Fractional Colorings and Zykov Products of graphs

Who? Nichole Schimanski

When? July 27, 2011

Graphs

A graph, G, consists of a vertex set, $V(G)$, and an edge set, $E(G)$.

- $V(G)$ is any finite set
- $E(G)$ is a set of unordered pairs of vertices

Graphs

A graph, G, consists of a vertex set, $V(G)$, and an edge set, $E(G)$.

- $V(G)$ is any finite set
- $E(G)$ is a set of unordered pairs of vertices

Example

Figure: Peterson graph

Subgraphs

A subgraph H of a graph G is a graph such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

Subgraphs

A subgraph H of a graph G is a graph such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.
Example

Figure: Subgraph of the Peterson graph

Subgraphs

An induced subgraph, H, of G is a subgraph with property that any two vertices are adjacent in H if and only if they are adjacent in G.

Subgraphs

An induced subgraph, H, of G is a subgraph with property that any two vertices are adjacent in H if and only if they are adjacent in G.

Example

Figure: Induced Subgraph of Peterson graph

Independent Sets

A set of vertices, S, is said to be independent if those vertices induce a graph with no edges.

Independent Sets

A set of vertices, S, is said to be independent if those vertices induce a graph with no edges.

Example

Figure: Independent set

Independent Sets

A set of vertices, S, is said to be independent if those vertices induce a graph with no edges.

Example

Figure: Independent set

- The set of all independent sets of a graph G is denoted $\mathscr{I}(G)$.

Weighting $\mathscr{I}(S)$
A weighting of $\mathscr{I}(G)$ is a function $w: \mathscr{I}(G) \rightarrow \mathbb{R}^{\geq 0}$.

Weighting $\mathscr{I}(S)$

A weighting of $\mathscr{I}(G)$ is a function $w: \mathscr{I}(G) \rightarrow \mathbb{R}^{\geq 0}$.
Example

Figure: C_{5} and a corresponding weighting

Fractional k-coloring

A fractional k-coloring of a graph, G, is a weighting of $\mathscr{I}(G)$ such that

- $\quad \sum_{S \in \mathscr{I}(G)} w(S)=k$; and

Fractional k-coloring

A fractional k-coloring of a graph, G, is a weighting of $\mathscr{I}(G)$ such that

- $\quad \sum_{S \in \mathscr{I}(G)} w(S)=k$; and
- For every $v \in V(G)$,

$$
\sum_{\substack{S \in \mathscr{I}(G) \\ v \in S}} w(S)=w[v] \geq 1
$$

Fractional k-coloring

Example

Figure: A fractional coloring of C_{5} with weight $10 / 3$

Fractional k-coloring

Example

Figure: A fractional coloring of C_{5} with weight $10 / 3$

- $\quad \sum_{S \in \mathscr{I}(G)} w(S)=10 / 3$

Fractional k-coloring

Example

Figure: A fractional coloring of C_{5} with weight $10 / 3$

- $\quad \sum_{S \in \mathscr{I}(G)} w(S)=10 / 3$
- $w[v]=1$ for every $v \in V(G)$

Fractional Chromatic Number

The fractional chromatic number, $\chi_{f}(G)$, is the minimum possible weight of a fractional coloring.

Fractional Chromatic Number

The fractional chromatic number, $\chi_{f}(G)$, is the minimum possible weight of a fractional coloring.

Example

Figure: A weighting C_{5}

Fractional Chromatic Number

Example

Figure: A fractional 5/2-coloring of C_{5}

Fractional Chromatic Number

Example

Figure: A fractional $5 / 2$-coloring of C_{5}

- $\quad \sum_{S \in \mathscr{I}(G)} w(S)=5 / 2$

Fractional Chromatic Number

Example

Figure: A fractional 5/2-coloring of C_{5}

- $\quad \sum_{S \in \mathscr{I}(G)} w(S)=5 / 2$
$w[v]=1$ for every $v \in V(G)$

Fractional Chromatic Number

How do we know what the minimum is?

Fractional Chromatic Number

How do we know what the minimum is?

- Linear Programming

Fractional Chromatic Number

How do we know what the minimum is?

- Linear Programming
- Formulas

Zykov Product of Graphs

Zykov Product of Graphs

The Zykov product $\mathcal{Z}\left(G_{1}, G_{2}, \ldots, G_{n}\right)$ of simple graphs $G_{1}, G_{2}, \ldots, G_{n}$ is formed as follows.

