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1. Introduction

Graph theory is a study of structure of objects (vertices) and connections between them
(edges). The study began in 1736 when Euler wrote a paper on the seven bridges of
Königsburg addressing the problem of whether or not a person could cross all seven
bridges visiting every quarter of town, and return home without retracing his or her
steps. Seemingly disparate problems about coloring maps, orienting molecules, connecting
computer systems and tracking the spread of disease have all been addressed using the
tools of graph theory. One of the main avenues of study, algebraic graph theory, considers
the symmetries of a given graph and the group that these mappings form. The ideas in
this paper arise from this �eld and address a simple problem that surprisingly has not
been studied in much depth.

The question is simply to determine how many vertices of a graph you would have to �x
in order to destroy any symmetry that the graph may have. The answer has been used in
some surprising ways. In [10] Lynch attempts to �nd a minimal set of colored dots on the
surface of a sphere so that given a two dimensional image of the sphere, one can tell the
orientation with certainty. The dots can be drawn as a graph (a platonic solid) and the
question becomes how many vertices do you need to �x in order for the graph to have no
symmetries. Symmetry destruction is also closely related to distinguishing vertices and
resolving location in a graph. Chartrand et. al. [3] relate the resolvability of a graph
to drug design and Khuller et. al. [9] use these ideas to program robots to navigate in
euclidean space.

The present work is based on the paper �Destroying Automorphisms by Fixing Nodes�
by David Erwin and Frank Harary [4] which was published in 2006. Harary dealt with
similar topics in [8] published in 1976 and it seems he revisited the problem shortly before
his death in 2005. I have followed the structure of [4] with some added background
information, proofs, and examples.

The �rst section is necessarily mostly de�nitions and preliminary material in which the
basics of graph theory are introduced, as well as the idea of �xing sets and the �xing
number of a graph. Once we have these de�nitions, some results are immediate. The �xing
number of disconnected graphs relies on the �xing number of its connected components,
and the relationship is simple, albeit hard to express in a formula. It is also easy to see
some bounds on the �xing number of a graph by relating it to a metric basis, to the
orbits, and to the chromatic number of that graph. We then consider some examples
of graphs with small �xing number, and give a construction for a graph with any given
�xing number and arbitrarily large automorphism group. Then, narrowing our focus to
examine graphs that contain no cycles (trees), we �nd that by considering the �center� of a
tree, we can deduce several interesting facts about �xing relationships among vertices. In
particular, we re�ne the orbit partition of vertices by introducing interchange equivalence
classes (IECs). This allows us to formulate and prove the main theorem, that the �xing
number of a tree is completely determined by sets that dominate the IECs in the �xing
digraph. Once this is proved, we put it to some use in order to relate, for trees, the �xing
number to the size of the automorphism group, and we consider what information we
need in order to compute the �xing number of a graph using our main result.

2. Preliminaries

Definition 2.1. A graph G consists of a �nite nonempty set V (G) of vertices together
with a set E(G) (possibly empty) of edges, which are unordered pairs of distinct vertices.
We say that two vertices u and v are adjacent (denoted u ∼ v) if the pair {u, v} ∈ E(V ).
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Figure 1: A graph with V (G) = {a, b, c, d, e, f} and
E(G) = {{a, c}, {b, c}, {c, e}, {b, e}, {b, d}, {d, c}}

Definition 2.2. A path in a graph G is a sequence P of distinct vertices v1, v2, ..., vn

such that for each i = 1, ...n − 1, vi is adjacent to vi+1. We refer to v1 and vn as the
endpoints of P , and P is referred to as a v1vn-path. The length of a path P is the number
of consecutive edges that the path contains (the number of vertices in the path minus
one). We denote the graph consisting of a path of length n by Pn. In Figure 1, the
sequence a, c, d is an ad-path of length 2.

Definition 2.3. A cycle is a path that begins and ends at the same vertex (here the
condition that a path consist of all distinct vertices is weakened slightly). We denote the
graph consisting of a cycle of length n by Cn. In Figure 1, the sequence b, c, d, b is a cycle.

Definition 2.4. Given two vertices u and v in a graph G, the distance between u and
v (denoted d(u, v)) is the minimum length of a path containing u and v. In Figure 1 the
distance between a and b is two (d(a, b) = 2). The distance between a vertex and a set
S of vertices (denoted d(v, S)) is the minimum of the distances between v and vertices in
S.

Definition 2.5. A graph G is connected if for every u, v ∈ V (G), there is a uv-path in
G. A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G).
A component of a graph G is a maximal connected subgraph of G. The graph in Figure
1 is not connected; its two components are the subgraph with vertex set {f} and empty
edge set and the subgraph with vertices {a, b, c, d, e} with edge set E(G).

Given two graphs G and H, a bijection φ from V (G) to V (H) is an isomorphism if
{u, v} ∈ E(G) if and only if {φ(u), φ(v)} ∈ E(H) (φ preserves adjacency). Two graphs G
and H are isomorphic (denoted G ∼= H) if there exists an isomorphism from G to H.

Definition 2.6. An automorphism of a graph G is an isomorphism from G to G. The
set of automorphisms of a graph G form a group under the composition operation with
identity id, the automorphism that sends every vertex to itself. The automorphism group
of G is denoted Γ(G).

Theorem 2.7. Every automorphism is also an isometry. That is for u, v ∈ V (G) and
φ ∈ Γ(G), d(u, v) = d(φ(u), φ(v)).

Proof. Let G be a graph, let u, v ∈ V (G), let P be a uv-path of length d = d(u, v),
and let φ ∈ Γ(G). Then φ is a bijection and preserves adjacency, so φ(P ) is a φ(u)φ(v)-
path of length d. Suppose that d(φ(u), φ(v)) < d. Then there is a φ(u)φ(v)-path P ′ with
length less than d. Since Γ(G) is a group, φ−1 is an automorphism of G, so φ−1(P ′) is a
uv-path with length less than d. This is a contradiction, so d(φ(u), φ(v)) ≥ d(u, v). The
reverse inequality is obtained similarly and the result follows. ¤
Definition 2.8. Given a graph G, let S ⊆ V (G) and φ ∈ Γ(G). The automorphism φ is
said to �x the set S if for every v ∈ S, we have φ(v) = v. The set of automorphisms that
�x S is called the stabilizer of S and is denoted ΓS(G). The stabilizer of a single vertex
Γ{v}(G) is written Γv(G).
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Theorem 2.9. For any S ⊆ V (G), ΓS(G) is a subgroup of Γ(G) and ΓS(G) =
∩

v∈S

Γv(G).

Proof. To show that ΓS(G) is a subgroup, note that id ∈ ΓS(G) since id �xes every
vertex in G. Further, ΓS(G) is closed under compositions since for any φ, ψ ∈ ΓS(G) and
any v ∈ S,

(φ ◦ ψ)(v) = φ(ψ(v)) = φ(v) = v,

so φ◦ψ ∈ ΓS(G). Finally to see that ΓS(G) is closed under taking inverses, let φ ∈ ΓS(G).
Then φ−1(φ(v)) = v for all v ∈ V (G), so if v ∈ S then v = φ−1(φ(v)) = φ−1(v). Therefore
φ−1 �xes v. Since this holds for all v ∈ S, it follows that φ−1 ∈ ΓS(G).

