entries in the first row of the table which is k. Then, form C2 by picking
w2,j elements from Ej \ C1 for 1 ≤ j ≤ `. Proceeding in this fashion, form Ci by picking wi,j
elements from Ej \ (C1

⋃
C2
⋃
· · ·
⋃
Ci−1) for 1 ≤ j ≤ `. Because the columns sum to k, |Ej \

(C1
⋃
C2
⋃
· · ·
⋃
Ci−1)| > 0 and there are always a sufficient number of elements remaining to form

Ci for 1 ≤ i ≤ `.
The Ci’s are chosen to be disjoint subsets of

⋃`
i=1Ei of type ~a. Moreover, |

⋃`
i=1Ci| = k` =

|
⋃`
i=1Ei|. Thus the Ci’s must contain every vertex in

⋃`
i=1Ei. Hence C = {C1, . . . , C`} ∈ C~a. �

6. Example of the Upper Bound

We illustrate the tools of Section 5 by proving Corollary 2.2 in the special case of a 3-uniform
hypergraph on 9 vertices. Throughout the paper, we often use the notion of k-set to represent
every possible edge. When discussing a concrete example, we change our language slightly. Instead
of discussing k-sets, we consider complete hypergraphs which contain every possible edge. We do
not lose any generality since every hypergraph is a subgraph of a complete hypergraph. Let G be
the complete 3-uniform hypergraph (E(G) = {E ∈ PV(G) \ {∅} : |E| = 3}) on 9 vertices and let
M = {M1,M2,M3} be a perfect matching in G as depicted below.

M1 M2 M3

There are currently many perfect matchings in G. We wish to create a hypergraph G′ that
has unique perfect matching M by removing edges from G. In particular, we wish to remove all
coverings of sets of matching edges from M. To do this in an organized fashion, we study edges
based upon their type. We first focus on removing coverings of M = {M1,M2,M3}. The possible
types of edges (relative to M) are (1, 1, 1), (2, 1, 0), and (3, 0, 0) as depicted below.

Page 19 of 28

M1 M2 M3

Type (1, 1, 1)

M1 M2 M3

Type (2, 1, 0)

M1 M2 M3

Type (3, 0, 0)

Edges in a covering of {M1,M2,M3}must nontrivially intersect every edge in {M1,M2,M3}. Hence,
the only possible type of an edge in such a covering is (1, 1, 1).

We count the number of coverings of {M1,M2,M3} that only use edges of type (1, 1, 1). Let
{A,B,C} be a covering of {M1,M2,M3}. Suppose we have three edges that form a covering of
{M1,M2,M3}. There are multiple ways to assign the labels A,B, and C to these edges. However,
we only wish to count this covering once. We must be careful not to double count a particular
covering. To avoid this, we fix the labels A,B, and C in such a way that they cannot be permuted.
In the following figure, we label each vertex by the covering edge that contains it. After possibly
renaming the covering edges, we assume that the vertices in M1 are labeled as depicted. This
prevents swapping labels. For example, A is no longer interchangeable with B.

M1 M2 M3

A

B

C

Every edge in {A,B,C} is of type (1, 1, 1). This means that one vertex in edge M2 must be
labeled A, one vertex in edge M2 must be labeled B, and one vertex in M2 must be labeled C. (We
cannot duplicate or omit any label.) There are 3! = 6 ways to assign labels to edge M2. Similarly,
there are 6 ways to assign labels to edge M3. Every labeling corresponds to a distinct covering,
giving 6 · 6 = 36 coverings of {M1,M2,M3}.

Let C be a fixed edge of type (1, 1, 1) as depicted below.

M1 M2 M3

C

We count the number of coverings {A,B,C} that contain edge C and only use edges of type (1, 1, 1).
Again, we do this by assigning labels to vertices. After possibly renaming the edges in the covering
(to avoid double counting), we assume the vertices in M1 are labeled as depicted below.

M1 M2 M3

A

B

C

There are 2 ways to assign labels to M2 and two ways to assign labels to M3 yielding 2 · 2 = 4
coverings that contain edge C.

