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Abstract

In Linear algebra, the concept of Leonard pair (LP) was mo-

tivated by the theory of Q-polynomial distance-regular graphs.

In this dissertation, we will first give a brief introduction to LPs

and to two closely-related classes of objects: (i) bipartite Leonard

pairs (BLPs) and (ii) almost bipartite Leonard pairs (ABLPs).

Taking these as departure points, we will introduce a new class

of object - doubly almost bipartite Leonard pairs (DABLPs). The

primary aim of our work is to fully classify (up to isomorphism)

this new family. In addition, since there is known to be a natural

correspondence between Leonard pairs and families of orthogonal

polynomials, we reveal which families of orthogonal polynomi-

als correspond to the DABLPs. Several related objects, such as

Leonard triples, modular Leonard triples, spin Leonard pairs, and

near-bipartite Leonard pairs have corresponding notions for the

doubly almost bipartite case. These analogous objects are also

defined and briefly explored.
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1 Introduction

1.1 Overview

A finite, connected, undirected graph of diameter d is said to be distance-

regular if, for any 0 ≤ h, i, j ≤ d, and any vertices x and y that are distance

h apart, there are exactly phij vertices z at distance i from x and j from y,

for some constants phij (see Section 2.3). Examples include the 1-skeletons of

the 5 Platonic solids, hypercube graphs of any dimension, cycles, complete

graphs, any strongly regular graph, any distance transitive graph, and many

other infinite families. These graphs are far from being completely classified,

and since the 1970s, they have been researched actively due to their many

connections with physics, combinatorics, algebra, error-correcting codes, knot

theory, and more.

In 1982, Delsarte [14] explored a broad class of distance-regular graphs that

are said to be Q-polynomial (see Section 2.3). For any Q-polynomial distance-

regular graph, he showed that there are two special sequences of orthogonal

polynomials that are related by what is now called Askey-Wilson duality.

This was notable because, a few years prior (in 1972), Leonard had fully

classified all pairs of orthogonal polynomial sequences that obey this duality.

In particular, Leonard had found that all such sequences come from the

terminating branch of the Askey scheme of orthogonal polynomials [33]. This

branch consists of the q-Racah polynomials and their limits. Inspired by these

results, Bannai and Ito published a thorough study of Q-polynomial distance-
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regular graphs [4], including a detailed reworking of Leonard’s theorem.

Shortly thereafter, the theory of Leonard pairs was introduced by Terwilliger

in [44] to extend the work of Bannai and Ito. Leonard pairs situate the

theory of orthogonal polynomials in a context of linear algebra and matrix

theory. Specifically, this theory offers powerful tools to study any sequences

of orthogonal polynomials with discrete support for which there is a dual

sequence of orthogonal polynomials. Since their introduction over 20 years ago,

Leonard pairs have proved very useful in the theory of algebraic combinatorics

[26, 48], the theory of classical mechanics [51], and the representation theory

of the Lie algebra sl2 or the quantum group Uq(sl2) [23, 26, 27, 28, 29, 30, 32,

36, 50] just to name a few.

In this dissertation, we begin with a brief review of the basic theory of

Leonard pairs and focus on two special classes: (i) bipartite Leonard pairs

(BLPs) in Section 2.10 and (ii) almost bipartite Leonard pairs (ABLPs) in

Section 2.11. Taking BLPs and ABLPs as departure points, we will introduce

a new class of objects - the doubly almost bipartite Leonard pairs (DABLPs)

in Section 3.1. The primary aim of our work is to fully classify (up to

isomorphism) the doubly almost bipartite Leonard pairs. In addition, since

there is generally known to be a natural correspondence between Leonard

pairs and certain families of orthogonal polynomials, we aim to identify which

families of orthogonal polynomials correspond to the Leonard pairs in this

doubly almost bipartite case. Additionally, we explore some potential avenues

of future research. Specifically, we introduce doubly almost bipartite analogues
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of several related objects, including Leonard triples, modular Leonard triples,

and spin Leonard pairs, and a connection to near-bipartite Leonard pairs is

introduced and explored.

1.2 Organization

This dissertation is organized as follows. After the general introduction

given here in Chapter 1, the material provided in Chapter 2 will outline the

basic definitions and background for the theory of Leonard pairs. Chapter

3 will introduce our primary object of interest, the doubly almost bipartite

Leonard pairs. Here we will derive a number of important facts and preliminary

results about these Leonard pairs that will be useful in our work. In Chapter

4, we present our main results. Specifically, we will classify the doubly almost

bipartite Leonard pairs using Leonard’s Theorem. In Chapter 5, we collect

and discuss some of the potential future directions for this line of research as

outlined above. Appendix A contains the detailed proof of Theorem 3.3.1.

Appendix B contains some comments regarding generalizations of the all-ones

DABITM (see (3.2.1)). Appendix C contains the list of both parameter and

intersection arrays of all 13 families of Leonard pairs (see page 16).
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2 Background

In this chapter we introduce some necessary background knowledge as we

define a Leonard pair and provide some examples. By using these examples,

we illustrate how Leonard pairs naturally arise in representation theory and

the theory of orthogonal polynomials. Before we define the notion of Leonard

pair, we first recall what it means for a square matrix to be tridiagonal and

list several helpful lemmas regarding tridiagonal matrices.

2.1 Tridiagonal Matrices

Throughout this paper, V will denote a vector space over an algebraically

closed field K with dimension d+1. Let End(V ) denote the algebra consisting

of the K-linear maps from V to V (called the endomorphism algebra). Fur-

thermore, for any nonnegative integer d, let Matd+1(K) denote the K-algebra

consisting of all (d+ 1)× (d+ 1) matrices that have entries in K. (We index

the rows and columns by 0, 1, . . . , d.) The identity matrix and the matrix

of Matd+1(K) whose entries are all one are denoted by I and J , respectively.

Let Kd+1 denote the vector space consisting of the column vectors with d+ 1

rows and all entries in K.

Definition 2.1.1. A matrix T in Matd+1(K) is tridiagonal if the entries

satisfy Tij = 0 whenever |i− j| > 1 for any 0 ≤ i, j ≤ d. Said another way, a

tridiagonal matrix is a square matrix that has nonzero elements only on the

main diagonal, the subdiagonal (the first diagonal below the main diagonal),
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and the superdiagonal (the first diagonal above the main diagonal).


a0 c1 0
b0 a1 c2

b1
. . . . . .
. . . ad−1 cd

0 bd−1 ad


(d+1)×(d+1)

(2.1.1)

We will say a tridiagonal matrix is in:

• standard form if b0 = b1 = · · · = bd−1 = 1 and

• normalized form if c1 = c2 = · · · = cd = 1.

Definition 2.1.2. A tridiagonal matrix as given in (2.1.1) is said to be

irreducible if bi ̸= 0 and ci+1 ̸= 0 for all 0 ≤ i ≤ d− 1. If at least one of bi or

ci+1 is 0 for some i (0 ≤ i ≤ d− 1), then it is said to be reducible.

For example, the following matrices are tridiagonal:


2 3 0 0
1 4 2 0
0 5 3 3
0 0 3 0



2 3 0 0
0 4 2 0
0 2 1 0
0 0 1 5

 .

Observe that the tridiagonal matrix given above on the left is irreducible

and the one on the right is reducible.

Tridiagonal matrices are perhaps one of the most studied classes of ma-

trices and much of the reason for this is that many algorithms in linear

algebra require significantly less computational labor when they are applied

to tridiagonal matrices.
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Some examples include:

(1) finding eigenvalues,

(2) solving linear systems Ax⃗ = b⃗,

(3) finding LU factorizations, and

(4) evaluating determinants.

Next, we will state (and prove) two important lemmas about irreducible

tridiagonal matrices that will be useful in developing the theory of Leonard

pairs.

Lemma 2.1.1. Every eigenspace of an irreducible tridiagonal matrix is 1-

dimensional.

Proof. Let x⃗ =
(
x0 x1 · · · xd

)
be a left-eigenvector of an irreducible tridi-

agonal matrix in (2.1.1) with eigenvalue θ. Then

(
x0 x1 · · · xd

)

a0 c1 0
b0 a1 c2

b1
. . . . . .
. . . ad−1 cd

0 bd−1 ad

 =
(
θx0 θx1 · · · θxd

)
.

(2.1.2)

Expanding the product on the left-hand side of (2.1.2) and equating the

like-components on both sides, we see that

a0x0 + b0x1 = θx0,

c1x0 + a1x1 + b1x2 = θx1,

...

cdxd−1 + adxd = θxd.
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Notice the three-term recurrence nature of these equations. Since bi ̸= 0 for

all i = 1, . . . , d− 1, we may solve the above equations for xi (i = 1, . . . , d) in

terms of x0, as follows:

x1 =
(θ − a0)x0

b0
,

x2 =
[(θ − a0)(θ − a1)− b0c1]x0

b0b1
,

x3 =
[(θ − a0)(θ − a1)(θ − a2)− b0c1(θ − a2)− b1c2(θ − a0)]x0

b0b1b2
,

...

This shows that the left-eigenvector x⃗ of a given irreducible tridiagonal matrix

can be written in terms of one parameter x0.

Lemma 2.1.2. Assume T ∈ Matd+1(K) is an irreducible tridiagonal matrix.

Then T is similar to (i) a symmetric irreducible tridiagonal matrix, (ii)

an irreducible tridiagonal matrix in standard form, and (iii) an irreducible

tridiagonal matrix in normalized form.

Proof. Let T be an arbitrary irreducible tridiagonal matrix as in (2.1.1).

(i) Define

κ0 ≡ 1 and κi =

∏i−1
j=0 bj∏i
j=1 cj

and K = diag
(√

κ0,
√
κ1, . . . ,

√
κd

)
. Then K is invertible and

K−1 = diag
(
1/
√
κ0, 1/

√
κ1, . . . , 1/

√
κd

)
.
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Furthermore,

K−1TK =


a0

√
b0c1 0√

b0c1 a1
√
b1c2√

b1c2
. . . . . .
. . . ad−1

√
bd−1cd

0
√

bd−1cd ad

 ,

which is symmetric and irreducible tridiagonal.

(ii) Define B = diag(1, b0, b0b1, . . . , b0b1 · · · bd−1). Then B is invertible and

B−1 = diag(1, (b0)
−1, (b0b1)

−1, . . . , (b0b1 · · · bd−1)
−1).

Furthermore,

B−1TB =


a0 b0c1 0
1 a1 b1c2

1
. . . . . .
. . . ad−1 bd−1cd

0 1 ad

 ,

which is an irreducible tridiagonal matrix in standard form, as claimed.

(iii) Define C = diag(1, c−1
1 , (c1c2)

−1, . . . , (c1c2 · · · cd)−1). Then C is invert-

ible and

C−1 = diag(1, c1, c1c2, . . . , c1c2 · · · cd).

Furthermore,

C−1TC =


a0 1 0
b0c1 a1 1

b1c2
. . . . . .
. . . ad−1 1

0 bd−1cd ad

 ,

which is an irreducible tridiagonal matrix in normalized form, as

claimed.
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Corollary 2.1.1. Assume T ∈ Matd+1(R) is an irreducible tridiagonal matrix

and bici+1 > 0 for 0 ≤ i ≤ d − 1. Then T is similar to a real symmetric

irreducible tridiagonal matrix.

Proof. Immediate by the proof of (i) in the lemma above.

2.2 Association Schemes

A closely related structure to Leonard pairs and one of the primary struc-

tures of algebraic combinatorics and coding theory is the notion of an associ-

ation scheme.

Definition 2.2.1. A symmetric association scheme X is a pair (X, {Ri}di=0),

where X is a non-empty finite set and Ri is a non-empty relation on X for

each i, with the following properties.

(i) {Ri}di=0 is a partition ofX×X, that is, ∪d
i=0Ri = X×X and Ri∩Rj = ∅

for i ̸= j;

(ii) R0 = {(x, x) |x ∈ X};

(iii) Rt
i = Ri for 0 ≤ i ≤ d, where Rt

i = {(y, x) | (x, y) ∈ Ri};

(iv) there exist integers phij such that for any 0 ≤ h, i, j ≤ d and for any

x, y ∈ X with (x, y) ∈ Rh, the number of z ∈ X with (x, z) ∈ Ri and

(z, y) ∈ Rj is p
h
ij. (The phij are called the intersection numbers of X .)

We often investigate association schemes by way of the following matrices.
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Definition 2.2.2. Suppose X is a symmetric association scheme. For each

i (0 ≤ i ≤ d), define Ai ∈ MatX(K) with x, y entry given by

(Ai)xy =

{
1 if (x, y) ∈ Ri,
0 otherwise.

(2.2.1)

We refer to the matrices A0, ..., Ad as the associate matrices of X .

The associate matrices enjoy the following properties.

A0 = I, (2.2.2a)

d∑
i=0

Ai = J, (2.2.2b)

At
i = Ai for all i ∈ {0, . . . , d}, (2.2.2c)

AiAj =
d∑

h=0

phijAh for all i, j. (2.2.2d)

Note that the associate matrices commute, since for all i, j, AiAj = AjAi

holds and therefore phij = phji.

2.3 Distance-Regularity and Bose-Mesner Algebras

As mentioned in the overview (Section 1.1), distance-regular graphs (DRGs)

give us many important examples of association schemes. Here we offer a

brief introduction to the basic definitions. We will describe the Bose-Mesner

algebra, the dual Bose-Mesner algebra, P - and Q-polynomial property (in

Section 2.4), and the subconstituent or Terwilliger algebra (in Section 2.5).
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For more information see [3, 6, 31, 18, 41, 42, 43].

Let Γ = (X,R) be a finite, undirected, connected simple graph with vertex

set X and edge set R. Furthermore, let V = KX denote the vector space

over K consisting of the column vectors with coordinates indexed by X and

all entries in K. Two vertices x, y ∈ X are said to be adjacent (denoted

x ∼ y) whenever x and y form an edge. Let ∂ denote the path-length distance

function for Γ, and define d = max{∂(x, y) |x, y ∈ X}. We call d the diameter

of Γ. For x ∈ X and an integer i ≥ 0 define Γi(x) = {y ∈ X | ∂(x, y) = i}.

For notational convenience we abbreviate Γ(x) = Γ1(x). For a nonnegative

integer k we say that Γ is regular with valency k whenever |Γ(x)| = k for all

x ∈ X.

Definition 2.3.1. A graph Γ is said to be distance-regular whenever for all

integers h, i, j (0 ≤ h, i, j ≤ d) and for all vertices x, y ∈ X with ∂(x, y) = h,

phij := |Γi(x) ∩ Γj(y)| is independent of x and y. The numbers phij are called

the intersection numbers of Γ. We often refer to Γ as a DRG.

For the remainder of this section we assume that Γ is distance-regular with

d ≥ 3.

By construction it is easy to see that phij = phji for all 0 ≤ h, i, j ≤ d. Let

us abbreviate

aj = pj1j (0 ≤ j ≤ d), (2.3.1a)

bj = pj1,j+1 (0 ≤ j ≤ d− 1), (2.3.1b)

cj = pj1,j−1 (1 ≤ j ≤ d). (2.3.1c)

11



Observe that a0 = 0 and c1 = 1 and furthermore, bj > 0 (0 ≤ j ≤ d− 1) and

cj > 0 (1 ≤ j ≤ d).

Now, if Γ is regular with valency k, then k = b0 by (2.3.1b). Moreover,

aj + bj + cj = k (2.3.2)

for all 0 ≤ j ≤ d, where bd = c0 = 0. For 0 ≤ j ≤ d define kj := p0jj and

note that kj = |Γj(x)| for all x ∈ X. Observe that k0 = 1 and k1 = k. By

a routine counting argument, we have kj−1bj−1 = kjcj for 1 ≤ j ≤ d. Using

this recursive relation, we have

kj =
b0b1 · · · bj−1

c1c2 · · · cj
(0 ≤ j ≤ d). (2.3.3)

By the triangle inequality and simple counting, one can easily derive the

following well-known results (where δij denotes the Kronecker delta function

which is 1 when i = j and 0 otherwise).

(i) phij = 0 if one of h, i, j is greater than the sum of the other two;

(ii) phij ̸= 0 if one of h, i, j is equal to the sum of the other two;

(iii) ph0j = δhj (0 ≤ h, j ≤ d);

(iv) phi0 = δhi (0 ≤ h, i ≤ d);

(v) p0ij = δijki (0 ≤ i, j ≤ d);

(vi)
d∑

i=0

phij = kj (0 ≤ h, j ≤ d).
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Given any DRG Γ, the distance-i relations form a symmetric association

scheme on the vertex set. Specifically, the distance matrices of Γ form the

associate matrices for this scheme. Let us now elaborate the details of this

connection.

Suppose Γ is a DRG of diameter d. With reference to Definition 2.2.2, for

each 0 ≤ i ≤ d we may define a matrix Ai ∈ MatX(K) with x, y ∈ X entry

given by

(Ai)xy =

{
1 if ∂(x, y) = i,
0 if ∂(x, y) ̸= i.

(2.3.4)

We call Ai the ith distance matrix of Γ. We abbreviate A = A1 and call this

the adjacency matrix of Γ. Note that Ai satisfy the same properties as in

(2.2.2a)-(2.2.2d). It follows immediately that we have a symmetric association

scheme XΓ that is associated with the DRG Γ.