To show that ΓS(G) =
∩

v∈S

Γv(G), let φ ∈ ΓS(G). Then for all v ∈ S, φ(v) = v, so

φ ∈ Γv(G), thus ΓS(G) ⊆
∩

v∈S

Γv(G). For the other inclusion let φ ∈
∩

v∈S

Γv(G). Then for

every v ∈ S, φ ∈ Γv(G) so φ �xes every vertex in S and hence φ ∈ ΓS(G). This shows
that

∩
v∈S

Γv(G) ⊆ ΓS(G), so ΓS(G) =
∩

v∈S

Γv(G). ¤

Definition 2.10. If S is a set of vertices for which ΓS(G) = {id} then S �xes the graph
G, and we say that S is a �xing set of G. The minimum cardinality of a set of vertices
that �xes G is the �xing number, denoted �x(G). A �xing set containing �x(G) vertices
is a minimum �xing set of G (or a �x(G)-set).

Example 2.11. For every positive integer n,

�x(Kn) = n − 1
�x(Pn) = 1, n ≥ 2
�x(Cn) = 2, n ≥ 3

Where Kn is the complete graph (the graph with all possible edges), Pn is the path and
Cn is the cycle, each with n vertices.

The graphs K5, C6, and P4 with �xing sets colored red:

Definition 2.12. A coloring of a graph G is a function c from V (G) to some �nite set of
colors. A proper coloring of G is a coloring such that no two adjacent vertices are mapped
to the same color.

Definition 2.13. Let c be a (not necessarily proper) coloring of V (G) and φ ∈ Γ(G). The
automorphism φ is said to �x the coloring c if for every v ∈ V (G), we have c(φ(v)) = c(v).

Theorem 2.14. The set of automorphisms that �x a coloring c is a subgroup of Γ(G).

Proof. The proof is not di�cult and similar to the proof of Theorem 2.9. ¤
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Definition 2.15. We denote the group of automorphisms that �x a coloring c by Γ(G, c).
If c is a coloring for which Γ(G, c) = {id} then c �xes G, and we say that c is a �xing
coloring of G. The minimum number of colors in a coloring that �xes G is the chromatic
�xing number χ�x(G).

The chromatic �xing number was de�ned independently by Albertson and Collins [2] and
Harary [7] and is further studied in [2, 13]. We will make use of the concept in section 4.

3. The Fixing Number of Disconnected Graphs

Some results on the �xing number of a graph come easily. As may be guessed, the �xing
number of a disconnected graph is determined by the �xing numbers of its components.
We develop a formula for this and show an example to explain its slightly complicated
appearance.

Definition 3.1. For any graph G and positive integer t, let tG denote the graph consist-
ing of t pairwise disjoint copies of G. A maximal set of pairwise isomorphic components
of a graph G is a component class of G, and if H is a component of G and φ an automor-
phism of G, then φ acts nontrivially on H if there is some v ∈ V (H) with φ(v) 6= v. A
component of G that is isomorphic to H is an H-component.

Example 3.2. Let T be the graph obtained from P6 by adding a new vertex v and joining
v to the third vertex of P6. Consider the graph G = 3K2 ∪ 3T . Notice that |Γ(K2)| = 2
and |Γ(T )| = 1. Let φ ∈ Γ(G) and let H be a component of G on which φ acts non-
trivially. Then either i) φ(V (H)) = V (H), or ii) φ(V (H)) = V (H ′) where H ′ is another
H-component of G. If H is isomorphic to K2 then i) or ii) could be true, while if H is
isomorphic to T , then only ii) can be true since there are no nontrivial automorphisms
of T . Thus if S ⊆ V (G) �xes G, then every K2 component has at least one (= �x(K2))
vertex in S, and two of the three components isomorphic to T must contain a vertex of
S in order to prevent an automorphism that swaps two of these components.

Consequently, �x(G) ≥ 5. To show that �x(G) = 5, one needs only to choose vertices
x1, x2, x3 from di�erent K2-components and y1, y2 from di�erent T -components and verify
that the set S′ = {x1, x2, x3, y1, y2} �xes G. so �x(G) = 5.

The graph G = 3K2 ∪ 3T and a �xing set (red)

The reasoning used in the above example can be easily generalized. This gives us a
formula for the �xing number of a disconnected graph in terms of the �xing numbers of
its components.

Theorem 3.3. Let G be a graph, A be the set of components X of G satisfying |Γ(X)| = 1
and let B be the set of components Y of G satisfying |Γ(Y )| > 1. Let k be the number of
component classes in A. Then

�x(G) =
∑
Y ∈B

�x(Y ) + |A| − k.
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Proof. Let G be as above. To �x G we construct a set S that �xes every component
of G. We begin by taking a �xing subset of Y for each component Y with non-trivial
automorphism group (Y ∈ B). Thus far, we have

∑
Y ∈B

�x(Y ) vertices in S. This set

will �x all automorphisms that send all components to themselves. Next we need to
prevent automorphisms that map isomorphic components to each other. Notice that for
the components with nontrivial automorphism group we already have some vertices in S
for each component. So no automorphism can swap two of these components, since such
an automorphism would have to move one of our vertices in S. In other words, these
components are already �xed.

To �x the other components (those in A), given a component class, we could include
in S one vertex per component this will indeed prevent any automorphisms that swap
isomorphic components. This is overkill, though, since if we �x all but one component
in a class, the remaining component will have no one to map to. So in each component
class in A, we need only pick one vertex in all but one component in that class. Thus,
adding up all the component classes with trivial automorphism group, we see that we
need |A|−k vertices in S in order to �x A Combining the two pieces we see that we need∑
Y ∈B

�x(Y ) + |A| − k vertices in S to �x G and no fewer would su�ce.. ¤

4. Bounds on Fixing Numbers

Some upper bounds on �x(G) are found easily as we will see in this section.

Definition 4.1. The number of vertices in a graph is its order.

Definition 4.2. Two vertices u and v in a graph G are similar if there exists an au-
tomorphism φ of G such that φ(u) = v. A maximal set of vertices in a graph that are
similar to each other is an orbit.

Lemma 4.3. Let S be a set constructed by choosing from each orbit of G every vertex
except one. Then S �xes G. Hence for every graph G having order n and α orbits under
the action of Γ(G), �x(G) ≤ n − α.

Proof. Let S be as given and pick any v ∈ V (G)\S. Then v is in some orbit Ω.
If φ ∈ Γ(G) and φ(v) 6= v, then φ(v) ∈ Ω which implies that φ(v) ∈ S (there can only
be one vertex in each orbit that is not in S). So φ(φ(v)) = φ(v). But φ must preserve
distances, and d(v, φ(v)) > 0 so d(φ(v), φ(φ(v))) > 0. This is a contradiction, so v must
be �xed by φ. ¤

Since the minimum number of orbits is α = 1, the above lemma implies that �x(G) ≤
|Γ(G)| − 1 for any graph G.

Another upper bound on �x(G) is given by an invariant that has been previously studied.

