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Abstract

A sudoku puzzle is most commonly a 9 × 9 grid of 3 × 3 boxes wherein the puzzle player

writes the numbers 1 – 9 with no repetition in any row, column, or box. We generalize the

notion of the n2 × n2 sudoku grid for all n ∈ Z≥2 and codify the empty sudoku board as a

graph. In the main section of this paper we prove that sudoku boards and sudoku graphs

exist for all such n; we prove the equivalence of [3]’s construction using unions and products

of graphs to the definition of the sudoku graph; we show that sudoku graphs are Cayley

graphs for the direct product group Zn × Zn × Zn × Zn; and we find the automorphism

group of the sudoku graph. In the subsequent section, we find and prove several graph

theoretic properties for this class of graphs, and we offer some conjectures on these and

other properties.
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1 Introduction

The mathematics of sudoku has been a subject of inquiry and interest to many combinatori-

alists (we recommend Taking Sudoku Seriously by Jason Rosenhouse and Laura Taalman for

a wonderful primer). Many mathematicians have also applied the notions of graph theory to

sudoku. In this paper we primarily aim to generalize and expand the knowledge of the class of

sudoku graphs. For the purposes of this paper as a literature project, our primary reference is

the article [3] by Cooper and Kirkpatrick.

We begin our main results with a seemingly obvious result, that sudoku grids (and graphs)

of all appropriate sizes do exist. The rest of the main results are generally concerned with

the structure and construction of sudoku graphs. Included here is a proof that these graphs

are the union of graph products, a claim we credit to a draft version of a paper by Cooper

and Kirkpatrick; the proof here is original, having been extrapolated from their claim. The

wonderful symmetry and repetition found within sudoku graphs informs our remaining main

results, the relationship between sudoku graphs and particular direct product groups, as well as

the automorphism group of these graphs.

The remainder of this paper is an attempt to give an overview, from a graph theoretic

perspective, of sudoku graphs—this includes some of their perhaps more mundane properties,

as well as some perhaps more surprising (or at least interesting).

In the interest of brevity, we are compelled to assume basic knowledge of graph theory and

of group theory. For references on graph theory definitions and concepts, we recommend West

[12]; and for group theory, we recommend Fraleigh [5].

During this research, occasional automation was used to confirm or reject hypotheses. The

code implemented can be found through [8].
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2 Definitions

Definition 2.1. Sudoku board

For each n ∈ Z≥2, define a sudoku board Bn as a grid consisting of n2 × n2 cells; the grid

is subdivided into n2 disjoint boxes, sub-grids of n × n cells. Observe that there is one such

arrangement of boxes for any n2 × n2 grid. Hence the 4 × 4 sudoku board is B2, and the

standard 9× 9 sudoku board is B3. Note that while B1 does satisfy the definition of a sudoku

board, it is a trivial example and will not be considered in our study.

A properly filled sudoku board contains the numbers 1 through n2 in each row, each column,

and each box (i.e. a properly filled Bn is a fully solved sudoku puzzle).

Figure 1: Left, B2; Right, B3

Definition 2.2. Band, Stack

A band of Bn is a maximal set of horizontally consecutive boxes. A stack of Bn is a maximal

set of vertically consecutive boxes.

Definition 2.3. Sudoku graph

Define the simple graph Sn as the sudoku graph on n4 vertices where each cell of the n2 × n2

sudoku board is a vertex, and two vertices are adjacent iff their corresponding cells in the sudoku

board Bn lie in the same row, column, or n× n box.

As in Definition 2.1, we forestall any consideration of S1. While many of our results do hold

for the graph consisting of one vertex and no edges, the triviality of this graph obviates any

desire to include it in our studies. Henceforth we consider only those n in Z≥2.
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Figure 2: Embeddings of: Left, S2, created with GraphTea [10]; Right, S3, created with Sage [11]

Definition 2.4. Canonical Labeling

Let the top row of Bn be row 1, . . . , the bottom row of Bn be row n2, the leftmost column of

Bn be column 1, . . . , the rightmost column of Bn be column n2. Then the canonical labeling

of the cells of Bn and the corresponding vertices of Sn is that labeling by which the cell in the

xth row, yth column of Bn has coordinate label (x, y), x, y ∈ {1, . . . , n2}.

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(3, 1) (3, 2) (3, 3) (3, 4)

(4, 1) (4, 2) (4, 3) (4, 4)

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (1, 8) (1, 9)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7) (2, 8) (2, 9)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) (3, 7) (3, 8) (3, 9)

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) (4, 7) (4, 8) (4, 9)

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6) (5, 7) (5, 8) (5, 9)

(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) (6, 7) (6, 8) (6, 9)

(7, 1) (7, 2) (7, 3) (7, 4) (7, 5) (7, 6) (7, 7) (7, 8) (7, 9)

(8, 1) (8, 2) (8, 3) (8, 4) (8, 5) (8, 6) (8, 7) (8, 8) (8, 9)

(9, 1) (9, 2) (9, 3) (9, 4) (9, 5) (9, 6) (9, 7) (9, 8) (9, 9)

Figure 3: Canonical labeling of: Left, B2; Right, B3
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Definition 2.5. Box Identification

By the canonical labeling, the cells of any box of Bn have the following labels:

(i, j) (i, j + 1) · · · (i, j + n− 1)

(i+ 1, j)
...

. . .
...

(i+ n− 1, j) · · · (i+ n− 1, j + n− 1)

for some i, j ∈ {1, n+ 1, 2n+ 1, . . . , (n− 1)n+ 1}. That is, for any (x1, y1), (x2, y2) in the same

box, x1, x2 ∈ {i, . . . , i + n − 1}, y1, y2 ∈ {j, . . . , j + n − 1}. Note that i = an + 1 for some

a ∈ {0, . . . , n− 1}. Then⌈
i

n

⌉
=

⌈
an+ 1

n

⌉
=

⌈
a+

1

n

⌉
= a+ 1 (recall that n ∈ Z≥2). And

⌈
i+ n− 1

n

⌉
=

⌈
an+ 1 + n− 1

n

⌉
=

⌈
an+ n

n

⌉
= da+ 1e = a+ 1.

That is, for any x1, x2 ∈ {i, . . . , i+ n− 1},
⌈
x1

n

⌉
=
⌈
x2

n

⌉
.

Similarly, where j = bn+ 1 for some b ∈ {0, . . . , n− 1},⌈
j

n

⌉
= b+ 1 =

⌈
j + n− 1

n

⌉
,

and so for any y1, y2 ∈ {j, . . . , j + n− 1},
⌈
y1
n

⌉
=
⌈
y2
n

⌉
.

Suppose (x3, y3) is not in the same box as (x1, y1)—then x3 ≤ i − 1 or x3 ≥ i + n. In the

case of the former, ⌈x3
n

⌉
≤
⌈
i− 1

n

⌉
=

⌈
an+ 1− 1

n

⌉
= dae = a <

⌈x1
n

⌉
.

In the case of the latter,⌈x3
n

⌉
≥
⌈
i+ n

n

⌉
=

⌈
an+ 1 + n

n

⌉
=

⌈
a+ 1 +

1

n

⌉
= a+ 2 >

⌈x1
n

⌉
.

In either case, if (x1, y1), (x3, y3) are not in the same box, then
⌈
x3

n

⌉
6=
⌈
x1

n

⌉
. By a similar

argument,
⌈
y3
n

⌉
6=
⌈
y1
n

⌉
.

This gives a labeling of the boxes analogous to the canonical labeling—the box containing

cell (x, y) is box
(⌈

x
n

⌉
,
⌈
y
n

⌉)
.

4



Definition 2.6. Adjacencies of Sn

Cooper and Kirkpatrick [3] use these properties to generate a formal adjacency definition for Sn:

Let Sn have the canonical labeling. Then distinct vertices v1 = (x1, y1), v2 = (x2, y2) ∈ V (Sn)

are adjacent iff:

1. x1 = x2,

2. y1 = y2, or

3.
⌈
x1

n

⌉
=
⌈
x2

n

⌉
and

⌈
y1
n

⌉
=
⌈
y2
n

⌉
.

Unless otherwise stated, we will henceforth use this definition for the vertices and adjacencies

of Sn. Note that this definition is equivalent to the definition given by [7], which uses the floor

function and V (Sn) = {0, . . . , n2 − 1} × {0, . . . , n2 − 1}.

Definition 2.7. Classification

A simple graph G is a sudoku graph Sn iff there exists a bijective relabeling ϕ,

ϕ : V (G)→ {1, . . . , n2} × {1, . . . , n2},

such that for all u, v ∈ V (G), edge uv ∈ E(G) iff ϕ(u), ϕ(v) satisfy Definition 2.6 (i.e., if G is

isomorphic to some Sn).

We will often refer to neighboring vertices u, v as being in the same row, column, or box—this

is meant to indicate that, for the sudoku board Bn corresponding to the sudoku graph Sn, the

cells in Bn corresponding to u, v ∈ V (Sn) are in the same row, column, or box. In this way we

use sudoku board and sudoku graph somewhat interchangeably.

If we let vertices (x1, y1), (x2, y2) of Sn respectively correspond to cells u, v of Bn, then we

see that the conditions for adjacency given in Definition 2.6 respectively correspond to u, v being

in the same row, column, or box of Bn.
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3 Main Results

Theorem 3.1. The chromatic number of the sudoku graph is χ(Sn) = n2.

Proof. Each row, column, and box of Bn is an induced Kn2 in Sn, so χ(Sn) ≥ n2. In order to

prove that χ(Sn) ≤ n2, we will show that there is a proper n2-coloring of Sn by demonstrating

that a properly filled Bn exists for all n.

Note: All counting of rows, columns, and boxes, will be from left to right or from top to

bottom. For illustration, we will include figures of this construction for B2 and B3.

Into row 1, place the numbers 1 through n2 in order. This sequence of numbers contains n

disjoint subsequences of n distinct numbers. Call these sub-sequences s1, s2, . . . , sn.

1 2 3 4 1 2 3 4 5 6 7 8 9

Figure 4: Left, B2: s1 = 12, s2 = 34; Right, B3: s1 = 123, s2 = 456, s3 = 789

For j = 1, . . . , n, fill out row j with the sequence sj, sj+1, . . . , sn, s1, . . . , sj−1, (where the sub-

scripts are mod n). It is clear that the top n rows of Bn, being the top band, will each contain

the numbers 1 through n2. And since we completed the 2nd through nth rows of the boxes by

shifting the initial permutation by one position for each subsequent row, no row will have any

repeated numbers, and no box will have any repeated numbers.

1 2 3 4

3 4 1 2

1 2 3 4 5 6 7 8 9

4 5 6 7 8 9 1 2 3

7 8 9 1 2 3 4 5 6

Figure 5: The first n rows filled out of: Left, B2; Right, B3

Now, each box in the top band contains the number 1 through n2 arranged in a square, and

each of the n boxes has a distinct such arrangement. From left to right, label the columns of

the stacks by s11, s
1
2, . . . , s

1
n; s21, . . . , s

2
n; sn1, . . . , s

n
n, where, for i, j = 1, . . . , n, sij is the jth

column of the ith stack, both counting from left to right.

6



1 2 3 4

3 4 1 2

s11 = 13 s21 = 31

s12 = 24 s22 = 42

1 2 3 4 5 6 7 8 9

4 5 6 7 8 9 1 2 3

7 8 9 1 2 3 4 5 6

s11 = 147 s21 = 471 s31 = 714

s12 = 258 s22 = 582 s32 = 825

s13 = 369 s23 = 693 s33 = 936

Figure 6: The sij as described for: Left, B2; Right, B3

We will complete each column by permuting the sij: for the jth column of stack i, the completed

top-to-bottom sequence shall be sij, s
i
j+1, . . . , s

i
n, s

i
1, . . . , s

i
j−1 (subscripts again mod n).