Zykov Product of Graphs

The Zykov product $\mathcal{Z}\left(G_{1}, G_{2}, \ldots, G_{n}\right)$ of simple graphs $G_{1}, G_{2}, \ldots, G_{n}$ is formed as follows.

- Take the disjoint union of G_{i}

Zykov Product of Graphs

The Zykov product $\mathcal{Z}\left(G_{1}, G_{2}, \ldots, G_{n}\right)$ of simple graphs $G_{1}, G_{2}, \ldots, G_{n}$ is formed as follows.

- Take the disjoint union of G_{i}

Example

Figure: Drawings of P_{2} and P_{3}

Zykov Product of Graphs

The Zykov product $\mathcal{Z}\left(G_{1}, G_{2}, \ldots, G_{n}\right)$ of simple graphs $G_{1}, G_{2}, \ldots, G_{n}$ is formed as follows.

- Take the disjoint union of G_{i}
- For each $\left(x_{1}, \ldots, x_{n}\right) \in V\left(G_{1}\right) \times V\left(G_{2}\right) \times \ldots \times V\left(G_{n}\right)$ add a new vertex adjacent to the vertices $\left\{x_{1}, \ldots, x_{n}\right\}$

Zykov Product of Graphs

The Zykov product $\mathcal{Z}\left(G_{1}, G_{2}, \ldots, G_{n}\right)$ of simple graphs $G_{1}, G_{2}, \ldots, G_{n}$ is formed as follows.

- Take the disjoint union of G_{i}
- For each $\left(x_{1}, \ldots, x_{n}\right) \in V\left(G_{1}\right) \times V\left(G_{2}\right) \times \ldots \times V\left(G_{n}\right)$ add a new vertex adjacent to the vertices $\left\{x_{1}, \ldots, x_{n}\right\}$

Example

Figure: Constructing $\mathcal{Z}\left(P_{2}, P_{3}\right)$

Zykov Product of Graphs

The Zykov product $\mathcal{Z}\left(G_{1}, G_{2}, \ldots, G_{n}\right)$ of simple graphs $G_{1}, G_{2}, \ldots, G_{n}$ is formed as follows.

- Take the disjoint union of G_{i}

■ For each $\left(x_{1}, \ldots, x_{n}\right) \in V\left(G_{1}\right) \times V\left(G_{2}\right) \times \ldots \times V\left(G_{n}\right)$ add a new vertex adjacent to the vertices $\left\{x_{1}, \ldots, x_{n}\right\}$

Example

Figure: $\mathcal{Z}\left(P_{2}, P_{3}\right)$

Zykov Graphs

Zykov Graphs

The Zykov graphs, \mathcal{Z}_{n}, are formed as follows:

- Set \mathcal{Z}_{1} as a single vertex

Zykov Graphs

The Zykov graphs, \mathcal{Z}_{n}, are formed as follows:

- Set \mathcal{Z}_{1} as a single vertex

Define $\mathcal{Z}_{n}:=\mathcal{Z}\left(\mathcal{Z}_{1}, \ldots, \mathcal{Z}_{n-1}\right)$ for all $n \geq 2$

Figure: Drawing of \mathcal{Z}_{1}

Zykov Graphs

The Zykov graphs, \mathcal{Z}_{n}, are formed as follows:

- Set \mathcal{Z}_{1} as a single vertex
- Define $\mathcal{Z}_{n}:=\mathcal{Z}\left(\mathcal{Z}_{1}, \ldots, \mathcal{Z}_{n-1}\right)$ for all $n \geq 2$

Figure: Drawings of \mathcal{Z}_{1} and \mathcal{Z}_{2}

Zykov Graphs

The Zykov graphs, \mathcal{Z}_{n}, are formed as follows:

- Set \mathcal{Z}_{1} as a single vertex
- Define $\mathcal{Z}_{n}:=\mathcal{Z}\left(\mathcal{Z}_{1}, \ldots, \mathcal{Z}_{n-1}\right)$ for all $n \geq 2$

Figure: Drawings of $\mathcal{Z}_{1}, \mathcal{Z}_{2}$, and \mathcal{Z}_{3}

Zykov Graphs

The Zykov graphs, \mathcal{Z}_{n}, are formed as follows:

- Set \mathcal{Z}_{1} as a single vertex
- Define $\mathcal{Z}_{n}:=\mathcal{Z}\left(\mathcal{Z}_{1}, \ldots, \mathcal{Z}_{n-1}\right)$ for all $n \geq 2$