Definition 4.4. Let S = {s1, s2, ..., sk} be a k-subset of V (G) and, for each vertex
v ∈ V (G), de�ne the k-tuple by r(v|S) := (d(v, s1), d(v, s2), ..., d(v, sk)). A k-set S is a
resolving set for G if for every pair u, v of distinct vertices of G, r(u|S) 6= r(v|S). The
(metric) dimension dim(G) is the smallest cardinality of a resolving subset S ⊆ V (G). A
resolving set of minimum cardinality is a metric basis for G.

Lemma 4.5. If S is a metric basis for G, then ΓS(G) is trivial.

Proof. Let S = {s1, s2, ..., sk} and suppose, to the contrary, that there is some node
u and some φ ∈ ΓS(G) for which u 6= φ(u). Since S is a resolving set for G, there is
some integer i with 1 ≤ i ≤ k such that d(u, si) 6= d(φ(u), si). However, since φ �xes si
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and automorphisms preserve distance, d(u, si) = d(φ(u), φ(si)) = d(φ(u), si). This is a
contraction so no such automorphism φ exists and ΓS(G) is trivial. ¤

Theorem 4.6. For every connected graph G.

χ�x(G) − 1 ≤ �x(G) ≤ dim(G).

Proof. The previous lemma implies �x(G) ≤ dim(G). For the other inequality let
S be a �xing set for G with S = {v1, v2, ..., vn}. Then if we color each vi a di�erent color
and all the remaining vertices a separate color, any isomorphism that preserves colors
must �x S and hence G so χ�x(G) ≤ �x(G) + 1. ¤

5. Graphs With Small Fixing Number

A graph G has �xing number zero if and only if it has trivial automorphism group. Graphs
with �xing number 1 can be algebraically categorized almost as easily. The following
result was essentially proved by Albertson and Collins in [1] and relies on the well known
orbit-stabilizer theorem, which we state below for the context of graph automorphisms
(see Godsil [5] for more about this result).

Theorem 5.1. (Orbit-Stabilizer) Let G be a graph, u ∈ V (G), and Ou be the orbit of
Γ(G) containing u. Then

|Γ(G)| = |Γu(G)| |Ou|.

Theorem 5.2. Let G be a graph with Γ(G) 6= {id}. Then �x(G) = 1 if and only if G has
an orbit of cardinality |Γ(G)|.

Proof. Suppose that G is a graph, Γ(G) 6= {id} and �x(G) = 1. Let u ∈ V (G) such
that {u} is a �xing set of G, let Ou be the orbit containing u and Γu(G) be the stabilizer
of u. Suppose by contradiction that |Ou| < |Γ(G)|. Then by the orbit-stabilizer theorem,
Γu(G) > 1. This means that there is some non-trivial automorphism φ of G that �xes u.
This contradicts the fact that {u} is a �xing set, so |Ou| = |Γ(G)|.

For the converse let O be an orbit of G and |O| = |Γ(G)|. Then by the orbit-stabilizer
theorem, for any u ∈ O, |Γu(G)| = 1. So necessarily Γu(G) = {id} and by De�nition
2.10, u �xes G. Since Γ(G) 6= {id}, �x(G) 6= 0. Thus �x(G) = 1. ¤

Notation 5.3. The grid Pn × Pm is the graph with vertex set V (Pn × Pm) = {(u, v) :
u ∈ V (Pn) v ∈ V (Pm)} and edge set determined by (u1, v1) ∼ (u2, v2) if u1 = u2 and
{v1, v2} ∈ E(Pm) or {u1, u2} ∈ E(Pn) and v1 = v2.

The grid P4 × P3

Theorem 5.4. For every pair s, t of integers with s, t ≥ 2,

�x(Ps × Pt) =

{
2 if s = t = 2 or s = t = 3,

1 otherwise.
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Proof. If s 6= t, then Γ(Ps×Pt) = Z2×Z2. The automorphisms are just the vertical
and horizontal �ips. The four corners (nodes of degree two) are similar, so there is an
orbit of size four. Noticing that |Γ(Ps ×Pt)| = |Z2 ×Z2| = 4, Theorem 5.2 gives that the
�xing number of Ps × Pt is one.

If s = t ≥ 4 then Γ(Ps × Pt) = D4 (where D4 is the dihedral group, also known as the
octic group, or the group of symmetries of the square). Since |Γ(Ps × Pt)| = |D4| = 8,
we need to �nd an orbit of size eight in order to use Theorem 5.2. Looking at the graph,
we see that the eight vertices adjacent to the corners are similar and hence constitute the
desired orbit (notice that this is not true in the case where s = t = 2 or s = t = 3, since
the vertices adjacent to the corners are either corners themselves or midpoints of edges,
of which there are only four). Hence by Theorem 5.2, �x(Ps × Pt) = 1.

Finally to see the case where s = t = 2 or s = t = 3 we note that Γ(Ps × Pt) = D4, but
there is no orbit of size eight. The largest orbits have size four. Hence by the �only if�
statement in Theorem 5.2, �x(Ps × Pt) 6= 1. We can easily observe, however, that if we
�x a corner vertex and a vertex adjacent to it in P2 ×P2 or P3 ×P3, then the graph must
be �xed. Hence �x(Ps × Pt) = 2 in these two cases. ¤

We now give a construction of graphs that have arbitrarily large automorphism groups
and �xing number one.

Lemma 5.5. For every positive integer t , there is a graph Gt with �xing number 1 and
|Γ(Gt)| = t.

Proof. We construct a class of graphs Gt. Let G1 = K1, the graph of a single
vertex and G2 = K2, the graph with two adjacent vertices. Then |Γ(G1)| = |Γ(G2)| =
1. For t ≥ 3, let Gt be constructed as follows: start with the cycle C3t labeled by
u0, u1, ..., u3t−1, join to each vertex ui with i ≡ 1(mod 3) or i ≡ 2(mod 3) a new vertex
wi (this introduces 2t new vertices). Now for each vertex ui with i ≡ 1(mod 3) add a new
vertex by subdividing the edge uiwi (see the �gure below). The graph constructed has
order 6t and automorphism group Zt. To see this, note that you start with the symmetries
of the cycle C3t and then eliminate the ��ips� or degree two automorphisms by adding
the additional vertices at an odd spacing. Also the rotations of one or two vertices are
no longer automorphisms since the ui with i ≡ 1(mod 3) are not similar to the ui with
i ≡ 2(mod 3) or i ≡ 0(mod 3). Noting that the set of vertices {ui : i ≡ 0(mod 3)} is an
orbit of size t, Theorem 5.2 gives that �x(Gt) = 1. ¤

The graph G3

While every graph in the class constructed in Lemma 5.5 has �xing number one and cyclic
automorphism group, not every graph with cyclic automorphism group has �xing number
one. We give a similar construction of a family of graphs with cyclic automorphism group
and arbitrary �xing number.
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Fact 5.6. For every positive integer k, there are in�nitely many connected graphs with
�xing number k and cyclic automorphism group.