1 2 3 4 5 6 7 8 9

4 5 6 7 8 9 1 2 3

7 8 9 1 2 3 4 5 6

2 3 1 5 6 4 8 9 7

5 6 4 8 9 7 2 3 1

8 9 7 2 3 1 5 6 4

a b c d e f g h i

a = s11, s
1
2 = 147, 258

...

e = s22, s
2
3 = 582, 643

...

i = s33, s
3
1 = 936, 714

Figure 7: The partial column permutations for B3, given partial columns a, . . . , i

Clearly this construction will fill out Bn using the numbers 1, . . . , n2. We claim that the rules

of sudoku are obeyed.

Each sij is a column of a square arrangement of the numbers 1, . . . , n2—so for any given

i ∈ {1, . . . , n}, the collection si1, . . . , s
i
n partitions 1, . . . , n2. Since each column is built exactly

out of one such collection, we see that no column can contain any number twice.

For any set of columns in the same box, each of those columns is a permutation of si1, . . . , s
i
n

for some i ∈ {1, . . . , n}; moreover, from left to right, each of those columns after the first is formed

by the permutation of the previous column shifted once in its order (but otherwise maintaining

its order). The box contains n columns, each a permutation of n sub-sequences of length n, and

so there are n shifts possible without any sub-sequence returning to its original position—that

is, we have n shifts available to us before the same number will return to the same box (in a

different column); as we only require n shifts, we see that no number can repeat within a box.

Thus, should our completed Bn disobey the rules of sudoku, it must be that some row contains

7



a number repeated–say, the ith row of the jth box, i, j ∈ {1, . . . , n}, contains the number k,

k ∈ {1, . . . , n2}, in columns m, `.

j = 3

 i = 2 5

∣∣∣∣ ∣∣∣∣ 5

↑ ↑

m = 4 ` = 9

k = 5

Figure 8: B3 with a repeated k = 5, in columns m = 4, ` = 9 of the i = 2 row of box j = 3.

When we form each column by permuting the sub-columns of the top box of the column, we

only permute these sub-columns horizontally—we do not permute any entries vertically. Then

for k being in the ith row in columns m and `, k was originally in the ith row of the topmost

boxes in both columns m and `, contradicting our completion of the top row of boxes.

We thus see that our construction indeed yields a properly filled sudoku board. Now consider

the numbers 1, . . . , n2 to be color classes—this particular completion of Bn is thus an n2-coloring

of Sn, and so χ(Sn) ≤ n2. Hence equality is achieved, and χ(Sn) = n2.

Remark 3.2. This particular construction is formulated by the following: fill in the top row

with any permutation, f(1, j), of 1, . . . , n2. Then for i, j ∈ {1, . . . , n2}, the remaining vertices

are properly colored by

f(i, j) =

f(i− 1, j + n) mod n2 if 2 ≤ i ≤ n

f(i− n, j + 1− n · δn|j) if i > n,

where δn|j = 1 if n divides j and 0 otherwise.

Remark 3.3. From Sage, the chromatic polynomial for S2 (denoted χ(S2, x)) is found to be

χ(S2, x) = x16 − 56x15 + 1492x14 − 25072x13 + 296918x12 − 2621552x11 + 17795572x10

− 94352168x9 + 392779169x8 − 1279118840x7 + 3217758336x6 − 6107865464x5

+ 8413745644x4 − 7877463064x3 + 4436831332x2 − 1117762248x

8



Thus far, all of our computational attempts to find χ(S3, x) have been unsuccessful.

Remark 3.4. For graphs G,H, any graph product of G and H has as its vertex set V (G)×V (H).

Definition 3.5. In the Cartesian graph product G�H, (uG, uH) ∼ (vG, vH) iff

1. uG = vG and uH ∼ vH , or

2. uG ∼ vG and uH = vH .

Definition 3.6. In the Strong product G�H, (uG, uH) ∼ (vG, vH) iff

1. uG = vG and uH ∼ vH , or

2. uG ∼ vG and uH = vH , or

3. uG ∼ vG and uH ∼ vH .

Remark 3.7. |E(G�H)|= |V (G)|·|E(H)|+|V (H)|·|E(G)|
Suppose uGvG ∈ E(G). Then (uG, xH)(vG, xH) ∈ E(G�H) for each x ∈ V (H): for each edge

in E(G), G�H has |V (H)| adjacencies. Similarly, for each uHvH ∈ E(H), (xG, uH)(xG, vH) ∈
E(G�H) for each x ∈ V (G)—for each edge in E(H), G�H has |V (G)| adjacencies. We further

see from this that degG�H(uG, vH) = degG(u) + degH(v).

Theorem 3.8. Cooper and Kirkpatrick [3] observe that Sn is a union of graph products:

Sn = (Kn2 �Kn2) ∪ (nKn � nKn).

Proof. We take the same vertex set for these products, V (Kn2 �Kn2) = V (nKn � nKn), and

define their union to be the union of their edge sets. Note that nKn is the disjoint union of n

copies of Kn, that G�H is the Cartesian product of graphs G,H, and that G�H is the Strong

(or Normal) product of graphs G,H.

Let G,H be disjoint copies of Kn2 with V (G) = {u1, ..., un2} and V (H) = {v1, ..., vn2}. Then

|V (G�H)|= n4 = |V (Sn)|. Fix i, j ∈ {1, ..., n2} and consider (ui, vj) ∈ V (G�H). From

Remark 3.7, degG�H(ui, vj) = degG(ui) + degH(v) = n2 − 1 + n2 − 1 (since G,H are each

Kn2). From clause (1) of the definition of G�H, (ui, vj) has neighbors (ui, vx), where x ∈
{1, ..., n2}, x 6= j; and from clause (2), (ui, vj) has neighbors (uy, vj), where y ∈ {1, ..., n2}, y 6= i.

In relation to Bn, we consider row i to consist of vertices (ui, v1), (ui, v2), ..., (ui, vn2); and column

j to consist of vertices (u1, vj), (u2, vj), ..., (un2 , vj). In this respect, we see that Kn2 �Kn2 gives

the necessary relations between the rows and columns of Bn and Sn. However, this product

neglects those cells in the n× n boxes that are not in the same row/column.

Now let S, T be disjoint copies of nKn with V (S) = {u1, ..., un2} and V (T ) = {v1, ..., vn2}
such that the distinct Kn’s of nKn are on successively numbered groups of n vertices and observe

the following:

9



1. V (S) = V (G) and V (T ) = V (H), and so V (nKn � nKn) = V (Kn2 �Kn2);

2. G ∼= H, S ∼= T , and S ⊆ G (and so T ⊆ H);

3. The adjacencies of both the Cartesian product and the Strong product are based on adja-

cencies of their factors (as opposed to being based on non-adjacencies as, for example, the

Modular product partly is); and

4. Clauses (1) and (2) of the definition of the Strong product are identical to the definition

of the Cartesian product.

Together, these observations tell us that clauses (1) and (2) of the Strong product will not result

in any adjacencies in S � T that are not already present in G�H. We may then focus only on

clause (3) of the Strong product: For (ui, vj), (uk, v`) ∈ V (S � T ), (ui, vj)(uk, v`) ∈ E(S � T ) iff

uiuk ∈ E(S) and vjv` ∈ E(T ).

Let ua, ua+1, ..., ua+n−1 be an arbitrarily chosen group of n consecutively labeled vertices

in V (S) and let vm, vm+1, ..., vm+n−1 be an arbitrarily chosen group of n consecutively labeled

vertices in V (T ) such that the subgraph induced on each is a copy of Kn. Let i, j ∈ {a, ..., a +

n − 1}, i 6= j, and k, ` ∈ {m, ...,m + n − 1}, k 6= `. Then uiuj ∈ E(S) and vkv` ∈ E(T ). By

clause (3) of the Strong product, (ui, vk)(uj, v`) ∈ E(S�T ). For each ui, there are n−1 such uj,

and for each vk, there are n− 1 such v`; so each such (ui, vk) has, by clause (3), (n− 1) · (n− 1)

adjacencies in S � T . Further, since i 6= j and k 6= `, none of these adjacencies are present in

G�H (by Definition 3.5). For any ux ∈ V (S) such that x /∈ {a, ..., a + n− 1}, by our labeling

of V (S), for any i ∈ {a, ..., a + n − 1} we have that uiux /∈ E(S), and so (by Definition 3.6)

(ui, vk)(ux, v`) /∈ E(S � T ) for any vk, v` ∈ V (T ).

Then each vertex (ui, vk) ∈ V (S� T ) has, by clause (3) alone, degree (n− 1)2. Since, by the

above remarks, any adjacencies in S � T given by clauses (1) and (2) of the Strong product are

already present in G�H, and since degG�H(ui, vk) = 2(n2 − 1) for each (ui, vk) ∈ V (G�H),

we have that for any (ui, vk) ∈ V ((G�H) ∪ (S � T )), deg(ui, vk) = 2(n2 − 1) + (n − 1)2 =

3n2 − 2n− 1 = degSn(x) for all x ∈ V (Sn).

We continue our convention of corresponding row i of Bn to {(ui, vj) : j = 1, ..., n2} and

column j to {(ui, vj) : i = 1, ..., n2}. By our labeling of V (S) and V (T ), each copy of Kn in

S (and thus each consecutive group of n vertices of S) corresponds to the rows of an n × n

box of Bn; likewise, each copy of Kn in T (and thus each consecutive group of n vertices of T )

corresponds to the columns of an n× n box of Bn—then each set of n2 vertices

(ua, vm),(ua+1, vm), ..., (ua+n−1, vm); (ua, vm+1), (ua+1, vm+1),

..., (ua+n−1, vm+1); ...; (ua+n−1, vm), ..., (ua+n−1, vm+n−1)
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such that a,m ∈ {1, n+1, 2n+1, ..., n2−n+1} corresponds to an n×n box of Bn. As discussed

above, any such set of vertices receives from clause (3) of Strong product all possible adjacencies

(ui, vk)(uj, v`) where i 6= j, k 6= `, i, j ∈ {a, ..., a+ n− 1}, k, ` ∈ {m, ...,m+ n− 1}.
Hence S � T provides the adjacencies of Bn (and Sn) for all cells in the same n× n box but

not in the same row/column. Together with the row/column adjacencies of G�H, we therefore

have that Sn = (Kn2 �Kn2) ∪ (nKn � nKn).

Theorem 3.9. Sn is a Cayley graph for Zn × Zn × Zn × Zn.

Proof. We will use (Zn)4 to denote Zn × Zn × Zn × Zn. We will first relabel the vertices of

Sn from the canonical labeling to the elements of (Zn)4, where the set of elements of (Zn)4

is {(a, b, c, d) : a, b, c, d = 0, . . . , n − 1}. Recall that under the canonical labeling, V (Sn) =

{(x, y) : x, y = 1, . . . , n2} and define ϕ : V (Sn) → (Zn)4 by ϕ(x, y) = (a, b, c, d) where ab is the

two-digit base-n representation of x − 1 and cd is the two-digit base-n representation of y − 1.

Clearly ϕ is everywhere defined and well defined. Suppose (x1, y1), (x2, y2) ∈ V (Sn) such that

ϕ(x1, y1) = ϕ(x2, y2). Then (a1, b1, c1, d1) = (a2, b2, c2, d2) coordinate-wise; so a1b1 = a2b2 and

c1d1 = c2d2 base n; then x1 − 1 = x2 − 1 and y1 − 1 = y2 − 1 base n. Ergo x1 = x2 and

y1 = y2, so (x1, y1) = (x2, y2), and we have that ϕ is 1–1. Further, |V (Sn)|= n4 = |(Zn)4|—then

since the size of the domain equals the size of the codomain and ϕ is everywhere defined, well

defined, and 1–1, then ϕ is also onto, and consequently bijective. We claim that that ϕ is a

homomorphism by the following: for (x1, y1), (x2, y2) ∈ V (Sn) where ϕ(x1, y1) = (a, b, c, d) and

ϕ(x2, y2) = (e, f, g, h), (x1, y1) ∼ (x2, y2) iff

1. a = e and b = f ,

2. c = g and d = h, or

3. a = e and c = g.

