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Graphs
A graph, G , consists of a vertex set, V (G ), and an
edge set , E (G ).

V (G ) is any finite set

E (G ) is a set of unordered pairs of vertices

Example

Figure: Peterson graph
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Subgraphs

A subgraph H of a graph G is a graph such that
V (H) ⊆ V (G ) and E (H) ⊆ E (G ).
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Subgraphs

An induced subgraph, H, of G is a subgraph with
property that any two vertices are adjacent in H if and
only if they are adjacent in G .
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Independent Sets
A set of vertices, S, is said to be independent if those
vertices induce a graph with no edges.

Example

Figure: Independent set

The set of all independent sets of a graph G is denoted
I (G ).
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Weighting I (S)
A weighting of I (G ) is a function w : I (G )→ R≥0.

Example

a

e

d c

b

S w(S)

{a} 1/3
{b} 1/3
{c} 1/3
{d} 1/3
{e} 1/3
{a,c} 1/3
{a,d} 1/3
{b,d} 1/3
{b,e} 1/3
{e,c} 1/3

Figure: C5 and a corresponding weighting
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Fractional k-coloring

A fractional k-coloring of a graph, G , is a weighting of
I (G ) such that∑

S∈I (G) w(S) = k ; and

For every v ∈ V (G ),∑
S∈I (G)

v∈S

w(S) = w [v ] ≥ 1
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∑
S∈I (G) w(S) = 10/3

w [v ] = 1 for every v ∈ V (G )
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Fractional Chromatic Number

The fractional chromatic number, χf (G ), is the
minimum possible weight of a fractional coloring.
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w [v ] = 1 for every v ∈ V (G )
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Zykov Product of Graphs

The Zykov product Z(G1,G2, . . . ,Gn) of simple graphs
G1,G2, . . . ,Gn is formed as follows.

Take the disjoint union of Gi

Example

Figure: Drawings of P2 and P3
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Zykov Product of Graphs

The Zykov product Z(G1,G2, . . . ,Gn) of simple graphs
G1,G2, . . . ,Gn is formed as follows.

Take the disjoint union of Gi

For each (x1, . . . , xn) ∈ V (G1)× V (G2)× . . .× V (Gn)
add a new vertex adjacent to the vertices {x1, . . . , xn}

Example

Figure: Constructing Z(P2,P3)
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Zykov Graphs

The Zykov graphs, Zn, are formed as follows:

Set Z1 as a single vertex

Define Zn := Z(Z1, ...,Zn−1) for all n ≥ 2

Figure: Drawing of Z1
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Zykov Graphs

The Zykov graphs, Zn, are formed as follows:
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Figure: Drawing of Z4



Jacobs’ Conjecture

Corollary For n ≥ 1,

χf (Zn+1) = χf (Zn) +
1

χf (Zn)

Example

χf (Z1) = 1

χf (Z2) = 1 + 1
1 = 2

χf (Z3) = 2 + 1
2 = 5
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Verifying χf (C5)

Notice that

→

Figure: Z3 and C5

So, χf (Z3) = χf (C5) = 5/2



Verifying χf (C5)

Notice that

→

Figure: Z3 and C5

So, χf (Z3) = χf (C5) = 5/2



Verifying χf (C5)

Notice that

→

Figure: Z3 and C5

So, χf (Z3) = χf (C5) = 5/2



The Main Result: Theorem 1

Theorem For n ≥ 2, let G1, . . . ,Gn be graphs. Set
G := Z(G1, . . . ,Gn) and χi = χf (Gi ). Suppose also
that the graphs Gi are numbered such that χi ≤ χi+1.
Then

χf (G ) = max

(
χn, 2 +

n∑
i=2

n∏
k=i

(
1− 1

χk

))

Example

χf (Z(P2,P3)) = max

(
2, 2 +

(
1− 1

2

))
= max(2,

5

2
)

=
5

2
.
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Lower Bound: χf (G ) ≥ max (χn, f (n))

Lemma The fractional chromatic number of a subgraph, H, is at
most equal to the fractional chromatic number of a
graph, G .