By symmetry, every edge of type (1, 1, 1) is contained in exactly 4 coverings. Removing 1 edge
removes 4 coverings from the hypergraph. Removing 2 edges removes at most 8 coverings from the
hypergraph. Note that removing 2 edges can possible remove fewer than 8 coverings if the coverings

Page 20 of 28

removed by the first edge overlap with the coverings removed by the second edge. Removing 8 edges
from the hypergraph removes at most 32 coverings. This is not enough to vanquish all 36 coverings.
Hence, we must remove at least 9 edges of type (1, 1, 1) to remove all coverings from the hypergraph.

We must also consider coverings of subsets of matching edges. For example, a covering of
{M1,M2} is also forbidden as it can be used to create multiple perfect matchings. We follow the
same procedure as before: we organize our search by type, count the total number of coverings,
and count how many coverings contain a fixed edge.

As depicted below, every edge in a covering of {M1,M2} is of type (2, 1). Note that type (3, 0)
is disallowed since edges in a covering must intersect every edge in {M1,M2}.

M1 M2

Before we proceed counting coverings, it’s worth observing how useful the notions of covering
and type are in this discussion. Previously when discussing covers of {M1,M2,M3}, we ruled out
the type (2, 1, 0). Now we are rectifying this by considering the type (2, 1). Every type does get
considered at the proper time. However, no type gets counted twice. Essentially, we have organized
edges into disjoint sets based upon type. This helps explain the condition in Definition 5.3 requiring
k-sets in a covering of L to nontrivially intersect every edge in L where L was described in the
definition.

We now count the number of coverings of {M1,M2} that only use edges of type (2, 1). Let E be
an edge with |E

⋂
M1| = 1 and |E

⋂
M2| = 2. In order to specify such an edge E, we pick one vertex

from M1 in

(
3

1

)
= 3 ways and two vertices from M2 in

(
3

2

)
= 3 ways giving 9 possible edges.

Define a function f with domain {E ∈ E(G) : |E
⋂
M1| = 1 and |E

⋂
M2| = 2} and codomain

coverings of {M1,M2} in which every edge is of type (2, 1) by E 7→ {E,E}.
Conversely, consider a covering of {M1,M2} in which every edge is of type (2, 1). Exactly one

edge E in a given covering has the property |E
⋂
M1| = 1 and |E

⋂
M2| = 2. Hence, we can define

a function g with domain coverings of {M1,M2} in which every edge is of type (2, 1) and codomain
{E ∈ E(G) : |E

⋂
M1| = 1 and |E

⋂
M2| = 2} by selecting the edge in the covering that has the

proper intersection sizes. Since f and g are inverses of each other, we see that f is a bijection.
Hence, the number of coverings equals the number of edges E with |E

⋂
M1| = 1 and |E

⋂
M2| = 2.

As previously counted, this means there are 9 total coverings.
Any edge E of type (2, 1) is contained in exactly one covering {E,E}. Hence, removing n edges

of type (2, 1) removes at most n coverings from the hypergraph. In order to remove all 9 coverings,
we must remove at least 9 edges. While this discussion focused on coverings of {M1,M2}, a similar

statement holds for any set of two edges from the matching M. There are

(
3

2

)
ways to pick a set

of two edges from M. Hence we must remove

(
3

2

)
· 9 = 27 edges of type (2, 1) from G.

The complete 3-uniform hypergraph on 9 vertices has

(
9

3

)
= 84 edges. We must remove 9 edges

of type (1, 1, 1) and 27 edges of type (2, 1). There are at most 84− 9− 27 = 48 edges remaining in
the hypergraph. This exactly agrees with the bound in Corollary 2.2 since

f(3, 3) = 3 + 9

(
3

2

)
+ 18

(
3

3

)
= 48

where f(k,m) was defined in the corollary.
Page 21 of 28

The above discussion also justifies the edge bound in the case of a 3-uniform hypergraph on 6
vertices with unique perfect matching {M1,M2}. As before, every covering of this perfect matching
is of type (2, 1). There are 9 such coverings in a complete hypergraph. Because every edge of type
(2, 1) is present in exactly 1 covering, removing n edges of type (2, 1) removes at most n coverings.
Hence, we must remove at least 9 edges of type (2, 1) from the complete hypergraph in order

to remove all coverings. There are

(
6

3

)
= 20 edges in the complete 3-uniform hypergraph on 6

vertices. After removing at least 9 edges, at most 11 edges remain. This agrees with the bound in
Corollary 2.2 since

f(3, 2) = 2 + 9

(
2

2

)
+ 18

(
2

3

)
= 11

where f(k,m) was defined in the corollary. Note that

(
2

3

)
= 0.