The definition of ϕ clearly indicates that x1 = x2 iff ab = ef iff a = e and b = f ; and y1 = y2 iff

cd = gh iff c = g and d = h.

Now suppose that a = e and c = g. We will show that this is equivalent to⌈x1
n

⌉
=
⌈x2
n

⌉
and

⌈y1
n

⌉
=
⌈y2
n

⌉
.

Let a = e = p and c = g = q for some p, q ∈ {0, . . . , n − 1}. Then (a, b, c, d) = (p, b, q, d) and

(e, f, g, h) = (p, f, q, h). By reversing the base conversion and accounting for ϕ’s subtraction of 1

(that is, by applying ϕ−1), (x1, y1) = (n·p+b+1, n·q+d+1) and (x2, y2) = (n·p+f+1, d·q+h+1).
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Observe the following:⌈x1
n

⌉
=

⌈
np+ b+ 1

n

⌉
= p+

⌈
b+ 1

n

⌉
= p+ 1;

⌈x2
n

⌉
=

⌈
np+ f + 1

n

⌉
= p+

⌈
f + 1

n

⌉
= p+ 1;

⌈y1
n

⌉
=

⌈
nq + d+ 1

n

⌉
= q +

⌈
d+ 1

n

⌉
= q + 1; and

⌈y2
n

⌉
=

⌈
nq + h+ 1

n

⌉
= q +

⌈
h+ 1

n

⌉
= q + 1

(since p, q ∈ Z and b, d, f, h ∈ {0, . . . , n− 1}). Hence the adjacencies rules of Definition 2.6 are

preserved by ϕ, and so ϕ : V (Sn)→ (Zn)4 is a graph isomorphism.

(0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,1,0) (0,0,1,1) (0,0,1,2) (0,0,2,0) (0,0,2,1) (0,0,2,2)

(0,1,0,0) (0,1,0,1) (0,1,0,2) (0,1,1,0) (0,1,1,1) (0,1,1,2) (0,1,2,0) (0,1,2,1) (0,1,2,2)

(0,2,0,0) (0,2,0,1) (0,2,0,2) (0,2,1,0) (0,2,1,1) (0,2,1,2) (0,2,2,0) (0,2,2,1) (0,2,2,2)

(1,0,0,0) (1,0,0,1) (1,0,0,2) (1,0,1,0) (1,0,1,1) (1,0,1,2) (1,0,2,0) (1,0,2,1) (1,0,2,2)

(1,1,0,0) (1,1,0,1) (1,1,0,2) (1,1,1,0) (1,1,1,1) (1,1,1,2) (1,1,2,0) (1,1,2,1) (1,1,2,2)

(1,2,0,0) (1,2,0,1) (1,2,0,2) (1,2,1,0) (1,2,1,1) (1,2,1,2) (1,2,2,0) (1,2,2,1) (1,2,2,2)

(2,0,0,0) (2,0,0,1) (2,0,0,2) (2,0,1,0) (2,0,1,1) (2,0,1,2) (2,0,2,0) (2,0,2,1) (2,0,2,2)

(2,1,0,0) (2,1,0,1) (2,1,0,2) (2,1,1,0) (2,1,1,1) (2,1,1,2) (2,1,2,0) (2,1,2,1) (2,1,2,2)

(2,2,0,0) (2,2,0,1) (2,2,0,2) (2,2,1,0) (2,2,1,1) (2,2,1,2) (2,2,2,0) (2,2,2,1) (2,2,2,2)

Figure 9: Canonical labeling of B3 under ϕ

We will now show that by judicious selection of the graph generating set, Sn fits the criteria

for a Cayley graph. Recall that in a Cayley graph C (see [6]), the vertices are labeled by the

group elements, and for x, y ∈ V (C), directed edge (x, y) is in E(C) iff xy−1 ∈ T , where T is the

generating set of C (so T is a subset of the group elements). Observe that xy−1 ∈ T iff xy−1 = t

for some t ∈ T , iff x = ty for some t ∈ T . That is, to find the “from” neighbor set of any vertex
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y ∈ V (C), we fix y and multiply on the left with each member of T (in the case of (Zn)4, the

group is abelian and the operation is component-wise addition mod n).

In order for a Cayley graph Cn to be isomorphic to Sudoku graph Sn, Cn must be a simple,

undirected graph: i.e., no directed edges, no loops (edges whose endpoints are not distinct), and

no multiple edges (distinct edges with the same endpoints).

Observe that for any t and any y in a group, ty has a unique result, so no edge (x, y) is

generated twice, and Cn has no multiple edges.

Remark 3.10. Cn has loops iff the group identity element is in the generating set.

Proof. Cn has a loop iff there is some x ∈ V (Cn) such that (x, x) ∈ E(Cn); by the criteria for

adjacency in a Cayley graph, (x, x) ∈ E(Cn) iff xx−1 = e ∈ T .

Remark 3.11. A Cayley graph C is undirected iff the generating set is closed under inverses

(i.e. for any t ∈ T , t−1 ∈ T ).

Proof. A Cayley graph is considered to be undirected iff it is actually completely bi -directed—

that is, C is “undirected” iff for every directed edge (u, v) ∈ E(C), directed edge (v, u) is also

in E(C). In this case, the two directed edges (u, v) and (v, u) are collectively considered to be

the single undirected edge uv.

Suppose that C is undirected. Then for xy−1 ∈ T , we also have yx−1 ∈ T . Let xy−1 = t1

and yx−1 = t2 for some t1, t2 ∈ T . Then x = t1y and y = t2x. By substitution, y = t2t1y, and

so t2t1 = e. Thus t2 = t1
−1 ∈ T and t1 = t2

−1 ∈ T . Hence if C is undirected, then T is closed

under inverses.

Now suppose T is closed under inverses and let (x, y) ∈ E(C). Then xy−1 = t for some t ∈ T ,

iff (xy−1)−1 = t−1, iff yx−1 = t−1. Since T is closed under inverses, t−1 ∈ T , and so yx−1 = t−1

iff yx−1 ∈ T , iff (y, x) ∈ E(C) (by the adjacency criteria for a Cayley graph). Hence if T is

closed under inverses, then C is undirected.

Now let T be the image under ϕ (as defined above) of the neighbor set of (1, 1). That is, for

(x, y) ∈ V (Sn), ϕ(x, y) is in T iff (1, 1)(x, y) is an edge in Sn. Note that ϕ(1, 1) = (0, 0, 0, 0),

the identity element of (Zn)4. Since (1, 1) is not adjacent to itself, ϕ(1, 1) is not in T ; ergo, by

Remark 3.10, Cn has no loops. Additionally, by the above, Cn has no multiple edges. We will

now show that T is closed under inverses.

Observe that the neighbor set in Sn of (1, 1) is precisely the first row, first column, and

top-left box of Bn, each without (1, 1).

The first row of Bn less (1, 1) is {(1, 2), . . . , (1, n2)}; under ϕ, the first row of Cn less (0, 0, 0, 0)

is

{(0, 0, 0, 1), . . . , (0, 0, n− 1, n− 1)} = {(0, 0, i, j) : i = 0, . . . , n− 1; j = 1, . . . , n− 1}.
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We denote this set by R′.

The first column of Bn less (1, 1) is {(2, 1), . . . , (n2, 1)}; under ϕ, the first column of Cn less

(0, 0, 0, 0) is

{(0, 1, 0, 0), . . . , (n− 1, n− 1, 0, 0)} = {(i, j, 0, 0) : i = 0, . . . , n− 1; j = 1, . . . , n− 1}.

We denote this set by C ′.

The top-left box of Bn excepting those cells in the first row or first column is, row by row,

{(2, 2), . . . , (2, n), (3, 2), . . . , (3, n), . . . , (n, 2), . . . , (n, n)}. Under ϕ, the top-left box of Cn less

R′ and C ′ is

{(0, 1, 0, 1), . . . , (0, 1, 0, n− 1); . . . ; (0, n− 1, 0, 1), . . . , (0, n− 1, 0, n− 1)}
= {(0, i, 0, j) : i, j = 1, . . . , n− 1}.

We denote this set by B′; and so T = R′ ∪ C ′ ∪B′.

• • •

• •

•

•

• • • • • • • •

• • •

• • •

•

•

•

•

•

•

Figure 10: The described generating set T for: Left, S2; Right, S3

Note that for any (a, b, c, d) ∈ (Zn)4, by the group operation we have (a, b, c, d)−1 = (p, q, r, s)

where

a+ p = b+ q = c+ r = d+ s = 0 mod n

for p, q, r, s ∈ {0, . . . , n− 1}.
Let (0, 0, x, y) ∈ R′. Then 1 ≤ y ≤ n − 1, so 1 ≤ n − y ≤ n − 1. Suppose x = 0. Then

(0, 0, 0, n − y) = (0, 0, 0, y)−1 ∈ R′. Now suppose x ≥ 1; then 1 ≤ n − x ≤ n − 1, and so

(0, 0, n− x, n− y) = (0, 0, x, y)−1 ∈ R′.
Let (x, y, 0, 0) ∈ C ′. As in our argument for R′, we have that 1 ≤ n−y ≤ n−1; then if x = 0,

then (x, y, 0, 0)−1 = (0, n−y, 0, 0) ∈ C ′; and if x ≥ 1, then (x, y, 0, 0)−1 = (n−x, n−y, 0, 0) ∈ C ′.
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Now let (0, x, 0, y) ∈ B′. Then we have that 1 ≤ n− x ≤ n− 1 and 1 ≤ n− y ≤ n− 1, and

so (0, x, 0, y)−1 = (0, n− x, 0, n− y) ∈ B′ ⊂ T .

Since R′, C ′, and B′ are all closed under inverses and T = R′ ∪ C ′ ∪ B′, we see that T

is closed under inverses. We will now show that for any (a, b, c, d), (e, f, g, h) ∈ (Zn)4, edge

(a, b, c, d)(e, f, g, h) is in E(Cn) (by the adjacency definition for Sn or its equivalence under ϕ)

iff (a, b, c, d)(e, f, g, h)−1 is in T .

Let (a, b, c, d), (e, f, g, h) ∈ V (Cn) such that (a, b, c, d)(e, f, g, h) ∈ E(Cn). Note that for any

(e, f, g, h) ∈ (Zn)4, (e, f, g, h)−1 uniquely exists.

Case 1. a = e and b = f .

Pick t = (0, 0, x, y) ∈ R′ such that x = c − g mod n and y = d − h mod n. By modular

arithmetic and c, d, g, h ∈ {0, . . . , n − 1}, we are guaranteed that such x, y exist; and by the

definition of R′, that such a t exists in R′. Then

(0, 0, x, y)(e, f, g, h) = (0, 0, c− g, d− h)(e, f, g, h) mod n

= (e, f, c, d)

= (a, b, c, d) (by assumption).

By the group’s operation, there exists a t ∈ T such that

(a, b, c, d) = t(e, f, g, h) iff (a, b, c, d)(e, f, g, h)−1 = t.

So if a = e and b = f , then (a, b, c, d)(e, f, g, h)−1 ∈ T .

Case 2. c = g and d = h.

Pick t = (x, y, 0, 0) ∈ C ′ such that x = a − e mod n and y = b − f mod n. As in Case 1, we

are guaranteed the existence of such a t ∈ C ′. Then

(x, y, 0, 0)(e, f, g, h) = (a− e, b− f, 0, 0)(e, f, g, h) mod n

= (a, b, g, h)

= (a, b, c, d) (by assumption).

A t ∈ T exists such that (a, b, c, d) = t(e, f, g, h) iff (a, b, c, d)(e, f, g, h)−1 = t. So if c = g and

d = h, then (a, b, c, d)(e, f, g, h)−1 ∈ T .