Figure: Drawing of \mathcal{Z}_{4}

Jacobs' Conjecture

Jacobs' Conjecture

Corollary For $n \geq 1$,

$$
\chi_{f}\left(\mathcal{Z}_{n+1}\right)=\chi_{f}\left(\mathcal{Z}_{n}\right)+\frac{1}{\chi_{f}\left(\mathcal{Z}_{n}\right)}
$$

Jacobs' Conjecture

Corollary For $n \geq 1$,

$$
\chi_{f}\left(\mathcal{Z}_{n+1}\right)=\chi_{f}\left(\mathcal{Z}_{n}\right)+\frac{1}{\chi_{f}\left(\mathcal{Z}_{n}\right)}
$$

Example

- $\quad \chi_{f}\left(\mathcal{Z}_{1}\right)=1$

Jacobs' Conjecture

Corollary For $n \geq 1$,

$$
\chi_{f}\left(\mathcal{Z}_{n+1}\right)=\chi_{f}\left(\mathcal{Z}_{n}\right)+\frac{1}{\chi_{f}\left(\mathcal{Z}_{n}\right)}
$$

Example

$$
\begin{array}{ll}
\text { - } & \chi_{f}\left(\mathcal{Z}_{1}\right)=1 \\
\text { - } & \chi_{f}\left(\mathcal{Z}_{2}\right)=1+\frac{1}{1}=2
\end{array}
$$

Jacobs' Conjecture

Corollary For $n \geq 1$,

$$
\chi_{f}\left(\mathcal{Z}_{n+1}\right)=\chi_{f}\left(\mathcal{Z}_{n}\right)+\frac{1}{\chi_{f}\left(\mathcal{Z}_{n}\right)}
$$

Example

$$
\begin{array}{ll}
\square & \chi_{f}\left(\mathcal{Z}_{1}\right)=1 \\
\square & \chi_{f}\left(\mathcal{Z}_{2}\right)=1+\frac{1}{1}=2 \\
\square & \chi_{f}\left(\mathcal{Z}_{3}\right)=2+\frac{1}{2}=\frac{5}{2}
\end{array}
$$

Verifying $\chi_{f}\left(C_{5}\right)$

Verifying $\chi_{f}\left(C_{5}\right)$

Notice that

Figure: \mathcal{Z}_{3} and C_{5}

Verifying $\chi_{f}\left(C_{5}\right)$

Notice that

Figure: \mathcal{Z}_{3} and \mathcal{C}_{5}

- So, $\chi_{f}\left(\mathcal{Z}_{3}\right)=\chi_{f}\left(C_{5}\right)=5 / 2$

The Main Result: Theorem 1

The Main Result: Theorem 1

Theorem For $n \geq 2$, let G_{1}, \ldots, G_{n} be graphs. Set $G:=\mathcal{Z}\left(G_{1}, \ldots, G_{n}\right)$ and $\chi_{i}=\chi_{f}\left(G_{i}\right)$. Suppose also that the graphs G_{i} are numbered such that $\chi_{i} \leq \chi_{i+1}$. Then

$$
\chi_{f}(G)=\max \left(\chi_{n}, 2+\sum_{i=2}^{n} \prod_{k=i}^{n}\left(1-\frac{1}{\chi_{k}}\right)\right)
$$

The Main Result: Theorem 1

Theorem For $n \geq 2$, let G_{1}, \ldots, G_{n} be graphs. Set $G:=\mathcal{Z}\left(G_{1}, \ldots, G_{n}\right)$ and $\chi_{i}=\chi_{f}\left(G_{i}\right)$. Suppose also that the graphs G_{i} are numbered such that $\chi_{i} \leq \chi_{i+1}$. Then

$$
\chi_{f}(G)=\max \left(\chi_{n}, 2+\sum_{i=2}^{n} \prod_{k=i}^{n}\left(1-\frac{1}{\chi_{k}}\right)\right)
$$

Example

$$
\begin{aligned}
\chi_{f}\left(\mathcal{Z}\left(P_{2}, P_{3}\right)\right) & =\max \left(2,2+\left(1-\frac{1}{2}\right)\right) \\
& =\max \left(2, \frac{5}{2}\right) \\
& =\frac{5}{2}
\end{aligned}
$$

Lower Bound: $\chi_{f}(G) \geq \max \left(\chi_{n}, f(n)\right)$

Lower Bound: $\chi_{f}(G) \geq \max \left(\chi_{n}, f(n)\right)$

Lemma The fractional chromatic number of a subgraph, H, is at most equal to the fractional chromatic number of a graph, G.