7. Proof of Upper Bound

The construction in Section 3 establishes part of Corollary 2.2 by showing the bound is attainable
by a hypergraph that has a unique perfect matching. In this section, we prove Theorem 2.1 and
complete the proof of Corollary 2.2.

Throughout the entirety of this section, letHm = (Vm, Em) be an arbitrary k-uniform hypergraph
on km vertices with unique perfect matching M = {M1, . . . ,Mm}.

Proof of Theorem 2.1. As in the statement of the theorem, let B` be the set of edges that intersect
exactly ` matching edges for 1 ≤ ` ≤ k. That is, B` = {E ∈ Em : |QE | = `} where QE = {Mi ∈
M : Mi

⋂
E 6= ∅}. As in the proof of Claim 3.4, B1 = {M1, . . . ,Mm} and |B1| = m.

Suppose for the purpose of a contradiction that |B`| > bk,`

(
m

`

)
for some 2 ≤ ` ≤ k where bk,`

was defined in the statement of Theorem 2.1. There are m edges in the matching M giving

(
m

`

)
ways to pick ` matching edges. Let L1, . . . ,L(m`) be all the possible sets of ` matching edges. For

every E ∈ B`, E intersects exactly ` matching edges. In symbols, |QE | = `. So, QE = Li for some

1 ≤ i ≤
(
m

`

)
. We partition the edges E ∈ B` based upon which matching edges E intersects:

B` =
(
B`
⋂
E (Hm[L1])

)
︸ ︷︷ ︸

Edges E ∈ B`
where QE = L1

⋃(
B`
⋂
E (Hm[L2])

)
︸ ︷︷ ︸

Edges E ∈ B`
where QE = L2

⋃
· · ·
⋃(
B`
⋂
E
(
Hm[L(m`)]

))
︸ ︷︷ ︸

Edges E ∈ B` where
QE = L(m

`

)

If |B`
⋂
E (Hm[Li])| ≤ bk,` for every 1 ≤ i ≤

(
m

`

)
, we would have

|B`| =
∣∣∣B`⋂ E (Hm[L1])

∣∣∣+
∣∣∣B`⋂ E (Hm[L2])

∣∣∣+ · · ·+
∣∣∣B`⋂ E (Hm[L(m`)]

)∣∣∣
≤ bk,` + bk,` + · · ·+ bk,`

=

(
m

`

)
bk,`

contrary to our assumptions. Thus (by the pigeonhole principle) there exists at least one i with

1 ≤ i ≤
(
m

`

)
and ∣∣∣B`⋂ E (Hm[Li])

∣∣∣ ≥ bk,` + 1 (1)

Page 22 of 28

Using similar counting techniques as Claim 3.4, let G be the collection of k-sets of vertices in
Hm[Li] that intersect all matching edges in Li. That is

G = {A : |A| = k,A ⊆ V(Hm[Li]), and ∀M ∈ Li, A
⋂
M 6= ∅}

Let G~a be the set of k-sets in G of type ~a and note that {G~a : ~a ∈ Ak,`} partitions G. Using the
formula in Claim 3.4

bk,` =
`− 1

`
|G| = `− 1

`

∑
~a∈Ak,`

|G~a|

where bk,` was defined in Theorem 2.1. Substituting into Equation 1 yields∣∣∣B`⋂ E (Hm[Li])
∣∣∣ ≥ `− 1

`

∑
~a∈Ak,`

|G~a|+ 1 (2)

Suppose |B`
⋂
G~a| ≤ `−1

` |G~a| for all a ∈ Ak,`. Note that B`
⋂
E (Hm[Li])

⋂
G~a ⊆ B`

⋂
G~a. Then∣∣∣B`⋂ E (Hm[Li])