Whenever we are given an association scheme X , the associate matrices

A0, . . . , Ad form a basis for a subalgebra M of MatX(K). This leads to the

following definition.

Definition 2.3.2. Given any symmetric association scheme X , the subalge-

bra M of MatX(K) generated by the associate matrices A0, . . . , Ad is called

the Bose-Mesner algebra of X .

Note that, since M has a basis of 0-1 matrices (the associate matrices), it

follows that M is not only closed under ordinary matrix product, but also

also under the entrywise (Hadamard or Schur) product, denoted by ◦.
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By (2.3.4), it is clear that the associate matrices Ai are symmetric and

mutually commute. As a result, they can be simultaneously diagonalized.

Consequently M has a second basis {Ei}di=0 such that

E0 = |X|−1J, (2.3.5a)

d∑
i=0

Ei = I, (2.3.5b)

Et
i = Ei (0 ≤ i ≤ d), (2.3.5c)

EiEj = δijEi (0 ≤ i, j ≤ d). (2.3.5d)

We call {Ei}di=0 the primitive idempotents of X . Properties (2.3.5b) and

(2.3.5d) imply that we may write

Ei ◦ Ej =
d∑

h=0

qhijEh (0 ≤ i, j ≤ d) (2.3.6)

for some constants qhij, called the Krein parameters (or dual intersection

numbers) of X .

We now define the dual Bose-Mesner algebra of X relative to any given

x ∈ X. To this end, fix a vertex x ∈ X for the rest of this section. For each

0 ≤ i ≤ d, let E∗
i = E∗

i (x) denote the diagonal matrix in MatX(K) with

(E∗
i )yy =

{
1 if ∂(x, y) = i,
0 if ∂(x, y) ̸= i,

(y ∈ X). (2.3.7)

We call E∗
i the ith dual primitive idempotent of X with respect to x. For

y ∈ X,
E∗

i ŷ =

{
ŷ if ∂(x, y) = i,
0 if ∂(x, y) ̸= i,

(2.3.8)
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where ŷ ∈ V is a vector that has y-coordinate 1 and all other coordinates 0.

(Note that {ŷ}y∈X form an orthonormal basis for V .) Observe that {E∗
i }di=0

have similar properties as in (2.3.5b)-(2.3.5d):

E∗
0 = diag(0, . . . , 0,

x︷︸︸︷
1 , 0, . . . , 0), (2.3.9a)

d∑
i=0

E∗
i = I, (2.3.9b)

E∗t
i = E∗

i (0 ≤ i ≤ d), (2.3.9c)

E∗
i E

∗
j = δijE

∗
i (0 ≤ i, j ≤ d). (2.3.9d)

By these facts {E∗
i }di=0 form a basis for a commutative subalgebraM∗ = M∗(x)

of MatX(K).

Definition 2.3.3. The commutative subalgebra M∗ described above is called

the dual Bose-Mesner algebra of X with respect to x.

2.4 P - and Q-Polynomial Property

Up to this point, we have not yet ordered the sequence {Ei}di=0 of prim-

itive idempotents in an association scheme X . However, in an association

scheme that arises from a distance-regular graph, the distance relations (and

consequently the Ai matrices) are ordered naturally according to distance

in the graph. And, since the eigenvalues of A1 are all real in this case, we

also obtain a natural ordering of the Ei matrices according to the ordering of

these eigenvalues as real numbers. This leads to the following definition.
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Definition 2.4.1. An association scheme X is said to be P-polynomial if the

adjacency matrices A0, . . . , Ad can be indexed so that each Ai is a polynomial

of degree i in A1. In this case, the Bose-Mesner algebra M is generated by A1,

that is M = ⟨A1⟩ and we think of X as the vertex set of a distance-regular

graph.

It turns out that the corresponding association schemes of many important

families of DRGs satisfy an important dual property which leads to the

following definition.

Definition 2.4.2. An association scheme X is said to be Q-polynomial

if the primitive idempotents E0, . . . , Ed can be indexed so that each Ei is

expressible as an entrywise polynomial of degree i in E1.

The polynomials associated with a P - and Q-polynomial scheme are asso-

ciated with certain orthogonal polynomials in the terminating branch of the

Askey-Wilson scheme (and their limiting cases):

1. q-Racah

2. q-Hahn

3. Dual q-Hahn

4. Quantum q-Krawtchouk

5. q-Krawtchouk

6. Affine q-Krawtchouk

7. Dual q-Krawtchouk

8. Racah

9. Hahn

10. Dual Hahn

11. Krawtchouk

12. Bannai/Ito

13. Orphan

This leads to a dramatic reduction in the number of parameters when working

with association schemes that belong to one of these families. As we will see

later, the intersection numbers, and Krein parameters can be expressed in

terms of at most 9 free parameters, organized into these 13 different cases.
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2.5 Terwilliger Algebra, T - and Primary Module

In order to study P - and Q-polynomial schemes, Terwilliger introduced

the idea of the subconsituents of X with respect to x ∈ X. This definition

led to the notion of the subconsituent (or Terwilliger) algebra T = T (x) of

X relative to x. In this section we review these definitions, as well as the

concept of a T -module and the so-called primary module.

From (2.3.7), we find that for 0 ≤ i ≤ d,

E∗
i V = Span{ŷ | y ∈ Γi(x)}. (2.5.1)

By (2.5.1) and since {ŷ}y∈X is an orthonormal basis for V ,

V =
d⊕

i=0

E∗
i V (orthogonal direct sum). (2.5.2)

Definition 2.5.1. The span E∗
i V defined in (2.5.1) is called the ith subcon-

stituent of X with respect to x.

Observe that:

(i) For 0 ≤ i ≤ d, the subconstituent E∗
i V is a common eigenspace for the

dual Bose-Mesner algebra M∗.

(ii) dim(E∗
i V ) = ki.

(iii) E∗
0V = Kx̂.

(iv) AE∗
i V ⊆ E∗

i−1V + E∗
i V + E∗

i+1V , where E∗
−1 = E∗

d+1 = 0.

Now we define the subconstituent (or Terwilliger) algebra and the related

objects called the T -modules.
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Definition 2.5.2. Fix any x in a given P - and Q-polynomial scheme X .

The Terwilliger algebra of X (with respect to x) is the subalgebra T = T (x)

of MatX(K) generated by A = A1 and A∗ = A∗(x) = diag(E1)x, that is,

T = T (x) = ⟨A,A∗⟩. (2.5.3)

Definition 2.5.3. Given a Terwilliger algebra T (with respect to x ∈ X), by

a T -module we mean a subspace W ⊆ V such that BW ⊆ W for all B ∈ T .

A T -module W is called irreducible whenever W ̸= 0 and W does not contain

a T -module besides 0 and itself.

Notice that T acts on V = KX by left-multiplication, and V is a direct sum

of irreducible T -modules. For more information on the Terwilliger algebra of

an association scheme, see [9, 10, 13, 16, 18, 22, 38, 41, 42, 43].

Let us finally define the primary module for T .

Definition 2.5.4. The primary module for the Terwilliger algebra T is

V0 = Span{v0, . . . , vd}, (2.5.4)

where, for each i = 0, . . . , d,

vi =
∑

∂(x,y)= i

ŷ. (2.5.5)

(Recall that for any y ∈ X, ŷ ∈ V = KX is the vector that has y-coordinate 1

and all other coordinates 0. See page 14, immediately below (2.3.8).)

The primary module T0 for T also has a basis consisting of eigenvectors

for A:
V0 = Span{w0, . . . , wd}, (2.5.6)
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where w0 = 1⃗ (i.e., all ones vector) and, for each 0 ≤ i ≤ d, Awi = AEiwi =

θiwi (θi is the eigenvalue corresponding to wi).

The following two propositions motivate the definition of a Leonard pair

given in Definition 2.6.1.

Proposition 2.5.1. For the ordered basis v0, . . . , vd, the generators A and

A∗ of the Terwilliger algebra T are irreducible tridiagonal and diagonal,

respectively. That is,

A =


a0 c1 0
b0 a1 c2

b1
. . . . . .
. . . . . . cd

0 bd−1 ad

 , A∗ =


θ∗0 0

θ∗1
. . .

. . .

0 θ∗d

 , (2.5.7)

for some scalars ai, bi, ci, θ
∗
i ∈ K with bi−1ci ̸= 0 for 1 ≤ i ≤ d to ensure the

irreducibility of A.

Proposition 2.5.2. For the ordered basis w0, . . . , wd, the generators A and

A∗ of the Terwilliger algebra T are diagonal and irreducible tridiagonal,

respectively. That is,

A =


θ0 0

θ1
. . .

. . .

0 θd

 , A∗ =


a∗0 c∗1 0
b∗0 a∗1 c∗2

b∗1
. . . . . .
. . . . . . c∗d

0 b∗d−1 a∗d

 , (2.5.8)

for some scalars a∗i , b
∗
i , c

∗
i ∈ K with b∗i−1c

∗
i ̸= 0 for 1 ≤ i ≤ d to ensure the

irreducibility of A∗ and θi’s are the eigenvalues of A.

19



Therefore, Propositions 2.5.1 and 2.5.2 indicate that the action of T on

V0 can be easily described and understood. For many families of P - and

Q-polynomial schemes, all of the irredicuble modules have a similar form

(these are called thin schemes).

2.6 Leonard Pairs (LPs)

We are finally ready to define a Leonard pair.

Definition 2.6.1. A Leonard pair (LP) on V is an ordered pair (A,A∗) of

linear transformations A : V → V and A∗ : V → V in End(V ) that satisfy

conditions (i) and (ii) below.

(i) There exists a basis for V with respect to which the matrix representing

A is irreducible tridiagonal and the matrix representing A∗ is diagonal.

(ii) There exists a basis for V with respect to which the matrix representing

A is diagonal and the matrix representing A∗ is irreducible tridiagonal.

(See Propositions 2.5.1 and 2.5.2.) The diameter of the Leonard pair (A,A∗)

is defined to be one less than the dimension of V . We refer to V as the vector

space underlying the Leonard pair (A,A∗).

Note. In common notational convention, A∗ often denotes the conjugate-

transpose of A. However, we are not using this convention. In a Leonard pair

(A,A∗) the elements A and A∗ are arbitrary subject to (i) and (ii) above.
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Leonard pairs were first introduced by Terwilliger [44] to extend the

algebraic approach of Bannai and Ito [3] to a result of D. Leonard concerning

the sequences of orthogonal polynomials with discrete support for which there

is a dual sequence of orthogonal polynomials. By classifying LPs, Terwilliger

has given an elegant reframing and generalization of Leonard’s classification

of P - and Q-polynomial schemes. In [45] Terwilliger classified the LPs up

to isomorphism. By that classification, the isomorphism classes of LPs fall

naturally into the thirteen families given on page 16. (For each integer d ≥ 3

these families partition the isomorphism classes of LPs that have diameter d.)

Since a matrix A ∈ Matd+1(K) can be viewed as a linear transformation

from Kd+1 to Kd+1, we have the following useful lemma to characterize a

Leonard pair.

Lemma 2.6.1. An ordered pair (A,A∗) of matrices in Matd+1(K) is a

Leonard pair on Kd+1 if and only if the following hold.

(i) There exists a non-singular matrix Q1 such that Q−1
1 AQ1 is irreducible

tridiagonal and Q−1
1 A∗Q1 is diagonal.

(ii) There exists a non-singular matrix Q2 such that Q−1
2 AQ2 is diagonal

and Q−1
2 A∗Q2 is irreducible tridiagonal.

When (i) and (ii) hold we say that A and A∗ form a Leonard pair via conju-

gating matrices Q1 and Q2.

As an example of a Leonard pair (see [39]), set V = K4 and

A =


0 3 0 0
1 0 2 0
0 2 0 1
0 0 3 0

 and A∗ =


3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3
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and view A and A∗ as linear transformations on V . We assume that the

characteristic of K is not 2 or 3 to ensure A is irreducible. We claim that

(A,A∗) is a Leonard pair on V . Notice that condition (i) in Definition 2.6.1

(or equivalently in Lemma 2.6.1) is satisfied by letting Q1 = I, where I is the

4× 4 identity matrix.

On the other hand, if we set

Q2 =


1 3 3 1
1 1 −1 −1
1 −1 −1 1
1 −3 3 −1

 ,

then we can easily check that Q−1
2 AQ2 = A∗ and Q−1

2 A∗Q2 = A, which are

diagonal and irreducible tridiagonal, respectively, verifying condition (ii) in

Lemma 2.6.1.

Note. The diagonal entries of A∗ are the eigenvalues of A and the columns of

Q2 consist of the eigenbasis for A. The above pair (A,A∗) is called a self-dual

Leonard pair (i.e., there exists an automorphism of End(V ) that swaps A and

A∗).

The above example turns out to be a member of the following infinite

family of Leonard pairs: For any nonnegative integer d, the pair

A =



0 d 0

1
. . . d− 1

2
. . . . . .
. . . . . . . . .

. . . . . . 1
0 d 0


A∗ =


d 0

d− 2
d− 4

. . .

0 −d


(2.6.1)
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is a Leonard pair on V = Kd+1, provided the characteristic of K is zero or an

odd prime greater than d to ensure that A is irreducible. Terwilliger showed

that Definition 2.6.1 is satisfied by choosing Q1 = Id+1 and by letting the

ij-entry of Q2 be given by the following expression (see [39], Equation (3))

(Q)ij =

(
d

j

)
2F1

(
−i, − j

−d

∣∣∣∣ 2), (2.6.2)

where

2F1

(
−i, − j

−d

∣∣∣∣ 2) :=
d∑

n=0

(−i)n(−j)n2
n

(−d)nn!
(0 ≤ i, j ≤ d) (2.6.3)

is called a hypergeometric function and

(a)n =

{
1 if n = 0
a(a+ 1)(a+ 2) · · · (a+ n− 1) if n > 0

(2.6.4)

is called the (rising) Pochhammer symbol. (The details of the above calculation

can be found in [39].)

Leonard pairs naturally occur in the theory of orthogonal polynomials,

occurring in families such as (see the list given on page 16):

• Racah

• Hahn, Dual Hahn

• Krawtchouk

• q-Racah

• q-Hahn, Dual q-Hahn

• q-Krawtchouk (classical, affine, quantum, dual)

Since Leonard pairs are linear-algebraic in nature, it is reasonable to define

the notion of isomorphic Leonard pairs. See the following definition.
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Definition 2.6.2. Let V and W be vector spaces over K. Let (A,A∗) and

(B,B∗) denote Leonard pairs on V and W , respectively. By an isomorphism

of Leonard pairs we mean an isomorphism of vector spaces ι : V → W

such that ιAι−1 = B and ιA∗ι−1 = B∗. We say that (A,A∗) and (B,B∗)

are isomorphic if there is an isomorphism of Leonard pairs from (A,A∗) to

(B,B∗).

An isomorphism of Leonard pairs can also be seen from the following point

of view. By the Skolem-Noether Theorem1 (see also [44], Corollary 7.125),

a map σ : End(V ) → End(W ) is a K-algebra isomorphism if and only if

there exists a K-linear bijection K : V → W such that Xσ = KXK−1 for all

X ∈ End(V ). In this case, we say that K gives σ. Assume that K gives σ.

Then a K-linear map K̃ : V → W gives σ if and only if there exists a nonzero

α ∈ K such that K̃ = αK.

2.7 Leonard Systems (LSs)

When working with a Leonard pair, it is sometimes convenient to consider

a closely related and more abstract object called a Leonard system. To define

this we first make several observations about LPs. Most of the information

in this section can be found in [40].

1Let R and S be simple unitary rings, and let c be the center of S, which is a field. If
the dimension of S over c is finite (i.e., if S is a central simple algebra of finite dimension),
and R is also a c-algebra, then given c-algebra homomorphisms ϕ, ψ : R→ S, there exists
a unit u in S such that for all r in R

ψ(r) = u · ϕ(r) · u−1.

In particular, every automorphism of a central simple c-algebra is an inner automorphism.
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Lemma 2.7.1. Let (A,A∗) be a LP on V. Then the eivenvalues of both A

and A∗ are distinct and contained in K.

Proof. By Definition 2.6.1(ii), there exists a basis for V consisting of eigen-

vectors of A. So the eivenvalues of A are clearly all in K. To show that the

eivenvalues of A are distinct, we show the minimal polynomial of A has degree

equal to dim(V ). To this end, by Definition 2.6.1(i), there exists a basis for

V with respect to which the matrix representing A is irreducible tridiagonal

and we denote this matrix T . Lemma 2.6.1 implies that A and T have the

same minimal polynomial. On the other hand, the tridiagonal shape of T

tells us that I, T, T 2, . . . , T d are linearly independent, where d+ 1 = dim(V )

and therefore, the minimal polynomial of T has degree d+1. This shows that

the minimal polynomial of A has degree d+ 1 also and hence the eigenvalues

of A are distinct. The case of A∗ is similar.

We now define a Leonard system.

Definition 2.7.1. By a Leonard system (LS) on V we mean a sequence

Φ = (A; {Ei}di=0;A
∗; {E∗

i }di=0) (2.7.1)

of elements in End(V ) that satisfy:

(i) A,A∗ are both multiplicity-free2 elements of End(V ).

(ii) {Ei}di=0 is an ordering of the primitive idempotents of A.