Case 3. a = e and c = g.

Pick t = (0, x, 0, y) ∈ B′ such that x = b− f mod n and y = d− h mod n. Again, existence of

this t is guaranteed in B′. Then

(0, x, 0, y)(e, f, g, h) = (0, b− f, 0, d− h)(e, f, g, h) mod n

= (e, b, g, d)

= (a, b, c, d) (by assumption).
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A t ∈ T exists such that (a, b, c, d) = t(e, f, g, h) iff (a, b, c, d)(e, f, g, h)−1 = t. So if a = e and

c = g, then (a, b, c, d)(e, f, g, h)−1 ∈ T .

Then for any edge (a, b, c, d)(e, f, g, h) ∈ E(Cn), the criteria for adjacency in a Cayley graph is

upheld.

Now let (a, b, c, d), (e, f, g, h) ∈ (Zn)4 and suppose that (a, b, c, d)(e, f, g, h)−1 ∈ T . Recall that

T = R′ ∪ C ′ ∪ B′, and that by their definitions, R′, C ′, and B′ are pairwise disjoint. Then if

(a, b, c, d)(e, f, g, h)−1 is in T , (a, b, c, d)(e, f, g, h)−1 is in exactly one ofR′, C ′, orB′. By the group

operation, (a, b, c, d)(e, f, g, h)−1 ∈ T iff there exists a t ∈ T such that (a, b, c, d) = t(e, f, g, h).

Case 1. (a, b, c, d)(e, f, g, h)−1 ∈ R′.
Then there exists (0, 0, x, y) ∈ R′ such that

(a, b, c, d) = (0, 0, x, y)(e, f, g, h)

= (e, f, x+ g, y + h).

Then a = e and b = f .

Case 2. (a, b, c, d)(e, f, g, h)−1 ∈ C ′.
Then there exists (x, y, 0, 0) ∈ C ′ such that

(a, b, c, d) = (x, y, 0, 0)(e, f, g, h)

= (x+ e, y + f, g, h).

Then c = g and d = h.

Case 3. (a, b, c, d)(e, f, g, h)−1 ∈ B′.
Then there exists (0, x, 0, y) ∈ B′ such that

(a, b, c, d) = (0, x, 0, y)(e, f, g, h)

= (e, x+ f, g, y + h).

Then a = e and c = g.

Then for any (a, b, c, d), (e, f, g, h) ∈ (Zn)4 such that (a, b, c, d)(e, f, g, h)−1 ∈ T , the definition of

adjacency for Sn (rather, the equivalence of the definition under ϕ) is upheld.

We have now shown there is an bijection between the vertex sets of Sn and a Cayley graph for

the group Zn×Zn×Zn×Zn; that under this isomorphism, the rules for adjacency in the Sudoku

graph have a homomorphic equivalent; and that two vertices are adjacent in Sn if and only if

their images under the bijection respect the criteria for adjacency in a Cayley graph. We thus

conclude that Sn is isomorphic to a Cayley graph for the direct product group (Zn)4.
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Corollary 3.12. Sn is vertex transitive.

By [6], all Cayley graphs are vertex transitive.

Definition 3.13. Symmetry group of Bn

The symmetry group of Bn is the set of all transformations of Bn (with the operation of com-

position) under which any proper sudoku board is mapped to a proper sudoku board. We will

refer to the symmetry group of Bn as Sym(Bn).

Definition 3.14. Automorphism group of Sn

The automorphism group of Sn is the set of all graph isomorphisms (with the operation of

composition) ϕ : V (Sn) → V (Sn) under which, for x, y ∈ V (Sn), xy ∈ E(Sn) iff ϕ(x)ϕ(y) ∈
E(Sn′), where Sn′ is the image of V (Sn) under ϕ. We will refer to the automorphism group of

Sn as Aut(Sn).

Lemma 3.15. The symmetry group of Bn is precisely the automorphism group of Sn.

Proof. Define θ : {1, . . . , n2}×{1, . . . , n2} → V (Sn), where θ is the correspondence between cells

of Bn and vertices of Sn, as described in Definition 2.3. By that definition, θ is a bijection—so

it here suffices to show that θ composed with any symmetry of Bn is a homomorphism (the

other direction, θ−1 composed with any automorphism of Aut(Sn), will immediately follow).

Let (x1, y1), (x2, y2) ∈ Bn such that (x1, y1) and (x2, y2) share a row, column, or box in Bn

(see Definition 2.6). By θ, there exist u, v ∈ V (Sn) such that θ(x1, y1) = u, θ(x2, y2) = v,

and uv ∈ E(Sn). Let σ ∈ Sym(Bn), and let σ(x1, y1) = (x1
′, y1

′), σ(x2, y2) = (x2
′, y2

′). Then

(x1
′, y1

′) and (x2
′, y2

′) share a row, column, or box by Definition 2.3, there exist u′, v′ ∈ V (Sn)

with u′v′ ∈ E(Sn) where u′ = θ(x1
′, y1

′) = θ ◦ σ(x1, y1) and v′ = θ(x2
′, y2

′) = θ ◦ σ(x2, y2).

Hence θ ◦σ preserves the defined relation between cells of Bn which share a row, column, or box

with adjacent vertices of Bn; and since θ, σ are both bijections, the result is achieved.

Theorem 3.16. The automorphism group of Sn is found as

Aut(Sn) ∼= [((Sn × · · · × Sn︸ ︷︷ ︸
n times

) o Sn)× ((Sn × · · · × Sn︸ ︷︷ ︸
n times

) o Sn)] o Z2

Proof. Note that we use G×H to refer to the direct product of groups G,H and GoH to refer

to a semidirect product of G and H (where G is normal in the product). For more on group

structure, see Dummit and Foote [4].

Since Aut(Sn) ∼= Sym(Bn), we will instead prove that the above group is the symmetry group

for the sudoku board Bn. Note that we make no claim as to the particular semi-direct products;

merely that the subgroups in question do interact as semi-direct products. (However, the two
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(Sn × · · · × Sn︸ ︷︷ ︸
n times

) o Sn subgroups are isomorphic to each other.) We will first show how to gen-

erate each of the subgroups, then show that the particular subgroup isomorphic to Z2 cannot

be generated by the other subgroups of Sym(Bn), and finally show that this group captures all

symmetries of Bn.

We will first demonstrate permutations of the rows. Label the rows of Bn, top to bottom, by

r1,1, r1,2, . . . , r1,n; r2,1, . . . , r2,n; . . . ; rn,1, . . . , rn,n, where row ri,j is the jth row down of band i.

Fix i and swap any two rows ri,j, ri,k, j, k ∈ {1, . . . , n}. Any cells in row j or k remain together

in that row; any cells in the same box remain so; and all cells together in a column remain

together in that column, though permuted. Then transposing any two rows within a band is a

symmetry of Bn. Since any permutation of rows ri,1, ri,2, . . . , ri,n is equivalent to a permuting

the row labels 1, . . . , n, and any permutation can be written as a product of transpositions, each

group of permutations of the n rows within a band is isomorphic to Sn. Now, since permuting

the cells of a column keeps those cells in the same column and also keeps all cells of a box

together in the same box, permutations of rows in distinct bands are wholly independent acts;

i.e., given permutations ρi, ρj on the rows of bands i and j, ρiρj = ρjρi. And since, as before,

the cells together in in any given row, column, or box remain in the same row, column, or box

(though their row numbers may be changed), any composition of these permutations is not only

a symmetry of Bn but also commutative. Hence the subgroup of all row permutations is a direct

product of the subgroups of permutations of the rows in a given band. As there are n bands in

Bn, we have the subgroup Sn × · · · × Sn︸ ︷︷ ︸
n times

.

We will now demonstrate permutations of the bands. Label the bands top to bottom by

R1, . . . , Rn. Swap any two bands Ri, Rj, leaving the rows within each band in their original

top to bottom order. Any cells that were in the same box together remain so; any cells in the

same row remain so; and the columns, though permuted, contain the same cells. Thus any

transposition of bands is a symmetry of Bn. As any permutation of the n bands R1, . . . , Rn is a

sequence of transpositions and is equivalent to permuting the band numbers 1, . . . , n, the group

of permutations of the bands is isomorphic to Sn.

We now show that permutations of rows and permutations of bands are together non-

abelian. Fix the row labeling of Bn as r1,1, r1,2, . . . , r1,n; r2,1, . . . , r2,n; . . . ; rn,1, . . . , rn,n, top

to bottom. Let ρ denote the permutation of swapping the top two rows of Bn and con-

sider ρ(Bn). Now Bn has its rows in the order r1,2, r1,1, r1,3, . . . , r1,n; . . . , rn,n. Now perform

the band permutation β of swapping the top two bands of Bn. Now Bn has rows in order

r2,1, r2,2, . . . , r2,n; r1,2, r1,1, r1,3, . . . , rn,n, and we have performed the composite symmetry β◦ρ. We

will now consider ρ◦β. Performing β first, Bn has row order r2,1, r2,2, . . . , r2,n; r1,1, . . . , r1,n; . . . , rn,n.

Now performing ρ, Bn has row order r2,2, r2,1, . . . , r2,n; r1,1, . . . , rn,n. Since ρ◦β(Bn) has top row
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r2,2 and β ◦ ρ(Bn) has top row r2,1, clearly these two permutations do not commute—hence the

subgroup of all row swaps does not, in general, commute with the subgroup of band swaps.

Though these two subgroups are not together abelian, they do interact with normality. Let

β be any permutation of the bands and let ρ be any permutation of the rows in some band. If

β leaves fixed the band that ρ acts on, then ρ ◦ β = β ◦ ρ. So suppose that β does act on the

same band as ρ. Let this be band i, and suppose that β maps band i to band position j. Let

ρ be the row permutation (ri,a ri,b · · · ri,k). Under β ◦ ρ, the row originally in position ri,a first

mapped under ρ to position ri,k, and then under β to position rj,k. That is, β ◦ ρ(ri,a) = rj,k.

Let ρ′ be the row permutation acting on band j by ρ′ = (rj,a rj,b · · · rj,k), and define β as before.

Then ρ′ ◦ β(ri,a) = ρ′(rj,a) = rj,k. Noting the arbitrariness of the subscripts, we note that for

any row permutation ρ and any band permutation β, there exists a row permutation ρ′ such

that β ◦ ρ = ρ′ ◦ β. Then ρ = β−1ρ′β, and hence ρ acts normally on β. Therefore the (direct

product) subgroup of row permutations acts normally on the subgroup of band permutations,

and we have the semi-direct product subgroup (Sn × · · · × Sn) o Sn.

Next, we demonstrate the same for columns and stacks. In the above arguments, replace

every “r” with “c”, every “R” with “C”, the word “row” with the word “column”, and the

word “band” with “stack” (alternatively, the reader may rotate the page a quarter turn and

re-read the above argument), and we see that the argument holds for permutations of columns,

permutations of stacks, and the non-commutativity and the normality of their combination.

Thus we have another subgroup isomorphic to (Sn × · · · × Sn) o Sn.

Observe that any row/band permutation leaves the column number of every cell fixed, and

every column/stack permutation leaves the row number of every cell fixed. Let Bn have the

canonical labeling and consider a row/band permutation ρ ◦ β and a column/stack permutation

γ ◦ σ. Since ρ and β each only affect the row number of any cell (x, y), suppose ρ ◦ β(x1, y1) =

(x2, y1); and since γ and σ each only affect the column number of any cell (x, y), suppose

γ ◦ σ(x1, y1) = (x1, y2). Then

(ρ ◦ β) ◦ (γ ◦ σ)(x1, y1) = (ρ ◦ β)(x1, y2) = (x2, y2) = (γ ◦ σ)(x2, y1) = (γ ◦ σ) ◦ (ρ ◦ β)(x1, y1).