∣∣∣ =
∑
a∈Ak,`

∣∣∣B`⋂ E (Hm[Li])
⋂
G~a
∣∣∣

≤
∑
a∈Ak,`

∣∣∣B`⋂G~a∣∣∣
≤
∑
a∈Ak,`

`− 1

`
|G~a|

=
`− 1

`
|G|

contradicting Equation 2. So (by the pigeonhole principle) there is at least one vector ~a ∈ Ak,`
with

|B`
⋂
G~a| ≥

`− 1

`
|G~a|+ 1 (3)

As before, let C~a be the nonempty set of coverings of Li such that every A ∈ C ∈ C~a is of type ~a.
Recall that |C| = ` for every C ∈ C~a.

By symmetry, every k-set A ∈ G~a belongs to λ coverings C ∈ C~a where λ is some constant. We
count the number of ordered pairs (A, C) where A ∈ C ∈ C~a in two ways. There are |G~a| ways to
pick a k-set A. Once A is fixed, there are λ coverings that could pair with A. Thus, there are |G~a|λ
ordered pairs. Alternately, there are |C~a| ways to pick a covering C ∈ C~a. Once a covering is known,
there are ` ways to pick a k-set contained in the covering. This yields |C~a|` possible ordered pairs.
Together, this implies every k-set in G~a belongs to exactly

λ =
|C~a|`
|G~a|

coverings C ∈ C~a.
No covering C ∈ C~a can be contained in Em. Otherwise (M \ Li)

⋃
C would form a perfect

matching in Hm contradicting the uniqueness of M. So there must be at least one k-set in every
covering C ∈ C~a that is not an edge in Hm.

One k-set is contained in λ coverings C ∈ C~a. Two k-sets are contained in at most 2λ coverings C ∈
C~a. (Each k-set is individually contained in λ coverings, but there may be a covering containing both
of the k-sets that gets double counted.) In general, n k-sets are contained in at most nλ coverings.

In order to have a k-set from every covering, we must have nλ ≥ |C~a|. Hence n ≥ |C~a|
λ

=
|G~a|
`

.

Page 23 of 28

Since Hm lacks coverings, there must be at least
|G~a|
`

k-sets of type ~a that are not edges in the

hypergraph. Hence

|B`
⋂
G~a|︸ ︷︷ ︸

Edges E ∈ E(Hm)
with QE = Li
and type ~a

≤ |G~a|︸︷︷︸
All k-sets F with
F ⊆ ∪Li and

∀M ∈ Li, F
⋂
M 6= ∅

that have type ~a

− |G~a|
`︸︷︷︸

Remove at least
one k-set from

each covering of Li

=
`− 1

`
|G~a|

contradicting Equation 3. �

Proof of Corollary 2.2. Define B` for 1 ≤ ` ≤ k as in Theorem 2.1. As noted in the proof of Claim
3.4, {B1, . . . ,Bk} forms a partition of the edges of Hm. Then

|Em| =
k∑
i=1

|Bi|

By Theorem 2.1

|Em| ≤ m+
k∑
i=2

bk,`

(
m

`

)
�

8. Miscellaneous Related Results

This section presents some related results that extend Corollary 2.2 to other situations.

Theorem 8.1. Let G = (V, E) be a 2-uniform hypergraph with 2m+ 1 vertices and a nearly perfect
matching M = {M1, . . . ,Mm}. If G lacks isolated vertices, then G has at least two nearly perfect
matchings.

Proof. Suppose
⋃m
i=1Mi = V \ {v} for some v ∈ V. Then there is a matching edge incident with

every vertex in the graph other than v (as depicted below with solid lines). Since v is not isolated,
there is an edge E connecting v to some other vertex u (depicted by a dotted line below). Let
F = {u,w} be the matching edge incident with u.

v

u

w

EF

Create a new nearly perfect matching by trading edge F for E. That is,M′ = {E}
⋃

(M\{F}) is
a distinct nearly perfect matching which contains an edge incident with every vertex except w. �

Corollary 8.2. Let G be a k-uniform hypergraph with km vertices and exactly two perfect matchings
M1 and M2. Then |E(G)| ≤ f(k,m) + 1 where f(k,m) was defined in Corollary 2.2.