(iii) {E∗
i }di=0 is an ordering of the primitive idempotents of A∗.

2A and A∗ are diagonalizable and their eigenspaces all have dimension one.
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(iv) E∗
i AE

∗
j

{
= 0, if |i− j| > 1;
̸= 0, if |i− j| = 1;

(0 ≤ i, j ≤ d).

(v) EiA
∗Ej

{
= 0, if |i− j| > 1;
̸= 0, if |i− j| = 1;

(0 ≤ i, j ≤ d).

The Leonard system Φ is said to be over K and have diameter d.

LPs and LSs are related as follows: Let Φ = (A; {Ei}di=0;A
∗; {E∗

i }di=0)

denote a LS on V . Then (A,A∗) is a LP on V . Conversely, let (A,A∗) denote

a LP on V . Then each of A,A∗ is multiplicity-free. Moreover there exists

an ordering of the primitive idempotents {Ei}di=0 and {E∗
i }di=0 of A and A∗,

respectively such that Φ is a LS on V . This leads to the following definition.

Definition 2.7.2. Let Φ = (A; {Ei}di=0;A
∗; {E∗

i }di=0) denote a LS on V . Then

the pair (A,A∗) forms a LP on V . We say this pair is associated with Φ.

Observe each LS is associated with a unique LP.

Using Definition 2.6.2, we may define the notion of an isomorphism of LS.

Definition 2.7.3. Let V and V ′ be vector spaces over K. Let Φ and Φ′ denote

LSs on V and V ′, respectively. By an isomorphism of LSs from Φ to Φ′, we

mean an isomorphism of vector spaces ι : V 7→ V ′ such that ιΦι−1 = Φ′ and

ιΦ′ι−1 = Φ. We say that Φ and Φ′ are isomorphic if there is an isomorphism

of LSs from Φ to Φ′.

LSs can be modified in several different ways to get a new LS. Let Φ denote

a LS. Then each of the following three sequences is also a LS on V :

Φ∗ = (A∗, {E∗
i }di=0;A; {Ei}di=0), (2.7.2a)

Φ↓ = (A, {Ei}di=0;A
∗; {E∗

d−i}di=0), (2.7.2b)

Φ⇓ = (A, {E∗
d−i}di=0;A

∗; {E∗
i }di=0). (2.7.2c)
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We refer to Φ∗ (resp. Φ↓ and Φ⇓) as the dual (resp. first inversion and second

inversion) of Φ. If we view ∗, ↓,⇓ as permutations on the set of all LSs, then

it is easy to verify that

∗2 = ↓2= ⇓2= 1, (2.7.3a)

⇓ ∗ = ∗ ↓, ↓ ∗ = ∗ ⇓, ↓ ⇓ = ⇓ ↓ . (2.7.3b)

It is also easy to see that the group generated by the symbols {∗, ↓,⇓} subject

to the relations (2.7.3a) and (2.7.3b) is the dihedral group D4 and {∗, ↓,⇓}

induce an action of D4 on the set of all LSs.

We end this section by recalling some parameters that will help us charac-

terize a given LS.

Definition 2.7.4. Let Φ denote the LS. For 0 ≤ i ≤ d, we let θi (resp.

θ∗i ) denote the eigenvalue of A (resp. A∗) associated with the primitive

idempotents Ei (resp. E∗
i ). We refer to {θi}di=0 (resp. {θ∗i }di=0) as the

eigenvalue sequence (resp. dual eigenvalue sequence) of Φ.

2.8 The Standard Basis and the Split Basis

Let Φ denote the LS on V . Using Φ we define three bases for V , called

the Φ-standard basis, the Φ-split basis, and Φ-inverted split basis. In each of

the three cases, the basis is defined up to multiplication of each element by

the same nonzero scalar in K. The information in this section can be found

in [40].

In order to define a standard basis, we need the following lemma.

Lemma 2.8.1. [40, Lemma 5.1] Let Φ be a LS on V . Let u be a nonzero

element of E0V . Then for 0 ≤ i ≤ d, the element E∗
i u is nonzero and hence

a basis for E∗
i V .
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Moreover, the sequence

E∗
0u,E

∗
1u, . . . , E

∗
du (2.8.1)

is a basis for V and u =
∑d

i=0 E
∗
i u.

Similarly, let u∗ be a nonzero element of E∗
0V . Then for 0 ≤ i ≤ d, the

element Eiu
∗ is nonzero and hence a basis for EiV . Moreover, the sequence

E0u
∗, E1u

∗, . . . , Edu
∗ (2.8.2)

is a basis for V and u∗ =
∑d

i=0Eiu
∗.

We now define a standard basis for V .

Definition 2.8.1. [40, Definition 5.2] Let Φ be a LS on V . By a Φ-standard

basis for V , we mean a sequence (2.8.1), where u is a nonzero vector in E∗
0V .

Remark Given a LP (A,A∗), by Definition 2.6.1 it is natural to represent

one of A,A∗ by an irreducible tridiagonal matrix and the other by a diagonal

matrix. With respect to a Φ-standard basis for V , the matrices representing

A and A∗ can be written as

A =


a0 c1 0
b0 a1 c2

b1
. . . . . .
. . . . . . cd

0 bd−1 ad

 , A =


θ∗0 0

θ∗1
. . .

. . .

0 θ∗d

 , (2.8.3)

for some scalars ai, bi, ci, θ
∗
i ∈ K with bi−1ci ̸= 0 for 1 ≤ i ≤ d. (Recall (2.5.7)

on page 20.) We call the scalars {ai}di=0, {bi}d−1
i=0 , {ci}di=1 the intersection

numbers of Φ. Since u =
∑d

i=0 E
∗
i u and Au = θ0u,

ai + bi + ci = θ0 (0 ≤ i ≤ d), (2.8.4)

where c0 = bd = 0.
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Next, we define the notion of a split basis. We will first recall two sequences

of scalars which we will find useful. These sequences are called the first split

sequence and the second split sequence of a LS Φ.

To this end, let Φ denote a LS on V . For 0 ≤ i ≤ d, define

Ui = (E∗
0V + E∗

1V + · · ·+ E∗
i V ) ∩ (EiV + Ei+1V ++EdV ). (2.8.5)

Each of U0, U1, . . . , Ud has dimension 1, and that

V =
d⊕

i=0

Ui (direct sum). (2.8.6)

Moreover,

U0 + U1 + · · ·+ Ui = E∗
0V + E∗

1V + · · ·+ E∗
i V, (2.8.7a)

Ui + Ui+1 + · · ·+ Ud = EiV + Ei+1V + · · ·+ EdV (2.8.7b)

for 0 ≤ i ≤ d. The elements A and A∗ act on the Ui in the following way:

(A− θiI)Ui = Ui+1 (0 ≤ i ≤ d− 1), (2.8.8a)

(A− θdI)Ud = 0, (2.8.8b)

(A∗ − θ∗i I)Ui = Ui−1 (1 ≤ i ≤ d), (2.8.8c)

(A∗ − θ∗0I)U0 = 0, (2.8.8d)

where θi, θ
∗
i are from Definition 2.7.4. By (2.8.8a), (A− θi−1I)Ui−1 = Ui and
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combining this result with (2.8.8c), we see that

(A∗ − θ∗0I)(A− θi−1I)Ui = Ui, (2.8.9)

implying that Ui is an eigenspace for (A∗ − θ∗0I)(A − θi−1I) and the corre-

sponding eigenvalue is a nonzero element of K. We denote this eigenvalue by

φi. We refer to the sequence {φi}di=1 as the first split sequence of Φ.

We let {ϕi}di=1 denote the first split sequence of Φ
⇓, and call this the second

split sequence of Φ. For notational convenience, we define φ0 = φd+1 = ϕ0 =

ϕd+1 = 0.

We are finally ready to obtain the split basis for V as follows. Set i = 0 in

(2.8.8a) to get U0 = E∗
0V . Combining this with (2.8.8a), we find

Ui = (A− θ0I)(A− θ1I) · · · (A− θi−1)E
∗
0V (0 ≤ i ≤ d). (2.8.10)

Let u ∈ E∗
0V be a nonzero vector. From (2.8.10) we find that the vector

(A− θ0I)(A− θ1I) · · · (A− θi−1)u is a basis for Ui for 0 ≤ i ≤ d. Combining

this fact with (2.8.6) we see that the sequence

(A− θ0I)(A− θ1I) · · · (A− θi−1)u (0 ≤ i ≤ d) (2.8.11)

is a basis for V .

Definition 2.8.2. Let Φ denote a LS on V . By a Φ-split basis for V , we

mean a sequence (2.8.11), where u is a nonzero vector in E∗
0V .

Remark Given a LP (A,A∗), by Definition 2.6.1 it is natural to represent

one of A,A∗ by an irreducible tridiagonal matrix and the other by a diagonal

matrix (as in 2.8.3). However, with respect to any Φ-split basis for V , the

matrices representing A and A∗ can be written as
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A =


θ0 0
1 θ1

1
. . .
. . . . . .

0 1 θd

 , A =


θ∗0 φ1 0

θ∗1 φ2

. . . . . .
. . . φd

0 θ∗d

 . (2.8.12)

We call this the split representation. (The matrix A and A∗ in (2.8.12) are

said to be in lower and upper bidiagonal, respectively.)

2.9 Parameter Array

We now introduce sequences of parameters that will be used to described

a given LP/LS and classify LPs in Chapter 4. The information in this section

can be found in [44, 47].

Recall that in Section 2.7, we defined the eigenvalue and dual eigenvalue

sequences {θi}di=0 and {θ∗i }di=0 (see Definition 2.7.4) as well as the first and

second split sequence of a LS {φi}di=1 and {ϕi}di=1 in the preceeding Section

2.8. These four sequences form a parameter array. See the following definition.

Definition 2.9.1. Let Φ be a LS on V . By the parameter array (denoted by

P) of Φ we mean the sequence ({θi}di=0, {θ∗i }di=0, {φi}di=1, {ϕi}di=1).

The next four lemmas mention several characteristics of parameter arrays.

Lemma 2.9.1. [44, Theorem 1.9] Two LPs over K are isomorphic if and

only if they have a parameter array in common.

Lemma 2.9.2. [44, Theorem 1.9] Consider a sequence

({θi}di=0, {θ∗i }di=0, {φi}di=1, {ϕi}di=1) (2.9.1)

of scalars in K. There exists a LS Φ on V with parameter array (2.9.1) if

and only if the following conditions hold:
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(i) θi ̸= θj, θ∗i ̸= θ∗j if i ̸= j (0 ≤ i, j ≤ d);

(ii) φi ̸= 0, ϕi ̸= 0 (1 ≤ i ≤ d);

(iii) φi = ϕ1

i−1∑
h=0

θh − θd−h

θ0 − θd
+ (θ∗i − θ∗0)(θi−1 − θd) (1 ≤ i ≤ d);

(iv) ϕi = φ1

i−1∑
h=0

θh − θd−h

θ0 − θd
+ (θ∗i − θ∗0)(θd−i+1 − θ0) (1 ≤ i ≤ d);

(v) The expressions

θi−2 − θi+1

θi−1 − θi
,

θ∗i−2 − θ∗i+1

θ∗i−1 − θ∗i
(2.9.2)

are equal and independent of i for 2 ≤ i ≤ d − 1. (Both the eigen-

value and dual eigenvalue sequences {θi}di=0 and {θ∗i }di=0 are said to be

recurrent.)

Moreover, if (i)-(v) hold then Φ is unique up to isomorphism of LSs.

Lemma 2.9.3. [47, Lemma 10.3] For d ≥ 1, a parameter array P is uniquely

determined by φi, {θi}di=0, {θ∗i }di=0.

Lemma 2.9.4. [49, Theorem 1.11] Let A,A∗ ∈ Matd+1(K). Assume that

A and A∗ are lower bidiagonal and upper bidiagonal, respectively. Then the

following (i), (ii) are equivalent.

(i) The pair (A,A∗) is a LP on Kd+1.

(ii) There exists a parameter array P = ({θi}di=0, {θ∗i }di=0, {φi}di=1, {ϕi}di=1)

over K such that

Aii = θi, A∗
ii = θ∗i (0 ≤ i ≤ d), (2.9.3a)
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Ai,i−1A
∗
i−1,i = φi (1 ≤ i ≤ d). (2.9.3b)

Suppose (i), (ii) hold. For 0 ≤ i ≤ d let Ei (resp. E∗
i ) denote the

primitive idempotent of A (resp. A∗) associated with θi (resp. θ∗i ).

Then (A; {Ei}di=0;A
∗, {E∗

i }di=0) is a LS on Kd+1 with parameter array

P.

We end this section with the following two definitions that will be used in

Chapter 4.

Definition 2.9.2. Let P denote a parameter array over K with d ≥ 3. Define

β ∈ K such that β + 1 is equal to the common value of the two fractions in

(2.9.2). We call β the fundamental constant of P .

Definition 2.9.3. Let (A,A∗) denote a LP over K with diameter d ≥ 3. The

parameter arrays of (A,A∗) have the same fundamental constant β; we call β

the fundamental constant of (A,A∗).

Before we consider our primary object of interest, we consider two closely-

related classes of objects: bipartite Leonard pairs (BLPs) and almost bipartite

Leonard pairs (ABLPs) that are inspired by DRG families.
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2.10 Bipartite Leonard Pairs (BLPs)

Given a tridiagonal matrix in (2.1.1), it is said to be bipartite whenever

all entries on the main diagonal are zero


0 c1 0

b0
. . . c2

b1
. . . . . .
. . . . . . cd

0 bd−1 0

 . (2.10.1)

This leads to the following definition.

Definition 2.10.1. A Leonard pair (A,A∗) is said to be:

(i) bipartite whenever the matrix representing A from Definition 2.6.1(i) is

bipartite.

(ii) dual bipartite (or DB) whenever the matrix representing A∗ from Defi-

nition 2.6.1(ii) is bipartite.

(iii) totally bipartite (or TB) whenever it is both bipartite and dual bipartite.

Brown classified up to isomorphism the totally bipartite Leonard pairs

of Bannai/Ito type in [7]. Motivated by [7], Hou, Wang, and Gao classified

up to isomorphism the totally bipartite Leonard pairs in [37]. The classifi-

cation reveals that these Leonard pairs are of the q-Racah, Krawtchouk, or

Bannai/Ito type.
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2.11 Almost Bipartite Leonard Pairs (ABLPs)

Given a tridiagonal matrix in (2.1.1), it is said to be almost bipartite

whenever exactly one of a0, ad is nonzero and ai = 0 for 1 ≤ i ≤ d− 1.


0 c1 0
b0

. . . c2

b1
. . . . . .
. . . 0 cd

0 bd−1 ad

 or


a0 c1 0
b0 0 c2

b1
. . . . . .
. . . . . . cd

0 bd−1 0

 . (2.11.1)

This leads to the following definition.

Definition 2.11.1. A Leonard pair (A,A∗) is said to be:

(i) almost bipartite (AB) whenever the matrix representing A from Defini-

tion 2.6.1(i) is almost bipartite.

(ii) dual almost bipartite (or DAB) whenever the matrix representing A∗

from Definition 2.6.1(ii) is almost bipartite.

(iii) totally almost bipartite (or TAB) whenever it is both AB and DAB.

Brown classifed up to isomorphism the totally almost bipartite Leonard

pairs of Bannai/Ito type in [7]. Motivated by [7], Gao, Hou, and Wang

classified up to isomorphism the totally almost bipartite Leonard pairs of

q-Racah type.
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3 Doubly Almost Bipartite Leonard Pairs

Now, taking BLPs and ABLPs as departure points, we introduce a new

class of object - doubly almost bipartite Leonard pairs (DABLPs).

3.1 Definition and Motivation

Given a tridiagonal matrix in (2.1.1), it is said to be doubly almost bipartite

whenever a0 ̸= 0, ad ̸= 0 and ai = 0 for 1 ≤ i ≤ d− 1


a0 c1 0
b0 0 c2

b1
. . . . . .
. . . 0 cd

0 bd−1 ad

 . (3.1.1)

(Note the intersection array of a DRG could never have this form since a0

counts the neighbors of a vertex x distance 0 from x, thus a0 = 0 for any

DRG. See page 12, immediately below (2.3.1c).)

This leads to the following definition.

Definition 3.1.1. A Leonard pair (A,A∗) is said to be:

(i) doubly almost bipartite (DAB) whenever the matrix representing A

from Definition 2.6.1(i) is doubly almost bipartite.

(ii) dual doubly almost bipartite (or DDAB) whenever the matrix represent-

ing A∗ from Definition 2.6.1(ii) is doubly almost bipartite.

(iii) totally doubly almost bipartite (or TDAB) whenever it is both DAB

and DDAB.
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To somewhat motivate this doubly almost bipartite structure of A, we

consider the following series of lemmas given in [15, 43].