Hence the subgroup of row/band permutations commutes with the subgroup of column/stack

permutations. And, as mentioned, no row/band permutation changes the column number of

any cell and and no column/stack permutation changes the row number of cell; so the only

permutation in both subgroups is the identity permutation, and we thus have the direct product

subgroup ((Sn × · · · × Sn) o Sn)× ((Sn × · · · × Sn) o Sn).

We will now show that a diagonal flip of of Bn cannot be generated by this subgroup. First

observe that flipping Bn along the main diagonal keeps any two cells in the same row in the same

column, any two cells in the same column, and any two cells in the same box in the same box—so

this flip is a valid symmetry of Bn; per the canonical labeling, this has the effect that ϕ(x, y) =
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(y, x) for all cells (x, y) (so ϕ(Bn) = Bn′ is the transpose of Bn). Suppose for contradiction that

there is some sequence of row, band, column, and stack permutations equivalent to the diagonal

flip. Since the entire collection of these permutations is a group, there is some single permutation

equivalent to ϕ. As shown above, no row or band permutation changes the column number of a

cell; and no column or stack permutation changes the row number of a cell. That is, there is no

nontrivial row/band permutation that is also a nontrivial column/stack permutation; and there

is no nontrivial column/stack permutation that is also a nontrivial row/band permutation. Since

the elements of the subgroup of row and band permutations commute with the elements of the

subgroup of column and stack permutations, this sequence of permutations can be re-ordered so

that all row/band actions take place before all column/stack actions. Under the flip (and this

supposed equivalent sequence), we have that ϕ(1, 2) = (2, 1)—so the end result (local to the top-

left box) of the sequence of row/band actions is that rows 1 and 2 swap; and the (local) end result

of the sequence of column/stack actions is that columns 1 and 2 swap. Under these actions, (1, 1)

first maps to (2, 1) and then to (2, 2)—but under the flip, all cells on the main diagonal are fixed

points. Hence the diagonal flip cannot be achieved only by permuting the rows, bands, columns,

or stacks, and hence is not an element of that direct product subgroup. As the diagonal flip is

an order-2 element, we have a subgroup isomorphic to Z2 which has a trivial intersection with

our already-found subgroup. From this we see that ((Sn×· · ·×Sn)oSn)× ((Sn×· · ·×Sn)oSn)

is exactly half of the symmetry group found so far (as any symmetry can be paired with the

diagonal flip to achieve a new symmetry), and is therefore normal in the group found so far.

This gives us the group [((Sn × · · · × Sn) o Sn)× ((Sn × · · · × Sn) o Sn)] o Z2.

Finally, we will show that this group captures all of the possible symmetries of the sudoku

board. In service of this claim, we will first prove the following:

• if cells u, v share a box in Bn, then ϕ(u), ϕ(v) share a box in ϕ(Bn) = Bn′;

• if u, v share a row or column in Bn, then ϕ(u), ϕ(v) share a row or column in Bn′;

• if some pair u, v share a row in Bn and ϕ(u), ϕ(v) share a column in Bn′, then for every

pair x, y sharing a row in Bn, ϕ(x), ϕ(y) share a column in Bn′;

• and if some pair u, v share a column in Bn and ϕ(u), ϕ(v) share a row in Bn′, then for

every pair x, y sharing a column in Bn, ϕ(x), ϕ(y) share a row in Bn′.

That is to say, boxes map to boxes (though likely permuted), rows and columns map to rows

and columns (and not to boxes), and if one row maps to a column that all rows map to columns

(and if one column maps to a row then all columns map to rows).

All of the cells sharing a box in Bn are adjacent in Sn; under any automorphism, their

images must be adjacent—so in Bn′, their images must share a row, column, or box. Suppose

for contradiction that a box of Bn maps to a row in Bn′. Pick any cell u in this box in Bn.
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Let x be one of the cells in u’s box not in u’s row or column. Since u and x share a box, they

have n2 − 2 common neighbor cells in the box (the entirety of the n × n box minus u and x

themselves). Since u and x do not share a row or column, they have no common neighbors

outside of their box. Then ϕ(u) and ϕ(x) must also have exactly n2 − 2 common neighbors.

Since the box, by supposition, maps to a row (of n2 cells), ϕ(u) and ϕ(x) have n2 − 2 common

neighbors just in their row of Bn′. If ϕ(u) and ϕ(x) also share a box in Bn′, then they will have

an additional n2−n common neighbors (the rest of the box minus the cells of their row that are

in the box)—so ϕ(u) and ϕ(x) cannot be in the box. Now, in ϕ(u)’s row outside of its box, there

are n2−n cells. In u’s box in Bn, there are (n−1)2 cells not also in u’s row or column (i.e., there

are (n−1)2 candidates for x). Then there are exactly (n−1)2 = n2−2n+1 cells from u’s box in

Bn that must be mapped to exactly n2− n spots in ϕ(u)’s row in Bn′. If n2− 2n+ 1 = n2− n,

then n = 1. Thus the cells of a box cannot all be mapped to the cells of a single row under any

symmetry. (The argument that a box cannot map to a column is similar.) But since the cells of

a box are all adjacent in Sn and must remain adjacent in ϕ(Sn), they must map from the Kn2

that is their induced subgraph in Sn to an induced Kn2 in ϕ(Sn)—in Bn′, this is exactly a row,

column, or box (see Proposition 4.4). By process of elimination, boxes must map to boxes.

As a corollary, the cells sharing a row of Bn map to a row or column of Bn′ (and the cells

sharing a column of Bn map to a row or column of Bn′): since a row of Bn is an induced Kn2

of Sn, it maps to an induced Kn2 of ϕ(Sn), which is a row, column, or box of Bn′. Since every

box of Bn maps to a box of Bn′ and there are the same number of boxes in Bn and Bn′, a row

of Bn is pigeonholed to a row or column of Bn′.

We now show that if one row maps to a column, then all rows must map to columns. Suppose

for contradiction that some row of Bn maps to a column of Bn′ but another row of Bn maps to a

row Bn′. Let Bn have the canonical labeling and suppose that cells (x1, y1), (x1, y2), . . . , (x1, yn2)

comprise the row of Bn that is mapped to a column of Bn′ under symmetry ϕ; and suppose

that cells (u1, y1), (u1, y2), . . . , (u1, yn2) comprise the row of Bn that is mapped to a row of Bn′.

Now, for i = 1, . . . , n2, cells (x1, yi) and (u1, yi) are adjacent. If the two rows are in different

bands of Bn, then (x1, yi) is not adjacent to any (u1, yj) if j 6= i. If the two rows are in the same

band, then (x1, yi) is adjacent with exactly n of the (u1, yj), those in row u1 and the same box

as (x1, yi). So each (x1, yi) is adjacent with at most n of the cells in row u1. We observe that in

any Bn, any row intersects with every column in exactly one cell. This means that there is a

cell (x1, yi) such that ϕ(x1, yi) = ϕ(u1, yj) for some i, j ∈ {1, . . . , n2}, which means that ϕ(x1, yi)

is adjacent with all n2 of ϕ(u1, y1), . . . , ϕ(u1, yn2), which means that ϕ does not preserve the

adjacencies of Bn, contradicting that such a symmetry exists. Hence if one row is mapped to a

column, there cannot be any row mapped to a row; i.e., if one row maps to a column then all

rows map to columns. Similarly, if one column maps to a row, then all columns map to rows.

Corollary to this, if boxes share a band or a stack in Bn, then they will share a band or a
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stack in Bn′; and if one band maps to a stack then all bands map to stacks.

Let Bn be a sudoku board and ϕ(Bn) = Bn′ be any symmetry of Bn. The above arguments

will provide an algorithm for determining a sequence of permutations ϕ1, . . . , ϕm such that

ϕ = ϕm ◦ · · · ◦ ϕ1 (note that since Bn has a finite number of cells, Sym(Bn) is a finite group,

so such a sequence exists and is finite). Let Bn have the canonical labeling. Since (1, 1) and

(1, 2) are in the same row, ϕ(1, 1) and ϕ(1, 2) must be in the same row or column. As the first

step, determine whether ϕ(1, 1) and ϕ(1, 2) share a row or a column. Since mapping a row to a

column changes both the row number and the cell number of every cell in the row, and this is

not possible using only row, band, column, or stack permutations, this necessitates the diagonal

flip. Also, a diagonal flip swaps the row and column numbers of every cell of Bn. Then every

row has been matched to a column and every column to a row. Hence if any row is mapped to a

column, then a diagonal flip has been used (specifically, an odd number of diagonal flips, since

an even number of flips will return rows → columns → rows). So a flip is necessary iff ϕ(1, 1)

and ϕ(1, 2) are in the same column.

Case 1. ϕ(1, 1) and ϕ(1, 2) share a row. Then all boxes of any given band of Bn are in the same

band of Bn′, all boxes of any given stack of Bn are in the same stack of Bn′, all cells of a given

row of Bn are in the same row in Bn′, and all cells of a given column of Bn are in the same

column in Bn′. Observe that the cells (1, 1), (1 +n, 1), (1 + 2n, 1), . . . , (1 + (n− 1)n, 1) are those

cells of the top corner of each box in stack 1; respectively, these cells are bands 1, 2, . . . , n. Since

in this case bands map to bands, each of ϕ(1, 1), ϕ(1+n, 1), . . . , ϕ(1+(n−1)n, 1) are in distinct

bands. Suppose ϕ(1, 1) = (x1, y1), ϕ(1 + n, 1) = (x2, y2), . . . , ϕ(1 + (n − 1)n, 1) = (xn, yn).

Note that the xi are all in different bands. Then ϕ1 is the product of band transpositions

ϕ1 = (1 x1)(2 x2) · · · (n xn).

Now perform the same with the top left cells of the stacks of Bn, these cells being (1, 1), (1, 1+

n), (1, 1 + 2n), . . . , (1, 1 + (n− 1)n). These cells are in stacks 1, . . . , n, respectively. Since stacks

map to stacks in this case, each of ϕ(1, 1), ϕ(1 + n, 1), . . . , ϕ(1, 1 + (n − 1)n) are in distinct

stacks. Suppose ϕ(1, 1) = (x1, y1), ϕ(1, 1 + n) = (x2, y2), . . . , ϕ(1, 1 + (n − 1)n) = (xn, yn).

Note that the yi are all in different stacks. Then ϕ2 is the product of stack transpositions

ϕ2 = (1 y1)(2 y2) · · · (n yn).

Now look at each band of Bn and note the row order of the first column of stack one.

Label these rows by ri,j, i, j ∈ {1, . . . , n}, where row ri,j is the jth row of band i. Suppose

ϕ(r1,1) = rx1,a1 , . . . , ϕ(r1,n) = rx1,an . Note that the ai are all distinct rows. Then ϕ3(1) is the

product of row transpositions ϕ3(1) = (1 a1)(2 a2) · · · (n an) applied to band x1 of Bn′. Suppose

ϕ(ri,1) = rxi,b1 , . . . , ϕ(ri,n) = rxi,bn). Then the bi are all distinct rows, and ϕ3(i) is the product

of row transpositions ϕ3(i) = (1 b1)(1 b2) · · · (n bn) applied to band xi of Bn′. Recognizing that

the row permutations of band j commute with the row permutations of band k for all j 6= k,

apply this process to band xi of Bn′ for i = 1, . . . , n. Then, collectively, ϕ3 is the product of
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row transpositions ϕ3 = (1 a1) · · · (n an)︸ ︷︷ ︸
Bn′ band 1

· · · (1 k1) · · · (n kn)︸ ︷︷ ︸
Bn′ band n

.

