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1 Overview

The problem of efficiently coloring the vertices of a graph is a problem nearly as old as graph
theory itself. Indeed, one of the most celebrated theorems of modern mathematics is the “4-
color Theorem”, which states that any planar graph can be properly colored with four colors.
This famous result was conjectured in 1852 by Francis Guthrie and yet defied proof until
1976, when it was finally confirmed by Kenneth Appel and Wolfgang Haken. Their proof
made essential use of a computer to generate and verify many subcases of the argument.

The interest in graph coloring, however, is more than historical. With direct applications
to scheduling, the topic finds many real-world uses of great practical importance, ranging
from busses, trains, traffic, and resource management to task sequencing, computer architec-
ture and classroom space management. In recent years, there have been several theoretical
advances in the subject that extend familiar results and generalize many of the techniques.
One of the most significant of these is a generalization known as fractional coloring.

In this paper, we examine the results presented in the article “The Fractional Chromatic
Number of Zykov Products of Graphs” by Charbit and Serini [4]. Before discussing the
specific contributions of this paper, however, consider the motivation to study fractional
colorings in the first place. We briefly mention two of the primary reasons.

First, as a generalization of the standard chromatic number, the factional chromatic
number gives an immediate lower bound on the usual chomatic number. As we will describe
later, the fractional chromatic number can be calculated using a technique known as linear
programming, so computational packages exist that can be directly applied to this problem.

Second, and perhaps more importantly, the fractional chromatic number is of interest
from a purely mathematical point of view because of its relationship to graph homomor-
phisms. The study of graph homomorphisms is relatively young, and many open questions
remain (Hedetniemi’s Conjecture, to name a famous one). A proper coloring of a graph, G,
amounts to a homorphism from G to a complete graph, and so the study of graph colorings
contributes directly to our understanding of graph homomorphisms. As generalizations of
these, fractional colorings also correspond to a simple type of graph homomorphism, and
this has generated great interest in their properties. Specifically, a fractional coloring is a
homomorphism to a Kneser graph (cf. [1, p. 140]), and the fractional chromatic number
determines the existance or non-existance of such a map.

In this paper, the focus is on how the fractional chromatic number behaves with respect to
a certain product of graphs, the Zykov product. In 1949, Zykov [5] introduced a construction
to show that the chromatic number of a triangle-free graph could be arbitrarily large. In
the paper we consider, Charbit and Sereni generalize Zykov’s construction and calculate the
fractional chromatic number of the resulting graphs. In the process, they resolve a 2006
conjecture of Portland State University student Tony Jacobs in the affirmative.



2 Preliminaries

This section covers the basic definitions and ideas used throughout this paper. In order to
discuss the topic of fractional colorings of graphs we first introduce some basic definitions
from graph theory. From there we discuss linear programming and how it relates to finding
the fractional chromatic number of a graph. To finish out this section we investigate the
Zykov product of graphs.

2.1 Graphs

In this paper we will be working with finite simple graphs. That is, graphs with a finite
number of vertices that contain no loops or multiple edges. With that in mind, we define
a graph as follows. A graph G consists of two sets, a vertex set and an edge set. The set
of vertices, V (G), can be any finite set. The set of edges, E(G), consists of unordered pairs
of distinct elements in V (G). An edge {x, y} is usually denoted xy. We say two verticies
x, y ∈ V (G) are adjacent, denoted x ∼ y, if xy is an element of E(G). A graph is said to be
triangle-free if no three vertices are mutually adjacent. The drawing in figure 1 below shows
the famous Peterson graph. This is an example of a finite simple graph which also has the
property of being triangle-free.

Given any graph G, a subgraph H of G is a graph such that V (H) ⊆ V (G) and E(H) ⊆
E(G). An induced subgraph has the further condition that two vertices are adjacent in H if
and only if they are adjacent in G. It follows that a subset of vertices uniquely determines
an induced subgraph. The drawing in Figure 1 shows a subgraph of the Peterson Graph
induced by the five vertices on the outer edge of the graph.