Lemma 3.1.1. [43, Lemma 5.4] Let (A,A∗) be a Leonard pair. Then

A3A∗ − (β + 1)A2A∗A+ (β + 1)AA∗A2 − A∗A3

−γ(A2A∗ − A∗A2)− ϱ(AA∗ − A∗A) = 0, (3.1.2a)

A∗3A− (β + 1)A∗2AA∗ + (β + 1)A∗AA∗2 − AA∗3

−γ∗(A∗2A− AA∗2)− ϱ∗(A∗A− AA∗) = 0, (3.1.2b)

where

β =
θi − θi+1 + θi+2 − θi+3

θi+1 − θi+2

=
θ∗i − θ∗i+1 + θ∗i+2 − θ∗i+3

θ∗i+1 − θ∗i+2

(0 ≤ i ≤ d− 3),

(3.1.3a)

γ = θi − βθi+1 + θi+2 (0 ≤ i ≤ d− 2), (3.1.3b)

γ∗ = θ∗i − βθ∗i+1 + θ∗i+2 (0 ≤ i ≤ d− 2), (3.1.3c)

ϱ = θ2i − βθiθi+1θ
2
i+1 − γ(θi + θi+1) (0 ≤ i ≤ d− 1), (3.1.3d)

ϱ∗ = θ∗2i − βθ∗i θ
∗
i+1θ

∗2
i+1 − γ∗(θ∗i + θ∗i+1) (0 ≤ i ≤ d− 1). (3.1.3e)

Lemma 3.1.2. [43, Lemma 5.5] Let (A,A∗), β, γ, γ∗, ϱ, ϱ∗ be as in Lemma

3.1.1. Let E∗
i (0 ≤ i ≤ d) be the ith dual primitive idempotent. Then

(i) [E∗
i AE

∗
i , E

∗
i AE

∗
i+1AE

∗
i ] = hi[E

∗
i AE

∗
i , E

∗
i AE

∗
i−1AE

∗
i ] (0 ≤ i ≤ d−1),

(3.1.4)

where hi =
θ∗i−1 − θ∗i
θ∗i − θ∗i+1

(1 ≤ i ≤ d− 1), (3.1.5)

h0, hd are indeterminates, and [s, t] := st− ts denotes the Lie bracket.
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(ii) e−i E
∗
i−1AE

∗
i−2A

2E∗
i + (β + 2)E∗

i−1AE
∗
i AE

∗
i−1AE

∗
i

+ e+i E
∗
i−1A

2E∗
i+1AE

∗
i + E∗

i−1(AE
∗
i )

3 − βE∗
i−1AE

∗
i−1(AE

∗
i )

2 + (E∗
i−1A)

3E∗
i

= γ
(
E∗

i−1(AE
∗
i )

2 + (E∗
i−1A)

2E∗
i

)
(1 ≤ i ≤ d)

(3.1.6)

where

e+i =
θ∗i−1 − (β + 2)θ∗i + (β + 1)θ∗i+1

θ∗i−1 − θ∗i
(1 ≤ i ≤ d− 1), (3.1.7a)

e−i =
−(β + 1)θ∗i−2 + (β + 2)θ∗i− − θ∗i

θ∗i−1 − θ∗i
(2 ≤ i ≤ d− 1), (3.1.7b)

and e+d , e
−
1 are indeterminants.

(iii) For 2 ≤ i ≤ d,

g−i E
∗
i−2AE

∗
i−2A

2E∗
i +E∗

i−2(AE
∗
i−1)

2AE∗
i +g+i E

∗
i−2A(AE

∗
i )

2 = γE∗
i−2A

2E∗
i ,

(3.1.8)

where

g+i =
θ∗i−2 − (β + 1)θ∗i−1 + βθ∗i

θ∗i−2 − θ∗i
(2 ≤ i ≤ d), (3.1.9a)

g−i =
−βθ∗i−2 + (β + 1)θ∗i−1 − θ∗i

θ∗i−2 − θ∗i
(2 ≤ i ≤ d). (3.1.9b)

(iv) Let h∗
i , e

∗+
i , e∗−i , g∗+i , g∗−i denote the constants obtained from (3.1.5),

(3.1.7a), (3.1.7b), (3.1.9a), (3.1.9b) by replacing θ∗j by θj (0 ≤ j ≤ d).

Then the equations (3.1.5), (3.1.6), (3.1.8) still hold after replacing

γ, ϱ, A, hi, e
±
i , g

±
i , and E∗

j (0 ≤ j ≤ d) by γ∗, ϱ∗, A∗, h∗
i , e

∗±
i , g∗±i , and

Ej (0 ≤ j ≤ d), respectively.
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Lemma 3.1.3. [43, Lemma 5.6] Let h∗
i , e

±
i , e

∗±
i , g±i , g

∗±
i be as in Lemma 3.1.2.

Then

e+i =
θ∗i − θ∗i+2

θ∗i − θ∗i−1

(1 ≤ i ≤ d− 2), (3.1.10a)

e−i =
θ∗i−1 − θ∗i−3

θ∗i−1 − θ∗i
(3 ≤ i ≤ d), (3.1.10b)

g+i =
θ∗i − θ∗i+1

θ∗i − θ∗i−2

(2 ≤ i ≤ d− 1), (3.1.10c)

g−i =
θ∗i−2 − θ∗i−3

θ∗i−2 − θ∗i
(3 ≤ i ≤ d). (3.1.10d)

To get e∗±i , g∗±i , replace θ∗j by θj (0 ≤ j ≤ d) in the above formulae. In

particular, h∗
i , e

±
i , e

∗±
i , g±i , g

∗±
i are all nonzero due to the fact that both A and

A∗ are multiplicity-free and thus θj, θ
∗
j are distinct.

Lemma 3.1.4. [15, Lemma 2.3(i), (ii)] Let Γ = (X,R) be a DRG of diameter

d ≥ 3. Suppose that Γ is Q-polynomial with respect to an eigenvalue θ, and

suppose that the intersection number a2 is zero. Then:

(i) there exists real numbers γ(θ), g−i (θ), and g+i (θ) such that

g−i (θ)ai−2 + ai−1 + g+i (θ)ai = γ(θ), 2 ≤ i ≤ d; (3.1.11a)

g+i (θ) ̸= 0, 2 ≤ i ≤ d− 1. (3.1.11b)

(ii) the intersection numbers a1, . . . , ad−1 are all zero.

The following is the variation of Lemma 3.1.4 above that gives a motivation

to why one might be interested in the doubly almost bipartite structure of A.
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Lemma 3.1.5. Let

A =


a0 b0 0
c1 a1 b1

c2
. . . . . .
. . . ad−1 bd−1

0 cd ad

 and A∗ = diag(θ∗0, . . . , θ
∗
d)

be (d+1)× (d+1) irreducible tridiagonal and diagonal matrices (with d ≥ 3),

respectively. Suppose ai = 0 for i = 1, 2, 3. Then

(i) there exist real numbers γ, g+i , and g−i (as in (3.1.3b), (3.1.10c), and

(3.1.10d), respectively) such that

g−i ai−2 + ai−1 + g+i ai = γ, 2 ≤ i ≤ d, (3.1.12a)

g+i ̸= 0, 2 ≤ i ≤ d− 1; (3.1.12b)

(ii) ai = 0 for all i = 4, . . . , d− 1.

Proof. (i) Note that (3.1.12b) follows directly from Lemma 3.1.3.

To prove (3.1.12a), let us define the following three matrices in Matd+1(K):

L =
d∑

i=1

E∗
i−1AE

∗
i , (3.1.13a)

F =
d∑

i=0

E∗
i AE

∗
i , (3.1.13b)

R =
d−1∑
i=0

E∗
i+1AE

∗
i . (3.1.13c)
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(These three matrices are referred to as lowering, flat, and raising

operators, respectively.) With these three operators, together with the

fact that A = L+ F +R, we can easily show that

E∗
i−2AE

∗
i−2A

2E∗
i = FL2E∗

i ,

E∗
i−2(AE

∗
i−1)

2AE∗
i = LFLE∗

i ,

E∗
i−2A(AE

∗
i )

2 = L2FE∗
i ,

E∗
i−2A

2E∗
i = L2E∗

i .

Hence (3.1.8) in Lemma 3.1.2(iii) can be rewritten in terms of L, F ,

and R as follows:

g−i FL2E∗
i + LFLE∗

i + g+i L
2FE∗

i = γL2E∗
i

or equivalently,

(g−i FL2 + LFL+ g+i L
2F − γL2)E∗

i = 0. (3.1.14)

Let 1⃗ denote the (d+ 1)× 1 all ones vector and observe by (3.1.13a)

and (3.1.13b) that

LE∗
i 1⃗ = bi−1E

∗
i−11⃗, (1 ≤ i ≤ d), (3.1.15a)

FE∗
i 1⃗ = aiE

∗
i 1⃗. (1 ≤ i ≤ d), (3.1.15b)
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Applying (3.1.14) to 1⃗ and using (3.1.15a) and (3.1.15b) yields

bi−2bi−1(g
−
i ai−2 + ai−1 + g+i ai − γ)E∗

i−21⃗ = 0 (3.1.16)

for all 2 ≤ i ≤ d and since bi−2, bi−1, E
∗
i−2, and 1⃗ are all nonzero,

(3.1.12a) follows immediately.

(ii) Setting i = 3 in (3.1.12a), we find that γ = 0 and thus it becomes

g−i ai−2 + ai−1 + g+i ai = 0 (2 ≤ i ≤ d). (3.1.17)

By (3.1.12b), g+i ̸= 0 for 2 ≤ i ≤ d− 1 and a simple induction shows

that a4, . . . , ad−1 are zero, as claimed.

3.2 All Ones DABLPs

Ultimately, we would like to classify up to isomorphism the DABLPs.

However, in order to simplify the problem, we are going to first consider the

following situation.

Fix an integer d ≥ 1 and consider a pair of (d + 1) × (d + 1) matrices

(A,A∗) over K that have the following form:

A =


1 1 0
1 0 1

1
. . . . . .
. . . 0 1

0 1 1

 A∗ =


θ∗0 0

θ∗1
. . .

θ∗d−1

0 θ∗d

 (3.2.1)
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We call the matrix A above the all ones doubly almost bipartite irreducible

tridiagonal matrix (DABITM). Note that the matrix A given in (3.2.1) arises

as the adjacency matrix of a path with a loop at each leaf. See Figure 3.2.1

and the corresponding adjacency matrix below.

Figure 3.2.1: P4 with a loop & its corresp. adjacency matrix.

A =


1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1



In seemingly unrelated research, Willenbring, Bourn, and Erickson set out

to study something of unexpected value: the expected value of the Earth

Mover’s Distance - a metric used to compare histograms [5, 17]. One aspect

of their work is related to properties of the matrix A given in (3.2.1).

Our primary goal is to find attractive necessary and sufficient conditions

for the pair (A,A∗) in (3.2.1) to form an all ones DABLP. Observe that:

• A and A∗ are already doubly almost bipartite and diagonal, respectively.

To satisfy condition (i) in Definition 2.6.1 (or Lemma 2.6.1), we simply

need to choose Q1 = I so that I−1AI = A and I−1A∗I = A∗ are doubly

almost bipartite and diagonal, respectively.

• The first half of condition (ii) in Definition 2.6.1 (or Lemma 2.6.1) can

be satisfied by considering the diagonalization of A so that Q−1
2 AQ2 = Λ

where Λ is the diagonal matrix consisting of the eigenvalues of A and

Q2 is the conjugating matrix whose columns consist of the eigenvectors

of A.

At this point, we simply need to determine A∗ so that the matrix representing

it is irreducible tridiagonal.
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3.3 Eigenvalues/Eigenvectors of All Ones DABITM

The following theorem tells us the eigenvalues and eigenvectors of all ones

DABITM, which will be used to identify the companion matrix A∗ to A so

that (A,A∗) forms an all ones DABLP. The proof is elementary (but lengthy)

and thus given in Appendix A.

Theorem 3.3.1. The matrix A in (3.2.1) has the eigenvalues

θi = qi + q−i, 0 ≤ i ≤ d (3.3.1)

and the kth-entry xk of the corresponding eigenvector is

xk = C
(
qik + qi(1−k)

)
, 1 ≤ k ≤ d+ 1 (3.3.2)

where C is an arbitrary constant and q = eiπ/(d+1). (Here i =
√
−1.)

Proof. See Appendix A.

3.4 Characterization of A∗

By Theorem 3.3.1, the kth-entry xk of the eigenvector of all ones DABITM

A given in (3.2.1) corresponding to the ith eigenvalue θi is given by xk =

C
(
qik + qi(1−k)

)
where 1 ≤ k ≤ d+ 1 and q = eiπ/(d+1). Since C is arbitrary,

let C ≡ 1.

Let Q2 (mentioned on page 43 - second bullet point) be the conjugating

matrix whose columns consist of the eigenvectors of A. Then
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Q2 =


2 q + 1 q2 + 1 · · · qd + 1
2 q2 + q−1 q4 + q−2 · · · q2d + q−d

2 q3 + q−2 q6 + q−4 · · · q3d + q−2d

...
...

...
. . .

...

2 qd+1 + q−d q2(d+1) + q−2d · · · q(d+1)d + q−d2

 . (3.4.1)

Let D = diag
(
1/2, q−1/2, q−1, · · · , q−d/2

)
and define

Q̃2 ≡ Q2D

=


1 q1/2 + q−1/2 q + q−1 · · · qd/2 + q−d/2

1 q3/2 + q−3/2 q3 + q−3 · · · q3d/2 + q−3d/2

1 q5/2 + q−5/2 q5 + q−5 · · · q5d/2 + q−5d/2

...
...

...
. . .

...
1 q(2d+1)/2 + q−(2d+1)/2 q2d+1 + q−(2d+1) · · · q(2d+1)d/2 + q−(2d+1)d/2

 .

(3.4.2)

Observe that post-multiplying Q2 by D scales the the ith column (i.e., the ith

eigenvector of A) of Q2 by q−i/2 for 0 ≤ i ≤ d and this is more of a “cosmetic”

reason in order to make the exponents of the q terms symmetric. Then it is

clear that Q̃2 still diagonalizes A, that is,
(
Q̃2

)−1
AQ̃2 = Λ where Λ is the

diagonal matrix consisting of the eigenvalues of A. The following theorem

identifies the companion matrix A∗ to A so that (A,A∗) form a DABLP.

Theorem 3.4.1. Let

A =


1 1
1 0 1

1
. . . . . .
. . . 0 1

1 1

 A∗ =


θ∗0

θ∗1
θ∗2

. . .

θ∗d

 ,

where θ∗i = q(2i+1)/2 + q−(2i+1)/2 with q = eiπ/(d+1) (0 ≤ i ≤ d). Then (A,A∗)

form an all ones DABLP on Kd+1 via the identity matrix I and Q̃2 in (3.4.2).
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Proof. Referring to the bullet points on page 43, we simply need to show

that (Q̃2

)−1
A∗Q̃2 is irreducible tridiagonal. To this end, we claim that the

matrix representing A∗ is the following (d+ 1)× (d+ 1) irreducible bipartite

tridiagonal matrix T :

T =


0 2 0

1
. . . 1

1
. . . . . .
. . . . . . 1

0 1 0

 . (3.4.3)

That is, we wish to show that (Q̃2

)−1
A∗Q̃2 = T or equivalently, A∗Q̃2 = Q̃2T .

For notational convenience, let us introduce the following notation:

⟨n⟩q := qn + q−n for n ∈ Q.

Using the above new notation, the left-hand side of the matrix equation

A∗Q̃2 = Q̃2T simplifies to

A∗Q̃2 =



〈
1
2

〉
q

0〈
3
2

〉
q 〈

5
2

〉
q

. . .
0

〈
2d+1
2

〉
q




1

〈
1
2

〉
q

⟨1⟩q · · ·
〈
d
2

〉
q

1
〈
3
2

〉
q

⟨3⟩q · · ·
〈
3d
2

〉
q

1
〈
5
2

〉
q

⟨5⟩q · · ·
〈
5d
2

〉
q

...
...

...
. . .

...

1
〈
2d+1
2

〉
q

⟨2d+ 1⟩q · · ·
〈 (2d+1)d

2

〉
q



=



〈
1
2

〉
q

〈
1
2

〉2
q

〈
1
2

〉
q
⟨1⟩q · · ·

〈
1
2

〉
q

〈
d
2

〉
q〈

3
2

〉
q

〈
3
2

〉2
q

〈
3
2

〉
q
⟨3⟩q · · ·

〈
3
2

〉
q

〈
3d
2

〉
q〈

5
2

〉
q

〈
5
2

〉2
q

〈
5
2

〉
q
⟨5⟩q · · ·

〈
5
2

〉
q

〈
5d
2

〉
q

...
...

...
. . .

...〈
2d+1
2

〉
q

〈
2d+1
2

〉2
q

〈
2d+1
2

〉
q
⟨2d+ 1⟩q · · ·

〈
2d+1
2

〉
q

〈 (2d+1)d
2

〉
q


.

(3.4.4)
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Note that for any n ∈ Q, there are several helpful identities involving ⟨ · ⟩q:

(i) ⟨n⟩2q =
(
qn + q−n

)2
= q2n + q−2n + 2

= ⟨2n⟩q + 2

(ii)
〈n
2

〉
q
⟨n⟩q =

(
qn/2 + q−n/2

)(
qn + q−n

)
= q3n/2 + q−3n/2 + qn/2 + q−n/2

=

〈
3n

2

〉
q

+

〈
n

2

〉
q

(iii) ⟨−n⟩q = q−n + q−(−n)

= qn + q−n

= ⟨n⟩q

(iv) Assume n is an odd integer. Then〈n
2

〉
q

〈
nd

2

〉
q

=
(
qn/2 + q−n/2

)(
qnd/2 + q−nd/2

)
=

(
qn(1+d)/2 + q−n(1+d)/2

)︸ ︷︷ ︸
(I)

+
(
qn(1−d)/2 + q−n(1−d)/2

)︸ ︷︷ ︸
(II)

.