Finally we permute the columns within each stack of Bn′ as necessary. Look at each band

of Bn and note the column order of the first row of stack one. Label these columns by ci,j,

i, j ∈ {1, . . . , n}, where column ri,j is the jth column of stack i. Suppose ϕ(c1,1) = cy1,a1 , . . . ,

ϕ(c1,n) = cy1,an . Note that the ai are all distinct columns. Then ϕ4(1) is the product of column

transpositions ϕ4(1) = (1 a1)(2 a2) · · · (n an) applied to stack y1 of Bn′. Suppose ϕ(ci,1) = cyi,b1 ,

. . . , ϕ(ci,n) = ryi,bn). Then the bi are all distinct columns, and ϕ4(i) is the product of column

transpositions ϕ4(i) = (1 b1)(1 b2) · · · (n bn) applied to stack yi of Bn′. Recognizing that the

column permutations of stack j commute with the column permutations of stack k for all j 6= k,

apply this process to stack yi of Bn′ for i = 1, . . . , n. Then, collectively, ϕ4 is the product of

column transpositions ϕ4 = (1 a1) · · · (n an)︸ ︷︷ ︸
Bn′ stack 1

· · · (1 k1) · · · (n kn)︸ ︷︷ ︸
Bn′ stack n

.

In determining ϕ1, we are justified in considering only one cell from one box of each band

since the collection of cells comprising this band must be mapped to a collection of cells also

comprising a band. This is specifically what it is meant by “bands map to bands”, and it

enables us to determine the mapping of a band by representative. Indeed, since stacks map to

stacks, rows map to rows, and columns map to columns, we may determine the specific necessary

permutations ϕi whose composition is ϕ by considering only representatives from each type of

configuration (bands, stacks, rows, columns). In this way we see that, by ϕ1, what is good for

any cell in a band is good for all of the cells in the band; by ϕ2, what works for any cell in a

stack works for all of the cells in the stack; by ϕ3, cells that row together stick together; and by

ϕ4, that which is columnal shall remain columnar.

Case 2. ϕ(1, 1) and ϕ(1, 2) share a column. Then all boxes comprising a band of Bn are in

the same stack of Bn′, all boxes comprising a stack of Bn lie in the same band of Bn′, all cells

comprising a row of Bn share a column of Bn′, and all cells in the same column of Bn are in

the same row of Bn′. For the sake of the reader, we will outline the argument of the algorithm

but with far less notation than used in Case 1 (though the argument is similar).

Since every band of Bn has become a stack in Bn′, first perform the diagonal flip on Bn. Now,

whereas step 1 of Case 1 was to determine where the bands of Bn sat amid the bands of Bn′,

now the question is where the bands of Bn sit amid the stacks of Bn′. Choose a representative

cell from each band of Bn. The Bn-band number of each cell is its “original” stack number in

Bn′. Apply the stack permutation to Bn′ that sends the “original” stack numbers to the stack

numbers where the representative cells are now found. This product of transpositions of stack

numbers is ϕ2.

Now pick a representative cell from every stack of Bn. After the diagonal flip, the Bn-stack

number of each cell is its starting band number in Bn′. Note the band number in Bn′ where
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each representative has ended up, and apply ϕ3, the product of band transpositions that sends

every starting number to the final band number in Bn′.

Note the cells (in order) of column 1 of Bn. This labeling designates representatives from each

row of Bn—which becomes the “start” labeling for the columns of Bn′. Apply the appropriate

product of transpositions of columns within stacks to send these “start” column labels to the

column labels of the columns where the representative cells chosen are in Bn′. This sequence of

column transpositions within stacks is ϕ4.

Finally, note the cells in order of row 1 of Bn. This labeling designates representatives

from each column of Bn—which becomes the “start” labeling for the rows of Bn′. Apply the

appropriate product of transpositions of rows with bands to send these “start” row labels to the

row labels of the rows where the representative cells chosen are in Bn′. This sequence of row

transpositions within bands is ϕ5.

Similar to Case 1, since we know that any collection of cells in a band of Bn must together

comprise a stack of Bn′, picking any cell from this band tells us the original stack number of

each of these cells, and informs the proper transposition to apply to this stack based on the

stack number of a single chosen cell. This equally applies to determining the transpositions of

bands, rows, and columns.

A sharp-eyed reader may be concerned that between these two cases the order of choosing per-

mutations was altered—the algorithm presented in Case 1 permuted, in order, bands, stacks,

rows, and columns; whereas Case 2 permuted, in order, stacks, bands, columns, and rows. Re-

call that the vertically-applying permutations and the horizontally-applying permutations of the

symmetry group are relatively abelian (any row/band permutation will commute with any col-

umn/stack permutation). Also note that, while row permutations do not commute with band

permutations (nor column permutations with stack permutations), as long as careful and appro-

priate selection is made, the algorithm could be made to work in the opposite order (rows first,

then bands). Our selections of permutations was based not on row/column/band/stack number,

but rather on the starting and ending locations of representative cells and, by representation,

those cells sharing a row/column/band/stack. Certainly the transpositions (row 1 ↔ row 2)

and (band 1 ↔ band 2) do not commute—but the transpositions (the row containing cell 1 ↔
the row containing cell 2) and (the band containing cell 1 ↔ the band containing cell 2) do

commute—but this is a possibly different set of transpositions than the first.

Through this constructive algorithm, we see that any Bn′ can be reached in a well-defined

finite number of permutations in the group we have thus far defined—hence this is the entire

group of symmetries of Bn; so

Sym(Bn) ∼= [((Sn × · · · × Sn︸ ︷︷ ︸
n times

) o Sn)× ((Sn × · · · × Sn︸ ︷︷ ︸
n times

) o Sn)] o Z2.
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And since Aut(Sn) ∼= Sym(Bn) by Lemma 3.15, we conclude that this is also the automorphism

group of the sudoku graph Sn.

Corollary 3.17. The order of the automorphism group of Sn is 2 · (n! )2n+2.

From the argument of Theorem 3.16, the intersection of any two of the generating subgroups of

Aut(Sn) is trivial, and Aut(Sn) is a product of these subgroups. Hence the order of the group

is equal to the product of the orders of the generating subgroups.

4 Compendium of Properties

Proposition 4.1. For all v ∈ V (Sn), deg(v) = 3n2 − 2n− 1.

Proof. Let v ∈ V (Sn). The box containing v has n2 vertices, one of which is v. The row

containing v has n2 vertices, n of which are in the already-counted box containing v; same for

the column containing v. Then |Nbox(v)|= n2−1; |Nrow\box(v)|= n2−n; and |Ncol\box(v)|= n2−n,

so |N(v)|= n2 − 1 + 2(n2 − n) = 3n2 − 2n− 1.

Corollary 4.2. |E(Sn)|= n4(3n2 − 2n− 1)/2 = (3n6 − 2n5 − n4)/2.

This follows the above and 2|E(G)|=
∑

v∈V (G) deg(v).

Proposition 4.3. The clique number of Sn is ω(Sn) = n2.

Proof. Since every row, column, and box is an induced Kn2 , ω(Sn) ≥ n2. Since χ(Sn) = n2 (see

3.1), there is no clique of size n2 + 1, and equality is achieved.

Proposition 4.4. Sn contains exactly 3n2 copies of Kn2 as subgraphs.

Proof. Suppose u, v share a row. Note that if they also share a column, then u = v. Suppose

u, v are distinct. By Definition 2.3, they are adjacent. Moreover, they are both adjacent to each

of the other n2 − 2 vertices in this row, and those n2 − 2 vertices are mutually adjacent. Then

this row is a Kn2 subgraph. As ω(Sn) = n2 (see Proposition 4.3), this is a maximum (and hence

maximal) clique; i.e., there is no other vertex adjacent to all of these n2 vertices. That is, if two

vertices share a row, regardless of whether they share a box, then they belong to a maximum

Kn2 subgraph that comprises vertices sharing a row and no vertices not in that row.

A symmetric argument can be made for u, v sharing a column (see proof of Theorem 3.16).

Now suppose that u, v share a box. By Definition 2.3, they are also adjacent to each of the

other n2 − 2 vertices in this box, and those n2 − 2 vertices are mutually adjacent. Then this

box is a Kn2 subgraph, which is again a maximum (and hence maximal) clique. That is, if two

vertices share a box, regardless of whether they share a row or column, then they belong to a

maximum Kn2 subgraph that comprises vertices sharing a box and no vertices not in that box.

We see that every maximum clique of Sn is a row, column, or box of Bn. There are n2 rows,

n2 columns, and n2 boxes, and so Sn has exactly 3n2 maximum cliques.
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Corollary 4.5. Every vertex is in exactly three copies of Kn2 .

This follows directly from the argument above.

Proposition 4.6. The coclique number of Sn is α(Sn) = n2.

Proof. Let the cell in row i, column j of Bn be denoted as (i, j), where i, j ∈ {1, ..., n2}.
Note that rows 1, 1 + n, 1 + 2n, ..., do not intersect any of the same boxes; likewise for the

columns. Take cells (1, 1), (2, 1 + n), (3, 1 + 2n), ..., (n, 1 + (n − 1)n) from the topmost row of

boxes. From the next-down row of boxes, take cells (1+n, 2), (2+n, 2+n), (3+n, 2+2n), ..., (n+

n, 2 + (n − 1)n); ...; from the lowest set of boxes, take cells (1 + (n − 1)n, n), (1 + (n − 1)n +

1, 2n), ..., (n + (n − 1)n, n2). For example, in B2 this set is {(1, 1), (2, 3), (3, 2), (4, 4)}; in B3

this set is {(1, 1), (2, 4), (3, 7), (4, 2), (5, 5), (6, 8), (7, 3), (8, 6), (9, 9)}. That is, begin in the top-

left corner of the board; each subsequent cell is taken one row down, in the left-most column

of the next (to the right) box; continue until all n of the top boxes have been visited. For

each subsequent horizontal band of boxes, begin in the top row, moving down one row for each

subsequent cell, and begin in the lowest numbered column not yet visited, moving n columns

right for each subsequent cell. Terminate in the lower-right corner. In this manner we achieve a

coclique of size n2, and so α(Sn) ≥ n2.

Suppose Bn has a coclique of size n2 + 1. Every vertex in this coclique must be in a different

row from every other vertex of this coclique. Let v be any vertex in this coclique, and consider

which row v is found in: there are only n2 − 1 other rows from which to choose the remaining

n2 vertices, and so some two vertices must be in the same row. By Definition 2.3, these vertices

are adjacent. Hence α(Sn) ≤ n2, and so α(Sn) = n2.

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 11: The coclique as described in: Left, B2; Right, B3
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Proposition 4.7. Sn contains (n! )2n distinct cocliques of size n2.

Proof. We will count independent sets (cocliques) by choosing cells from successive rows of Bn.

In the top row, pick a stack: there are n choices. Pick a column within this stack: there are n

choices. In the second row, we must choose a different stack, else the vertex being chosen will

share a box with the previous vertex and thus not be independent from the previous vertex:

there are n−1 choices. Pick a column within this stack: there are n choices. . . . In the (n−1)th

row, pick a stack that has not yet been chosen: there are 2 choices. Pick a column within this

stack: there are n choices. In the nth row, there is one stack not yet chosen; within this stack

there are n choices for the column.

At any row, the particular stacks chosen do not affect the number of choices remaining (only

the particular choices); and the choice of a stack does not affect the number of columns within

that stack; hence, we multiply these choices. Rearranging the product, we see that for the first

band, the number of ways we may choose a coclique of size n is

(n(n− 1) · · · 2 · 1)︸ ︷︷ ︸
choosing stacks

· (n · · ·n)︸ ︷︷ ︸
columns
within
stacks

= n! ·nn.

For the (n+ 1)th row, pick any stack. As no cells have been selected in this band, we may select

any stack: there are n choices. Pick a column within this stack, avoiding the one column picked

in this stack in the top band: there are n − 1 choices. For the (n + 2)th row, pick any other

stack within this band: there are n − 1 choices. Pick a column within this stack, avoiding the

one column picked in this stack in the top band: there are (n − 1) choices. . . . For the (2n)th

row, there is one choice for the stack, and n− 1 choices for the column in this stack.

