Fractional Colorings and Zykov Products of graphs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Who? Nichole Schimanski

When? July 27, 2011

Graphs

A graph, G, consists of a vertex set, V(G), and an edge set , E(G).

- V(G) is any finite set
- E(G) is a set of unordered pairs of vertices

Graphs

A graph, G, consists of a vertex set, V(G), and an edge set, E(G).

- V(G) is any finite set
- E(G) is a set of unordered pairs of vertices

Example

Figure: Peterson graph

A subgraph H of a graph G is a graph such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

A subgraph H of a graph G is a graph such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

Example

Figure: Subgraph of the Peterson graph

An **induced subgraph**, H, of G is a subgraph with property that any two vertices are adjacent in H if and only if they are adjacent in G.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

An **induced subgraph**, H, of G is a subgraph with property that any two vertices are adjacent in H if and only if they are adjacent in G.

Example

Figure: Induced Subgraph of Peterson graph

Independent Sets

A set of vertices, S, is said to be **independent** if those vertices induce a graph with no edges.

Independent Sets

A set of vertices, S, is said to be **independent** if those vertices induce a graph with no edges.

Example

Figure: Independent set

Independent Sets

A set of vertices, S, is said to be **independent** if those vertices induce a graph with no edges.

Example

Figure: Independent set

The set of all independent sets of a graph G is denoted
\$\mathcal{G}\$ (G).

Weighting $\mathscr{I}(S)$ A weighting of $\mathscr{I}(G)$ is a function $w : \mathscr{I}(G) \to \mathbb{R}^{\geq 0}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Weighting $\mathscr{I}(S)$ A weighting of $\mathscr{I}(G)$ is a function $w : \mathscr{I}(G) \to \mathbb{R}^{\geq 0}$.

Example

Figure: C_5 and a corresponding weighting

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A fractional k-coloring of a graph, G, is a weighting of $\mathscr{I}(G)$ such that

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• $\sum_{S \in \mathscr{I}(G)} w(S) = k$; and

A fractional *k*-coloring of a graph, *G*, is a weighting of $\mathscr{I}(G)$ such that

•
$$\sum_{S \in \mathscr{I}(G)} w(S) = k$$
; and

For every
$$v \in V(G)$$
,

$$\sum_{\substack{S \in \mathscr{I}(G) \\ v \in S}} w(S) = w[v] \ge 1$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Example

Figure: A fractional coloring of C_5 with weight 10/3

Example

Figure: A fractional coloring of C_5 with weight 10/3

•
$$\sum_{S \in \mathscr{I}(G)} w(S) = 10/3$$

Example

Figure: A fractional coloring of C_5 with weight 10/3

•
$$\sum_{S \in \mathscr{I}(G)} w(S) = 10/3$$

• $w[v] = 1$ for every $v \in V(G)$

The fractional chromatic number, $\chi_f(G)$, is the minimum possible weight of a fractional coloring.

The **fractional chromatic number**, $\chi_f(G)$, is the minimum possible weight of a fractional coloring.

Example

Figure: A weighting C_5

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Figure: A fractional 5/2-coloring of C_5

Example

Figure: A fractional 5/2-coloring of C_5

•
$$\sum_{S \in \mathscr{I}(G)} w(S) = 5/2$$

Example

Figure: A fractional 5/2-coloring of C_5

물 🖌 🛪 물 🕨

æ

•
$$\sum_{S \in \mathscr{I}(G)} w(S) = 5/2$$

• $w[v] = 1$ for every $v \in V(G)$

How do we know what the minimum is?

How do we know what the minimum is?

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Linear Programming

How do we know what the minimum is?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Linear Programming
- Formulas

▲ロト ▲圖 ▶ ▲ 国 ト ▲ 国 ・ の Q () ・

The **Zykov product** $\mathcal{Z}(G_1, G_2, ..., G_n)$ of simple graphs $G_1, G_2, ..., G_n$ is formed as follows.

The **Zykov product** $\mathcal{Z}(G_1, G_2, \ldots, G_n)$ of simple graphs G_1, G_2, \ldots, G_n is formed as follows.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Take the disjoint union of G_i

The **Zykov product** $\mathcal{Z}(G_1, G_2, ..., G_n)$ of simple graphs $G_1, G_2, ..., G_n$ is formed as follows.