Figure 1: Peterson graph Figure 2: Induced Subgraph of Peterson graph

A set of vertices, S, is said to be independent if those vertices induce a graph with no edges.
It follows that no two elements of an independet set are adjacent. Now, an independent set
is said to be maximal if no other independent set properly contains it. Throughout this
paper we will refer to the collection of all independent sets of a graph G using the notation
I (G).

2.2 Fractional Chromatic Number

Before we get to the definition of fractional chromatic number, we will go over a couple
definitions and examples. We use the notation given by Charbit and Sereni [4].



Definition 1. A weighting of a set X ⊆ I (G) is a function w : X → R≥0. If v ∈ V (G),
then

w[v] =
∑
I∈X
v∈I

w(I).

Definition 2. A fractional k-coloring of G is a weighting of I (G) such that

•
∑

S∈I (G)w(S) = k; and

• w[v] ≥ 1 for every v ∈ V (G)

The figure below is a drawing of a cycle on five vertices, C5. The table on the right lists
the ten independent sets contained in C5 and an assignment of weights to each set. First,
notice that for each vertex in C5, the sum of the weights of the independent sets that contain
said vertex is equal to 1. Also, the sum of the weights of all the independent sets is equal to
5/2. Hence, w is a 5/2-coloring of C5.

a

e

d c

b

Independent Sets, S Weights, w(S)
{a} 0
{b} 0
{c} 0
{d} 0
{e} 0

{a,c} 1/2
{a,d} 1/2
{b,d} 1/2
{b,e} 1/2
{e,c} 1/2

Figure 3: C5 and a corresponding weighting

And, now, we can define the fractional chromatic number of a graph.

Definition 3. The fractional chromatic number, χf (G) is the infimum of all positive real
numbers k for which G has a fractional k-coloring. It is the optimum value of the linear
program,

Minimize
∑

S∈I (G)

w(S) where w is a weighting of I (G) satisfying

∀v ∈ V (G), w[v] ≥ 1.

The coloring exhibited in Figure 3 is actually an optimal coloring of C5. So, the fractional
chromatic number of the 5-cycle is 5/2.

Remark 1. It is useful to note that the fractional chromatic number of any subgraph of a
given graph, G, is at most χf (G).
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Figure 4: Z(G1, G2)

2.3 Zykov Product of Graphs

The Zykov product Z(G1, G2, . . . , Gn) = G of simple graphs G1, G2, . . . , Gn is formed as
follows. Take the disjoint union of Gi and, for each possible choice of (x1, . . . , xn) ∈ V (G1)×
V (G2)× . . .× V (Gn), add a new vertex adjacent to the set {x1, x2, . . . , xn}.

It follows that the number of veritices in Z(G1, G2, . . . , Gn) is the sum of vertices in
each Gi plus the number of ways of choosing one vertex from each graph, that is, V (G) =∑n

i=1 |V (Gi)| +
∏n

i=1 |V (Gi)|. Also, we can note that the order in which the graphs are
numbered makes no difference in the final construction of G.

As a example we will take two graphs and construct their Zykov product. The graphs we
will start with are P2 and P3. The graph P2 consists of two vertices and one edge connecting
them. The graph P3 contains three vertices and two edges. We will walk through construction
the Zykov product of these graphs. Pick one vertex from P2, say a1 and one vertex from P3,
say b1. Create a new vertex, c1 adjacent to a1 and b1. Continue this process for each possible
combination of vertices from P2 and P3. The figure below shows the resulting graph.

Zykov’s original result concerned the following special case of the Zykov product. The
Zykov Graphs are a family of graphs, {Zn}, where Z1 is a graph with one vertex and Zn+1 :
= Z(Z1, . . . ,Zn) for n > 1. Zykov found that each graph Zn is triangle-free and has
chromatic number equal to n. In 2006, Toni Jacobs’ conjectured that the fractional chromatic
number of the Zykov graphs follows the formula Zn+1 = Zn + 1

Zn
. The main result of this

paper determines the fractional chromatic number of any Zykov product, and thereby, proves
Jacob’s Conjecture as a corollary.