Proof. When k = 1, Lemma 5.5 gives the desired result. Let k ≥ 2 and p1, p2, ..., pk

be distinct prime numbers. For each pi with i = 1, ..., k construct Gpi as in Lemma 5.5.
We form a new graph H from Gp1 , Gp2 , ..., Gpk

using the following process: introduce a
new vertex z, and for each Gpi constructed from the cycle C3pi with the vertices on the
cycle labeled u0, u1, ..., u3pi−1 connect uj to z if j ≡ 0(mod 3). Thus we have pi edges
from z to Gpi . The symmetries of each individual Gpi remain intact and no symmetries
between the Gpi exist since p1, p2, ..., pk are all distinct. Thus the automorphism group
of the graph H is Zp1 ×Zp2 × ...×Zpk

, which is isomorphic to Zp1p2...pk
(which is cyclic).

In order to �x this graph H you need to �x each Gpi
. Since �x(Gpi

) = 1 for every pi,
�x(H) = k as desired. ¤

A graph with �xing number 2 and automorphism group Z15 formed from G3 and G5.

6. The Fixing Number of a Tree

Definition 6.1. A tree is a connected graph that contains no cycles.

The main result of the paper is a formula for the �xing number of a tree. The formula
involves some previously studied invariants, so we need some preliminary results and
de�nitions.

Definition 6.2. In a tree, an end-vertex is a vertex of degree one. An orbit that consists
of end-vertices is called an endorbit. Note that every vertex similar to an end-vertex is
also an end-vertex.

Lemma 6.3. Let T be a tree and S ⊆ V (T ). Then S �xes T if and only if S �xes the
end-vertices of T .

Proof. Clearly if S �xes T , then S �xes the end-vertices of T . For the other
direction, suppose by contradiction that S �xes the end-vertices of T and doesn't �x
T . Then there exists a φ ∈ ΓS(G) and u, v ∈ V (G) with u 6= v and φ(u) = v. Let
P be a uv-path with maximal length. The path P contains an end-vertex u′ with
d(u, u′) < d(v, u′), and since S �xes the end-vertices of T , φ(u′) = u′. This gives that
d(φ(u), φ(u′)) = d(v, u′) > d(u, u′) which is a contradiction since as an isometry, φ must
preserve distances. ¤
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Definition 6.4. The eccentricity of a vertex u in a graph G is de�ned by e(u) =
max{d(u, v) : v ∈ V (G)}. The radius of G is de�ned by rad(G) = min{e(u) : u ∈ V (G)}
and the center of G is the subgraph Cen(G) induced by those vertices with eccentricity
equal to the radius. A set S of vertices lie between two vertices u and v if some minimum
length uv-path has nonempty intersection with S.

Lemma 6.5. Let u, v, w be three vertices of a tree T . If d(u, v) = d(u,w), then d(v, w) is
even (and hence vw /∈ E(T )).

Proof. This is obvious if the path from u to v and path from u to w are disjoint.
If this is not the case, we consider the disjoint �pieces� of these paths, that must also
be of equal length. Let P : u = v0, v1, ..., vk = v be the uv-path in the tree T . (Note
that P is unique since T is a tree). Let Q be the uw-path and t be the largest integer
(0 ≤ t ≤ k−1) for which vt ∈ V (P )∩V (Q). Then d(u, v) = d(u, vt)+d(vt, v) and d(u,w) =
d(u, vt)+d(vt, w) so d(vt, v) = d(vt, w). Since there is only one path from v to w (otherwise
T would contain a cycle and would not be a tree), d(v, w) = d(v, vt)+d(vt, w) = 2d(v, vt)
and d(v, w) is even as desired. ¤

Theorem 6.6. (Jordan see [6]) The center of a tree T is either a single vertex or two
connected vertices.

Proof. Clearly this is true of the graphs K1 and K2. Let T be a tree; we show that
if we remove all the end-vertices of T , then the resulting tree has the same center. Let
T ′ be the subgraph of T induced by the vertices of T that are not end-vertices. Given a
vertex u ∈ V (T ), for any vertex v ∈ V (T ) if d(u, v) = e(u) then v must be an end-vertex.
This is true because (in a tree) there is only one uv-path and if v is not an end-vertex,
then this path can be lengthened by adding some vertex v′ that is adjacent to v and
not in the uv-path. Thus for any vertex u ∈ T ′, the eccentricity of u in T ′ is one less
than the eccentricity of u in T . The center of a graph is de�ned as those vertices with
minimum eccentricity so Cen(T ) = Cen(T ′). We are only dealing with �nite trees so if
we iterate the process of �pruning� our tree T , eventually we get down to a single point
or two connected points since the only connected graphs for which each vertex has degree
less than or equal to one are K1and K2. (Note that a tree has no cycles so every vertex
is eventually an end-vertex). This graph will have the same center as T , so the center of
T is either a single vertex or two connected vertices.

A bicentral tree successively �pruned�, the last graph identi�es the center of the tree.
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¤
Definition 6.7. If the center of a tree T is a single vertex, we say that T is central.
Otherwise T is bicentral. For brevity we write C for Cen(T ).

There is a certain sense of balance that a tree has about its center. We make note of this
relationship in the following lemma.

Lemma 6.8. Let C be the center of a tree T , u ∈ V (T ) and d(u, V (C)) = n. Then there
exists a vertex w ∈ T with d(w, V (C)) = n such that the path between u and the center is
disjoint from the path between w and the center.

Proof. Let T be a tree, u ∈ T with d(u,C) = n and Pu be the path of length n
between u and C. Suppose by contradiction that there is no vertex w ∈ T such that
d(w, V (C)) = n and the path Pw between w and C is disjoint from Pu. We use the
pruning process shown in Theorem 6.6 to arrive at a contradiction. Let T (0) be T and let
T (i+1) denote the subgraph of T (i) obtained by removing all of the end-vertices of T (i)

for i = 0, ..., n−1. Consider the path Pu with vertices u = v0, v1, ..., vn where vn ∈ V (C).
In T (1) there can be no vertex distance n − 1 from the center with a path disjoint from
Pu because if this were the case, such a vertex could not have been an end-vertex in T so
there would be a vertex in T distance n from u on a path disjoint from Pu. Continuing
for all i = 0, ..., n − 1 we see that there can be no vertex disjoint from Puwith distance
n − i from the center. The end result is that in T (n−1) there is no vertex disjoint from
Pu with distance 1 from the center. This means that if we �prune� once more, we get
the graph T (n) which is non-empty and doesn't contain the center! This contradicts the
process for �nding the center outlined in Theorem 6.6. ¤
Lemma 6.9. Let u, v be adjacent vertices of a tree T . If v /∈ V (C), then d(u, V (C)) 6=
d(v, V (C)). In fact d(u, V (C)) and d(v, V (C)) di�er by one.

Proof. Again we use the fact that in a tree, there is only one path between any two
vertices. v is not in the center, so there is a unique path P with length d(v, V (C)) from v
to C, this path either contains u or not. If u /∈ P then the path created by adjoining the
edge uv to P is a path from u to the center. This must be the only path so d(u, V (C)) =
d(v, V (C)) + 1. On the other hand, if u ∈ P , then the path created by deleting the edge
uv from P is the unique path from u to V (C), so d(u, V (C)) = d(v, V (C)) − 1. ¤
Lemma 6.10. Let u, v ∈ V (T ) with d(u, v) = e(u). Then V (C) lies between u and v.
(Note that if T is bicentral this only means that at least one of the central vertices must
lie between u and v).