■ Take the disjoint union of *G_i*

Figure: Drawings of P_2 and P_3

The **Zykov product** $\mathcal{Z}(G_1, G_2, \ldots, G_n)$ of simple graphs G_1, G_2, \ldots, G_n is formed as follows.

- Take the disjoint union of G_i
- For each $(x_1, \ldots, x_n) \in V(G_1) \times V(G_2) \times \ldots \times V(G_n)$ add a new vertex adjacent to the vertices $\{x_1, \ldots, x_n\}$

The **Zykov product** $\mathcal{Z}(G_1, G_2, \ldots, G_n)$ of simple graphs G_1, G_2, \ldots, G_n is formed as follows.

- Take the disjoint union of G_i
- For each $(x_1, \ldots, x_n) \in V(G_1) \times V(G_2) \times \ldots \times V(G_n)$ add a new vertex adjacent to the vertices $\{x_1, \ldots, x_n\}$

Example

The **Zykov product** $\mathcal{Z}(G_1, G_2, \ldots, G_n)$ of simple graphs G_1, G_2, \ldots, G_n is formed as follows.

- **Take the disjoint union of** G_i
- For each $(x_1, \ldots, x_n) \in V(G_1) \times V(G_2) \times \ldots \times V(G_n)$ add a new vertex adjacent to the vertices $\{x_1, \ldots, x_n\}$

Example

▲ロト ▲圖 ▶ ▲ 国 ト ▲ 国 ・ の Q () ・

The **Zykov graphs**, \mathcal{Z}_n , are formed as follows:

(ロ)、(型)、(E)、(E)、 E) の(の)

• Set \mathcal{Z}_1 as a single vertex

The **Zykov graphs**, Z_n , are formed as follows:

- Set \mathcal{Z}_1 as a single vertex
- Define $\mathcal{Z}_n \coloneqq \mathcal{Z}(\mathcal{Z}_1, ..., \mathcal{Z}_{n-1})$ for all $n \ge 2$

Figure: Drawing of \mathcal{Z}_1

The **Zykov graphs**, Z_n , are formed as follows:

- Set \mathcal{Z}_1 as a single vertex
- Define $\mathcal{Z}_n \coloneqq \mathcal{Z}(\mathcal{Z}_1, ..., \mathcal{Z}_{n-1})$ for all $n \ge 2$

Figure: Drawings of \mathcal{Z}_1 and \mathcal{Z}_2
Zykov Graphs

The **Zykov graphs**, \mathcal{Z}_n , are formed as follows:

- Set \mathcal{Z}_1 as a single vertex
- Define $\mathcal{Z}_n \coloneqq \mathcal{Z}(\mathcal{Z}_1, ..., \mathcal{Z}_{n-1})$ for all $n \ge 2$

Figure: Drawings of Z_1 , Z_2 , and Z_3

Zykov Graphs

The **Zykov graphs**, \mathcal{Z}_n , are formed as follows:

- Set \mathcal{Z}_1 as a single vertex
- Define $\mathcal{Z}_n \coloneqq \mathcal{Z}(\mathcal{Z}_1, ..., \mathcal{Z}_{n-1})$ for all $n \ge 2$

Figure: Drawing of \mathcal{Z}_4

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

★□> <圖> < E> < E> E のQ@

Corollary For $n \ge 1$,

$$\chi_f(\mathcal{Z}_{n+1}) = \chi_f(\mathcal{Z}_n) + \frac{1}{\chi_f(\mathcal{Z}_n)}$$

Corollary For $n \ge 1$,

$$\chi_f(\mathcal{Z}_{n+1}) = \chi_f(\mathcal{Z}_n) + \frac{1}{\chi_f(\mathcal{Z}_n)}$$

Example

$$\chi_f(\mathcal{Z}_1) = 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Corollary For $n \ge 1$,

$$\chi_f(\mathcal{Z}_{n+1}) = \chi_f(\mathcal{Z}_n) + \frac{1}{\chi_f(\mathcal{Z}_n)}$$

