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Section 1: Introduction 

 

In 1736, the great mathematician Leonhard Euler visited the city of Königsburg, in an 

area of Prussia near what is now Poland.  He encountered there a puzzle which had 

stumped the residents of the city for generations: Could a person walk from their house, 

cross all seven bridges across the river Pregel exactly once, visiting all four sections of 

the city, and return home without retracing their steps?  Euler solved the problem not just 

for the city of  Königsburg, but in general for any number of bridges and islands, and in 

the process set the spark from which was born the branch of geometry known as 

geometris situs (“the geometry of location”), now known as graph theory.      

 

Graph theory is the study of interconnectedness.  Euler was concerned with a set of 

objects, the separate landmasses of Königsburg, and the connections between them, in 

Euler’s case the bridges.  Modern graph theorists refer to the set of objects as vertices, 

and the connections between them as edges.  This simple starting point has let to 

applications in a variety of fields, from computer science (a network of computers, 

connected by cables), to mapmaking (countries connected by borders), to social science 

(high school students connected by a “relationship” in the more literal sense). 

 

The study of graph theory is devoted in large measure to finding similarities between 

graphs.  While there is a natural way to form a picture of a graph, with dots for the 

vertices and lines for the connections, when analyzing a graph the picture can be 

misleading.  The graph G, shown below, can be drawn in many ways based on where the 
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vertices are placed.  Even though each picture of the graph is different, they are all the 

same graph, and so should exhibit characteristics which are common to all of the pictures. 

 

 

 

 

 

 

 

 

 

This is where a graph theorist’s bread is buttered – in finding measurable characteristics 

which are inherent in a graph.  The graph G can then be described by the collection of 

identifying characteristics, some of which are shown below, which do not change no 

matter how the graph is drawn. 

       

 

 

 

 

 

 

 

A B 

C 

D E 

V= {A,B,C,D,E} 
E= {AB,BC,BD,CD} 

Order =  n ( G ) = 5 

G 

Size =  e ( G ) = 4 
deg(A ) = 1 
deg(B ) = 3 
deg(C ) = 2 
deg(D ) = 2 
deg(E ) = 0 

Degree Sequence = {3,2,2,1,0} 
Max Degree =  � ( G ) =  3 
Min Degree =  � ( G ) =  0 

# of Components =  c ( G ) =  2 
# of Faces =  2 

Shortest Cycle = Girth =  3 

Edge Chromatic # =  �́  ( G ) =  3 
Chromatic # =  � ( G ) =  3 

Largest Clique =  � ( G ) =  3 
Independence # =  � ( G ) =  3 

Fig. 1.2.  The graph G and some characteristics. 
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V= {A,B,C,D,E} 
E= {AB,BC,BD,CD} 

G 
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Fig. 1.1.  Three drawings of the graph G. 
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The authors of the paper “The independence fractal of a graph” wade into this soup of 

alphas, deltas, and chis with an ambitious plan: to create another piece of identification 

for G not by counting vertices or trying to color the graph, but by associating a fractal 

with G.  The hope is that there will be a connection between the graph-theoretic 

properties of G and the structure of the fractal. 

 

What is a fractal?  A fractal is an object or quantity that displays self-similarity on all 

scales. The object does not need to exhibit exactly the same structure at all scales, but the 

same "type" of structures.  This somewhat hazy definition is typical in the context of 

fractals, as there are as many alternative definitions as there are authors (see [Barnsley, 

1988], [Devaney, 1992], [Weisstein, 1999] etc…).  Barnsley has this to say on the 

definition of fractals:  “It is too soon to be formal about the exact meaning of ‘a fractal’.  

At the present stage of development of science and mathematics, the idea of a fractal is 

most useful as a broad concept.  Fractals are not defined by a short legalistic statement, 

but by the many pictures and contexts which refer to them…more meaning is suggested 

than is formalized.” 