Proof. Since M1 and M2 both contain m edges and M1 6= M2, there exists some edge E ∈
M2 \ M1. Create a new hypergraph G′ be removing edge E from G. The matching M2 is no
longer present in G′. Hence, G′ has a unique perfect matching M1. Then, by Corollary 2.2,
|E(G′)| ≤ f(k,m). Since G has one more edge than G′, |E(G)| ≤ f(k,m) + 1. �

Theorem 8.3. Let G be a k-uniform hypergraph with 2k vertices that lacks a perfect matching.

Then |E(G)| ≤
(

2k − 1

k

)
. Furthermore, this bound is tight.

Page 24 of 28

Proof. Let G be a k-uniform hypergraph with 2k vertices that lacks a perfect matching. Fix
a vertex v ∈ V(G) and enumerate the edges incident with v as {E1, E2, . . . , Em}. For each
Ei with 1 ≤ i ≤ m, Ei cannot be an edge in the hypergraph. Otherwise, {Ei, Ei} would
form a perfect matching in G. Let G′ be the hypergraph with vertex set V(G) and edge set
(E(G) \ {E1, E2, . . . , Em})

⋃
{E1, E2, . . . , Em}. That is, trade edge Ei for edge Ei for 1 ≤ i ≤ m.

Removing one edge Ei and adding another edge Ei to the edge set does not change the total num-
ber of edges in a hypergraph. Hence, |E(G)| = |E(G′)|. Note that v is an isolated vertex in G′.
Therefore, every edge in G′ only contains elements from V(G′) \ {v} which has cardinality 2k − 1.

There are at most

(
2k − 1

k

)
such edges.

We construct a hypergraph to demonstrate that the bound is attainable. Let H be the complete
k-uniform hypergraph on 2k− 1 vertices. That is |V(H)| = 2k− 1 and E(H) = {E ∈ PV(H) \ {∅} :

|E| = k}. Appending an isolated vertex to H creates a hypergraph with 2k vertices and

(
2k − 1

k

)
edges. This hypergraph cannot have a perfect matching because it contains an isolated vertex. �

9. Application

As discussed in [3], enumerating perfect matchings arises naturally when studying properties of
molecules. To illustrate this, we consider the molecule benzene (C6H6). Carbon molecules tend
to bond to four other molecules while hydrogen molecules only bond to one other molecule. If we
think of the physical structure of this molecule as a graph, this means we must have 6 vertices
of degree 4 and 6 vertices of degree 1. This alone is not sufficient to determine the structure of
the molecule. Experimental data has suggested that the molecule is roughly a planar ring. It also
seems that all of the carbons are in equivalent positions in the molecule. Similarly the hydrogens
seem to be in equivalent positions as well. One potential model is to place the carbons in a cycle
of length 6 and attach one hydrogen to each carbon as depicted below.

C

CC

C

C C

H

HH

H

H H

This symmetric planar ring configuration is further supported by experimental evidence. Hy-
drogen atoms in this molecule can be replaced by OH groups in order to form new molecules. As
depicted below, there are three distinct ways to exchange two hydrogens for two OH groups.

C

CC

C

C C

H

OHOH

H

H H

Type I

C

CC

C

C C

OH

HOH

H

H H

Type II

C

CC

C

C C

OH

HH

OH

H H

Type III
In Type I, the two OH groups are bonded to adjancent carbons. In Type II, the two carbon atoms
that are bonded with the OH groups are distance 2 apart. In Type III, the two carbon atoms
bonded with the OH groups are distance 3 apart. These three configurations lead to three distinct
isomers of this molecule, each of which exhibits slightly different properties.

Unfortunately, this model as currently stated has an obvious flaw. The carbon molecules which
bond 4 times must be represented by degree 4 vertices in the graph. As previously depicted,

Page 25 of 28

the carbon vertices only have degree 3. We are missing some bonds. Specifically, there must be
additional bonds between the carbon atoms. To rectify this, we introduce double bonds into the
cycle of carbons. There are two ways to do this:

C

CC

C

C C

H

HH

H

H H

C

CC

C

C C

H

HH

H

H H

Note that the double bonds between the carbon atoms correspond to a perfect matching in the
6-cycle. The different possibilities for the structure arise because the 6-cycle does not have a unique
perfect matching.