So for the second band, avoiding each of the columns used in the top band, the number of

ways to choose our second n cells is

(n(n− 1) · · · 2 · 1)︸ ︷︷ ︸
choosing stacks

· ((n− 1) · · · (n− 1))︸ ︷︷ ︸
columns
within
stacks

= n! ·(n− 1)n.

Proceeding this way, we see that at each band there are n! ways to choose stacks; across all

of the n bands, this gives (n! )n ways to choose stacks. Within band i, we see that there are

(n − i + 1)n ways to choose the columns. Since i ranges 1, . . . , n, we count the ways to choose

the columns across all of the n bands by

nn · (n− 1)n · · · 2n · 1n = (n · (n− 1) · · · 2 · 1)n = (n! )n.

Hence there are (n! )n · (n! )n = (n! )2n independent sets of size n2 in Sn.
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Proposition 4.8. For all 2 ≤ m ≤ n, Sn contains Sm as an induced subgraph.

Proof. For n = 2, S2 is clearly induced in itself. Consider any Bn, n > 2.

The first row of Bm is found as the subgraph induced on the cells

(1, 1), . . . , (1,m), (1, n+ 1), . . . , (1, n+m), . . . , (1, (m− 1)n+ 1), . . . , (1, (m− 1)n+m).

Without difficulty we see that we are pulling sets of m cells each from distinct boxes; specifically,

those boxes with leftmost column number 1, n+1, 2n+1, . . . , (m−1)n+1. Since 1 = (m−m)n+1,

we also see that these sets of m cells have been pulled from m boxes, for a row of length of m2.

We continue downward within the first band of Bn, pulling cells from the same columns as

chosen in the first row, now selecting from rows 2, . . . ,m. This gives us the top band of Bm, with

all of and only its necessary adjacencies, by deliberately picking these m × m subgrids within

different stacks of Bn.

For the remaining bands of Bm, we continue downward, choosing those cells in the same

columns as before, from the first m rows of the first m bands of Bn. As we had all of and only

the necessary “horizontal” adjacencies of Bm by choosing our m×m grids from different stacks

of Bn, we also have all of and only our necessary “vertical” adjacencies by choosing our m×m
grids from different stacks of Bn.

By maintaining consistency with our choices of rows within bands and with our choices of

columns within stacks, we thus complete our construction of an induced Bm within Bn.

From this construction, we have a more formal method of identification to find Sm: for any

integers 2 ≤ m ≤ n, we define f : Z→ Z by

f(x) =

⌊
x− 1

m

⌋
(n−m) + x.

Then each cell (i, j) in Sm corresponds to the cell (f(i), f(j)) in Sn; the subgraph of Sn induced

on {(f(i), f(j)) : 2 ≤ i, j ≤ m2} ⊆ V (Sn) is isomorphic to Sm.

• • • •

• • • •

• • • •

• • • •

Figure 12: The described construction of an induced B2 within B3
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Corollary 4.9. Sn contains at least
(
n
m

)2m+2
distinct induced copies of Sm, 2 ≤ m ≤ n.

Proof. Relaxing the previous construction, we recognize that we must select the m bands of Bm

from the n bands of Bn, for
(
n
m

)
options. Within each of these m bands, we must select m rows

from the n options. From band to band, these row choices are independent—that is, we have
(
n
m

)
row choices for band 1,

(
n
m

)
row choices for band 2, . . . ,

(
n
m

)
row choices for band m. Our total

number of row options is
(
n
m

)m
, bringing our total number of “horizontal” option to

(
n
m

)m+1
.

Symmetrically and independently, we have the same number of ways to select m stacks and m

columns within each stack—giving us a total of
((

n
m

)m+1
)2

options, achieving the result.

bands:
(
3
2

)



rows:
(
3
2

)


rows:
(
3
2

)


• • • •

• • • •

• • • •

• • • •

Figure 13: A different induced B2 within B3; stack/column choices are symmetric

Proposition 4.10. No Sn is planar.

Proof. Consider S2. The vertices of the upper-left box form an induced K4, as do the vertices

of the lower-left box. Contract the edges joining the vertices of the lower-left box and simplify

the resulting graph. Call the vertex resulting from the multiple contractions x. By the original

adjacencies of S2, each vertex of the upper-left box is adjacent to x, and so S2 has a K5 minor,

and is thus not planar.

By Proposition 4.8, Sn contains S2 as an induced subgraph, and so no Sn is planar.
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Figure 14: Left: The K4 to be contracted; Right: The resulting K5 minor

Proposition 4.11. No Sn is edge transitive.

Proof. Let Sn have the canonical labeling. This labeling indicates the board position of the

vertices. Note that, since an edge is simply a relation between vertices, an automorphism acting

on the edges of a graph can be considered to be acting on pairs of vertices.

Let u = (1, 1), v = (2, 2), w = (1, n2) ∈ V (Sn) and consider edges e1, e2 ∈ E(Sn) where

e1 = uv and e2 = uw (note that these edges exist in all Sn). Suppose, by way of contradiction,

that Sn is edge transitive—then there exists an automorphism ϕ ∈ Aut(Sn) such that ϕ(e1) = e2.

Observe that, for all Sn, u and v are in the same box of Bn. By the proof of Theorem 3.16 we

have that ϕ(u) and ϕ(v) must be in the same box of ϕ(Bn) (boxes map to boxes). But board

positions (1, 1), (1, n2) are in different boxes of any board—so it cannot be that one of u, v maps

to (1, 1) and the other to (1, n2), so it cannot be that e1 maps to e2, and so no such ϕ can exist.

Hence Sn is not edge transitive.

. . .

e2

w

v

e1

u

Figure 15: Non-transitive edges e1, e2 in any Sn

Proposition 4.12. Every Sn is Hamiltonian.

Though this proof will be rather simplistic, we include it in service to the Lovász conjecture (see

[9] for more) that every finite, connected, vertex-transitive graph contains a Hamiltonian cycle.

Proof. We will consider Bn rather than Sn and condition on the parity of n.

Case 1. n is even.

Since Bn contains n2 rows, Bn contains an even number of rows. Beginning from cell (1, 1),

trace the rows right to left and subsequently (moving downward) left to right. The tracing of
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the bottom row will be right to left, and thus the last cell traced in that row will be cell (n2, 1).

Since cells (x1, y1) = (1, 1), (x2, y2) = (n2, 1) have the property y1 = y2, these cells lie in the

same column of Bn, and hence their corresponding vertices in Sn are adjacent. Thus the cycle

traced is Hamiltonian.

Case 2. n is odd.

Again begin in cell (1, 1) and trace the rows alternately right to left then left to right. Every

odd-numbered row will be traced left to right and every even-numbered row will be traced right

to left. Stop this tracing in the second-to-last row, the row numbered n2−2. The last cell traced

in that row is cell (n2− 2, n2). From this point, trace an up-down track toward column 1. That

is, from cell (n2 − 2, n2), we trace cells (n2 − 1, n2), (n2, n2); (n2, n2 − 1), (n2, n2 − 2); . . . . This

leftward tracing will inevitably end in either cell (n2, 1) or cell (n2 − 1, 1). However, since both

of these lie in the same column as cell (1, 1), the Hamiltonian cycle is achieved.

Figure 16: The Hamiltonian path as described in: Left, B2; Right, B3

Proposition 4.13. Sn is pancyclic.

From [1], if a graph G is Hamiltonian, G is not the complete bipartite graph K|V (G)|/2,|V (G)|/2,

and |E(G)|≥ |V (G)|2/4, then G is pancyclic.

From Proposition 4.1, |E(Sn)|= (3n6 − 2n5 − n4)/2, and |V (Sn)|4/4 = (n4)2/4 = n6/4.
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Observe the following:

n ≥ 2⇒ 5n− (2 +
√

14) ≥ 10− (2
√

14) > 0,

5n− (2−
√

14) ≥ 10− (2−
√

14) > 0

⇒ (5n− (2 +
√

14))(5n− (2−
√

14)) ≥ 0

5n2 − 4n− 2 ≥ 0

5n6 − 4n5 − 2n4 ≥ 0

6n6 − 4n5 − 2n4 ≥ n6

3n6 − 2n5 − n4

2
≥ n6

4

|E(Sn)|≥ |V (Sn)|2/4.

From Proposition 4.12, Sn is Hamiltonian; and since Sn has odd cycles, Sn is not bipartite.

Hence Sn is pancyclic.

Further, since Sn is vertex transitive (see Corollary 3.12), Sn is vertex-pancyclic.

Proposition 4.14. Classification of vertex pairs by number of common neighbors.

Since Sn is vertex transitive (see Corollary 3.12), we may characterize all vertices by choosing

a representative. Given the canonical labeling on Bn, we let u = (1, 1) be our representative

vertex. We will classify all other vertices v by the number of neighbors common to u and v—i.e.,

|N(u) ∩N(v)|.
In the figures below, for n = 2, 3, we mark u = (1, 1) by a square and u’s neighboring vertices

by dots. In each cell we note how many neighbors u has in common with that cell.

�
•
4

•
2

•
2

•
4

•
2 4 4

•
2 4 2 2
•
2 4 2 2

�
•

13
•

13
•
7

•
7

•
7

•
7

•
7

•
7

•
13

•
7

•
7 6 6 6 6 6 6

•
13

•
7

•
7 6 6 6 6 6 6

•
7 6 6 2 2 2 2 2 2
•
7 6 6 2 2 2 2 2 2
•
7 6 6 2 2 2 2 2 2
•
7 6 6 2 2 2 2 2 2
•
7 6 6 2 2 2 2 2 2
•
7 6 6 2 2 2 2 2 2

Figure 17: For u = (1, 1) and for each v, |N(u) ∩N(v)| for: Left, B2; Right, B3
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We will categorize the vertices of Sn/the cells of Bn thusly, given the position of cell v relative

to cell u:

A: Different band and different stack

B: Same band, different box, different row

C: Same band, different box, same row

D: Same box, same row (different column)

E: Same box, different row, different column

Note that by the symmetries of Bn (see Theorem 3.16), categories B, C, and D have symmet-

ric categories via band ↔ stack and row ↔ column. We will adjust the appropriate results

accordingly.

Let v ∈ A, given u = (1, 1). Since v is in a different band and different stack than u, we see

that v can only be adjacent to one cell in u’s row, one cell in u’s column, and no cells in u’s

box—specifically, v is adjacent to (1, y) and (x, 1). Hence for v ∈ A, |N(u) ∩N(v)|= 2.

Let v ∈ B. Then v’s shared neighbors with u are exactly those cells in u’s row and v’s box (of

which there are n), and v’s row and u’s box (of which there are n), and so |N(u) ∩N(v)|= 2n.

Let v ∈ C. Since v is in a different box than u, v can only share those neighbors in the row

of u and v. Each row contains n2 vertices; but neither u nor v are adjacent to themselves, and

so |N(u) ∩N(v)|= n2 − 2.

Let v ∈ D. Since u and v do not share a column, v is not adjacent to any of the cells in

u’s column outside their shared box. However, both u and v are adjacent to every cell in their

row and and in their box. Not including u or v, there are n2 − 2 cells in their row. In their

box, there are n − 1 rows other than their row, each containing n cells—so |N(u) ∩ N(v)|=
n2 − 2 + (n− 1) · n = 2n2 − n− 2.

Let v ∈ E. Here, the common neighbors of u and v are precisely all the cells of their box, less

u and v themselves; as each box contains a total of n2 cells, we see that |N(u)∩N(v)|= n2− 2.

We will now count how many cells are in each category.