 

Fortunately for us, we can be a bit more precise in our definitions.  After we cover some 

basic graph theory terminology, we will use some results from iteration theory in Section 

3 to formulate a precise definition of the independence fractal of a graph.  Once we have 

defined this object, the remainder of the paper will be devoted to using existing iteration 

theory to analyze the graph-fractal connections. 
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Section 2: Graph Theory 

 

First, a discussion of the graph theory we will need to get started.  A graph G consists of 

a set V(G) of vertices along with an edge set E(G), where each edge consists of a pair of 

vertices.  If a pair of vertices (x, y) is in E(G), then we say x is adjacent to y and write  

x ~ y.  The number n(G) (or just n) is the order of G, the number of vertices in the vertex 

set V(G). 

 

Our goal is to associate a fractal with each graph.  To do this we need two things: a 

polynomial which we can associate with our graph, and a mechanism to iterate the graph 

to create the sequences necessary for our fractal. 

 

There are several candidates to choose from for the polynomial, among them the 

chromatic polynomial, which denotes the number of k-colorings of the graph G, or the 

characteristic polynomial formed by the eigenvalues of the adjacency matrix.  For our 

purposes however, we will use a modified version of the independence polynomial as the 

basis for our fractals. 

 

An independent set in a graph G is a vertex subset S ⊆ V(G) that contains no edge of G 

(that is, the subgraph induced by S has no edges).  The independence number of a graph 

is the maximum size of an independent set of vertices.  For a graph G and non-negative 

integer k, let ik be the number of independent sets of vertices in G of cardinality k.   
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The independence polynomial of G is the generating polynomial �
=

=
α

0

)(
k

k
kG xixi for the 

sequence {ik}, where α is the independence number of G. 

 

Independence polynomials are used in other applications, in particular the study of well-

covered graphs, which are graphs with the property that every maximal independent set 

has the same cardinality �.  For an example, see [Brown, 2000].  

  

Example 2.1.  For the graph G, pictured at right, we compute 

the independence polynomial.  There is one subset of G with 

size zero, namely the empty set.  Since this set contains no 

edges in G, it is independent and i0 = 1.  There are five 

subsets of G with size one, {A}, {B}, {C}, {D}, and {E}.  

These sets contain no edges, so they are all independent and i1 = 5.  The two-element 

independent subsets of G are {A,C}, {A,D}, {A,E}, {B,E}, {C,E}, and {D,E}, and i2 = 6.  

There are two independent sets of order three, {A,C,E} and {A,D,E}, so i3 = 2.  There are 

no independent sets of order greater than three, so α  = 3 and the independence 

polynomial of G is: 

 15621562)( 230123

0

+++=+++==�
=

xxxxxxxxixi
k

k
kG

α

   � 

 

Our example leads us to some observations about the independence polynomial.  First, 

this polynomial will always have the constant term 1, since for any graph the empty set is 

Fig. 2.1.  The graph G for Example 2.1. 
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the only subset of cardinality zero, and is by definition an independent set.  Second, i1, 

the number of independent sets of size one, is simply the number of vertices, so 

i1 = | V(G) | = n(G). 

 

The lexicographic product (or composition) of two graphs G and H, denoted G[H], is 

the graph with vertex set V(G) × V(H), with (g, h) ~ ( g′ , h′ ) iff [g ~ g′] or 

[g = g′ and h ~ h′]. 

 

Example 2.2.  The graphs K3 and P2 are shown at right.  

Taking the lexicographic product P2[K3] we generate the 

following graph: 

 

V(P2[K3]) = {(A,1), (A,2), (A,3), (B,1), (B,2), (B,3)} 

E(P2[K3]) = { [(A,1), (B,1)], [(A,1), (B,2)], [(A,1), (B,3)], 

  [(A,2), (B,1)], [(A,2), (B,2)], [(A,2), (B,3)], 

  [(A,3), (B,1)], [(A,3), (B,2)], [(A,3), (B,3)], 

  [(A,1), (A,2)], [(A,1), (A,3)], [(A,2), (A,3)], 

  [(B,1), (B,2)], [(B,1), (B,3)], [(B,2), (B,3)] }    � 

 

As the name implies, the lexicographic product can be thought of in the same way as a 

dictionary ordering.  Two books A1 and B1 would be shelved next to each other since A 

is adjacent to B.  But for books A1 and A2, they would also be shelved next to each 

other, since A=A and 1 is adjacent to 2.  Another way to picture the lexicographic 

Fig. 2.2.  The graphs K3, P2 , and P2[K3]. 
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product G[H] is by forming a graph by replacing each vertex of G with a copy of H.  