Since q = eiπ/(d+1), the expression (I) simplifies to

qn(1+d)/2 + q−n(1+d)/2 =
(
eiπ/(d+1)

)n(1+d)/2
+
(
eiπ/(d+1)

)−n(1+d)/2

= einπ/2 + e−inπ/2

= 2 cos
(nπ

2

)
= 0.

On the other hand, simplifying (II) gives

qn(1−d)/2 + q−n(1−d)/2 =

〈
n(1− d)

2

〉
=

〈
−n(d− 1)

2

〉
=

〈
n(d− 1)

2

〉
.

(The last equality is justified by (iii).)
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In summary, if n is an odd integer, then〈n
2

〉
q

〈
nd

2

〉
q

=

〈
n(d− 1)

2

〉
q

.

Hence applying (i), (ii), and (iv) to each column of (3.4.4) (identities similar

to (ii) above can be derived and applied to the remaining columns), we obtain

A∗Q̃2 =



〈
1
2

〉
q

⟨1⟩q + 2
〈
3
2

〉
q
+
〈
1
2

〉
q

· · ·
〈
d−1
2

〉
q〈

3
2

〉
q

⟨3⟩q + 2
〈
9
2

〉
q
+
〈
3
2

〉
q

· · ·
〈3(d−1)

2

〉
q〈

5
2

〉
q

⟨5⟩q + 2
〈
15
2

〉
q
+
〈
5
2

〉
q

· · ·
〈5(d−1)

2

〉
q

...
...

...
. . .

...〈
2d+1
2

〉
q

⟨2d+ 1⟩q + 2
〈3(2d+1)

2

〉
q
+
〈
2d+1
2

〉
q

· · ·
〈 (2d+1)(d−1)

2

〉
q


.

On the other hand, the right-hand side of the matrix equation A∗Q̃2 = Q̃2T

simplifies to

Q̃2T =


1

〈
1
2

〉
q

⟨1⟩q · · ·
〈
d
2

〉
q

1
〈
3
2

〉
q

⟨3⟩q · · ·
〈
3d
2

〉
q

1
〈
5
2

〉
q

⟨5⟩q · · ·
〈
5d
2

〉
q

...
...

...
. . .

...

1
〈
2d+1
2

〉
q

⟨2d+ 1⟩q · · ·
〈 (2d+1)d

2

〉
q




0 2 0

1
. . . 1

1
. . . . . .
. . . . . . 1

0 1 0



=



〈
1
2

〉
q

⟨1⟩q + 2
〈
3
2

〉
q
+
〈
1
2

〉
q

· · ·
〈
d−1
2

〉
q〈

3
2

〉
q

⟨3⟩q + 2
〈
9
2

〉
q
+
〈
3
2

〉
q

· · ·
〈
3(d−1)

2

〉
q〈

5
2

〉
q

⟨5⟩q + 2
〈
15
2

〉
q
+
〈
5
2

〉
q

· · ·
〈5(d−1)

2

〉
q

...
...

...
. . .

...〈
2d+1
2

〉
q

⟨2d+ 1⟩q + 2
〈3(2d+1)

2

〉
q
+
〈
2d+1
2

〉
q

· · ·
〈 (2d+1)(d−1)

2

〉
q


.

This establishes the equality A∗Q̃2 = Q̃2T .
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3.5 Generalizing A∗

The following lemma will be used to prove the subsequent theorem which

generalizes the companion matrix A∗ for (A,A∗) to form an all ones DABLP.

Lemma 3.5.1. Let (A,A∗) denote a Leonard pair on V . Let α, β, α∗, β∗

denote scalars in K with α, α∗ nonzero. Then

(αA+ βI, α∗A∗ + β∗I)

is also a Leonard pair on V .

We call the above pair the affine transformation of (A,A∗) associated with

α, β, α∗, β∗.

Proof. Let (A,A∗) be a Leonard pair with conjugating matrices Q1 and Q2.

By Lemma 2.6.1,

Q−1
1 AQ1 = T1 and Q−1

2 A∗Q2 = T2

for some irreducible tridiagonal matrices T1 and T2 and

Q−1
2 AQ2 = D1 and Q−1

1 A∗Q1 = D2

for some diagonal matrices D1 and D2. Conjugating both αA + βI and

α∗A∗ + β∗I by Q1, we obtain

Q−1
1 (αA+ βI)Q1 = α

=T1︷ ︸︸ ︷
Q−1

1 AQ1+βI

= αT1 + βI,

which is clearly irreducible tridiagonal and

Q−1
1 (α∗A+ β∗I)Q1 = α∗

=D2︷ ︸︸ ︷
Q−1

1 A∗Q1+β∗I

= α∗D2 + β∗I,

which is clearly diagonal.
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This shows that Lemma 2.6.1(i) is satisfied.

On the other hand, conjugating both αA+βI and α∗A∗+β∗I by Q2 yields

Q−1
2 (αA+ βI)Q2 = αQ−1

2 AQ2︸ ︷︷ ︸
=D1

+βI

= αD1 + βI,

which is clearly diagonal and

Q−1
2 (α∗A+ β∗I)Q2 = α∗Q−1

2 A∗Q2︸ ︷︷ ︸
=T2

+β∗I

= α∗T2 + β∗I,

which is clearly irreducible tridiagonal. This shows that Lemma 2.6.1(ii) is

also satisfied.

The next theorem generalizes Theorem 3.4.1.

Theorem 3.5.1. Let

A =


1 1
1 0 1

1
. . . . . .
. . . 0 1

1 1

 ∆∗ =


δ∗0

δ∗1
δ∗2

. . .

δ∗d

 ,

where δi’s satisfy the following recursive relation

δ∗i − δ∗i+1

δ∗i+1 − δ∗i+2

=
θ∗i − θ∗i+1

θ∗i+1 − θ∗i+2

, (3.5.1)

where 0 ≤ i ≤ d− 2 (θ∗i as in Theorem 3.4.1). Then (A,∆∗) form an all ones

DABLP on Kd+1 via the identity matrix I and Q̃2.

Note. The A∗ matrix in Theorem 3.4.1 is a special case of ∆∗ where δ∗i = θ∗i

for all i = 0, . . . , d.
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Proof. We will show that ∆∗ can be obtained by an affine transformation of

A∗ with suitable constants α∗, β∗ ∈ K. First, notice that the left-hand side

of (3.5.1) has 2 degrees of freedom since fixing the values of δ∗0 and δ∗1 will

determine the rest of δ∗i for 2 ≤ i ≤ d. Thus, without loss of generality, fix

the first two entries of ∆∗ by letting δ∗0 ≡ ξ and δ∗1 ≡ ζ, where ξ, ζ ∈ K. Let

α∗ :=
ξ − ζ

θ∗0 − θ∗1
and β∗ :=

ζθ∗0 − ξθ∗1
θ∗0 − θ∗1

. (3.5.2)

Observe that the ii-entry of an affine transformation α∗A∗ + β∗I of A∗ is

given by
(

ξ − ζ

θ∗0 − θ∗1

)
θ∗i +

ζθ∗0 − ξθ∗1
θ∗0 − θ∗1

.

We will show that

δ∗i =

(
ξ − ζ

θ∗0 − θ∗1

)
θ∗i +

ζθ∗0 − ξθ∗1
θ∗0 − θ∗1

= ζ + (ζ − ξ)

(
θ∗1 − θ∗i
θ∗0 − θ∗1

)
(3.5.3)

for all i = 0, . . . , d by strong induction on i.

For the base cases, consider i = 0 and i = 1.

When i = 0, (3.5.3) simplifies to

ζ + (ζ − ξ)

(
θ∗1 − θ∗0
θ∗0 − θ∗1

)
= ξ = δ∗0.

When i = 1, (3.5.3) simplifies to

ζ + (ζ − ξ)

(
θ∗1 − θ∗1
θ∗0 − θ∗1

)
= ζ = δ∗1.

Now, let k ∈ N with k ≥ 2 be given and suppose (3.5.3) holds for all
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i = 0, 1, . . . , k. In particular, suppose (3.5.3) holds for i = k − 1 and i = k:

δ∗k−1 = ζ + (ζ − ξ)

(
θ∗1 − θ∗k−1

θ∗0 − θ∗1

)
and δ∗k = ζ + (ζ − ξ)

(
θ∗1 − θ∗k
θ∗0 − θ∗1

)
.

By (3.5.1) with j = k − 1, we have

δ∗k−1 − δ∗k
δ∗k − δ∗k+1

=
θ∗k−1 − θ∗k
θ∗k − θ∗k+1

δ∗k+1 = δ∗k + (δ∗k − δ∗k−1)

(
θ∗k − θ∗k+1

θ∗k−1 − θ∗k

)
=

[
ζ + (ζ − ξ)

(
θ∗1 − θ∗k
θ∗0 − θ∗1

)]
+

[{
ζ + (ζ − ξ)

(
θ∗1 − θ∗k
θ∗0 − θ∗1

)}
−

{
ζ + (ζ − ξ)

(
θ∗1 − θ∗k−1

θ∗0 − θ∗1

)}(
θ∗k − θ∗k+1

θ∗k−1 − θ∗k

)
= ζ + (ζ − ξ)

(
θ∗1 − θ∗k
θ∗0 − θ∗1

)
+ (ζ − ξ)

(
θ∗k−1 − θ∗k
θ∗0 − θ∗1

)(
θ∗k − θ∗k+1

θ∗k−1 − θ∗k

)
= ζ + (ζ − ξ)

(
θ∗1 − θ∗k
θ∗0 − θ∗1

)
+ (ζ − ξ)

(
θ∗k − θ∗k+1

θ∗0 − θ∗1

)
= ζ + (ζ − ξ)

(
θ∗1 − θ∗k+1

θ∗0 − θ∗1

)
,

showing that (3.5.3) holds for i = k + 1 and therefore, it is true for all

n = 0, . . . , d.

Applying Lemma 3.5.1 with α = 1, β = 0 and α∗, β∗ given in (3.5.2), the

result follows.
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3.6 The Modified Chebyshev Polynomials of the First Kind

For 0 ≤ i, j ≤ d, let T be the (d+ 1)× (d+ 1) matrix with ij entry

Tij = Tj(θ
∗
i )

where θ∗i = q(2i+1)/2 + q−(2i+1)/2 (see Theorem 3.4.1) and Tj(x) is the jth

modified Chebyshev polynomial of the first kind. The first several modified

Chebyshev polynomials are given by

T0(x) = 2,

T1(x) = x,

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1,

T5(x) = 16x5 − 20x3 + 5x.

The modified Chebyshev polynomials of the first kind can be obtained from

the following recurrence relation3

T0(x) = 2,

T1(x) = x,

Tj+1(x) = xTj(x)− Tj−1(x), j ≥ 2. (3.6.1)

By straight computation, we can see that the jth column of the conjugating

3For the original Chebysev polynomials of the first kind, T0(x) = 1 and Tj+1(x) =
2xTj(x)− Tj−1(x) for j ≥ 2.
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matrix Q̃2 in (3.4.1) is given by Tj(θ
∗
i ), i = 0, 1, . . . , d, which leads to the

following proposition.

Proposition 3.6.1. Let i = 0, 1, . . . d be fixed. For 0 ≤ j ≤ d, Q̃2 = Tj(θ
∗
i ).

Consequently, the sequence {T0, T1, . . . , Td} forms a basis for V .

Proof. We will induct on j with i fixed.

For the base cases, consider j = 0 and j = 1. For each fixed i, we have(
Q̃2

)
i0
= 2 = T0(θ

∗
i ) and

(
Q̃2

)
i1
= θ∗i = T1(θ

∗
i ).

Let k ∈ N with k ≥ 1 be given and suppose the claim is true for all

j = 0, 1, . . . , k. In particular, assume the claim holds for j = k− 1 and j = k:(
Q̃2

)
i,k−1

= q(2i+1)(k−1)/2 + q−(2i+1)(k−1)/2 = Tk−1(θ
∗
i ),(

Q̃2

)
ik
= q(2i+1)k/2 + q−(2i+1)k/2 = Tk(θ

∗
i )

(3.6.2)

The (i, k + 1) entry of Q̃2 is given by(
Q̃2

)
i,k+1

= q(2i+1)(k+1)/2 + q−(2i+1)(k+1)/2.

On the other hand, using (3.6.1) and the induction hypotheses (3.6.2),

Tk+1(θ
∗
i ) = θ∗i Tk(θ

∗
i )− Tk−1(θ

∗
i )

=
(
q(2i+1)/2 + q−(2i+1)/2

)(
q(2i+1)k/2 + q−(2i+1)k/2

)
−
(
q(2i+1)(k−1)/2 + q−(2i+1)(k−1)/2

)
= q(2i+1)(k+1)/2 + q−(2i+1)(k+1)/2.

Thus we have
(
Q̃2

)
i,k+1

= Tk+1(θ
∗
i ) and this completes the proof.
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3.7 Full-Characterization of All Ones DABLPs

Expressing the conjugating matrix Q̃2 in terms of the modified Chevyshev

polynomials of the first kind allows us to prove the converse of Theorem 3.5.1.

Theorem 3.7.1. Suppose (A,∆∗) form an all ones DABLP (A and ∆∗

given in the statement of Theorem 3.5.1). Then the δ∗i ’s satisfy the recursive

relation given in (3.5.1):

δ∗i − δ∗i+1

δ∗i+1δ
∗
i+2

=
θ∗i − θ∗i+1

θ∗i+1 − θ∗i+2

,

where 0 ≤ i ≤ d− 2 (θ∗i as in Theorem 3.4.1).

Proof. Assume (A,∆∗) form all ones DABLP via the identity matrix I and

the modified Chebyshev matrix of the first kind T . It suffices to show that

the conjugation of ∆∗ via T must yield an irreducible tridiagonal matrix, that

is,

T−1∆∗T =


t00 t01 0
t10 t11 t12

t21
. . . . . .
. . . td−1,d−1 td−1,d

0 td,d−1 tdd


or equivalently,

∆∗T = T


t00 t01 0
t10 t11 t12

t21
. . . . . .
. . . td−1,d−1 td−1,d

0 td,d−1 tdd

 . (3.7.1)
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The first column of the left-hand side of (3.7.1) is given by

δ∗0T0(θ
∗
0)

δ∗1T0(θ
∗
1)

δ∗2T0(θ
∗
2)

δ∗3T0(θ
∗
3)

...
δ∗d−2T0(θ

∗
d−2)

δ∗d−1T0(θ
∗
d−1)

δ∗dT0(θ
∗
d)


. (3.7.2)

On the other hand, the first column of the right-hand side of (3.7.1) is

t00T0(θ
∗
0) + t10T1(θ

∗
0)

t00T0(θ
∗
1) + t10T1(θ

∗
1)

t00T0(θ
∗
2) + t10T1(θ

∗
2)

t00T0(θ
∗
3) + t10T1(θ

∗
3)

...
t00T0(θ

∗
d−2) + t10T1(θ

∗
d−2)

t00T0(θ
∗
d−1) + t10T1(θ

∗
d−1)

t00T0(θ
∗
d) + t10T1(θ

∗
d)


. (3.7.3)

Equating (3.7.2) and (3.7.3) we obtain

δ∗0T0(θ
∗
0) = t00T0(θ

∗
0) + t10T1(θ

∗
0), (3.7.4a)

δ∗1T0(θ
∗
1) = t00T0(θ

∗
1) + t10T1(θ

∗
1), (3.7.4b)

δ∗2T0(θ
∗
2) = t00T0(θ

∗
2) + t10T1(θ

∗
2), (3.7.4c)

δ∗3T0(θ
∗
3) = t00T0(θ

∗
3) + t10T1(θ

∗
3). (3.7.4d)

...

δ∗d−2T0(θ
∗
d−2) = t00T0(θ

∗
d−2) + t10T1(θ

∗
d−2), (3.7.4e)

δ∗d−1T0(θ
∗
d−1) = t00T0(θ

∗
d−1) + t10T1(θ

∗
d−2), (3.7.4f)

δ∗dT0(θ
∗
d) = t00T0(θ

∗
d) + t10T1(θ

∗
d). (3.7.4g)

Recall that T0(x) = 2 and T1(x) = x for modified Chebyshev polynomials of

the first kind so (3.7.4a)-(3.7.4g) simplify to
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2δ∗0 = t00 + t10θ
∗
0, (3.7.5a)

2δ∗1 = t00 + t10θ
∗
1, (3.7.5b)

2δ∗2 = t00 + t10θ
∗
2, (3.7.5c)

2δ∗3 = t00 + t10θ
∗
3, (3.7.5d)

...