3 Fractional Chromatic Number of Zykov Products of Graphs

In this section we present and prove the main result of the paper by Charbit and Sereni [4].

3.1 Theorem 1: Main Result

Theorem 1. For n ≥ 2, let G1, . . . , Gn be graphs, and set χi = χf (Gi). Suppose also that
the graphs Gi are numbered such that χi ≤ χi+1. Then

χf (Z(G1, . . . , Gn)) = max

(
χn, 2 +

n∑
i=2

n∏
k=i

(
1− 1

χk

))
. (1)



Remark 2. For the remainder of this paper we will let f(n) := 2 +
∑n

i=2

∏n
k=i

(
1− 1

χk

)
3.1.1 Proof of Theorem 1: Lower Bound

In this section we prove χf (Z(G1, . . . , Gn)) ≥ max (χn, f(n)). We begin with a lemma.

Lemma 1. Let G be a graph and w a weighting of X ⊆ I (G). Then, for every induced
subgraph H of G, there exists x ∈ V (H) such that

w[x] ≤ 1

χf (H)

∑
S∈X

w(S). (2)

Proof. Let wH be a weighting of I (H) such that

wH(I) =
∑
S∈X

S∩V (H)=I

w(S)

for all I ∈ I (H) . First we establish that wH [v] = w[v] for all v ∈ V (H). By definition,

wH [v] =
∑

I∈I (H)
v∈I

wH(I)

=
∑

I∈I (H)
v∈I

∑
S∈X

S∩V (H)=I

w(S)

=
∑
I∈X
v∈I

w(S)

where the last equality follows from the fact that v ∈ V (H) and

{S ∈X |v ∈ S} =
⋃

I∈I (H)
v∈I

{S ∈X |S ∩ V (H) = I}.

Now, set m := minv∈V (H)wH [v]. Then, it suffices to show that m ≤ 1
χf (H)

∑
S∈X w(S). Now

we construct a k-coloring of H. Define w′ := 1
m
· wH and note that

w′[v] =
1

m
wH [v] =

wH [v]

minv∈V (H)wH [v]
≥ 1.

Then w′ is a fractional k-coloring of H for k = 1
m

∑
S∈I (H)wH(S).

It follows that k ≥ χf (H) since χf (H) is defined to be the minimum of all such colorings.
Moreover, by definition of wH



∑
S∈I (H)

wH(S) =
∑
S∈X

w(S).

Combining k ≥ χf (H) with the previous inequality we get the desired result,

m ≤ 1

χf (H)

∑
S∈X

w(S).

We use this result to find a lower bound of χf (G). First, as in Remark 1, χf (G) ≥
χf (Gn) = χn sinceGn is a subgraph of Z(G1, . . . , Gn). It remains to show that χf (G) ≥ f(n).
In order to do this we will define a sequence of sets contained in I (G) and recursively
construct the desired lower bound.

Lemma 2. If G := Z(G1, ...Gn) and f(n) is as defined in Remark 2, then

χf (G) ≥ f(n). (3)

Proof. Let w be a χf (G)-coloring of G and let x1 ∈ V (G1). Next, set

F1 = {S ∈ I (G) : x1 ∈ S},

and note that, by Definition 1,∑
S∈F1

w(S) = w[x1] ≥ 1. (4)

We may now apply Lemma 1 with H = G2 and X = F1, to find a x2 ∈ V (G2) such that∑
S∈F1
x2∈S

w(S) ≤ 1

χ2

∑
S∈F1

w(S).