Example

•
$$\chi_f(\mathcal{Z}_1) = 1$$

• $\chi_f(\mathcal{Z}_2) = 1 + \frac{1}{1} = 2$

Corollary For $n \ge 1$,

$$\chi_f(\mathcal{Z}_{n+1}) = \chi_f(\mathcal{Z}_n) + \frac{1}{\chi_f(\mathcal{Z}_n)}$$

Example

•
$$\chi_f(\mathcal{Z}_1) = 1$$

• $\chi_f(\mathcal{Z}_2) = 1 + \frac{1}{1} = 2$
• $\chi_f(\mathcal{Z}_3) = 2 + \frac{1}{2} = \frac{5}{2}$

Verifying $\chi_f(C_5)$

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 → のへで

Verifying $\chi_f(C_5)$

Notice that

Figure: \mathcal{Z}_3 and \mathcal{C}_5

Verifying $\chi_f(C_5)$

Notice that

Figure: \mathcal{Z}_3 and \mathcal{C}_5

• So,
$$\chi_f(\mathcal{Z}_3) = \chi_f(C_5) = 5/2$$

The Main Result: Theorem 1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Main Result: Theorem 1

Theorem For $n \ge 2$, let G_1, \ldots, G_n be graphs. Set $G := \mathcal{Z}(G_1, \ldots, G_n)$ and $\chi_i = \chi_f(G_i)$. Suppose also that the graphs G_i are numbered such that $\chi_i \le \chi_{i+1}$. Then

$$\chi_f(G) = \max\left(\chi_n, 2 + \sum_{i=2}^n \prod_{k=i}^n \left(1 - \frac{1}{\chi_k}\right)\right)$$

(日) (문) (문) (문) (문)

The Main Result: Theorem 1

Theorem For $n \ge 2$, let G_1, \ldots, G_n be graphs. Set $G := \mathcal{Z}(G_1, \ldots, G_n)$ and $\chi_i = \chi_f(G_i)$. Suppose also that the graphs G_i are numbered such that $\chi_i \le \chi_{i+1}$. Then

$$\chi_f(G) = \max\left(\chi_n, 2 + \sum_{i=2}^n \prod_{k=i}^n \left(1 - \frac{1}{\chi_k}\right)\right)$$

Example

$$\chi_f(\mathcal{Z}(P_2, P_3)) = \max\left(2, 2 + \left(1 - \frac{1}{2}\right)\right)$$

= $\max(2, \frac{5}{2})$
= $\frac{5}{2}$.

・ ロ ト ・ 通 ト ・ モ ト ・ モ ・ う ろ の

Lemma The fractional chromatic number of a subgraph, H, is at most equal to the fractional chromatic number of a graph, G.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lemma The fractional chromatic number of a subgraph, H, is at most equal to the fractional chromatic number of a graph, G.

Conclusion $\chi_f(G) \geq \chi_n$

Lemma Let G be a graph and w a weighting of $\mathscr{X} \subseteq \mathscr{I}(G)$. Then, for every induced subgraph H of G, there exists $x \in V(H)$ such that

$$w[x] \leq \frac{1}{\chi_f(H)} \sum_{S \in \mathscr{X}} w(S).$$

Start with w, a χ_f -coloring of G and $x_1 \in V(G_1)$.

Start with w, a χ_f -coloring of G and $x_1 \in V(G_1)$.

• Construct $\mathcal{F}_1 = \{S \in \mathscr{I}(G) : x_1 \in S\}$ with the property $\sum_{S \in \mathcal{F}_1} w(S) = w[x_1] \ge 1$.

Start with w, a χ_f -coloring of G and $x_1 \in V(G_1)$.

- Construct $\mathcal{F}_1 = \{S \in \mathscr{I}(G) : x_1 \in S\}$ with the property $\sum_{S \in \mathcal{F}_1} w(S) = w[x_1] \ge 1$.
- Construct $\mathcal{F}_2 = \{S \in \mathscr{I}(G) : S \cap \{x_1, x_2\} \neq \emptyset\}$ with the property $\sum_{S \in \mathcal{F}_2} w(S) \ge 1 + \left(1 \frac{1}{\chi_2}\right) \sum_{S \in \mathcal{F}_1} w(S)$.