2δ∗d−2 = t00 + t10θ
∗
d−2, (3.7.5e)

2δ∗d−1 = t00 + t10θ
∗
d−1, (3.7.5f)

2δ∗d = t00 + t10θ
∗
d. (3.7.5g)

We may subtract (3.7.5b) from (3.7.5a) to eliminate t00:

2(δ∗0 − δ∗1) = t10(θ
∗
0 − θ∗1). (3.7.6)

Similarly, we may eliminate t00 by subtracting (3.7.5c) from (3.7.5b):

2(δ∗1 − δ∗2) = t10(θ
∗
1 − θ∗2). (3.7.7)

Dividing (3.7.6) by (3.7.7), we get

δ∗0 − δ∗1
δ∗1 − δ∗2

=
θ∗0 − θ∗1
θ∗1 − θ∗2

Similar calculations (using (3.7.5b)-(3.7.5d)) will show that

δ∗1 − δ∗2
δ∗2 − δ∗3

=
θ∗1 − θ∗2
θ∗2 − θ∗3

and continuing in this manner, we obtained the desired result.

Now we have a full characterization of all ones DABLPs and state the

result as a corollary below.
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Corollary 3.7.1. The pair (A,∆∗) given in the statement of Theorem 3.5.1

form an all ones DABLP if and only if the diagonal entries δ∗i ’s satisfy the

recursive relation given in (3.5.1):

δ∗i − δ∗i+1

δ∗i+1 − δ∗i+2

=
θ∗i − θ∗i+1

θ∗i+1 − θ∗i+2

,

where 0 ≤ i ≤ d− 2 (θ∗i as in Theorem 3.4.1).

Proof. Apply Theorems 3.5.1 and 3.7.1.
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4 Classification of DABLPs Using Leonard’s Theorem

In this chapter we formulate some conditions on the dual eigenvalues that

allow us to use Leonard’s Theorem. With this result, we are able to classify

the DABLPs. The key ingredients for this classification are the Askey-Wilson

Relations. Throughout this chapter we will assume that the field K has the

characteristic of 0.

4.1 Askey-Wilson Relations

Theorem 4.1.1. [46, Theorem 1.5] Let (A,A∗) denote a Leonard pair on V .

There exists a sequence of scalars β, γ, γ∗, ϱ, ϱ∗, ω, η, η∗ ∈ K such that

A2A∗ − βAA∗A+ A∗A2 − γ(AA∗ + A∗A)− ϱA∗ = γ∗A2 + ωA+ ηI,

(4.1.1a)

(A∗)2A− βA∗AA∗ + A(A∗)2 − γ∗(A∗A+ AA∗)− ϱ∗A = γ(A∗)2 + ωA∗ + η∗I.

(4.1.1b)

The sequence is uniquely determined by the pair (A,A∗) provided dim(V ) ≥

4. The relations (4.1.1a) and (4.1.1b) are called the Askey-Wilson relations

(AWRs) and the sequence of 8 scalars are called the Askey-Wilson coefficients

(AWCs).

We denote the pair of equations (4.1.1a) and (4.1.1b) by

AW (β, γ, γ∗, ϱ, ϱ∗, ω, η, η∗)

and they first appeared in [52].
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In that article it is shown that the Askey-Wilson polynomials give a pair of

infinite matrices which satisfy (4.1.1a) and (4.1.1b). For related work and

the proof of this theorem, see [19, 20, 21, 46, 53].

The following theorem displays some formulae which can be used to

compute the AWCs using Theorem 4.1.1.

Theorem 4.1.2. [46, Theorem 4.5 and 5.3] Given a Leonard pair (A,A∗) on

V , expressions for the 8 AWCs in terms of parameter arrays P are given by

the following formulas:

β =
θi−2 − θi+1

θi−1 − θi
− 1 =

θ∗i−2 − θ∗i+1

θ∗i−1 − θ∗i
− 1, (4.1.2a)

γ = θi−1 − βθi + θi+1, (4.1.2b)

γ∗ = θ∗i−1 − βθ∗i + θ∗i+1, (4.1.2c)

ϱ = θ2i − βθiθi−1 + θ2i−1 − γ(θi + θi−1), (4.1.2d)

ϱ∗ = θ∗i
2 − βθ∗i θ

∗
i−1 + θ∗i−1

2 − γ∗(θ∗i + θ∗i−1), (4.1.2e)

ω = ai(θ
∗
i − θ∗i+1) + ai−1(θ

∗
i−1 − θ∗i−2)− γ(θ∗i + θ∗i−1), (4.1.2f)

= a∗i (θi − θi+1) + a∗i−1(θi−1 − θi−2)− γ∗(θi + θi−1), (4.1.2g)

η = a∗i (θi − θi−1)(θi − θi+1)− γ∗θ2i − ωθi, (4.1.2h)

η∗ = ai(θ
∗
i − θ∗i−1)(θ

∗
i − θ∗i+1)− γθ∗i

2 − ωθ∗i . (4.1.2i)

Note that β in (4.1.2a) is the fundamental constant defined in (2.9.2) and

valid for 2 ≤ i ≤ d− 1. The expressions for γ, γ∗ are valid for 1 ≤ i ≤ d− 1,

the expressions for ϱ, ϱ∗, ω are valid for 1 ≤ i ≤ d, and the expressions for

η, η∗ are valid for 0 ≤ i ≤ d.

60



Corollary 4.1.1. For all ones DABLP given in (3.4.1), the 8 AWCs are as

follows:

β = q + q−1,

γ = γ∗ = ω = η = η∗ = 0,

ϱ = 4− (q + q−1)2 = 4− β2,

ϱ∗ = 1− q + q−1

4
= ϱ/4,

where q = eiπ/(d+1).

Proof. Simple calculations using the expressions for θi’s, θ
∗
i ’s, and q.

4.2 Extended Dual Eigenvalues

As stated in Lemma 2.9.2(v), together with Theorem 4.1.2, the AWRs

imply certain ratios are independent of i. In particular, by (4.1.2a),

β + 1 =
θ∗i−2 − θ∗i+1

θ∗i−1 − θ∗i
. (4.2.1)

By (4.1.2c), the dual eigenvalue sequence {θ∗i } satisfy a 3-term recurrence

and if we assume d ≥ 3, this allows us to extend the sequence. To this end,

letting i = 1, 2 in (4.2.1) and setting the two expressions equal to each other,

we have
θ∗−1 − θ∗2
θ∗0 − θ∗1

=
θ∗0 − θ∗3
θ∗1 − θ∗2

.

Solving the above equation for θ∗−1 yields

θ∗−1 = θ∗2 + (θ∗0 − θ∗1)
θ∗0 − θ∗3
θ∗1 − θ∗2

.
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Similarly, letting i = d− 1, d in (4.2.1) and setting the two expressions equal

to each other, we get

θ∗d−3 − θ∗d
θ∗d−2 − θ∗d−1

=
θ∗d−2 − θ∗d+1

θ∗d−1 − θ∗d
.

Solving the above equation for θ∗d+1 gives

θ∗d+1 = θ∗d−2 + (θ∗d−1 − θ∗d)
θ∗d−3 − θ∗d
θ∗d−2 − θ∗d−1

.

This leads to the following definition.

Definition 4.2.1. (Extended Dual Eigenvalues)

θ∗−1 = θ∗2 + (θ∗0 − θ∗1)
θ∗0 − θ∗3
θ∗1 − θ∗2

, (4.2.2a)

θ∗d+1 = θ∗d−2 + (θ∗d−1 − θ∗d)
θ∗d−3 − θ∗d
θ∗d−2 − θ∗d−1

. (4.2.2b)

4.3 Classification of DABLPs

The following two lemmas will be used to prove the main theorem in this

section (Theorem 4.3.1).

Lemma 4.3.1. Suppose (A,A∗) is a LP with d ≥ 4. Assume a1 = a2 = a3 = 0.

Then the AWCs γ, ω, and η∗ satisfy γ = ω = η∗ = 0.

Proof. Set i = 1, 2, 3 in (4.1.2i), which relates the ai to the θ∗i :

η∗ = a1(θ
∗
1 − θ∗0)(θ

∗
1 − θ∗2)− γθ∗21 − ωθ∗1, (4.3.1a)

η∗ = a2(θ
∗
2 − θ∗1)(θ

∗
2 − θ∗3)− γθ∗22 − ωθ∗2, (4.3.1b)

η∗ = a3(θ
∗
3 − θ∗2)(θ

∗
3 − θ∗4)− γθ∗23 − ωθ∗3. (4.3.1c)

By assumption ai = 0 for i = 1, 2, 3 and hence (4.3.1a)-(4.3.1c) simplify to
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γθ∗21 ωθ∗1 + η∗ = 0, (4.3.2a)

γθ∗22 − ωθ∗2 + η∗ = 0, (4.3.2b)

γθ∗23 ωθ∗3 + η∗ = 0. (4.3.2c)

Since θ∗i are assumed to be distinct, the above linear system in γ, ω, and η∗

only has a trivial solution, so the result follows.

Remark. These results are consistent with Corollary 4.1.1.

Lemma 4.3.2. Suppose (A,A∗) is a LP with d ≥ 4. Assume a1 = a2 = a3 =

0.

(i) If a0 ̸= 0, then θ∗−1 = θ∗0.

(ii) If ad ̸= 0, then θ∗d+1 = θ∗d.

Proof. Applying the result in Lemma 4.3.1 to (4.1.2i), we obtain

ai(θ
∗
i − θ∗i−1)(θ

∗
i − θ∗i+1) = 0. (4.3.3)

Setting i = 0 in (4.3.3) yields

a0(θ
∗
0 − θ∗−1)(θ

∗
0 − θ∗1) = 0.

Since θ∗0 ̸= θ∗1 and a0 ̸= 0, this forces θ∗−1 = θ∗0.

The second claim (ii) follows similarly by setting i = d in (4.3.3).

Theorem 4.3.1. Let (A,A∗) be a DABLP with d ≥ 4. Then

(i) (A,A∗) must be of type q-Racah, q-Hahn, or q-Krawtchouk.

(ii) In each of these cases, s∗ = 1 and qd+1 = −1.

Proof. (i) Since d ≥ 4, it is clear that (A,A∗) cannot be of Orphan type.

(See Appendix C: 13. Orphan - page 96.)
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Let us first show that (A,A∗) cannot be of either Dual Hahn or

Krawtchouk type. By (C.10b) and (C.11b) in Appendix C, the dual

eigenvalue sequences of these types of LPs are given by θ∗i = θ∗0 + s∗i

for some nonzero constant s∗ ∈ K. By Lemma 4.3.2(i),

0 = θ∗0 − θ∗−1 = θ∗0 − (θ∗0 − s∗) = s∗,

contradiction.

Next, let us show that (A,A∗) cannot be of either Racah or Hahn type.

By (C.8b) and (C.9b) in Appendix C, the dual eigenvalue sequences

of these types of LPs are given by θ∗i = θ∗0 + h∗i(i+ 1 + s∗) for some

nonzero constant h∗ ∈ K. By Lemma 4.3.2(i),

0 = θ∗0 − θ∗−1 = θ∗0 −
(
θ∗0 + h∗(−1)(−1 + 1 + s∗)

)
= h∗s∗.

Since h∗ ̸= 0, s∗ must vanish identically. Now using Lemma 4.3.2(ii),

0 = θ∗d+1 − θ∗d

= [θ∗0 + h∗(d+ 1)(d+ 1 + 1 + s∗)]− [θ∗0 + h∗d(d+ 1 + s∗)]

= h∗(2d+ 2 + s∗).

Once again, h∗ ≠ 0 by assumption so this forces 2d + 2 + s∗ = 0 or

s∗ = −2d− 2 ̸= 0, impossibility.

We now claim that (A,A∗) cannot be of Dual q-Hahn, Quantum q-
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Krawtchouk, Affine q-Krawtchouk, or Dual q-Krawtchouk type. By

(C.3b), (C.4b), (C.6b), (C.7b) in Appendix C, the dual eigenvalue

sequences of these types of LPs are given by θ∗i = θ∗0 + h∗(1− qi)q−i for

some nonzero constant h∗ ∈ K and qi ̸= 1 for 1 ≤ i ≤ d. Using Lemma

4.3.2(i) again, we see that

0 = θ∗0 − θ∗−1 = θ∗0 − [θ∗0 + h∗(1− q−1)q−(−1)] = h∗(1− q),

contradiction since neither h∗ ̸= 0 nor q = 1.

Lastly, we claim that (A,A∗) cannot be of Bannai/Ito type. By (C.12b)

in Appendix C, the dual eigenvalue sequence of a LP of Bannai/Ito

type is given by θ∗i = θ∗0 + h∗[s∗ − 1 + (1 − s∗ + 2i)(−1)i] for some

nonzero constant h∗ ∈ K. By Lemma 4.3.2(i),

0 = θ∗0 − θ∗−1

= θ∗0 − (θ∗0 + h∗[s∗ − 1 + (1− s∗ + 2(−1))(−1)−1])

= −2s∗h∗.

Since h∗ ≠ 0, we must have s∗ = 0. This simplifies the dual eigenvalue

sequence of the LP of Bannai/Ito type as follows

θ∗i = θ∗0 + h∗[−1 + (1 + 2i)(−1)i]. (4.3.4)
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Now using Lemma 4.3.2(ii),

0 = θ∗d+1 − θ∗d

=
(
θ∗0 + h∗[−1 + (1 + 2(d+ 1))(−1)d+1]

)
−
(
θ∗0 + h∗[−1 + (1 + 2d)(−1)d]

)
= h∗((1 + 2(d+ 1))(−1)d+1 − (1 + 2d)(−1)d

)
= h∗((1 + 2(d+ 1))(−1)d+1 + (1 + 2d)(−1)d+1

)
= 4h∗(−1)d+1(d+ 1),

which holds if and only if h∗ = 0, contradiction.

This proves (i).

(ii) By (C.1b), (C.2b), (C.5b) in Appendix C, the dual eigenvalue sequences

of LPs of q-Racah, q-Hahn, and q-Krawtchouk types are given by

θ∗i = θ∗0+h∗(1−qi)(1−s∗qi+1)q−i for some nonzero constant h∗, q, s∗ ∈ K.

By Lemma 4.3.2(i),

0 = θ∗0 − θ∗−1

= θ∗0 − (θ∗0 + h∗(1− q−1)(1− s∗)q)

= h∗(1− q)(1− s∗),

provided that s∗ = 1 since h∗ ≠ 0 nor q ̸= 1. This proves the first part

of the claim made in (ii) and simplifies the dual eigenvalue sequence as

follows
θ∗i = θ∗0 + h∗(1− qi)(1− qi+1)q−i. (4.3.5)

Using Lemma 4.3.2(ii) for one last time, we have
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0 = θ∗d+1 − θ∗d

=
(
θ∗0 + h∗(1− qd+1)(1− qd+2)q−(d+1)

)
−
(
θ∗0 + h∗(1− qd)(1− qd+1)q−d

)
= h∗q−(d+1)(1− qd+1)

[
(1− qd+2)− (1− qd)q

]
= h∗q−(d+1)(1− qd+1)

[
1− qd+2 − q + qd+1

]
= h∗q−(d+1)(1− qd+1)

[
qd+1(1− q) + (1− q)

]
= h∗q−(d+1)(1− q)(1− qd+1)(1 + qd+1)

= h∗q−(d+1)(1− q)(1− q2(d+1)).

Since none of the first three factors above equal to 0, we must have

1 − q2(d+1) = 0 or qd+1 = ±1. The assumption s∗qi = qi ̸= 1 for

2 ≤ i ≤ 2d implies qd+1 = −1, verifying the second claim made in (ii).

Corollary 4.3.1. The all-ones DABLP is of q-Racah type with

h = s∗ = 1, h∗ = q−1/2, s = q−1, r1r2 = qd,

where q = eiπ/(d+1).

In future work, we intend to explore the DABLPs of q-Hahn and q-

Krawtchouk type.
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5 Future Directions

In this final chapter, we collect and discuss some of the potential future

directions by introducing doubly almost bipartite analogues of several related

objects, including Leonard triples and Modular Leonard triples (Section 5.1),

Spin Leonard pairs (Section 5.2), and a connection to Near-bipartite Leonard

pairs (Section 5.3).

5.1 Leonard Triples (LTs) and Modular Leonard Triples (MLTs)

The notion of Leonard triples was introduced as a natural extension of

Leonard pairs by Curtin in [11]. See the following definition.

Definition 5.1.1. [11, Definition 1.2] A Leonard triple (LT) on V is an

ordered triple (A,A∗, Aϵ) of linear transformations A : V → V,A∗ : V →

V,Aϵ : V → V in End(V ) that satisfy conditions (i)-(iii) below.

(i) There exists a basis for V with respect to which the matrix represent-

ing A is diagonal and the matrices representing A∗ and Aϵ are each

irreducible tridiagonal.

(ii) There exists a basis for V with respect to which the matrix represent-

ing A∗ is diagonal and the matrices representing A and Aϵ are each

irreducible tridiagonal.

(iii) There exists a basis for V with respect to which the matrix represent-

ing Aϵ is diagonal and the matrices representing A and A∗ are each

irreducible tridiagonal.
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As in LPs, the diameter of the LT (A,A∗, Aϵ) is defined to be one less than

the dimension of V .

There is a a LTs-analogue of 2.6.1.

Lemma 5.1.1. [37, Lemma 1.8] An ordered triple (A,A∗, Aϵ) of matrices

A,A∗, Aϵ ∈ Matd+1(K) is a LT on V if and only if the following hold.