Figure 2.2 illustrates this technique for P2[K3]. 

 

The lexicographic product has a number of desirable properties that make it suitable to 

“iterate” a graph, the first of which is that it is an associative operation. 

  

Theorem 2.1. Lexicographic product is associative. 

Proof.  Let G, H, and K be graphs, and let f : G[(H[K])] → (G[H])[K] such that 

f { (g,(h,k)) } = ((g,h),k).  We will show that f is an isomorphism.  First, f is clearly a 

bijection from V(G) × (V(H) × V(K)), the vertex set of G[(H[K])] to  

(V(G) × V(H)) × V(K), the vertex set of (G[H])[K]. 

 

Now assume (g1,(h1,k1)) ~ (g2,(h2,k2)) in G[(H[K])]. 

⇔ [g1 ~ g2 in G] or [g1 = g2 in G and (h1,k1) ~ (h2,k2) in H[K]] 

⇔ [g1 ~ g2 in G] or [g1 = g2 in G and {[h1 ~ h2 in H] or [h1 = h2 in H and k1 ~ k2 in K]}] 

⇔ [g1 ~ g2 in G] or [g1 = g2 in G and h1 ~ h2 in H] or [g1 = g2 in G, h1 = h2 in H and k1 ~ k2 in K] 

⇔ [g1 ~ g2 in G] or [g1 = g2 in G and h1 ~ h2 in H] or [(g1,h1) = (g2,h2) in G[H] and k1 ~ k2 in K] 

⇔ [(g1,h1) ~ (g2,h2) in G[H]] or [(g1,h1) = (g2,h2) in G[H] and k1 ~ k2 in K] 

⇔ ((g1,h1),k1)) ~ ((g2,h2)k2) in (G[H])[K] 

⇔ f (g1,(h1,k1)) ~ f (g2,(h2,k2)). 

∴ G[(H[K])] ≅ (G[H])[K] � lexicographic product is associative.   � 
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Because lexicographic product is associative, we can use the notation Gk to denote 

“lexicographic powers” of a graph G by setting G1 = G and Gk = G[G[G[…]] k, for 

k = 2, 3, 4…  Using this technique, we can now iterate our graph by taking lexicographic 

powers. 

 

We will be interested in the roots of the independence polynomial for these powers of G, 

and so a few theorems are in order. 

 

Theorem 2.2.  The independence polynomial of G[H] is given by ).1)(()(][ −= xiixi HGHG  

Proof.  By definition, the polynomial i( G, i(H, x) – 1) is given by 

,
0 1

k

k j

jH
j

G
k

G H

xii� �
= =

�
�
�

�
�
�
�

�α α

        (1) 

where G
ki  is the number of independent sets of cardinality k in G (similarly for H

ki ).  Now, 

an independent set in G[H] of cardinality l arises by choosing an independent set in G of 

cardinality k, for some k ∈ {0, 1, …, l}, and then, within each associated copy of H in 

G[H], choosing a non-empty independent set in H, in such a way that the total number of 

vertices chosen is l.  But the number of ways of actually doing this is exactly the 

coefficient of xl in (1), which completes the proof.     � 

 

Example 2.3.  The graph P3 [C4] is pictured below.  The independence polynomial for 

this graph is )1)(()(
4343 ][ −= xiixi CPCP 11222164 234 ++++= xxxx  where 
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,13)( 2
3

++= xxxiP  and .142)( 2
4

++= xxxiC  Using the notation from Theorem 2.2 we 

can use a counting argument to find the coefficient of x2 in ).(][ 43
xi CP  

 

 

 

 

 

 

 

 

When k = 0 there is nothing to count, so we start with k = 1 and count the following: 

A = ways to choose an independent set of order one from P3 = 3 

B = the number of independent sets of order two from C4  = 2 

 

For k = 2 we have: 