Recall, from the definition of fractional chromatic number, that w[x] ≥ 1 for all x ∈ V (G).
Combining this fact with the previous inequality gives,

w[x2]−
∑
S∈F1
x2∈S

w(S) ≥ 1− 1

χ2

∑
S∈F1

w(S)

.
Notice that the left hand side of the inequality can be written as,

w[x2]−
∑
S∈F1
x2∈S

w(S) =
∑

S∈I (G)
x2∈S

w(S)−
∑
S∈F1
x2∈S

w(S) =
∑

S∈I (G)\F1
x2∈S

w(S)

Now, we will define a new set contained in I (G),



F2 = {S ∈ I (G) : S ∩ {x1, x2} 6= ∅},
and construct a new inequality as follows,

∑
S∈F2

w(S) =
∑

S∈I (G)\F1
x2∈S

w(S) +
∑
S∈F1

w(S)

≥ 1− 1

χ2

∑
S∈F1

w(S) +
∑
S∈F1

w(S)

≥ 1 +

(
1− 1

χ2

) ∑
S∈F1

w(S). (5)

By the same argument, we can find, xi ∈ V (Gi) and

Fi = {S ∈ I (G) : S ∩ {x1, . . . , xi} 6= ∅}
for all i ≤ n, such that for each k ∈ {1, 2, ..., n}∑

S∈Fk

w(S) ≥ 1 +

(
1− 1

χk

)∑
Fk−1

w(S). (6)

We can now combine these inequalities for each k so that,

∑
S∈Fn

w(S) ≥ 1 +
n∑
i=2

n∏
k=i

(
1− 1

χk

)
= f(n)− 1.

By the way G is constructed, there exists a vertex x ∈ V (G) that is adjacent to all the
vertices x1, x2, . . . , xn. So, an independent set in G that contains x cannot be in Fn by
construction. And, since w[x] ≥ 1, we can conclude,∑

I∈I (G)

w(S) ≥ w[x] +
∑
I∈Fn

w(I) ≥ 1 + (f(n)− 1).

Therefore, χf (G) ≥ f(n).

We have established that both χf (G) ≥ f(n) and χf (G) ≥ χn. Hence χf (G) ≥
max(χn, f(n)), as desired.

3.1.2 Proof of Theorem 1: Upper Bound

To prove the upper bound, we will construct a k-coloring of G with k = max(χn, f(n)),
where f(n) is defined as in Remark 2 . Then we may immediately conclude that χf (G) ≤
max(χn, f(n)).

To get started, let us set Vi := V (Gi) for i ∈ {1, 2, . . . , n} and V0 = V (G)\ ∪ni=1 Vi. Also,
set Ii := I (Gi).



The weighting that will define our factional k-coloring will assign nonzero weight to only
a subset of all the independent sets of G. The following lemma describes some important
properties of such sets.

Lemma 3. Let M (G) ⊂ I (G) be the set of all maximal independent sets of G. If

Fi := {S ∈M (G)|S ∩ Vi = ∅ if and only if j < i , ∀j ∈ {1, . . . , n}}

and

F :=
n⋃
i=1

Fi

then

(i) Fi ∩ Fj = ∅ if i 6= j

(ii) There is a one to one correspondence between Fj and ∪i>jIi\{∅}.

Proof. To prove (i), let us suppose to the contrary, that there exists S ∈ Fi ∩ Fj for i > j.
Then S ∈ Fi implies S ∩ Vk = ∅ for all k < i. In particular, S ∩ Vj+1 = ∅. It follows that
S /∈ Fj, a contradiction. Therefore, the elements of {Fi} are pairwise disjoint. Now, to prove
(ii), note that, by construction of G, V0 is an independent set and that no edges join Vi and
Vj if i 6= j and i, j ∈ {1, 2, . . . , n}. So, every maximal independent set S of G is determined
by its intersection with the sets Vi, that is, S ∩ V0 consists of vertices that are not adjacent
to any vertices in ∪ni=1(S ∩ Vi). It follows that there is a one-to-one correspondence between
Fj and ∪i>jIi\{∅}.

We will now define a weighting p of F as a product of weightings of each Gi. Let wi be
a χi-coloring of Gi such that wi[v] = 1 for every v ∈ Vi and w(∅) = 0. Now define a new
weighting pi : Ii → R≥0 such that pi(S) = wi(S)/χi for all nonempty S and pi(∅) := 1. It
is advantegeous to note that∑

S∈Ii\{∅}

pi(S) =
1

χi

∑
S∈Ii\{∅}

wi(S) = χi/χi = 1

and

∀x ∈ Vi, pi[x] =
1

χi
.