Lower Bound: $\chi_{f}(G) \geq \max \left(\chi_{n}, f(n)\right)$

Lemma The fractional chromatic number of a subgraph, H, is at most equal to the fractional chromatic number of a graph, G.

Conclusion $\quad \chi_{f}(G) \geq \chi_{n}$

Lower Bound: $\chi_{f}(G) \geq \max \left(\chi_{n}, f(n)\right)$

Lemma Let G be a graph and w a weighting of $\mathscr{X} \subseteq \mathscr{I}(G)$. Then, for every induced subgraph H of G, there exists $x \in V(H)$ such that

$$
w[x] \leq \frac{1}{\chi_{f}(H)} \sum_{S \in \mathscr{X}} w(S)
$$

Lower Bound: $\chi_{f}(G) \geq \max \left(\chi_{n}, f(n)\right)$

Start with w, a χ_{f}-coloring of G and $x_{1} \in V\left(G_{1}\right)$.

Lower Bound: $\chi_{f}(G) \geq \max \left(\chi_{n}, f(n)\right)$

Start with w, a χ_{f}-coloring of G and $x_{1} \in V\left(G_{1}\right)$.

- Construct $\mathcal{F}_{1}=\left\{S \in \mathscr{I}(G): x_{1} \in S\right\}$ with the property $\sum_{S \in \mathcal{F}_{1}} w(S)=w\left[x_{1}\right] \geq 1$.

Lower Bound: $\chi_{f}(G) \geq \max \left(\chi_{n}, f(n)\right)$

Start with w, a χ_{f}-coloring of G and $x_{1} \in V\left(G_{1}\right)$.

- Construct $\mathcal{F}_{1}=\left\{S \in \mathscr{I}(G): x_{1} \in S\right\}$ with the property $\sum_{S \in \mathcal{F}_{1}} w(S)=w\left[x_{1}\right] \geq 1$.
- Construct $\mathcal{F}_{2}=\left\{S \in \mathscr{I}(G): S \cap\left\{x_{1}, x_{2}\right\} \neq \emptyset\right\}$ with the property $\sum_{S \in \mathcal{F}_{2}} w(S) \geq 1+\left(1-\frac{1}{\chi_{2}}\right) \sum_{S \in \mathcal{F}_{1}} w(S)$.

Lower Bound: $\chi_{f}(G) \geq \max \left(\chi_{n}, f(n)\right)$

Continue this process so that for all $k \in\{1, \ldots, n\}$,

Lower Bound: $\chi_{f}(G) \geq \max \left(\chi_{n}, f(n)\right)$

Continue this process so that for all $k \in\{1, \ldots, n\}$,

■ $\mathcal{F}_{k}=\left\{S \in \mathscr{I}(G): S \cap\left\{x_{1}, \ldots, x_{k}\right\} \neq \emptyset\right\}$ with the property $\sum_{S \in \mathcal{F}_{k}} w(S) \geq 1+\left(1-\frac{1}{\chi_{k}}\right) \sum_{S \in \mathcal{F}_{k-1}} w(S)$

Lower Bound: $\chi_{f}(G) \geq \max \left(\chi_{n}, f(n)\right)$

Continue this process so that for all $k \in\{1, \ldots, n\}$,

- $\mathcal{F}_{k}=\left\{S \in \mathscr{I}(G): S \cap\left\{x_{1}, \ldots, x_{k}\right\} \neq \emptyset\right\}$ with the property $\sum_{S \in \mathcal{F}_{k}} w(S) \geq 1+\left(1-\frac{1}{\chi_{k}}\right) \sum_{S \in \mathcal{F}_{k-1}} w(S)$

It follows that

$$
\sum_{S \in \mathcal{F}_{n}} w(S) \geq 1+\sum_{i=2}^{n} \prod_{k=i}^{n}\left(1-\frac{1}{\chi_{k}}\right)=f(n)-1
$$

Lower Bound: $\chi_{f}(G) \geq \max \left(\chi_{n}, f(n)\right)$

Conclusion $\quad \chi_{f}(G) \geq f(n)$

Upper Bound: $\chi_{f}(G) \leq \max \left(\chi_{n}, f(n)\right)$

Special Sets and Cool Weightings

Upper Bound: $\chi_{f}(G) \leq \max \left(\chi_{n}, f(n)\right)$

Special Sets and Cool Weightings

Special Sets Let $\mathscr{M}(G) \subset \mathscr{I}(G)$ be the set of all maximal independent sets of G