Conclusion χf (G ) ≥ χn



Lower Bound: χf (G ) ≥ max (χn, f (n))

Lemma The fractional chromatic number of a subgraph, H, is at
most equal to the fractional chromatic number of a
graph, G .

Conclusion χf (G ) ≥ χn



Lower Bound: χf (G ) ≥ max (χn, f (n))

Lemma The fractional chromatic number of a subgraph, H, is at
most equal to the fractional chromatic number of a
graph, G .

Conclusion χf (G ) ≥ χn



Lower Bound: χf (G ) ≥ max (χn, f (n))

Lemma Let G be a graph and w a weighting of X ⊆ I (G ).
Then, for every induced subgraph H of G , there exists
x ∈ V (H) such that

w [x ] ≤ 1

χf (H)

∑
S∈X

w(S).



Lower Bound: χf (G ) ≥ max (χn, f (n))

Start with w , a χf -coloring of G and x1 ∈ V (G1).

Construct F1 = {S ∈ I (G ) : x1 ∈ S} with the property∑
S∈F1

w(S) = w [x1] ≥ 1.

Construct F2 = {S ∈ I (G ) : S ∩ {x1, x2} 6= ∅} with

the property
∑

S∈F2
w(S) ≥ 1 +

(
1− 1

χ2

)∑
S∈F1

w(S).
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Lower Bound: χf (G ) ≥ max (χn, f (n))

Continue this process so that for all k ∈ {1, ..., n},

Fk = {S ∈ I (G ) : S ∩ {x1, . . . , xk} 6= ∅} with the

property
∑

S∈Fk
w(S) ≥ 1 +

(
1− 1

χk

)∑
S∈Fk−1

w(S)

It follows that∑
S∈Fn

w(S) ≥ 1 +
n∑

i=2

n∏
k=i

(
1− 1

χk

)
= f (n)− 1.
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Lower Bound: χf (G ) ≥ max (χn, f (n))

Conclusion χf (G ) ≥ f (n)



Upper Bound: χf (G ) ≤ max (χn, f (n))
Special Sets and Cool Weightings

Special Sets Let M (G ) ⊂ I (G ) be the set of all maximal
independent sets of G and for each i ∈ {1, ..., n},

Fi := {S ∈M (G )|S ∩ V (Gj) = ∅ if and only if j < i}

Weightings

wi : I (Gi )→ R≥0, a χf (Gi )-coloring of each Gi

pi : I (Gi )→ R≥0 where pi := wi (S)/χi

p : ∪ni=1Fi → R≥0 where p(S) :=
∏n

i=1 pi (S ∩ V (Gi ))
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Upper Bound: χf (G ) ≤ max (χn, f (n))
The Final Weighting

Final
Weighting

We construct a fractional max(χn, f (n))-coloring of G
defined by the weighting

w(S) =


(χi − χi−1)p(S), S ∈ Fi

max(0, f (n)− χn), S = V0

0, otherwise



Upper Bound: χf (G ) ≤ max (χn, f (n))
The Final Weighting works!

We can show,∑
S∈I (G) w(S) = max(χn, f (n))

w [x ] ≥ 1 for all x ∈ V (G )

So, w is a fractional max(χn, f (n))-coloring of G .

Conclusion χf (G ) ≤ max (χn, f (n))



Results

Theorem For n ≥ 2, let G1, . . . ,Gn be graph. Suppose also that
the graphs Gi are numbered such that χi ≤ χi+1. Then

χf (Z(G1, . . . ,Gn)) = max

(
χn, 2 +

n∑
i=2

n∏
k=i

(
1− 1

χk

))

Corollary For every n ≥ 2,

χf (Zn+1) = χf (Zn) +
1

χf (Zn)



Jacobs’ Conjecture - Proved!

Corollary For every n ≥ 2,

χf (Zn+1) = χf (Zn) +
1

χf (Zn)

Proof. By induction on n ≥ 2, we prove
χn+1 = f (n) = χn + χ−1n .

Base Case: χf (Z1) = 1 and f (1) = 2 = χ2

Inductive Hypothesis: Suppose χn = f (n − 1).
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Then

f (n) = 2 +
n∑
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)
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)
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χn
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Questions?