We can now define p as

p : F −→ R≥0
S 7−→

∏n
i=1 pi(S ∩ Vi).

As a lemma, we state some useful properties of p,

Lemma 4. Let i, j ∈ {1, . . . , n}. The weighting p satisfies the following.



(i) ∑
S∈Fi

p(S) = 1.

(ii) For each x ∈ Vj, ∑
S∈Fi
x∈S

p(S) =

{ 1
χj

, i ≤ j

0 , i > j

(iii) For each (x1, x2, . . . , xn) ∈ V1 × V2×, . . .× Vn,∑
S∈Fi

S∩{x1,x2,...,xn}=∅

p(S) =
n∏
k=i

(
1− 1

χk

)
.

Proof. To prove (i) we first note that

∑
S∈Fi

p(S) =
∑
S∈Fi

n∏
k=1

pk(S ∩ Vk)

=
∑
S∈Fi

n∏
k=i

pk(S ∩ Vk)

since S ∩ Vk = ∅ for k < i and pk(∅) = 1. It follows from part (ii) of Lemma 3 that

∑
S∈Fi

n∏
k=i

pk(S ∩ Vk) =
n∏
k=i

∑
S∈Ik\{∅}

pk(S) = 1

which proves (i).
To prove (ii), let x ∈ Vj and i ≤ j. By the reasoning given above we can swap the



product and sum sign to get,

∑
S∈Fi
x∈S

p(S) =
∑
S∈Fi
x∈S

n∏
k=1

pk(S ∩ Vk)

=
∑
S∈Fi
x∈S

n∏
k=i

pk(S ∩ Vk)

=

∑
S∈Ij

x∈S

pj(S)

 n∏
k=i
k 6=j

∑
S∈Ik\{∅}

pk(S)

=
1

χj

Furthermore, if i > j, then no element of Fi intersects Vj. That is, the set {S ∈ Fi : x ∈
S} is empty. Hence

∑
S∈Fi
x∈S

p(S) is equal to zero.

To prove (iii), let (x1, x2, . . . , xn) ∈ V1 × V2×, . . . × Vn. To begin, note that by part (i)
and (ii) of this lemma, for any k ∈ {1, . . . , n},

∑
S∈Ik\{∅}
xk /∈S

pk(S) =
∑

S∈Ik\{∅}

pk(S)−
∑

S∈Ik\{∅}
xk∈S

pk(S) (7)

= 1− 1

χk
. (8)

It follows from similar reasoning as in the proofs of part (i) and (ii) that

∑
S∈Fi

S∩{x1,x2,...,xn}=∅

p(S) =
∑
S∈Fi

S∩{x1,x2,...,xn}=∅

n∏
k=1

pk(S ∩ Vk)

=
n∏
k=i

 ∑
S∈Ik\{∅}
xk /∈S

pk(S)


=

n∏
k=i

(
1− 1

χk

)
.

where the last line follows from Equation 7.



Now, we will define our final weighting w of I (G) and show that it is a max(χn, f(n))-
coloring of G. Since χf (G) is the minimum value of such colorings, we will have established
that χf (G) ≤ max(χn, f(n)) as desired.

It is useful to note that I (G) can be partitioned, by Lemma 3, so that I (G) = F1 ∪
. . .Fn ∪ V0 ∪ I (G)\(F ∪ V0) where the sets in the union are pairwise disjoint. Let w :
I (G) −→ R≥0 such that

w(S) =

 (χi − χi−1)p(S), S ∈ Fi,∀i ∈ {1, ..., n}
max(0, f(n)− χn), S = V0
0, otherwise

Next we will prove the w satisfies the properties of a max(χn, f(n))-coloring.
By lemma 4(i), we have∑

S∈I (G)

w(S) =
∑
S∈F

w(S) + w(V0) + 0

=
∑
S∈F

(χi − χi−1)p(S) + w(V0)

=
n∑
i=1

∑
S∈Fi

(χi − χi−1)p(S) + w(V0)

=
n∑
i=1

(χi − χi−1)

(∑
S∈Fi

p(S)

)
+max(0, f(n)− χn)

= χn +max(0, f(n)− χn)
= max(χn, f(n)).