C = ways to choose an independent set of order two from P3 = 1 

D = the number of independent sets of order one from C4 = 4 

E = the number of independent sets of order one from C4 = 4 

The total number of independent sets of order two in P3 [C4] is then found by: 

221664*4*12*3*** =+=+=+ EDCBA  

 

To find the coefficient of x3 in ),(][ 43
xi CP for k = 0 or 1 there is nothing to count, so 

beginning with k = 2 we count the following: 

Fig. 2.3.  The graph P3[C4]. 
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A = ways to choose an independent set of order two from P3 = 1 

B = the number of independent sets of order two from C4  = 2 

C = the number of independent sets of order one from C4 = 4 

 

D = ways to choose an independent set of order two from P3 = 1 

E = the number of independent sets of order one from C4  = 4 

F = the number of independent sets of order two from C4 = 2 

The total number of independent sets of order three in P3 [C4] is then found by: 

16882*4*14*2*1**** =+=+=+ FEDCBA     � 

 

Theorem 2.2 simplifies the task of finding the independence polynomial of a 

lexicographic product, reducing the problem to elementary function composition.  A 

small modification to the independence polynomial will simplify this task even further.  

Since every graph has one and only one independent subset of size 0 (the empty set), 

every independence polynomial has constant term 1.  Define the reduced independence 

polynomial of G as the function .1)()( −= xixf GG   By removing the constant term, 

Theorem 2.2 reduces to: 

 

Corollary 2.3.  )).(()(][ xffxf HGHG =  

 

This result makes it feasible to analyze the roots of the reduced independence polynomial 

for powers of a graph G.  Recall that we defined G1 = G and Gk = G[G[G[…]] k, for 
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k = 2, 3, 4…  Corollary 2.3 tells us that the reduced independence polynomials are closed 

under lexicographic powers: kGGGG
xfffxf k )...))((...()( =  for k = 2, 3, 4…    

 

Using the lexicographic powers to iterate the graph, we now examine the behavior of the 

roots of the reduced independence polynomial as k → ∞.  For the graph P3, the following 

plots (on the complex plane) show the roots of the reduced independence polynomial 

.3)( 2
3

xxxf P +=  

 

 

 

,3)( 2
3

xxxf P +=  

 roots: {0, 3} 

 

 

 

2
3 33

4 3 2( ) ( ( )) 6 12 9 ,P PP
f x f f x x x x x= = + + +  

roots: {0, 3, -1.5-0.866i, -1.5+0.866i} 
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)))((()(
333

3
3

xfffxf PPPP
= ,271172342551626012 2345678 xxxxxxxx +++++++=  

roots: {0, 3, -1.5-0.866i, -1.5+0.866i, -2.47-0.445i, 

-2.47+0.445i, -0.526-0.445i, -0.526+0.445i} 

 

 

 

 

 

 

)(4
3

xf
P

 

roots: (see Appendix  [1] for derive output) 

 

 

 

 

 

 

)(5
3

xf
P
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The roots of the reduced independence polynomial for G11, where G = P3 are shown 

above.  This is a polynomial of degree 211 = 2048.  Notice the similarity between the 

placement of the roots in the plot above and the boundary of the black region in the 

fractal shown below. 

 

 

 

 

 

 

As these figures illustrate, it appears that the roots of the modified independence 

polynomials are approaching a fractal-like object.  Is it indeed a fractal?  We will need a 

bit of background in iteration theory before we can answer this question definitively. 

 

 

 

 

 

Fig. 2.5.  The roots of the reduced independence polynomial for G = P3. 

Fig. 2.6.  A mystery fractal (see Figure 3.1). 

 . 8   . 8   

 - 3  

 - 3  
  0  

- . 8  

. 8  
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Section 3: Fractals & Iteration of Polynomials 

 

There is a large body of work devoted to the study of iteration of polynomials (see 

[Barnsley, 1988], [Beardon, 1991], [Devaney, 1992]), which we will only be touching on 

in this paper.  Unless otherwise noted, all definitions and results from this section can be 

found in [Beardon, 1991]. 