While these new bonds do rectify the degree constraints of the graph, they unfortunately remove
some of the symmetry previously present in the graph. In particular, there are now four distinct
ways to remove two hydrogen atoms and replace them with two OH groups:

C

CC

C

C C

H

OHOH

H

H H

Type I

C

CC

C

C C

H

HOH

OH

H H

Type II

C

CC

C

C C

OH

HOH

H

H H

Type III

C

CC

C

C C

OH

HH

OH

H H

Type IV

Let C1 and C2 be the two carbons adjacent with the OH group. In Type I, C1 and C2 are
adjacent and double bonded. In Type II, C1 and C2 are adjacent and single bonded. In Type III,
the distance between C1 and C2 is 2. In Type IV, the distance between C1 and C2 is 3. Because
of the double bonding, there are now two types of adjacent carbon atoms.

Unfortunately, fixing the degrees of the carbon vertices has created a nonphysical result. In
nature, replacing two hydrogens by two OH groups only creates three types of molecules, not four.
The above model must also be flawed. To rectify this, the carbons in the benzene molecule are
believed to resonate between the two possible states. Suppose carbon atom C1 is adjacent to carbon
atoms C2 and C3. Sometimes, C1 is double bonded with C2. Other times, C1 is double bonded
with C3. This means that any pair of adjacent carbon atoms are sometimes double bonded and
sometimes single bonded. This merges Types I and II above, reducing the number of possibilities
to three. This once again agrees with physical observations.

In graph theoretical terms, the bonds in the carbon cycle in benzene resonate in such a way that
corresponds to oscillating between the two perfect matchings in the 6-cycle. This configuration
seems to correspond to physical properties of the molecule. Benzene is incredibly stable. It seems
that alternating between perfect matchings increases the stability of a molecule. In fact, the reso-
nance conjecture states that the stability of molecules resembling benzene is directly proportional
to the number of perfect matchings present in the molecular structure. Such molecules with a
unique perfect matching tend to be less stable.

10. Further Study

Many interesting related questions remain. One natural extension is to ask for a formula bound-
ing the maximum number of edges allowed in a hypergraph with exactly k perfect matchings for
some natural number k. This paper addresses the cases k = 1 in Corollary 2.2 and k = 2 in
Corollary 8.2.

Page 26 of 28

In the 2-uniform case, the idea of a k-factor provides an alternate way to generalize the problem.
The degree of a vertex v in a 2-uniform hypergraph G is the number of vertices adjacent to v. A
k-regular graph is a graph where every vertex has degree k. A k-factor of a graph G is a k-regular
subgraph of G that has vertex set V(G). A 1-factor is a decomposition of a graph into paths of
length 1. That is, a 1-factor is essentially the same as a perfect matching. A 2-factor decomposes
a graph into disjoint cycles. We may also consider an upper bound on the number of edges present
in a graph with a unique k-factor.

Page 27 of 28

References

[1] Bal, Deepak, Andrzej Dudek, Zelealem B. Yilma, On the maximum number of edges in a hypergraph with a
unique perfect matching, Discrete Mathematics 311 (2011) 2577-2580. 5

[2] Lovász, L., On the structure of factorizable graphs. I, Acta Mathematica Academiae Scientiarum Hungaricae 23
(1972) 179-195. 12

[3] Merris, Russell, Graph Theory, Wiley-Interscience, New York, 2001. 25
[4] West, Douglas B., Introduction to Graph Theory (Second Edition), Prentice Hall, Upper Saddle River, NJ, 2001.

12

Page 28 of 28

	1. Introduction
	2. Background
	3. Construction
	4. Nonuniqueness of Hypergraphs Attaining the Edge Bound
	5. Coverings and Multiple Matchings
	6. Example of the Upper Bound
	7. Proof of Upper Bound
	8. Miscellaneous Related Results
	9. Application
	10. Further Study
	References