Proof. Let P : u = v0, v1, ..., vk = v be the uv-path in T , Pu be the unique path
between u and the center and Pv be the path between v and the center. Pu and Pv cannot
be disjoint or P, Pu, Pv would be a cycle. Let z ∈ Pu ∩ Pv be the vertex in both paths
that has minimum distance from u. We want z to be in P . Suppose that z /∈ P . Then
the path from z to u, along P to v and back to z contains a cycle, or the paths from z
to u and from z to v overlap. In the later case, z would not have minimal distance to
u. Hence z is the unique vertex in P that lies between u and the center and between v
and the center. Let j = d(u, z), c ∈ C, t = d(z, V (C)) and r be the radius of T . Then
e(c) = r and d(v, c) ≤ r (this is true for all vertices in T ), so

d(v, c) = t + (k − j) ≤ r

Now Lemma 6.8 gives that there is some vertex w in T with distance r from the center such
that the path from w to the center is disjoint from Pu. We assumed that e(u) = d(u, v)
(v is as far from u as possible) so d(u,w) ≤ d(u, v). Adding up all the pieces we see that
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d(u,w) = j + t + r if T is central and d(u,w) = j + t + r + 1 if T is bicentral. But
d(u, v) = k, so in either case we have j + t+ r ≤ k. Combining this inequality with above
equation we get 2t + r = t + (t + r) ≤ t + (k − j) ≤ r, so 2t ≤ 0 and t = 0. Recall that
t is the distance from C to z which is in P , so z ∈ C and V (C) lies between u and v as
desired.

A graph with center in red, the vertex u in blue and two vertices with distance equal to
e(u) in green. Notice that the path from the blue vertex to either of the green vertices

must go through the center.

¤

Corollary 6.11. Let u be a vertex in a tree T . Then e(u) = rad(T ) + d(u, V (C)).

Proof. Let u, v be vertices in a tree T with d(u, v) = e(u), let P be the (unique)
path between u and v. We consider two cases, depending on whether T is central or
bicentral.

Case I: T is central. Let c be the central vertex. By Lemma 6.10 P must contain c. So
we can divide P into two pieces, P1 between u and c and P2 between c and v. The length
of V1 is d(u, V (C)). By de�nition the length of P2 can't be larger than rad(T ). If the
length of P2 is less than rad(T ) then there would be a vertex further from the center than
v and hence further from u. There is one nuance here; it could conceivably be the case
that any vertex with distance rad(T ) from c shares part of the path P1. Luckily Lemma
6.8 eliminates this possibility. By Lemma 6.8, the fact that T is central means that there
are at least two vertices distance rad(T ) from c, and they lie on disjoint paths from c. So
if one of them shares part of its path to the center with u, the other won't.

Case II: T is bicentral. Let c1 and c2 be the two central vertices. By Lemma 6.10 P
must contain either c1 or c2. Assume without loss of generality that P contains c1 and
d(u, c1) = d(u, V (C)). Again we split up the path P into P1 from u to c1 and P2 from c1

to v. The length of P1 is d(u, V (C)). If the length of P2 is less than the radius, we get a
contradiction because by Lemma 6.8 there must be a vertex lying on a path disjoint from
P1 that is distance rad(T ) from the center. Such a vertex would be further from u than
v and contradict the assumption that d(u, v) = e(u). On the other hand, if P2 is longer
than the radius, then d(c1, v) > e(c1) since e(c1) is equal to the radius. This contradicts
the de�nition of eccentricity. ¤

Corollary 6.12. Let u and v be vertices in a tree T . If d(u, V (C)) < d(v, V (C)), then
e(u) < e(v).

Proof. This follows directly from Corollary 6.11. Since d(u, V (C)) < d(v, V (C)),

e(u) = rad(T ) + d(u, V (C)) < d(v, V (C)) + rad(T ) = e(v).

¤
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Lemma 6.13. Let u and v be two nodes of a tree T with e(u) = e(v).

i) If d(u, v) is odd, then T is bicentral and both central nodes of T lie between u and v.

ii) If d(u, v) is even, then T may be central or bicentral, and the middle node of the uv-
path P lies between u and the center C (the middle of the uv-path also lies between v and
the center).

Proof. Let P be the path between u and v. We consider two cases, depending on
whether d(u, v) is even or odd.

Case I: d(u, v) is odd. By Corollary 6.11, e(u) = e(v) implies that d(u, V (C)) = d(v, V (C)).
If T is central, then the path from u to the center and then to v would either be a uv-path
(of even length), or contain some overlap which when removed would give a path of even
length. Similarly if T is bicentral and only one of the central vertices is between u and v,
then the same process would give a path of even length between u and v.

Case II: d(u, v) is even. Again from Corollary 6.11, d(u, V (C)) = d(v, V (C)). If T is
central then, as in Case I, the path from u to the center and then to v (removing any
overlap) is P . If T is bicentral then the same central vertex, say c1 must be the closest
central vertex to both u and v. Otherwise, the edge between the two central vertices
would be in the uv-path and since d(u, V (C)) = d(v, V (C)), P would have odd length.
We use the same trick as above, taking the path from u to c1and then to v and removing
any overlap to get P . In either case, removing overlap is done evenly to both the path
from u to the c1and from v to c1, so the middle of the path P must lie between both u
and the center and v and the center. ¤

If u and v are similar vertices of a graph G, then since every automorphism preserves
distances, we must have e(u) = e(v).

Lemma 6.14. Let u, v, w be three similar vertices in a tree T and P the uv-path in T .
If P has odd order, z is the middle vertex of P , and w is in the component of T\{z}
containing u, then d(u,w) < d(v, w). Similarly, if P has even order, e is the middle edge
of P , and w is in the component of T\e containing u, then d(u,w) < d(v, w).

Proof. Case I: P has odd order. Then the length of P is even and d(u, v) is even
so by Lemma 6.13 the middle vertex z of the uv-path lies between u and the center and
between v and the center. Since w is in the component of T\{z} that contains u, z must
lie between w and the center and the path between w and u must not contain z. Thus

d(u,w) ≤ d(u, z) + d(w, z) − 2 = 2d(v, z) − 2 < 2d(v, z).

But, w is in the component of T − z that contains u, so z is between w and the center.
Also since w and v are similar, d(w, V (C)) = d(v, V (C)), d(v, z) = d(w, z) and d(v, w) =
2d(v, z). Thus the above equation gives d(u,w) < 2d(v, z) = d(v, w) as desired.

Case II: P has even order. Then the length of P is odd, so by Lemma 6.13, T is bicentral
and the center edge e lies between u and v. Since w is in the component of T\e that
contains u,

d(u, w) ≤ d(u, V (C)) + d(w, V (C)) = 2d(u, V (C)).

Also, d(v, w) = d(v, V (C)) + 1 + d(w, V (C)), so combining the two equations gives
d(u,w) < d(v, w) as desired. ¤
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7. Interchange Equivalence Classes

Definition 7.1. An automorphism φ of a graph G interchanges two vertices u and v if
φ(u) = v and φ(v) = u. Let P : u0, u1, ..., uk be a path in G and φ an automorphism of
G. If for every integer i = 1, 2, ..., k, φ(ui) = uk−i then φ �ips the path P .