Upper Bound: $\chi_{f}(G) \leq \max \left(\chi_{n}, f(n)\right)$

Special Sets and Cool Weightings

Special Sets Let $\mathscr{M}(G) \subset \mathscr{I}(G)$ be the set of all maximal independent sets of G and for each $i \in\{1, \ldots, n\}$,

$$
\mathcal{F}_{i}:=\left\{S \in \mathscr{M}(G) \mid S \cap V\left(G_{j}\right)=\emptyset \text { if and only if } j<i\right\}
$$

Upper Bound: $\chi_{f}(G) \leq \max \left(\chi_{n}, f(n)\right)$

Special Sets and Cool Weightings

Special Sets Let $\mathscr{M}(G) \subset \mathscr{I}(G)$ be the set of all maximal independent sets of G and for each $i \in\{1, \ldots, n\}$,

$$
\mathcal{F}_{i}:=\left\{S \in \mathscr{M}(G) \mid S \cap V\left(G_{j}\right)=\emptyset \text { if and only if } j<i\right\}
$$

Weightings

- $w_{i}: \mathscr{I}\left(G_{i}\right) \rightarrow \mathbb{R}^{\geq 0}$, a $\chi_{f}\left(G_{i}\right)$-coloring of each G_{i}

Upper Bound: $\chi_{f}(G) \leq \max \left(\chi_{n}, f(n)\right)$

Special Sets and Cool Weightings

Special Sets Let $\mathscr{M}(G) \subset \mathscr{I}(G)$ be the set of all maximal independent sets of G and for each $i \in\{1, \ldots, n\}$,

$$
\mathcal{F}_{i}:=\left\{S \in \mathscr{M}(G) \mid S \cap V\left(G_{j}\right)=\emptyset \text { if and only if } j<i\right\}
$$

Weightings
■ $\quad w_{i}: \mathscr{I}\left(G_{i}\right) \rightarrow \mathbb{R}^{\geq 0}$, a $\chi_{f}\left(G_{i}\right)$-coloring of each G_{i}

- $p_{i}: \mathscr{I}\left(G_{i}\right) \rightarrow \mathbb{R}^{\geq 0}$ where $p_{i}:=w_{i}(S) / \chi_{i}$

Upper Bound: $\chi_{f}(G) \leq \max \left(\chi_{n}, f(n)\right)$

Special Sets and Cool Weightings

Special Sets Let $\mathscr{M}(G) \subset \mathscr{I}(G)$ be the set of all maximal independent sets of G and for each $i \in\{1, \ldots, n\}$,

$$
\mathcal{F}_{i}:=\left\{S \in \mathscr{M}(G) \mid S \cap V\left(G_{j}\right)=\emptyset \text { if and only if } j<i\right\}
$$

Weightings

- $w_{i}: \mathscr{I}\left(G_{i}\right) \rightarrow \mathbb{R}^{\geq 0}$, a $\chi_{f}\left(G_{i}\right)$-coloring of each G_{i}
- $p_{i}: \mathscr{I}\left(G_{i}\right) \rightarrow \mathbb{R}^{\geq 0}$ where $p_{i}:=w_{i}(S) / \chi_{i}$
- $p: \cup_{i=1}^{n} \mathcal{F}_{i} \rightarrow \mathbb{R} \geq 0$ where $p(S):=\prod_{i=1}^{n} p_{i}\left(S \cap V\left(G_{i}\right)\right)$

Upper Bound: $\chi_{f}(G) \leq \max \left(\chi_{n}, f(n)\right)$

The Final Weighting

Final We construct a fractional max $\left(\chi_{n}, f(n)\right)$-coloring of G Weighting defined by the weighting

$$
w(S)=\left\{\begin{array}{lr}
\left(\chi_{i}-\chi_{i-1}\right) p(S), & S \in \mathcal{F}_{i} \\
\max \left(0, f(n)-\chi_{n}\right), & S=V_{0} \\
0, & \text { otherwise }
\end{array}\right.
$$

Upper Bound: $\chi_{f}(G) \leq \max \left(\chi_{n}, f(n)\right)$

The Final Weighting works!

We can show,

- $\quad \sum_{S \in \mathscr{I}(G)} w(S)=\max \left(\chi_{n}, f(n)\right)$
- $w[x] \geq 1$ for all $x \in V(G)$

So, w is a fractional $\max \left(\chi_{n}, f(n)\right)$-coloring of G.