In the figures below, for n = 2, 3, we will partition Bn by category (relative to u = (1, 1)):

Observe the following:

|A| = cells of Bn− cells in u’s band − cells in u’s stack

+ cells in u’s box (the overlap of u’s band and stack, by inclusion-exclusion)

= (n4 total cells )− (n2 columns in one band) · (n rows in one band)

− (n2 rows in one stack) · (n cells in one stack) + (n2 cells in one box of overlap)

= n4 − 2n3 + n2.
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Figure 18: The partition by category based on number of common neighbors with (1, 1) for: Left, B2; Right, B3

|B| = cells in u’s band − cells in u’s box − cells in u’s row in other boxes of u’s band

= (n2 columns in one band) · (n rows in one band)− (n2 cells in one box)

− (n2 total cells in one row less the n cells sharing a row and a box)

= n3 − 2n2 + n.

To account for those cells in, relative to u, the same stack, a different box, and a different column,

we double the result:

|B| = 2n3 − 4n2 + 2n.

|C| = cells in u’s row− cells in both u’s row and u’s box

= n2 − n.

To account for those cells in, relative to u, the same stack, a different box, and the same column,

we double the result:

|C| = 2n2 − 2n.

|D| = cells in both u’s row and u’s box less u itself

= n− 1.

To account for those cells in, relative to u, the same box and the same column (different row),
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we double the result:

|D| = 2n− 2.

|E| = cells in u’s box − cells in u’s row − cells in u’s column

+ (by inclusion-exclusion) the single cell of overlap

= n2 − 2n+ 1.

Since these categories are disjoint and no category includes u, we observe that

|A|+ · · ·+ |E|+|{u}|= n4

—hence these categories partition the board.

Observe that those cells in C have the same number of neighbors shared with u as do those

cells in E—each n2 − 2; and |C|+|E|= 2n2 − 2n+ 2n− 2 = 2n− 2.

In summary, given any vertex u, Sn has:

• n4 − 2n3 + n2 vertices v such that |N(u) ∩N(v)|= 2 (A);

• 2n3 − 4n2 + 2n vertices x such that |N(u) ∩N(x)|= 2n (B);

• 2n2 − 3n+ 1 vertices w such that |N(u) ∩N(w)|= n2 − 2 (C and E); and

• 2n− 2 vertices z such that |N(u) ∩N(z)|= 2n2 − n− 2 (D).

Corollary 4.15. Sn is not strongly regular.

Proof. Recall that in a strongly regular graph, every two non-adjacent vertices have the same

number of common neighbors. Let u = (1, 1), let v be a vertex in category A, and let x be

a vertex in category B (as in Proposition 4.14). Then u is not adjacent to either v or x; and

|N(u) ∩N(v)|= 2, whereas |N(u) ∩N(x)|= 2n ≥ 4, and so Sn is not strongly regular.

Proposition 4.16. The matching number of Sn is bn4/2c.

Proof. Note that this follows from Sn being vertex transitive (Corollary 3.12) [6]; our proof will

provide an algorithmic construction of a perfect matching for even n and a near-perfect matching

for odd n.

Suppose n is even. Then each box of Bn has an even number of columns (let Bn have the

canonical labeling and call them y1, . . . , yn); these columns can be partitioned into consecutive

pairs {y1, y2}, {y3, y4}, . . . , {yn−1, yn}. For the rows x1, . . . , xn of the box, take the set of edges

{(xi, y2j−1)(xi, y2j) : i = 1, . . . , n, j = 1, . . . , n/2}
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(that is, {(xi, y1)(xi, y2), (xi, y3)(xi, y4), . . . , (xi, yn−1)(xi, yn)} for i = 1, . . . , n)—this is a perfect

matching within a given box. As each box of Bn has the same form, taking this set of edges for

each box gives a perfect matching for Bn (and thus for Sn). As a perfect matching includes one

edge for every two vertices, the matching number is n4/2.

Figure 19: The described perfect matching for S2

Now suppose n is odd. Label the rows of Bn x1, . . . , xn2 and the columns y1, . . . , yn2 . For

each row xi, first consider only the columns y1, . . . , yn2−1. This is an even number of columns

and can thus be partitioned into consecutive pairs—take the edges

{(xi, y2j−1)(xi, y2j) : i = 1, . . . , n, j = 1, . . . , n2−1/2}

(that is, {(xi, y1)(xi, y2), (xi, y3)(xi, y4), . . . , (xi, yn2−2)(xi, yn2−1)} for i = 1, . . . , n2). This is a

perfect matching on the vertices of n2 rows and n2 − 1 columns. Taking one edge for ev-

ery two vertices, this gives, so far, n2(n2−1)/2 edges. Now consider the vertices of column yn2 .

Rows x1, . . . , xn2−1 can be partitioned into consecutive pairs—take edges {(x2j−1, yn2)(x2j, yn2) :

j = 1, . . . , n
2−1
2
} (that is, {(x1, yn2)(x2, yn2), (x3, yn2)(x4, yn2), . . . , (xn2−2, yn2)(xn2−1, yn2)}). This

leaves only vertex (xn2 , yn2) unsaturated, and includes edges for the other n2 − 1 vertices of the

column, contributing (n2−1)/2 edges to our matching, for a total of n2(n2−1)/2 + (n2−1)/2 = (n4−1)/2

edges, creating a near-perfect matching for odd n.
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Figure 20: The described near-perfect matching for S3

Proposition 4.17. No Sn is a perfect graph.

Proof. By [2], a graph G is perfect iff no induced subgraph of G is an odd cycle of length at

least five or the complement of an odd cycle of length at least five. We will demonstrate that

each Sn contains an induced 5-cycle and the complement of an induced 5-cycle.

Let Bn have the canonical labeling. Let H be the subgraph of Sn induced on the vertices

{u1 = (1, 1), u2 = (1, 1 + n), u3 = (2, 2 + n), u4 = (1 + n, 2 + n), u5 = (1 + n, 1)}. We claim that

H is an induced 5-cycle. First note that 2 + n ≤ n2, and so each of these vertices is contained

in V (Sn). Now note the following:

u1x = 1 = u2x⌈
u2x

n

⌉
=
⌈
1
n

⌉
= 1 =

⌈
2
n

⌉
=
⌈
u3x

n

⌉⌈u2y

n

⌉
=
⌈
1+n
n

⌉
= 2 =

⌈
2+n
n

⌉
=
⌈u3y

n

⌉
u3y = 2 + n = u4y

u4x = 1 + n = u5x

u5y = 1 = u1y

⇒ u1u2, u2u3, u3u4, u4u5, u5u1 ∈ V (H),
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so H contains a 5-cycle. Further,

u1x = 1 6= 2 = u3x, u1y = 1 6= 2 + n = u3y,
⌈u1y

n

⌉
= 1 6= 2 =

⌈u3y

n

⌉
u1x = 1 6= 1 + n = u4x, u1y = 1 6= 2 + n = u4y,

⌈u1y

n

⌉
= 1 6= 2 =

⌈u4y

n

⌉
u2x = 1 6= 1 + n = u4x, u2y = 1 + n 6= 2 + n = u4y,

⌈
u2x

n

⌉
= 1 6= 2 =

⌈
u4x

n

⌉
u2x = 1 6= 1 + n = u5x, u2y = 1 + n 6= 1 = u5y,

⌈
u2x

n

⌉
= 1 6= 2 =

⌈
u5x

n

⌉
u3x = 2 6= 1 + n = u5x, u3y = 2 + n 6= 1 = u5y,

⌈u3y

n

⌉
= 2 6= 1 =

⌈u5y

n

⌉
⇒ u1u3, u1u4, u2u4, u2u5, u3u5 /∈ V (H).

Hence H is a chordless 5-cycle. Observing that the complement of a 5-cycle is itself a 5-cycle,

we see that these same vertices induce a 5-cycle in the complement of Sn, and so Sn is not a

perfect graph.

Figure 21: The described chordless 5-cycle as in: Left, B2; Right, B3

...

Figure 22: The subgraph induced on the same vertices in: Left, B2C ; Right, B3C
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Corollary 4.18. The distance and diameter of Sn are each 2, as is the eccentricity of each

vertex.

Proof. This follows as a corollary of Proposition 4.14. Since any two distinct vertices u, v have

at least one common neighbor, a 2-path exists for all u, v ∈ V (Sn), so d(u, v) = 2 for all

u, v ∈ V (Sn). And since Sn is vertex transitive (see Corollary 3.12), it follows that the diameter

of Sn as well as the eccentricity of each vertex are both 2.

Proposition 4.19. Sn has edge connectivity 3n2 − 2n− 1.

Proof. By [6], this follows from Sn being connected and vertex-transitive with regular vertex

degree 3n2 − 2n− 1 (see Proposition 4.1).

For a note on vertex connectivity, see Section 5.

Proposition 4.20. S2, S3, and S4 are not Cayley graphs for cyclic groups.

Proof. Recall from Theorem 3.16 that the automorphism group for Sn is isomorphic to

[((Sn × · · · × Sn︸ ︷︷ ︸
n times

) o Sn)× ((Sn × · · · × Sn︸ ︷︷ ︸
n times

) o Sn)] o Z2.

Note that given a Cayley graph for a group G, G is a subgroup of the automorphism group of

the graph. Given groups H,K and respective elements h, k the element (h, k) ∈ H × K has

order equal to lcm{|h|, |k|}; and (h, k) ∈ H oK has order at most |h|·|k|.
Now, Aut(S2) ∼= [((S2 × S2) o S2)× ((S2 × S2) o S2)] oZ2. Any element of S2 has order at

most 2; so any element of S2 × S2 has order at most 2; any element of (S2 × S2) o S2 has order

at most 4; any element of ((S2 × S2) o S2)
2 has order at most 4; any element of Aut(S2) has

order at most 8. Hence Aut(S2) has no element of order 16, and so no cyclic subgroup of order

16.

Since no element of Z81 has even order, we restrict ourselves to those elements of S3 with

order 1 or 3 when seeking a possible order-81 element of Aut(S3). Any such element has order, in

S3×S3×S3, at most 3. Any element of (S3)
3oS3 has order at most 9; any element of ((S3)

3oS3)
2

has order at most 9. Hence Aut(S3) has no element of order 81, and so no subgroup isomorphic

to Z81.

If S4 is Cayley for the cyclic group, then we seek an element of Aut(S4) with order 256.

Since 256 is not divisible by 3, we restrict our search to those elements of S4 with order 1, 2, or

4. Any element of (S4)
4 can have order at most 4; any element of (S4)

4 o S4 has order at most

16; any element of ((S4)
4oS4)

2 has order at most 16; any element of Aut(S4) has order at most

32. So Aut(S4) has no element of order 256, and so no subgroup isomorphic to Z256.
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Since none of Aut(S2),Aut(S3),Aut(S4) contain cyclic subgroups isomorphic to Zn4 , n =

2, 3, 4 respectively, we see that these Sn cannot be Cayley graphs for the cyclic groups of order

n4.

For additional support for this claim, we recall ([6] et al.) that any Cayley graph of a cyclic

group is a circulant graph. From Sage, none of S2, S3, S4 is circulant [8], and so cannot be

Cayley for the cyclic group.

5 Future Research

As with most rich topics in mathematics, there are several points of investigation to pursue

regarding sudoku graphs. For instance, we suspect that Sn is (3n2 − 2n − 1)-connected: since

Sn is (3n2 − 2n − 1)-regular (see Proposition 4.1), Sn has connectivity at most 3n2 − 2n − 1;

this seems provable using Menger’s Theorem [12].

A subject of more particular interest, vis-à-vis our main results, follows from (in fact, informs)

Proposition 4.20: we conjecture that Sn is not a Cayley Graph for the cyclic group of order n4.

As noted in the proposition, Sn is not circulant for n = 2, 3, 4, though it remains unclear if this

is true for all n; further insight into why these particular graphs are not circulant may provide

an avenue to proving or disproving this conjecture.

As the simplicity of the game of sudoku belies the combinatorial aspects of the game, so

does the simplicity of the sudoku board give little hint to the potential complexity of the sudoku

graph. Having shown that Sn is a Cayley graph for the direct product group (Zn)4, we suggest

that it may be beneficial to view the sudoku graphs in this group theoretic context.
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