Continue this process so that for all $k \in \{1, ..., n\}$,

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Continue this process so that for all $k \in \{1, ..., n\}$,

•
$$\mathcal{F}_k = \{S \in \mathscr{I}(G) : S \cap \{x_1, \dots, x_k\} \neq \emptyset\}$$
 with the
property $\sum_{S \in \mathcal{F}_k} w(S) \ge 1 + \left(1 - \frac{1}{\chi_k}\right) \sum_{S \in \mathcal{F}_{k-1}} w(S)$

(ロ)、(型)、(E)、(E)、 E) の(の)

Continue this process so that for all $k \in \{1, ..., n\}$,

•
$$\mathcal{F}_k = \{S \in \mathscr{I}(G) : S \cap \{x_1, \dots, x_k\} \neq \emptyset\}$$
 with the
property $\sum_{S \in \mathcal{F}_k} w(S) \ge 1 + \left(1 - \frac{1}{\chi_k}\right) \sum_{S \in \mathcal{F}_{k-1}} w(S)$

It follows that

$$\sum_{S\in\mathcal{F}_n}w(S)\geq 1+\sum_{i=2}^n\prod_{k=i}^n\left(1-\frac{1}{\chi_k}\right)=f(n)-1.$$

(ロ)、(型)、(E)、(E)、 E) の(の)

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Conclusion $\chi_f(G) \ge f(n)$

Special Sets and Cool Weightings

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Special Sets Let $\mathcal{M}(G) \subset \mathcal{I}(G)$ be the set of all maximal independent sets of G

Special Sets Let $\mathcal{M}(G) \subset \mathcal{I}(G)$ be the set of all maximal independent sets of G and for each $i \in \{1, ..., n\}$,

 $\mathcal{F}_i := \{ S \in \mathscr{M}(G) | S \cap V(G_j) = \emptyset \text{ if and only if } j < i \}$

Special Sets Let $\mathcal{M}(G) \subset \mathcal{I}(G)$ be the set of all maximal independent sets of G and for each $i \in \{1, ..., n\}$,

 $\mathcal{F}_i := \{ S \in \mathscr{M}(G) | S \cap V(G_j) = \emptyset \text{ if and only if } j < i \}$

Weightings

• $w_i : \mathscr{I}(G_i) \to \mathbb{R}^{\geq 0}$, a $\chi_f(G_i)$ -coloring of each G_i

Special Sets Let $\mathcal{M}(G) \subset \mathcal{I}(G)$ be the set of all maximal independent sets of G and for each $i \in \{1, ..., n\}$,

 $\mathcal{F}_i := \{ S \in \mathscr{M}(G) | S \cap V(G_j) = \emptyset \text{ if and only if } j < i \}$

Weightings

$$w_i : \mathscr{I}(G_i) \to \mathbb{R}^{\geq 0}, a \ \chi_f(G_i) \text{-coloring of each } G_i \\ p_i : \mathscr{I}(G_i) \to \mathbb{R}^{\geq 0} \text{ where } p_i := w_i(S)/\chi_i$$

Special Sets Let $\mathcal{M}(G) \subset \mathcal{I}(G)$ be the set of all maximal independent sets of G and for each $i \in \{1, ..., n\}$,

 $\mathcal{F}_i := \{ S \in \mathscr{M}(G) | S \cap V(G_j) = \emptyset \text{ if and only if } j < i \}$

Weightings

$$\begin{array}{ll} & w_i : \mathscr{I}(G_i) \to \mathbb{R}^{\geq 0}, \ a \ \chi_f(G_i) \text{-coloring of each } G_i \\ & p_i : \mathscr{I}(G_i) \to \mathbb{R}^{\geq 0} \ \text{where } p_i := w_i(S)/\chi_i \\ & p : \cup_{i=1}^n \mathcal{F}_i \to \mathbb{R}^{\geq 0} \ \text{where } p(S) := \prod_{i=1}^n p_i(S \cap V(G_i)) \end{array}$$

Upper Bound: $\chi_f(G) \leq \max(\chi_n, f(n))$ The Final Weighting

Final We construct a fractional $\max(\chi_n, f(n))$ -coloring of G Weighting defined by the weighting

$$w(S) = \begin{cases} (\chi_i - \chi_{i-1})p(S), & S \in \mathcal{F}_i \\ \max(0, f(n) - \chi_n), & S = V_0 \\ 0, & otherwise \end{cases}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Upper Bound: $\chi_f(G) \leq \max(\chi_n, f(n))$ The Final Weighting works!