 

We will be working in the metric space ( �, | � | ), which is the complex plane combined 

with the absolute value metric, where d( z, w ) = | z – w | for ∈wz,  � .  For the remainder 

of this section, assume that f is a polynomial of degree at least 2. 

 

For a polynomial f and a positive integer k, we define kf � as the map kfff ��� ...  with 

)0(�f  as the identity map.  Define )( kf −� as the map kfff )1()1()1( ... −−− ���
���  where 

=− )()1( Af � { ∈z  � : Azf ∈)( } for ⊆A �. 

 

The forward orbit of a point ∈0z �� with respect to f is the set: �+ { } .)()( 000

∞

== k
k zfz �  

 

For a polynomial f, its filled Julia set )( fK  is the set of all points z whose forward orbit 

�
+ )(z  is bounded in ( �, | � | ).  The Julia set of f, )( fJ  is the boundary ).( fK∂   The 

Fatou set )( fF  is the complement of )( fJ  in �. 
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Example 3.1.  For the polynomial ,3)( 2 xxxf +=  ,)(0 xxf =�  ,3)()( 21 xxxfxf +==�  

,9126))(()( 2342 xxxxxffxf +++== �
�  etc…  Let ,10 =z  then  

�
+ { } { } { } { },...868,28,4,1),...1(),1(),1(,1),...1(),1(),1()1()1( 32210

0 ====
∞

=
������ fffffff k

k  

which is clearly unbounded, and therefore 1 is not in the filled Julia set of f. 

 

On the other hand, setting 10 −=z  yields 

�
+ { } { } { },...2,2,2,1),...1(),1(),1(,1)1()1( 32

0 −−−−=−−−−=−=−
∞

=
��� ffff k

k  which is 

bounded and so –1 is in ).( fK   Figure 3.1 shows the filled Julia set of f.  )( fK  is the 

region in black, indicating that those values have a bounded forward orbit.  All points in 

gray have unbounded orbits, and are therefore in ).( fF     � 

 

 

 

 

 

 

 

Now that we have defined the sets ),( fK ),( fF  and ),( fJ  we can explore some of their 

properties.  If g is a map of a set X into itself, a subset A of X is completely invariant if 

).()( 1 AgAAg −==   In [Beardon, 1991] it is shown that if A is completely invariant then 

Fig. 3.1.  The filled Julia set of f from Example 3.1. 

 .8  .8  

 -3   0 

-.8 

.8 
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the complement of A, the interior of A, the closure of A, and the boundary of A are all 

completely invariant as well.  It is then shown that )( fF  is completely invariant, which 

leads to the following theorem. 

 

Theorem 3.1.  The sets ),( fK ),( fF  and )( fJ  are all completely invariant.  

 

For any positive integer k, )( fF  invariant implies that ( ) ( ) ( ),...)1( fFfFfF kk === −��  

so ( ) ( )fFfF k =�  and similarly ( ) ( ).fJfJ k =�  

 

There is an alternative definition for the Fatou and Julia sets, based on the notion of 

equicontinuity.  A family of maps �  from a metric space ( )dX ,  to a metric space 

( )11 ,dX  is equicontinuous at the point 0x  in X if, for every positive �, there is some 

positive � such that for every x in X, and for all f in �, δ<),( 0 xxd  implies 

.))(),(( 01 ε<xfxfd   This definition extends the usual notion of continuity to a family of 

functions, and implies that all functions f in an equicontinuous family of functions �  map 

the open ball with center 0x  and radius � into a ball of radius at most �. 

 

It is shown in [Beardon, 1991] that an equivalent definition of the Fatou and Julia sets is 

as follows:  For a non-constant polynomial f, )( fF  is the maximal open subset of  

( �, | � | )�on which { }∞
=0k

kf �  is equicontinuous.  )( fJ  is the complement of )( fF  in 

( �, | � | ). 
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By this new definition it is clear that )( fF  is an open subset of ( �, | � | ), which makes 

)( fJ  a closed subset of ( �, | � | ).  It can actually be shown that )( fJ  is a perfect set, 

that is, a set which is equal its set of accumulation points.  So )( fJ  is closed, bounded, 

and uncountable. 