Lemma 7.2. If an automorphism φ interchanges two vertices u and v in a graph G, then
φ �ips every uv-path in G.

Proof. This follows directly from the fact that automorphisms preserve adjacency.
Suppose we are given an automorphism φ of a graph G that interchanges two vertices
u and v and a path P : u = u0, u1, ..., uk = v. Since u1is adjacent to u, φ(u1) must be
adjacent to v. Likewise, for any i = 1, .., k − 1, ui adjacent to ui+1 implies that φ(ui)
must be adjacent to φ(ui+1). We know that φ(uk) = φ(v) = u, so the image of the path
P is a path between v and u. ¤
Theorem 7.3. (Prins [12]) For every pair of similar vertices u and v in a tree T , there
is an automorphism of T that interchanges u and v.

We want to re�ne orbits into smaller groups of vertices that are even more alike than
vertices in the same orbit.

Definition 7.4. Let u and v be similar vertices in an orbit O of a graph G. An automor-
phism that interchanges u and v and �xes every other vertex in O is a uv-interchange.

We want to de�ne an equivalence relation on vertices using this concept of a uv-interchange.

Definition 7.5. De�ne a relation RO on vertices in an orbit O of a graph G by uROv
if there is a uv-interchange.

Theorem 7.6. RO is an equivalence relation on an orbit O of a graph G.

Proof. We need RO to be re�exive, symmetric and transitive.

1) RO is re�exive: We must show that for any vertex u in O, uROu. The identity
automorphism is technically a uu-interchange, so RO is re�exive

2) RO is symmetric: Suppose that uROv. Then there is a uv-interchange φ such that
φ(u) = v, φ(v) = u and φ leaves every other vertex in O �xed. Hence by de�nition φ is
also a vu-interchange.

3) RO is transitive: Suppose that f is a uv-interchange and g is a vw-interchange. Con-
sider the automorphism fgf . Notice that fgf(u) = w, fgf(v) = v,fgf(w) = u and all
other vertices in O are �xed, so fgf is a uw-interchange. ¤
Definition 7.7. Two vertices u and v in an orbit O are in the same interchange equiva-
lence class (IEC) if uROv. Every vertex u in a graph G is in some orbit Ou and hence in
some interchange equivalence class. Let ū denote the IEC containing u. The set of IECs
of O under the relation RO is written O/RO.

Lemma 7.8. For all φ ∈ Γ(G), aROb if and only if φ(a)ROφ(b).

Proof. For the �only if� direction of the proof, assume that aROb in a tree T and f is
an ab-interchange. Consider the automorphism φfφ−1. Notice that φfφ−1(φ(a)) = φ(b),
φfφ−1(φ(b)) = φ(a) and if c is a vertex inO with c 6= φ(a) and c 6= φ(b) then φfφ−1(c) = c
since f(φ−1(c)) = φ−1(c). Hence φfφ−1 is an φ(a)φ(b)-interchange and φ(a)ROφ(b).

For the other direction of the proof, assume that φ(a)ROφ(b). Then there exists a
φ(a)φ(b)-interchange g. The automorphism φ−1gφ will then be an ab-interchange since
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φ−1gφ(a) = b, φ−1gφ(b) = a and all other vertices in the orbit O will remain �xed by
φ−1gφ. ¤

The following corollary describes the re�nement of the orbit partition into IECs.

Corollary 7.9. Let G be a graph, O an orbit in G, A,B ∈ O/RO. Then |A| = |B| and
for every φ ∈ Γ(G), either φ(A) = B or φ(A) ∩ B = ∅.

Proof. Since A,B ∈ O/RO if a ∈ A, b ∈ B then a, b ∈ O, so there is an automor-
phism φ with φ(a) = b. We want to show that φ(A) = B. If c ∈ A then cROa, so by
Lemma 7.8 φ(c)ROφ(a) = b so φ(A) ⊆ B. If d ∈ B, then since φ is onto, there exists a
d′ ∈ V (G) such that φ(d′) = d. Since d ∈ B, dROb, so φ(d′)ROφ(a) and Lemma 7.8 gives
d′ROa. Thus B ⊆ φ(A) and |A| = |B|.

To prove the second claim let φ ∈ Γ(G). If φ(A)∩B 6= ∅, then there exists an a ∈ A and
a b ∈ B such that φ(a) = b. The above argument then gives that φ(A) = B. ¤

Corollary 7.10. For every vertex v in an orbit O of a graph G, |v̄| divides |O| divides
|Γ(G)|.

Proof. Let v be in an orbit O of a graph G then if u ∈ O, |v̄| = |ū| and v̄∩ū = ∅ so O
can be divided into pieces of size |v̄|. The fact that |O| divides |Γ(G)| is the orbit-stabilizer
theorem (see for example [5]). ¤

Definition 7.11. Let u, v be vertices in a connected graph G. Then we say that u
�xes v (denoted u 7→ v) if, for all φ ∈ Γ(G), we have φ(u) = u implies that φ(v) = v.
Equivalently we can say that u �xes v if and only if Γu(G) ⊆ Γv(G).

Theorem 7.12. The relation 7→ de�ned above is re�exive and transitive, but not neces-
sarily symmetric.

Proof. Clearly u 7→ u since Γu(G) ⊆ Γu(G). Transitivity follows from the transi-
tivity of ⊆. To see an example of a graph where the symmetry condition doesn't hold
consider P3. This graph consists of three vertices a, b and c such that a ∼ b and b ∼ c
but a � c. Then a 7→ b, but b doesn't �x anything, including a. ¤

Definition 7.13. A digraph is a directed graph; that is, a graph with a vertex set
V (G) = {u1, ..., uk} and an edge set consisting of ordered pairs (instead of unordered
pairs). The edges of a digraph are referred to as arcs (denoted uiuj). We say that uj is
adjacent from ui. Digraphs are normally pictured as a graph with arrows on the edges
pointing away from the �rst vertex in the ordered pair.

Definition 7.14. Given a graph G, the �xing digraph F (G) is constructed as follows:
V (F (G)) = V (G) and uv ∈ E(F (G)) if and only if u �xes v (in G). Notice that the
re�exivity of the relation 7→ gives that for every vertex u in V (G) the arc uu is in E(F (G)).

Example 7.15. Let G be the graph with V (G) = {a1, a2, b1, b2, c} and

E(G) = {{a1, a2}, {a1, c}, {a2, c}, {b1, b2}, {b1, c}, {b2, c}}.

Then a1 and a2 �x each other, b1 and b2 �x each other and every vertex �xes c. Hence
the �xing digraph of G has V (F (G)) = V (G) and

E(F (G)) = {a1a1, a1a2, a2a1, a2a2, a1c, a2c, b1b1, b1b2, b2b1, b2b2, b1c, b2c}.
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The graph G and its �xing digraph F (G)

Definition 7.16. Let G be a graph (or digraph), the domination number γ(G) is the
smallest cardinality of a set S ⊆ V (G) such that every vertex in V (G)\S is adjacent to a
vertex in S.

Further re�ning this concept (and actually getting to what we will use) given a collection
P = X1, X2, ..., Xk of sets vertices of a graph G, the P-defective domination number
γ̃P(G) is de�ned to be the minimum cardinality of a set S ⊆ V (G) such that for every
integer i = 1, ..., k at most one vertex in (V (Xi)\S) is not adjacent to a vertex in S.