(i) There exists a non-singular matrix Q1 such that Q−1
1 AQ1 is diagonal

and Q−1
1 A∗Q1 and Q−1

1 AϵQ1 are irreducible tridiagonal.

(ii) There exists a non-singular matrix Q2 such that Q−1
2 A∗Q2 is diagonal

and Q−1
2 AQ2 and Q−1

2 AϵQ2 are irreducible tridiagonal.

(iii) There exists a non-singular matrix Q3 such that Q−1
3 AϵQ3 is diagonal

and Q−1
3 AQ3 and Q−1

3 A∗Q3 are irreducible tridiagonal.

(When (i)-(iii) hold we say that (A,A∗, Aϵ) form a Leonard triple via conju-

gating matrices Q1, Q2, and Q3.)

The notion of a LT and the corresponding notion of TB, TAB, and TDAB

are similarly defined below.

Definition 5.1.2. In the definition of a LT in Definition 5.1.1, we mentioned

six irreducible tridiagonal matrices (i.e., A∗ and Aϵ in (i), A and Aϵ in (ii),

and A and A∗ in (iii)). The LT (A,A∗, Aϵ) is said to be totally bipartite (resp.,

totally almost bipartite, totally doubly almost bipartite) whenever each of the

six irreducible tridiagonal matrices is bipartite (resp., almost bipartite, doubly

almost bipartite).
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For any LTs, any two of the three form a LP. We say that these LPs are

associated with the LT. So the LP is TB if and only if all the associated LPs

are TB. Similarly, the LT is TAB (respectively TDAB) if and only if all of

the associated LPs are TAB (TDAB).

Known results on LTs:

• Given a TBLP (A,A∗) on V of q-Racah type, Gao, Hou, Zhang de-

termined all matrices Aϵ such that (A,A∗, Aϵ) forms a LT on V and

classified up to isomorphism the TBLTs of q-Racah type [37].

• Given a TBLP (A,A∗) on V of Bannai-Ito type, Brown determined all

matrices Aϵ such that (A,A∗, Aϵ) forms a LT on V and classified up to

isomorphism the TBLTs of Bannai-Ito type [7].

• Given a TBLP (A,A∗) on V of Krawtchouk type, Balmaceda and

Maralit determined all matrices Aϵ such that (A,A∗, Aϵ) forms a LT on

V and classified up to isomorphism the TBLTs of Krawtchouk type [2].

As stated on page 16, Terwilliger classified all LPs and the isomorphism classes

of LPs fall naturally into 13 families listed. It remains an open problem to

fully classy the LTs (up to isomorphism). However, Curtin classifed a family

of LTs said to be modular [11]. This leads to the following two definitions.

Definition 5.1.3 (Antiautomorphism). By an antiautomorphism of End(V ),

we mean a K-linear bijection τ : End(V ) → End(V ) such that τ(AB) =

τ(B)τ(A) for all A,B ∈ End(V ).
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Definition 5.1.4. Let (A,A∗, Aϵ) be a LT on V . It is said to be modular

whenever for each B ∈ {A,A∗, Aϵ} there exists an antiautomorphism of

End(V ) which fixes B and swaps the other two members of the triple.

We pose the following two questions.

Future Research Problems

Problem 5.1.1. Classify up to isomorphism of doubly almost bipartite

Leonard triples.

Problem 5.1.2. Find an appropriate autiautomorphism and classify

up to isomorphism of doubly almost bipartite modular Leonard triples.

5.2 Spin Leonard Pairs (SLPs)

Let us define the following new class of Leonard pairs.

Definition 5.2.1. [12, Definition 1.2] A Leonard pair (A,A∗) on V is said to

be a spin Leonard pair (SLP) whenever there exist invertible linear transfor-

mations B,B∗ in End(V ) such that

(i) BA = AB,

(ii) B∗A∗ = A∗B∗,

(iii) BA∗B−1 = (B∗)−1AB∗.

In this case, we refer to (B,B∗) as a Boltzmann pair for (A,A∗).
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The notion of a SLP was first introduced by V.F.R. Jones for a statistical

mechanical construction of link invariants [25]. Jaeger [24] and Nomura

[34] then showed that spin models are contained in Bose-Mesner algebra

arising from distance-regular graphs [3, 6]. In many instances, the irreducible

representations of the Terwilliger algebra are LPs and thus if the Bose-

Mesner algebra of a distance-regular graph supports a spin model, then every

irreducible representation of the associated Terwilliger algebra is not only a

LP, but a SLP [8].

The SLPs are classified up to isomorphism involving explicit formulas for

the entries of the matrices representing A and A∗ with respect to a particular

basis and the corresponding Boltzmann pair for (A,A∗) are also described.

Furthermore, Curtin showed that there is an intimate connection between

SLPs and MLTs. See the following two theorems.

Theorem 5.2.1. [12, Theorem 1.5] Let (A,A∗, Aϵ) be a MLT on V. Then

A,A∗ is a SLP.

Theorem 5.2.2. [12, Theorem 1.6] Let (S, S∗) be a SLT on V and let (B,B∗)

denote a Boltzmann pair for (S, S∗). Set T := BS∗B−1(= B∗−1SB∗) and

T ∗ := B−1S∗B(= B∗SB∗−1). Then (S, S∗, T ) and (S, S∗, T ∗) are both MLTs.

We pose the following problem regarding SLPs.

Future Research Problem

Problem 5.2.1. Classify up to isomorphism of spin DABLPs (S, S∗)

and describe the corresponding Boltzmann pair (B,B∗) for (S, S∗).
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5.3 Near-Bipartite Leonard Pairs (near-BLPs)

In [35], Nomura and Terwilliger introduced a notion of near-bipartite

Leonard pairs.

Start with a LS Φ = (A, {Ei}di=0, A
∗, {E∗

i }di=0) with a Φ-standard basis

{vi}di=0 for V so that the matrices representing A and A∗ are irreducible

tridiagonal and diagonal, respectively. For 0 ≤ i ≤ d define an K-linear map

E∗
i : V → V such that E∗

i vi = δivi (i.e., the dual primitive idempotent given

on page 14). Define a linear map

F :=
d∑

i=0

E∗
i AE

∗
i . (5.3.1)

Recall F is the flat part of A defined in (3.1.13b). (Fact: (A,A∗) is a BLP if

and only if F = 0.)

Definition 5.3.1. The LP (A,A∗) is said to be near-bipartite whenever the

pair (A− F,A∗) is a LP on V and in this case, the pair (A− F,A∗) is a BLP

and called the bipartite contraction of (A,A∗). Let (B,B∗) be a LP on V . By

a near-bipartite expansion of (B,B∗) we mean a near-bipartite LP (N,N∗)

on V with bipartite contraction (B,B∗).

Nomura and Terwilliger showed several important results regarding near-

bipartite LP: A LP (A,A∗) over K with d ≥ 3 is near-bipartite if and only if

at least one of the following holds:
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(i) (A,A∗) is essentially bipartite4;

(ii) (A,A∗) has reinforced5 dual q-Krawtchouk type;

(iii) (A,A∗) has Krawtchouk type.

We pose three more problems regarding near-BLPs.

Future Research Problem

Problem 5.3.1. Classify up to isomorphism of near-DABLPs over K.

Problem 5.3.2. For each near-DABLP, describe its bipartite contrac-

tion.

Problem 5.3.3. For each DABLP, describe its near-DAB expansions.

4A LP (A,A∗) is said to be essentially bipartite whenever the flat part F of A is a scalar
multiple of the identity I.

5The notion of reinforced LP applies to the dual q-Krawtchouk LP and it means that
q2i ̸= −1.
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Appendix A Eigenvalues/vectors of All Ones DABITM

Proof of Theorem 3.3.1. Typically one first determines the eigenvalues and

then the eigenvectors of a square matrix. For A given in (3.2.1), it ends up

being simpler first to find the eigenvectors due to the three-term recurrence

nature. To this end, let θ be an eigenvalue (not necessarily real) and x⃗ =(
x0 x1 · · · xd

)T
be a corresponding eigenvector of A. (Let us relabel the

indices from 0, . . . , d to 1, . . . , n instead where n = d+ 1.) With hindsight it

will be convenient to write θ = 2λ. Then

0⃗ = (θI − A)x⃗

= (2λI − A)x⃗

=



2λ− 1 −1 0 0 · · · 0 0
−1 2λ −1 0 · · · 0 0
0 −1 2λ −1 · · · 0 0
...

...
. . .

...
...

0 0 0 · · · 2λ −1 0
0 0 0 · · · −1 2λ −1
0 0 0 · · · 0 −1 2λ− 1





x1

x2

x3
...

xn−2

xn−1

xn



=



(2λ− 1)x1 − x2

−x1 + 2λx2 − x3

−x2 + 2λx3 − x4
...

−xk−1 + 2λxk − xk+1
...

−xn−2 + 2λxn−1 − xn

−xn−1 + (2λ− 1)xn
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=



(2λ− 1)x1 − x2

x2 − x1 + (2λ− 1)x2 − x3

x3 − x2 + (2λ− 1)x3 − x4
...

xk − xk−1 + (2λ− 1)xk − xk+1
...

xn−1 − xn−2 + (2λ− 1)xn−1 − xn

−xn−1 + (2λ− 1)xn


. (A.1)

Introducing two new auxiliary variables x0 and xn+1, the first and the last

entries of (A.1) can be written as

x1 − x0 + (2λ− 1)x1 − x2 and xn − xn−1 + (2λ− 1)xn − xn+1,

respectively. Note that we must have x1 − x0 = 0 and xn − xn+1 = 0. Hence

x1 − x0 + (2λ− 1)x1 − x2

x2 − x1 + (2λ− 1)x2 − x3

x3 − x2 + (2λ− 1)x3 − x4
...

xk − xk−1 + (2λ− 1)xk − xk+1
...

xn−1 − xn−2 + (2λ− 1)xn−1 − xn

xn − xn−1 + (2λ− 1)xn − xn+1


= 0⃗. (A.2)

Observe that for k = 1, . . . , n, each entry of (A.2) has the form

xk − xk−1 + (2λ− 1)xk − xk+1 = 0, (A.3)

which is a second-order homogeneous linear difference equation with constant

coefficients along with two conditions (i) x1 − x0 = 0 and (ii) xn − xn+1 = 0.

Assuming (A.3) has a solution of the form xk = rk (r ̸= 0), the characteristic

equation of this difference equation is

81



rk − rk−1 + (2λ− 1)rk − rk+1 = 0

or simply
r2 − 2λr + 1 = 0 (A.4)

whose roots are r± = λ±
√
λ2 − 1. Rearrange (A.4) in the following way to

obtain
2λ = r + r−1. (A.5)

Also, the product of these two roots is found to be

r+r− = 1. (A.6)

Let us consider the following three cases.

Case 1. λ ̸= ±1. In this case the two roots r+ and r− are distinct. For

notational convenience, let r := r+ = λ+
√
λ2 − 1. Then we can express the

other root r− in terms of r as follows:

r− = λ−
√
λ2 − 1 =

1

λ+
√
λ2 − 1

=
1

r
= r−1.

Therefore, the general solution of (A.3) is

xk = c1r
k
+ + c2r

k
− = c1r

k + c2r
−k, k = 1, . . . , n

for some constants c1 and c2.

Using the first condition (i) x1 − x0 = 0, we see that c2 = c1r. Thus

xk = c1r
k + (c1r)r

−k = c1(r
k + r1−k). (A.7)

Notice that we require c1 ̸= 0 for a non-trivial solution of (A.3).

Next, using the second condition (ii) xn − xn+1 = 0, we get

rn(1− r) = r−n(1− r).
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If r = 1, then (A.5) implies λ = 1, which is a contradiction and hence we

conclude that r ̸= 1. Dividing each side of the above equation by 1− r and

further simplifying, we obtain

r2n = 1, (A.8)

which implies |r| = 1. Taking the absolute value of each side of (A.5) and

using the fact that |r| = 1,

2|λ| = |2λ| = |r + r−1| ≤ |r|+ |r−1| = 2

so |λ| ≤ 1 and since λ ̸= ±1, we have |λ| < 1.

Case 2. λ = 1. In this case, r = λ so the general solution of (A.3) is give by

xk = (c1 + c2k)λ
k = c1 + c2k (A.9)

for some constants c1 and c2. The first condition (i) x1 − x0 = 0 implies

c2 = 0 and therefore, xk = c1 (c1 ̸= 0). Notice that the second condition

(ii) xn − xn+1 = 0 is automatically satisfied. So in this case, xk = c1 for all

1 ≤ k ≤ n, where c1 is some nonzero constant.

Case 3. λ = −1. Once again, in this case, r = λ so the general solution of

(A.3) is give by
xk = (c1 + c2k)λ

k = (c1 + c2k)(−1)k (A.10)

for some constants c1 and c2. The first condition (i) x1 − x0 = 0 implies

c2 = −2c1 and therefore,

xk = (c1 − 2c1k)(−1)k = c1(1− 2k)(−1)k. (A.11)

Notice that we require c1 ̸= 0 for a non-trivial solution of (A.3).
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Next, using the second condition (ii) xn − xn+1 = 0, we get n = 0 which

is clearly absurd. Consequently, the original eigenvalue equation has no

non-trivial solution for λ = −1.

Let us go back to Case 1 above. Since |r| = 1, write r as r = eiα for some

real variable α and i =
√
−1 is the imaginary unit. Equation (A.8) implies

1 = r2n = e2inα. So 2nα = 2iπ or simply α = iπ/n for 1 ≤ i ≤ n − 1. (We

exclude i = n since then α = π and so r = eiπ = −1. This implies (by A.5)

λ = −1 which is not allowed based on Case 3.) On the other hand, if we

allowed i = 0, then α = 0 and r = 1 and thus λ = 1, which is simply the

second case we considered. Therefore,

r = ei(iπ/n) =
(
eiπ/n

)i
=

(
eiπ/(d+1)

)i
. (A.12)

(Recall that the indices were relabeled such that n = d+ 1 and so (A.12) is

valid for 0 ≤ i ≤ d.) Define q ≡ eiπ/(d+1). By (A.12), r = qi and substituting

this result in (A.5), together with (A.7) yields the desired result.
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Appendix B Generalization of the A Matrix

See [1] - Lemma 8.1, 8.2, Corollary 8.3, as well as Equation (1.1) for the

following results.)

Define the following two (d+ 1)× (d+ 1) tridiagonal matrices

Ã :=


a0 1− c1
1 0 1

1
. . . . . .
. . . 0 1

1− bd−1 ad

 , (B.1a)

B := k


a+ a0 γ−1

1 (1− c1)
γ1 a γ−1

2

γ2
. . . . . .
. . . a γ−1

d

γd(1− bd−1) a+ ad

 , (B.1b)

where a, k, and {γj}dj=1 are arbitrary constants in K such that k and γj

(for all j) are nonzero and c1, bd−1 ≠ 1 to ensure that both Ã and B are

irreducible. Observe that Ã becomes an all ones DABITM given in (3.2.1)

when a0 = ad = 1 and c1 = bd−1 = 0.

The next three lemmas will be helpful and can be proven by simple

computations.

Lemma B.1. [1, Lemma 8.1] Let D ∈ Matd+1(K) be the diagonal matrix with

ϵi ̸= 0 as its ith diagonal element. Let M ∈ Matd+1(K) be arbitrary. Then

(D−1MD)ij = ϵ−1
i ϵjMij. (B.2)

Proof. Since ϵi ̸= 0 for each i, D is invertible and
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D−1 = diag(ϵ−1
0 , ϵ−1

1 , . . . , ϵ−1
d ).

Pre-multiplyingM by D−1 scales the ith row ofM by ϵ−1
i and post-multiplying

M by D scales the jth column of M by ϵj . Therefore, the ij-entry of D−1MD

is given by ϵ−1
i ϵjMij where Mij is the ij-entry of M .

Lemma B.2. [1, Lemma 8.2] Let D = diag(ϵ0, ϵ1, . . . , ϵd) where ϵ0 ≡ 1 and

ϵi =
∏i

j=1 γj for j = 1, . . . , d. Furthermore, let Ã be the matrix given in

(B.1a). Then the matrix B given in (B.1b) is given by

B = k(DÃD−1 + aI) or equivalently Ã = D−1(k−1B − aI)D. (B.3)

Proof. Simply apply Lemma B.1 to D−1(k−1B − aI)D.

Lemma B.3. [1, Corollary 8.3] Let a, θ ∈ K and x⃗ ∈ Kd+1. Then {k(θ +

a), Dx⃗} is an eigenpair of B if and only if (θ, x⃗) is an eigenpair of Ã.

Proof.

{k(θ + a), Dx⃗} is an eigenpair of B ⇐⇒ B(Dx⃗) = k(θ + a)Dx⃗

⇐⇒ k(DÃD−1 + aI)(Dx⃗) = k(θ + a)Dx⃗

⇐⇒ Ax⃗ = θx⃗

⇐⇒ {θ, x⃗} is an eigenpair of A.

(The second ‘⇐⇒’ is justified by B.3.)
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In order to ensure that B is doubly almost bipartite irreducible tridiagonal,

choose a = 0. By (B.3) in Lemma B.2, we have B = kDAD−1 (or D−1BD =

kA). Then by Lemma B.3, {kθ,Dx⃗} is an eigenpair of B if and only if (θ, x⃗)

is an eigenpair of A.

The following is the generalization of Corollary 3.7.1.