 

There is yet another characterization of the sets )( fF  and ),( fJ  which Beardon 

describes as the “central idea in iteration theory.” [Beardon, 1991]  A point � is a fixed 

point of f if .)( ζζ =f   If we assume that for some choice of ,0z  the sequence 

{ }∞

=00 )( k
k zf �  (the forward orbit of 0z ) converges to a point w then we have (from the 

continuity of f ): ( ) ).()(lim)(lim 0
1

0 wfzffzfw n

n

n

n
=== −

∞→∞→

��   So w is a fixed point of f, 

and all forward orbits of points in �, if they converge, converge to a fixed point of f. 

 

We can characterize the fixed points of a polynomial f by the behavior of the derivative 

of the function at the point �.  For all polynomials, the derivative )(ζf ′  is defined for any 

fixed point �, so we define �  to be: 

 

1. a super-attracting fixed point if ;0)( =′ ζf  

2. an attracting fixed point if ;1)( <′ ζf  

3. a repelling fixed point if ;1)( >′ ζf  and 

4. an indifferent fixed point if ,1)( =′ ζf  which includes the following cases: 

a. a rationally indifferent fixed point if )(ζf ′  is a root of unity, and 
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b. an irrationally indifferent fixed point if 1)( =′ ζf  but is not a root of 

unity. 

 

A critical point z of f is a point which has no local inverse, that is, f fails to be injective 

in any neighborhood of z.  The distinction between super-attracting and attracting fixed 

points is that if � is super-attracting it is also a critical point of f, while attracting fixed 

points are not critical points.  For an indifferent fixed point �, the best linear 

approximation to f near � is a rotation about �.  Rationally indifferent fixed points can be 

approximated with a rotation of finite order, while irrationally indifferent fixed points are 

approximated with a rotation of infinite order. 

  

The following two theorems describe the behavior of points in a neighborhood around � 

when iterating f. 

 

Attracting Fixed Point Theorem 3.2. [Devaney, 1992]  Suppose � is an attracting (or 

super-attracting) fixed point for f.  Then there is an interval I that contains � in its 

interior and in which the following condition is satisfied: if ,Ix ∈  then Ixf n ∈)(�  for all 

n and ζ→)(xf n�  as .∞→n  

Proof.  � an attracting fixed point ,1)( <′� ζf  so there is a number � > 0 such that 

.1)( <<′ λζf   We may therefore choose a number � > 0 so that λ<′ )(xf  provided x 

belongs to the interval ].,[ δζδζ +−=I   Now let p be any point in I.  By the Mean 

Value Theorem, ,
)()(

λ
ζ

ζ
<

−
−

p

fpf
 so that .)()( ζλζ −<− pfpf   Since � is a fixed 
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point, it follows that .)( ζλζ −<− ppf   Since ,1<λ  this means that the distance from 

)( pf  to � is smaller than the distance from p to �.  In particular, )( pf  also lies in the 

interval I.  Therefore we may apply the same argument to )( pf  and ),(ζf  finding 

.)()()()()( 2222 ζλζλζζ −<−<−=− pfpffpfpf ���   Since ,1<λ  λλ <2  and 

the points )(2 pf �  and � are even closer together than )( pf  and �.  We may continue 

using this argument to find that, for any n > 0, .)( ζλζ −<− ppf nn�   Now 0→nλ  as 

,∞→n  so ζ→)( pf n�  as .∞→n        � 

 

By the same argument, we also have: 

  

Repelling Fixed Point Theorem 3.3. [Devaney, 1992]  Suppose � is a repelling fixed 

point for f.  Then there is an interval I that contains � in its interior and in which the 

following condition is satisfied: if Ix ∈  and ,ζ≠x  then there is an integer n > 0, such 

that .)( Ixf n ∉�  

 

The figures below illustrate the behavior of a point z which is “close” to � when f is 

repeatedly applied.   If z is close to �, then we can estimate  

.)()()()( ζζζζ −⋅′≈−=− zffzfzf   If ,1)( <′ ζf  this implies that 

,)( ζζ −≤− zzf  so points which are near an attracting fixed point will move closer 

with repeated applications of f. 
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Similarly, 1)( >′ ζf  implies that ,)( ζζ −≥− zzf  so points near a repelling fixed 

point will tend to move away when f is applied. 