We can show,

•
$$\sum_{S \in \mathscr{I}(G)} w(S) = \max(\chi_n, f(n))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion $\chi_f(G) \leq \max(\chi_n, f(n))$

Results

Theorem For $n \ge 2$, let G_1, \ldots, G_n be graph. Suppose also that the graphs G_i are numbered such that $\chi_i \le \chi_{i+1}$. Then

$$\chi_f(\mathcal{Z}(G_1,\ldots,G_n)) = \max\left(\chi_n,2+\sum_{i=2}^n\prod_{k=i}^n\left(1-\frac{1}{\chi_k}\right)\right)$$

Corollary For every $n \ge 2$,

$$\chi_f(\mathcal{Z}_{n+1}) = \chi_f(\mathcal{Z}_n) + \frac{1}{\chi_f(\mathcal{Z}_n)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Jacobs' Conjecture - Proved!

Corollary For every $n \ge 2$,

$$\chi_f(\mathcal{Z}_{n+1}) = \chi_f(\mathcal{Z}_n) + \frac{1}{\chi_f(\mathcal{Z}_n)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Jacobs' Conjecture - Proved!

Corollary For every $n \ge 2$,

$$\chi_f(\mathcal{Z}_{n+1}) = \chi_f(\mathcal{Z}_n) + \frac{1}{\chi_f(\mathcal{Z}_n)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof. By induction on $n \ge 2$, we prove $\chi_{n+1} = f(n) = \chi_n + \chi_n^{-1}$.

Jacobs' Conjecture - Proved!

Corollary For every $n \ge 2$,

$$\chi_f(\mathcal{Z}_{n+1}) = \chi_f(\mathcal{Z}_n) + \frac{1}{\chi_f(\mathcal{Z}_n)}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Proof. By induction on $n \ge 2$, we prove $\chi_{n+1} = f(n) = \chi_n + \chi_n^{-1}$.
 - Base Case: $\chi_f(\mathcal{Z}_1) = 1$ and $f(1) = 2 = \chi_2$
Corollary For every $n \ge 2$,

$$\chi_f(\mathcal{Z}_{n+1}) = \chi_f(\mathcal{Z}_n) + \frac{1}{\chi_f(\mathcal{Z}_n)}$$

- Proof. By induction on $n \ge 2$, we prove $\chi_{n+1} = f(n) = \chi_n + \chi_n^{-1}$.
 - Base Case: $\chi_f(\mathcal{Z}_1) = 1$ and $f(1) = 2 = \chi_2$
 - Inductive Hypothesis: Suppose $\chi_n = f(n-1)$.

Proof.

Inductive Hypothesis: Suppose $\chi_n = f(n-1)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof.

• Inductive Hypothesis: Suppose $\chi_n = f(n-1)$. Then

$$f(n) = 2 + \sum_{i=2}^{n} \prod_{k \ge i} \left(1 - \frac{1}{\chi_k}\right)$$
$$= 2 + \left(1 - \frac{1}{\chi_n}\right) \cdot (f(n-1) - 1)$$
$$= \chi_n + \frac{1}{\chi_n}$$

Proof.

• Inductive Hypothesis: Suppose $\chi_n = f(n-1)$. Then

$$f(n) = 2 + \sum_{i=2}^{n} \prod_{k \ge i} \left(1 - \frac{1}{\chi_k}\right)$$
$$= 2 + \left(1 - \frac{1}{\chi_n}\right) \cdot (f(n-1) - 1)$$
$$= \chi_n + \frac{1}{\chi_n}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Since
$$\chi_{n+1} = \max(\chi_n, f(n))$$
, we have $\chi_{n+1} = \chi_n + \frac{1}{\chi_n}$.

Questions?