Theorem B.1. Let B be the tridiagonal matrix in (B.3) with a = c1 = bd−1 =

0 and a0 = ad = 1. The pair (B,∆) form an all ones DABLP on Kd+1 via

the identity matrix I and DQ̃2 if and only if the diagonal entries δi’s satisfy

the recursive relation give in (3.5.1):

δi − δi+1

δi+1 − δi+2

=
θ∗i − θ∗i+1

θ∗i+1 − θ∗i+2

,

where 0 ≤ i ≤ d− 2 (θ∗i as in Theorem 3.4.1).

Proof. It suffices to show that (i)
(
DQ̃2

)−1
B
(
DQ̃2) is diagonal and (ii)(

DQ̃2

)−1
∆
(
DQ̃2) is irreducible tridiagonal.

To prove (i), we see that(
DQ̃2

)−1
B
(
DQ̃2) = Q̃2

−1
(D−1BD)Q̃2

= Q̃2

−1
(kA)Q̃2

= kQ̃2

−1
AQ̃2

= kΛ,

where Λ is the diagonal matrix consisting of the eigenvalues of A. This shows

that
(
DQ̃2

)−1
B
(
DQ̃2) is indeed diagonal.
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On the other hand,

(
DQ̃2

)−1
∆
(
DQ̃2) = Q̃2

−1
(D−1∆D)Q̃2

= Q̃2

−1
∆Q̃2.

(Note that the product of diagonal matrices commute.) By Theorem 3.5.1,

we know that (A,∆) form an all ones DABLP via the identity matrix I and

Q̃2 and hence the conjugation of ∆ by Q̃2 is guaranteed to be irreducible

tridiagonal, showing that
(
DQ̃2

)−1
∆
(
DQ̃2) is irreducible tridiagonal, as

claimed.
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Appendix C Parameter/Intersection Arrays

In this section we display the parameter and intersection arrays

P = ({θi}di=0, {θ∗i }di=0, {φi}di=1, {ϕi}di=1) and I = ({bi}d−1
i=0 , {ci}di=1),

respectively, of all 13 types of LPs over K (see page 16). For more detailed

information, see [45, 47].

1. q-Racah Assume h, h∗, q, s, s∗, r1, r2 are nonzero and r1r2 = ss∗qd+1.

Furthermore, assume none of qi, r1q
i, r2q

i, s∗qi/r1, s
∗qi/r2 is equal to 1 for

1 ≤ i ≤ d and neither of sqi, s∗qi is equal to 1 for 2 ≤ i ≤ 2d.

θi = θ0 + h(1− qi)(1− sqi+1)q−i, (C.1a)

θ∗i = θ∗0 + h∗(1− qi)(1− s∗qi+1)q−i, (C.1b)

φi = hh∗q1−2i(1− qi)(1− qi−d−1)(1− r1q
i)(1− r2q

i), (C.1c)

ϕi = hh∗q1−2i(1− qi)(1− qi−d−1)(r1 − s∗qi)(r2 − s∗qi)/s∗, (C.1d)

bi =
h(1− qi−d)(1− s∗qi+1)(1− r1q

i+1)(1− r2q
i+1)

(1− s∗q2i+1)(1− s∗q2i+2)
, (C.1e)

ci =
h(1− qi)(1− s∗qi+d+1)(r1 − s∗qi)(r2 − s∗(qi)

s∗qd(1− s∗q2i)(1− s∗q2i+1)
. (C.1f)

To obtain {b∗i }d−1
i=0 and {c∗i }di=1, exchange h ↔ h∗, s ↔ s∗ in (C.1e) and

(C.1f) and preserve r1, r2, q.
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2. q-Hahn Assume h, h∗, q, s∗, r are nonzero. Furthermore, assume none

of qi, rqi, s∗qi/r is equal to 1 for 1 ≤ i ≤ d and s∗qi ̸= 1 for 2 ≤ i ≤ 2d.

θi = θ0 + h(1− qi)q−i, (C.2a)

θ∗i = θ∗0 + h∗(1− qi)(1− s∗qi+1)q−i, (C.2b)

φi = hh∗q1−2i(1− qi)(1− qi−d−1)(1− rqi), (C.2c)

ϕi = −hh∗q1−i(1− qi)(1− qi−d−1)(r − s∗qi), (C.2d)

bi =
h(1− qi−d)(1− s∗qi+1)(1− rqi+1)

(1− s∗q2i+1)(1− s∗q2i+2)
, (C.2e)

ci =
−hqi−d(1− qi)(1− s∗qi+d+1)(r − s∗qi)

(1− s∗q2i)(1− s∗q2i+1)
, (C.2f)

b∗i = h∗(1− qi−d)(1− rqi+1) (0 ≤ i ≤ d− 1), (C.2g)

c∗i = h∗(1− qi)(qs∗ − rqi−d) (1 ≤ i ≤ d). (C.2h)

3. Dual q-Hahn Assume h, h∗, q, s, r are nonzero. Furthermore, assume

none of qi, rqi, sqi/r is equal to 1 for 1 ≤ i ≤ d and sqi ̸= 1 for 2 ≤ i ≤ 2d.

θi = θ0 + h(1− qi)(1− sqi+1)q−i, (C.3a)

θ∗i = θ∗0 + h∗(1− qi)q−i, (C.3b)

φi = hh∗q1−2i(1− qi)(1− qi−d−1)(1− rqi), (C.3c)

ϕi = hh∗qd+2−2i(1− qi)(1− qi−d−1)(s− rqi−d−1), (C.3d)

bi = h(1− qi−d)(1− rqi+1), (C.3e)

ci = h(1− qi)(qs− rqi−d), (C.3f)

b∗i =
h∗(1− qi−d)(1− sqi+1)(1− rqi+1)

(1− sq2i+1)(1− sq2i+2)
(0 ≤ i ≤ d− 1), (C.3g)

c∗i =
−h∗qi−d(1− qi)(1− sqi+d+1)(r − sqi)

(1− sq2i)(1− sq2i+1)
(1 ≤ i ≤ d). (C.3h)
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4. Quantum q-Krawtchouk Assume h∗, q, s, r are nonzero. Furthermore,

assume neither of qi, sqi/r is equal to 1 for 1 ≤ i ≤ d.

θi = θ0 − sq(1− qi), (C.4a)

θ∗i = θ∗0 + h∗(1− qi)q−i, (C.4b)

φi = −rh∗q1−i(1− qi)(1− qi−d−1), (C.4c)

ϕi = h∗qd+2−2i(1− qi)(1− qi−d−1)(s− rqi−d−1), (C.4d)

bi = −rqi+1(1− qi−d), (C.4e)

ci = (1− qi)(qs− rqi−d), (C.4f)

b∗i =
h∗r(1− qi−d)

sq2i+1
(0 ≤ i ≤ d− 1), (C.4g)

c∗i =
h∗(1− qi)(r − sqi)

sq2i
(1 ≤ i ≤ d). (C.4h)

5. q-Krawtchouk Assume h, h∗, q, s∗ are nonzero. Furthermore, assume

qi ̸= 1 for 1 ≤ i ≤ d and s∗qi ̸= 1 for 2 ≤ i ≤ 2d.

θi = θ0 + h(1− qi)q−i, (C.5a)

θ∗i = θ∗0 + h∗(1− qi)(1− s∗qi+1)q−i, (C.5b)

φi = hh∗q1−2i(1− qi)(1− qi−d−1), (C.5c)

ϕi = hh∗s∗q(1− qi)(1− qi−d−1), (C.5d)

bi =
h(1− qi−d)(1− s∗qi+1)

(1− s∗q2i+1)(1− s∗q2i+2)
, (C.5e)

ci =
hs∗q2i−d(1− qi)(1− s∗qi+d+1)

(1− s∗q2i)(1− s∗q2i+1)
, (C.5f)

b∗i = h∗(1− qi−d) (0 ≤ i ≤ d− 1), (C.5g)

c∗i = h∗s∗q(1− qi) (1 ≤ i ≤ d). (C.5h)
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6. Affine q-Krawtchouk Assume h, h∗, q, r are nonzero. Furthermore,

assume neither qi, rqi is equal to 1 for 1 ≤ i ≤ d.

θi = θ0 + h(1− qi)q−i, (C.6a)

θ∗i = θ∗0 + h∗(1− qi)q−i, (C.6b)

φi = hh∗q1−2i(1− qi)(1− qi−d−1)(1− rqi), (C.6c)

ϕi = −hh∗rq1−i(1− qi)(1− qi−d−1), (C.6d)

bi = h(1− qi−d)(1− rqi+1), (C.6e)

ci = −hrqi−d(1− qi). (C.6f)

To obtain {b∗i }d−1
i=0 and {c∗i }di=1, exchange h ↔ h∗, s ↔ s∗ in (C.6e) and

(C.6f) and preserve r and q.

7. Dual q-Krawtchouk Assume h, h∗, q, s are nonzero. Furthermore,

assume qi ̸= 1 for 1 ≤ i ≤ d and sqi ̸= 1 for 2 ≤ i ≤ 2d.

θi = θ0 + h(1− qi)(1− sqi+1)q−i, (C.7a)

θ∗i = θ∗0 + h∗(1− qi)q−i, (C.7b)

φi = hh∗q1−2i(1− qi)(1− qi−d−1), (C.7c)

ϕi = hh∗sqd+2−2i(1− qi)(1− qi−d−1), (C.7d)

bi = h(1− qi−d), (C.7e)

ci = hsq(1− qi), (C.7f)

b∗i =
h∗(1− qi−d)(1− sqi+1)

(1− sq2i+1)(1− sq2i+2)
(0 ≤ i ≤ d− 1), (C.7g)

c∗i =
h∗sq2i−d(1− qi)(1− sqi+d+1)

(1− sq2i)(1− sq2i+1)
(1 ≤ i ≤ d). (C.7h)

92



8. Racah Assume h, h∗ are nonzero and r1+r2 = s+s∗+d+1. Furthermore,

char(K) = 0 or a prime greater than d and none of r1, r2, s
∗− r1, s

∗− r2 is

equal to −i for 1 ≤ i ≤ d and neither s, s∗ is equal to −i for 2 ≤ i ≤ 2d.

θi = θ0 + hi(i+ 1 + s), (C.8a)

θ∗i = θ∗0 + h∗i(i+ 1 + s∗), (C.8b)

φi = hh∗i(i− d− 1)(i+ r1)(i+ r2), (C.8c)

ϕi = hh∗i(i− d− 1)(i+ s∗ − r1)(i+ s∗ − r2), (C.8d)

bi =
h(i− d)(i+ 1 + s∗)(i+ 1 + r1)(i+ 1 + r2)

(2i+ 1 + s∗)(2i+ 2 + s∗)
, (C.8e)

ci =
hi(i+ d+ 1 + s∗)(i+ s∗ − r1)(i+ s∗ − r2)

(2i+ s∗)(2i+ 1 + s∗)
. (C.8f)

To obtain {b∗i }d−1
i=0 and {c∗i }di=1, exchange h ↔ h∗, s ↔ s∗ in (C.8e) and

(C.8f) and preserve r1 and r2.

9. Hahn Assume h∗, s are nonzero. Furthermore, char(K) = 0 or a prime

greater than d and neither of r, s∗ − r is equal to −i for 1 ≤ i ≤ d and

that s∗ ̸= −i for 2 ≤ i ≤ 2d.

θi = θ0 + si, (C.9a)

θ∗i = θ∗0 + h∗i(i+ 1 + s∗), (C.9b)

φi = h∗si(i− d− 1)(i+ r), (C.9c)

ϕi = −h∗si(i− d− 1)(i+ s∗ − r), (C.9d)

bi =
s(i− d)(i+ 1 + s∗)(i+ 1 + r)

(2i+ 1 + s∗)(2i+ 2 + s∗)
, (C.9e)

ci =
−si(i+ d+ 1 + s∗)(i+ s∗ − r)

(2i+ s∗)(2i+ 1 + s∗)
, (C.9f)

b∗i = h∗(i− d)(i+ 1 + r) (0 ≤ i ≤ d− 1), (C.9g)

c∗i = h∗i(i− d− 1− s∗ + r) (1 ≤ i ≤ d). (C.9h)
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10. Dual Hahn Assume h, s∗ are nonzero. Furthermore, char(K) = 0 or a

prime greater than d and neither of r, s− r is equal to −i for 1 ≤ i ≤ d

and s ̸= −i for 2 ≤ i ≤ 2d.

θi = θ0 + hi(i+ 1 + s), (C.10a)

θ∗i = θ∗0 + s∗i, (C.10b)

φi = hs∗i(i− d− 1)(i+ r), (C.10c)

ϕi = hs∗i(i− d− 1)(i+ r − s− d− 1), (C.10d)

bi = h(i− d)(i+ 1 + r), (C.10e)

ci = hi(i− d− 1− s+ r), (C.10f)

b∗i =
s∗(i− d)(i+ 1 + s)(i+ 1 + r)

(2i+ 1 + s)(2i+ 2 + s)
(0 ≤ i ≤ d− 1) (C.10g)

c∗i =
−s∗i(i+ d+ 1 + s)(i+ s− r)

(2i+ s)(2i+ 1 + s)
(1 ≤ i ≤ d). (C.10h)

11. Krawtchouk Assume r, s, s∗ are nonzero. Furthermore, char(K) = 0

or a prime greater than d and r ̸= ss∗.

θi = θ0 + si, (C.11a)

θ∗i = θ∗0 + s∗i, (C.11b)

φi = ri(i− d− 1), (C.11c)

ϕi = i(r − ss∗)(i− d− 1), (C.11d)

bi = r(i− d)/s∗, (C.11e)

ci = i(r − ss∗)/s∗. (C.11f)

To obtain {b∗i }d−1
i=0 and {c∗i }di=1, exchange s ↔ s∗ in (C.11e) and (C.11f)

and preserve r.
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12. Bannai/Ito Assume h, h∗ are nonzero and that r1 + r2 = −s − s∗ +

d+ 1. Furthermore, char(K) = 0 or a prime greater than d/2, neither of

r1,−s∗ − r1 is equal to −i for 1 ≤ i ≤ d, d− i even. Assume further that

neither of r2,−s∗ − r2 is equal to −i for 1 ≤ i ≤ d, i odd and neither of

s, s∗ is equal to 2i for 1 ≤ i ≤ d.

θi = θ0 + h[s− 1 + (1− s+ 2i)(−1)i], (C.12a)

θ∗i = θ∗0 + h∗[s∗ − 1 + (1− s∗ + 2i)(−1)i], (C.12b)

φi =


−4hh∗i(i+ r1), i even, d even;
−4hh∗i(i− d− 1)(i+ r2), i odd, d even;
−4hh∗i(i− d− 1), i even, d odd;
−4hh∗(i+ r1)(i+ r2), i odd, d odd.

(C.12c)

ϕi =


4hh∗i(i− s∗ − r1), i even, d even;
4hh∗(i− d− 1)(i− s∗ − r2), i odd, d even;
−4hh∗i(i− d− 1), i even, d odd;
−4hh∗(i− s∗ − r1)(i− s∗ − r2), i odd, d odd.

(C.12d)

bi =



2h(i− d)(i+ 1 + r2)

2i+ 2− s∗
, i even, d even;

2h(i+ 1− s∗)(i+ 1 + r1)

2i+ 2− s∗
, i odd, d even;

2h(i+ 1 + r1)(i+ 1 + r2)

2i+ 2− s∗
, i even, d odd;

2h(i− d)(i+ 1− s∗)

2i+ 2− s∗
, i odd, d odd.

(C.12e)

ci =



−2hi(i− s∗ − r1)

2i− s∗
, i even, d even;

−2h(i+ d+ 1− s∗)(i− s∗ − r2)

2i− s∗
, i odd, d even;

−2hi(i+ d+ 1− s∗)

2i− s∗
, i even, d odd;

−2h(i− s∗ − r1)(i− s∗ − r2)

2i− s∗
, i odd, d odd.

(C.12f)

To obtain {b∗i }d−1
i=0 and {c∗i }di=1, exchange h ↔ h∗, s ↔ s∗ in (C.12e) and

(C.12f) and preserve r1, r2, q.
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13. Orphan Assume h, h∗, s, s∗∗ are nonzero. Furthermore, the char(K) =

2, d = 3, and neither of s, s∗ is equal to 1 and that r is equal to none of

s+ s∗, s(1 + s∗), s∗(1 + s).

θ1 = θ0 + h(1 + s), θ2 = θ0 + h, θ3 = θ0 + hs, (C.13a)

θ∗1 = θ∗0 + h∗(1 + s∗), θ∗2 = θ∗0 + h∗, θ∗3 = θ∗0 + h∗s∗, (C.13b)

φ1 = hh∗r, φ2 = hh∗, φ3 = hh∗(r + s+ s∗), (C.13c)

ϕ1 = hh∗(r + s+ ss∗), ϕ2 = hh∗, ϕ3 = hh∗(r + s∗ + ss∗), (C.13d)

b0 =
hr

1 + s∗
, b1 =

h(1 + s∗)

s∗
, b0 =

h(r + s+ s∗)

1 + s∗
, (C.13e)

c1 =
h(r + s+ ss∗)

1 + s∗
, c2 =

h(1 + s∗)

s∗
, c3 =

h(r + s∗ + ss∗)

1 + s∗
. (C.13f)

To obtain {b∗i }2i=0 and {c∗i }3i=1, exchange h ↔ h∗, s ↔ s∗ in (C.13e) and

(C.13f) and preserve r.
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