Conclusion $\quad \chi_{f}(G) \leq \max \left(\chi_{n}, f(n)\right)$

Results

Theorem For $n \geq 2$, let G_{1}, \ldots, G_{n} be graph. Suppose also that the graphs G_{i} are numbered such that $\chi_{i} \leq \chi_{i+1}$. Then

$$
\chi_{f}\left(\mathcal{Z}\left(G_{1}, \ldots, G_{n}\right)\right)=\max \left(\chi_{n}, 2+\sum_{i=2}^{n} \prod_{k=i}^{n}\left(1-\frac{1}{\chi_{k}}\right)\right)
$$

Corollary For every $n \geq 2$,

$$
\chi_{f}\left(\mathcal{Z}_{n+1}\right)=\chi_{f}\left(\mathcal{Z}_{n}\right)+\frac{1}{\chi_{f}\left(\mathcal{Z}_{n}\right)}
$$

Jacobs' Conjecture - Proved!

Corollary For every $n \geq 2$,

$$
\chi_{f}\left(\mathcal{Z}_{n+1}\right)=\chi_{f}\left(\mathcal{Z}_{n}\right)+\frac{1}{\chi_{f}\left(\mathcal{Z}_{n}\right)}
$$

Jacobs' Conjecture - Proved!

Corollary For every $n \geq 2$,

$$
\chi_{f}\left(\mathcal{Z}_{n+1}\right)=\chi_{f}\left(\mathcal{Z}_{n}\right)+\frac{1}{\chi_{f}\left(\mathcal{Z}_{n}\right)}
$$

Proof. By induction on $n \geq 2$, we prove

$$
\chi_{n+1}=f(n)=\chi_{n}+\chi_{n}^{-1}
$$

Jacobs' Conjecture - Proved!

Corollary For every $n \geq 2$,

$$
\chi_{f}\left(\mathcal{Z}_{n+1}\right)=\chi_{f}\left(\mathcal{Z}_{n}\right)+\frac{1}{\chi_{f}\left(\mathcal{Z}_{n}\right)}
$$

Proof. By induction on $n \geq 2$, we prove

$$
\chi_{n+1}=f(n)=\chi_{n}+\chi_{n}^{-1}
$$

- Base Case: $\chi_{f}\left(\mathcal{Z}_{1}\right)=1$ and $f(1)=2=\chi_{2}$

Jacobs' Conjecture - Proved!

Corollary For every $n \geq 2$,

$$
\chi_{f}\left(\mathcal{Z}_{n+1}\right)=\chi_{f}\left(\mathcal{Z}_{n}\right)+\frac{1}{\chi_{f}\left(\mathcal{Z}_{n}\right)}
$$

Proof. By induction on $n \geq 2$, we prove $\chi_{n+1}=f(n)=\chi_{n}+\chi_{n}^{-1}$.

- Base Case: $\chi_{f}\left(\mathcal{Z}_{1}\right)=1$ and $f(1)=2=\chi_{2}$
- Inductive Hypothesis: Suppose $\chi_{n}=f(n-1)$.

Jacobs' Conjecture - Proved!

Proof.

- Inductive Hypothesis: Suppose $\chi_{n}=f(n-1)$.

Jacobs' Conjecture - Proved!

Proof.

- Inductive Hypothesis: Suppose $\chi_{n}=f(n-1)$. Then

$$
\begin{aligned}
f(n) & =2+\sum_{i=2}^{n} \prod_{k \geq i}\left(1-\frac{1}{\chi_{k}}\right) \\
& =2+\left(1-\frac{1}{\chi_{n}}\right) \cdot(f(n-1)-1) \\
& =\chi_{n}+\frac{1}{\chi_{n}}
\end{aligned}
$$

Jacobs' Conjecture - Proved!

Proof.

- Inductive Hypothesis: Suppose $\chi_{n}=f(n-1)$. Then

$$
\begin{aligned}
f(n) & =2+\sum_{i=2}^{n} \prod_{k \geq i}\left(1-\frac{1}{\chi_{k}}\right) \\
& =2+\left(1-\frac{1}{\chi_{n}}\right) \cdot(f(n-1)-1) \\
& =\chi_{n}+\frac{1}{\chi_{n}}
\end{aligned}
$$

Since $\chi_{n+1}=\max \left(\chi_{n}, f(n)\right)$, we have $\chi_{n+1}=\chi_{n}+\frac{1}{\chi_{n}}$.

Questions?