Example 7.17. Let G be the grid P2 × P4 with V (G) = {ai,j : 1 ≤ i ≤ 2 and 1 ≤ j ≤ 4}
and E(G) = {(ai,j , ai′,j′) : |i − i′| = 1 or (but not both) |j − j′| = 1}. Let X1 = {a1,1},
X2 = {a1,2, a2,2}, X3 = {a2,1, a2,2, a2,3} and X4 = {a1,4, a2,4} and P = {X1, X2, X3, X4}.
Then {a2,3} is a minimum P-defective dominating set, so γ̃P(G) = 1.

The graph G with X1 in red, X2 in blue, X3 in green and X4 in purple:

8. The Main Theorem

We can now state and prove the main result, which relates what we have shown about
the �xing number of a tree to the P-defective domination number of its �xing graph.

Theorem 8.1. Let T be a tree, let Θ be the set of end-orbits of T and let P =
∪

O∈Θ

O/RO.

Then �x(T ) = γ̃P(F (T )) where F (T ) is the �xing digraph of T .

Proof. We begin by noting that �x(T ) ≥ γ̃P(F (T )) is trivial. If we have some �xing
set S ⊆ V (T ) with |S| = �x(T ), then every vertex in T is �xed by S so in the �xing
digraph F (T ), every vertex must be adjacent from some vertex in S. This is stronger than
the P-defective dominating condition; here, every vertex is dominated by S, regardless of
the choice of the sets Xi ∈ P, and ignoring the �every vertex in Xi except one� condition.

It remains to show that �x(T ) ≤ γ̃P(F (T )). Let S be a P-defective dominating set of
F (T ). By Lemma 6.3 it is su�cient to show that every end vertex of T is �xed by S.
Suppose not; then there exists an endorbit O, a vertex u ∈ O, and an automorphism
φ ∈ ΓS(G) such that φ(u) 6= u. Notice that φ(φ(u)) 6= φ(u) because we could apply
φ−1 to both sides of this equation to obtain φ(u) = u. By our choice of S, we see that
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φ(u) and u can't be in the same IEC (only one vertex in each IEC is not �xed by S), so

u 6= φ(u).

Claim: u = {u}. Suppose not. Let u′ ∈ u with u′ 6= u. By our choice of S, since φ
doesn't �x u it follows that φ �xes u′. Then since u ∈ u, uROu′ Lemma 7.8 gives that
φ(u)ROφ(u′) and φ(u′) = u′, so φ(u)ROu. This contradicts the above statement that

u 6= φ(u), so our claim is proved.

Let v be a vertex in O distinct from u for which d(u, v) is a minimum, and P the uv-
path in T . We consider two cases.

Case 1: P has odd order (even length). Let z be the central vertex of P and Tu, Tv the
components of T\{z} containing u and v respectively. Tu and Tv are isomorphic since
u and v are in the same orbit and automorphisms preserve adjacency. Let φ′′ be an
automorphism that sends u to v. Using Prins 7.3, we can construct an automorphism
φ′ that �ips the path P and sends u to v. If we then let φ be the restriction of φ′ to
Tu ∪ Tv, then φ will �x every vertex in T\(Tu ∪ Tv). We now see that φ must map Tv

onto Tu, and φ2 must equal the identity. We want φ to be a uv-interchange, so we need
to know that there are no elements of O\{u, v} in Tu or Tv. Lemma 6.14 and our choice
of v gives that there can be no vertices other than u in O in Tu. The fact that Tu and Tv

are isomorphic then gives that there are no vertices other than v in O and in Tv. Thus φ
is a uv-interchange so v ∈ u which is a contradiction since we've shown that u = {u}.

Case 2: P has even order (odd length). Lemma 6.13 gives that T is bicentral and since
u, v ∈ O implies that e(u) = e(v), both central vertices, z1, z2 lie between u and v. Thus
every automorphism that moves u to v must move every vertex in T (since the center
must be �ipped). Let Tu and Tv be the components of T\{z1, z2} containing u and v
respectively. Again similarly to Case 1, Lemma 6.14 gives that there can be no elements
of O\{u} in Tu. The symmetry between Tu and Tv then gives that Tv ∩ O = {v} so
O = {u, v} and v ∈ u which is again a contradiction.

This completes this direction of the proof; since every line of reasoning ended in a con-
tradiction, our assumption that �x(T ) � γ̃P(F (T )) is false. ¤

9. An Alternate Characterization of the IECs

In order to use the previous theorem to compute that �xing number of a tree, we must
�nd the end-orbits, compute the IECs and determine the P-defective domination number
of the associated �xing digraph. Computing the end-orbits of a graph is computationally
easy, see for example [1]. We now show that once we have the end-orbits it is relatively
easy to compute the IECs and we don't have to �nd the whole automorphism group to
do so.

We then apply this result to obtain a characterization of trees with �xing number 1. In
the next section we note that the process of determining �x(T ) can be simpli�ed as well.

Lemma 9.1. Let T be a tree, O an orbit of T and u, v ∈ O such that d(u, v) is odd. Then
every automorphism that sends u to v moves every vertex of T .

Proof. By Lemma 7.2, T is bicentral and both central vertices lie between u and
v. Let φ be an automorphism that sends u to v and let c1and c2 be the central vertices.
Assume without loss of generality that c1 is closer to u than c2. Then since c1 and c2 are
between u and v, φ(c1) is closer to φ(u) = v than φ(c2). Any automorphism must �x the
center, so φ(c1) = c2 and φ(c2) = c1 (φ �ips the center). Now let a be any vertex in T , a
must be closer to either c1or c2, and φ preserves distances, so φ(a) 6= a. ¤
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The following theorem gives a clear picture of the IECs in a tree. For a given vertex, its
IEC either has just one other vertex, or it consists of the closest vertices in the orbit.

Theorem 9.2. Let T be a tree, O be an orbit of T and u, v ∈ O with u 6= v.

i) If d(u, v) is odd, then uROv if and only if O = {u, v}.
ii) If d(u, v) is even then uROv if and only if d(u, v) = d(u,O\{u})

Proof. Let u, v ∈ O ⊆ T with u 6= v.

i) d(u, v) is odd: Clearly if O = {u, v} then uROv. For the other direction, assume that
uROv, d(u, v) is odd and φ is a uv-interchange. Then by Lemma 9.1, φ moves every vertex
in T . By de�nition of uv-interchange, φ must �x every other vertex of O, so O = {u, v}.
ii) d(u, v) is even: For the �if� direction, assume that d(u, v) = d(u,O\{u}). Let P be
the uv-path in T and z the central vertex of P . Let Tu and Tv be the components of
T\{z} containing u and v respectively. Then Tu and Tv are isomorphic and there is an
automorphism φ′′ that maps u to v. Prins 7.3 gives that there exists a φ′ ∈ Γ(T ) that
interchanges u and v. Let φ be the restriction of φ′ to Tu∪Tv, then φ �xes every vertex in
T\(Tu ∪ Tv). Furthermore, since d(u, v) is a minimum among O\{u}, Lemma 6.14 gives
that O ∩ (Tu ∪ Tv) = {u, v}. Hence φ is a uv-interchange, so uROv.