The next property that we will show is that w[x] ≥ 1 for all x ∈ V (G). We split the proof
into two cases. First, for each x ∈ Vj, Lemma 4(ii) gives us that,

w[x] =
∑

S∈I (G)
x∈S

w(S)

=
∑
S∈F
x∈S

(χi − χi−1)p(S)

=

j∑
i=1

(χi − χi−1)
∑
S∈Fi
x∈S

p(S)

=
1

χi
·

j∑
i=1

(χi − χi−1)

= 1.



Next, if x ∈ V0 then we can find its set of neighbors in G, (x1, x2, . . . , xn) ∈ V1×V2×, . . .×Vn.
So, by Lemma 4(iii),

w[x] = w(V0) +
∑
S∈F

S∩{x1,...,xn}=∅

w(S) = w(V0) +
n∑
i=1

(χi − χi−1)
∑
S∈Fi

S∩{x1,...,xn}=∅

p(S)


= w(V0) +

n∑
i=1

∑
S∈Fi

S∩{x1,...,xn}=∅

w(S)

= w(V0) +
n∑
i=1

(
(χi − χi−1)

n∏
k=i

(
1− 1

χk

))

= w(V0) +
n∑
i=1

(
χi

n∏
k=i

(
1− 1

χk

))
−

n∑
i=1

(
(χi−1 − 1)

n∏
k=i

(
1− 1

χk

))
−

n∑
i=1

n∏
k=i

(
1− 1

χk

)

= w(V0) +
n∑
i=1

(
(χi − 1)

n∏
k=i+1

(
1− 1

χk

))
−

n∑
i=1

(
(χi−1 − 1)

n∏
k=i

(
1− 1

χk

))
−

n∑
i=1

n∏
k=i

(
1− 1

χk

)

= w(V0) + χn − 1−
n∑
i=2

n∏
k=i

(
1− 1

χk

)
= max(0, f(n)− χn) + χn + 1− f(n)
≥ 1.

Therefore, w is a fractional max(χn, f(n))-coloring of G, and the proof is complete.

3.2 Jacobs’ Conjecture Proved

We now use Theorem 1 to prove the Conjecture made by Jacobs concerning the Zykov
graphs.

Corollary 1. For every n ≥ 2

χf (Zn+1) = χf (Zn) +
1

χf (Zn)

Proof. As before, for n ≥ 1 we set χn := χf (Zn) and f(n) := 2+
∑n

i=2

∏
k≥i(1−

1
χk
). Notice

that f(n) can be written as follows,



f(n) = 2 +
n∑
i=2

∏
k≥i

(
1− 1

χk

)

= 2 +

(
1− 1

χn

)
·
n−1∑
i=2

∏
k≥i

(
1− 1

χk

)
+

(
1− 1

χn

)

= 2 +

(
1− 1

χn

)
·

(
n−1∑
i=2

∏
k≥i

(
1− 1

χk

)
+ 1

)

= 2 +

(
1− 1

χn

)
· (f(n− 1)− 2 + 1)

= 2 +

(
1− 1

χn

)
· (f(n− 1)− 1)

for all n ≥ 2. We procede by induction on n ≥ 2 to show that χn = f(n−1) = χn−1+χ
−1
n−1.

We first consider the base case where n = 2. We can immediately note from our previous
work and from definitions that χ1 = 1 and f(1) = 2 = χ2. Now for the induction hypothesis,
suppose that χn = f(n− 1) for any n ≥ 2. It follows that

f(n) = 2 + (1− 1

χn
) · (f(n− 1)− 1)

= 2 + (1− 1

χn
) · (χn − 1)

= χn +
1

χn

Since χn+1 ≥ χn, we can conclude, by Theorem 1, that χn+1 = f(n). Hence, for all n ≥ 2

χn+1 = χn +
1

χn
.
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