For the converse, let uROv and assume by contradiction that d(u, v) > d(u,O\{u})
(notice that d(u, v) < d(u,O\{u}) is impossible since u 6= v). Let u′ be such that
d(u,O\u) = d(u, u′). Since uROv, there is a uv-interchange φ such that φ(u′) = u′ and

d(u, u′) = d(φ(u), φ(u′)) = d(v, u′).

Let P be the uv-path in T and z the central vertex of P . Then since φ moves all of P\{z},
u′ /∈ P or u′ = z. By the above equation (and since paths between two vertices are unique
in trees) we see that z must lie between u and u′ and between v and u′. We assumed
that d(u, u′) < d(u, v) and since d(u, u′) = d(u, z)+ d(z, u′) and d(u, v) = 2d(u, z), we see
that d(z, u′) < d(u, z). Now by ii) of Lemma 6.13, z is between u and the center, so

d(u′, V (C)) ≤ d(u′, z) + d(z, V (C)) < d(u, z) + d(z, V (C)) = d(u, V (C)).

This is a contradiction since u and u′ are in the same orbit, so e(u) = e(u′) and by
Corollary 6.11 d(u, V (C)) = d(u′, V (C)). ¤

Definition 9.3. An IEC v is called trivial if v = {v} and nontrivial otherwise.

Corollary 9.4. Let O be an orbit in a tree T . If |O| ≥ 3, then O contains a nontrivial
IEC.

Proof. Let O contain three or more vertices. We consider separately whether T is
central or bicentral and, in ether case, we will �nd vertices in O that are even distance
apart. If T is central, then by Lemma 6.13 the distance between any two vertices in O is
even. If T is bicentral let e be the central edge of T , then since |O| ≥ 3 some component of
T\{e} must contain two (or more) vertices u, v ∈ O. Now Lemma 6.13 gives that d(u, v) is
even. Notice that the vertex in O that is the closest to u must be in the same component
of T\{e} as u. In either case we obtain vertices u, v ∈ O with d(u, v) = d(u,O\{u}) even.
Part ii) of Theorem 9.2 then gives that uROv. Thus O has a nontrivial IEC. ¤

Theorem 9.5. Let T be a tree. Then �x(T ) = 1 if and only if Γ(T ) ∼= Z2.

Proof. If Γ(T ) = Z2 then there are only two automorphisms, the identity and one
other, say φ. In order to �x the graph T we just �x one vertex that φ moves. Thus any
vertex moved by φ will be a �xing set for T .
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For the converse, let �x(T ) = 1 and let S = {u} be a �xing set for T . Suppose by
contradiction that |Γ(T )| > 2. Then {u} is a �xing set so every automorphism must
move u. Thus the orbit O containing u has cardinality |O| ≥ 3. By Corollary 9.4 O
must contain a nontrivial IEC and by Corollary 7.9 all the IECs contained in O are the
same size. This means if |O| ≥ 3 either u has more than two elements and there is
an interchange for two vertices other than u, or there is an IEC in O disjoint from u
and again there is an interchange for two vertices other than u. In either case, this is a
contradiction because an automorphism that is an interchange of two vertices other than
u in O must �x u, so {u} is not �xing set. ¤

10. The Minimum Fixing Set

Notation 10.1. If v is a non-central vertex in a tree T , then there is a unique edge e
incident with v that lies between v and the center of T . Let T (v) denote the component
of T\{e} that contains v.

A tree with center in red, and some branches in blue and green:

Notice that if an automorphism moves the blue point, all the vertices in that branch
must also be moved.

Lemma 10.2. Let v be a non-central vertex in a tree T and φ ∈ Γ(T ). If φ moves v, then
φ moves every vertex in T (v).

Proof. Let T be a tree, φ ∈ Γ(T ), v ∈ V (T ) and φ(v) 6= v. Suppose by contradiction
that there is a vertex v′ ∈ V (T (v)) with φ(v′) = v′. Then since φ is an isometry,
d(v′, v) = d(v′, φ(v)) and thus v does not lie between v′ and φ(v). Since v′ ∈ V (T (v)),
this means that φ(v) ∈ V (T (v)) and so v lies between φ(v) and the center of T and the
distance from v to the center is less than the distance from φ(v) to the center. This
contradicts Corollary 6.11 since e(v) = e(φ(v)). ¤

Corollary 10.3. If v is a non-central vertex in a tree T and u ∈ V (T (v)), then u �xes
every vertex that is �xed by v.

Lemma 10.4. If S is a �x(T )-set and v ∈ S, then v �xes every vertex in T (v).

Proof. The result holds vacuously if v is an end-vertex. Suppose by contradiction
that S is a �x(T )-set, v ∈ S and there is a vertex u ∈ T (v) and an automorphism φ
such that φ(v) = v and φ(u) 6= u. Since S �xes T , S ∩ T (v) 6= ∅ (otherwise φ restricted
to T (v) would �x S and move u). Let v′ ∈ S ∩ V (T (v)). Then v′�xes v, by Corollary

10.3. Let Ŝ = S\{v} then ΓŜ(T ) ⊆ ΓS(T ) = {id}. This gives that Ŝ �xes T which is a

contradiction since |Ŝ| < |S|. ¤
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Theorem 10.5. For every tree T , there is a �x(T )-set consisting of only end-vertices of
T .

Proof. Let T be a tree and S a P-defective dominating set of F (T ) (S is a γ̃P(F (T ))-
set) with the maximal amount of end-vertices. Assume that Γ(T ) is nontrivial, we claim
that every vertex in S is an end-vertex. Suppose by contradiction that there is a vertex
w ∈ S that is not an end-vertex. If w is central then in order for w to be moved by
an automorphism, T must be bicentral. Any automorphism that moves w will move
every vertex in T , so w can be removed from S and replaced by any vertex in T . This
contradicts our choice of S. If w is non-central, let x be an end-vertex in T (w) then by
Corollary 10.3 x �xes every vertex that is �xed by w. Again this contradicts our choice
of S. Hence we see that S must consist of all end-vertices. ¤

11. Conclusion

In this paper I have examined the �xing number of a graph, noted that we could restrict
our study to connected graphs, given some bounds on �xing numbers, constructed graphs
with a given �xing number, and used the P-defective domination number to �nd a way
to compute the �xing number of a tree.

A problem is that the P-defective domination number of a �xing graph, where P is a set
of IECs, is not a number that we come across often. It is shown in [1] that determining
the end-orbits of a tree is not computationally hard. Finding the IECs is also relatively
easy using Theorem 9.2 (luckily we don't need to �nd the whole automorphism group).
However, little is known about the P-defective domination number, and in particular, it
isn't known how hard it is to compute γ̃P for a given graph and collection P.
Also, the results presented in this paper deal mostly with trees; computing the �xing
number of graphs in general has not been studied much, and many of the tactics used
here will not work when cycles are present. In particular, the center of a graph becomes
a lot more complicated.

One �nal possible avenue of study could be expanding the idea of automorphism group to
include any group acting on the vertices. What restrictions, if any, would the structure
of the group place on the value of the �xing number?
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