 

 

   

 

Example 3.2.  For the function ,2)( 2 −= xxf  2 is a fixed point, since 

.22422)2( 2 =−=−=f  ,1422)2( >=⋅=′f  so 2 is a repelling fixed point of f.  This 

implies that points in a neighborhood around 2 should escape that neighborhood, as can 

be seen by taking points close to 2 and iterating: 

{ } { },...3278.34457.274,7.699,3.11,2.261,2.064,2.016,2.004,,001.2)001.2( 0 =
∞

=k
kf �  

Fig. 3.2.  The behavior of points near an attracting fixed point. 

Fig. 3.3.  The behavior of points near a repelling fixed point. 
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{ } { }.,...1.233-0.876,-1.060,1.749,1.936,1.984,1.996,1.999,)999.1( 0 =
∞

=k
kf �  

 

On the other hand, the function xxxf 22)( 2 +−=  has a fixed point at ½.  

,02
2
1

4
2
1 =+�

�

�
�
�

�−=�
�

�
�
�

�′f  so ½ is a super-attracting fixed point of f.  Taking points close 

to ½ shows: { } { },...0.50.49995,0.495,0.45,)45(. 0 =
∞

=k
kf �  and 

{ } { },...0.50.49995,0.495,0.55,)55(. 0 =
∞

=k
kf �       � 

 

If 1)( =′ ζf  then the situation is not as clear cut.  In fact, the behavior of points in a 

neighborhood around an indifferent fixed point varies depending on the function 

involved, as the following example shows. 

 

Example 3.3.  The function xxf −=)(  has a fixed point at 0.  This is an indifferent fixed 

point since .11)0( =−=′f   This fixed point is neither 

attracting nor repelling, since for all ,0≠a  

{ } { }.,...,,,)( 0 aaaaaf k
k −−=∞

=
�  

 

The function 2)( xxxf −=  also has an indifferent fixed 

point at 0, since .1)0(21)0( =−=′f   The behavior of this 

fixed point is shown in the figure at right.  Points 0>a  in 

a neighborhood around 0 are attracted to 0: { } { },,...152344.,1875.,25.,5.)5(. 0 =
∞

=k
kf �  

Fig. 3.4.  An indifferent fixed point. 
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whereas points 0<a  are repelled from 0: 

{ } { }.,...2473.12,0352.3,3125.1,75.,5.)5.( 0 −−−−−=−
∞

=k
kf �  

 

Finally, an indifferent fixed point may attract all orbits in a neighborhood.  The function 

3)( xxxf −=  has an indifferent fixed point at 0 that attracts all :1<a  

{ } { }.,...2647.,2888.,3223.,375.,5.)5.( 0 −−−−−=−
∞

=k
kf �   Conversely the function 

3)( xxxf +=  repels all orbits away from 0.  These fixed points are called weakly 

attracting (or repelling), since the convergence (divergence) is slow.  � 

 

A point 0z  is a periodic point of f if, for some positive integer k, .)( 00 zzf k =�   The 

smallest such k is the period of .0z   If k =1 then 0z  is a fixed point of f.  The forward 

orbit of a periodic point with period k is { } { }),...(),...,(),(,)( 00
2

0000 zfzfzfzzf k
i

i ��� =
∞

=  

{ },),...(,),(),...,(),(,)(),...,(),(, 000
)1(

0
2

0000
2

00 zfzzfzfzfzzfzfzfz kk −== ����  which is 

a cycle of length k. 

 

As with fixed points, we can characterize periodic points using ( ) ),( 0zf k ′
= �λ  the 

derivative of kf � evaluated at 0z , where k is the period of the cycle.  � is known as the 

multiplier of the cycle, and is independent of which 0z  is chosen from the cycle (we 

prove this below).  The cycle is: 
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1. a super-attracting cycle if ;0=λ  

2. an attracting cycle if ;10 << λ  

3. a repelling cycle if ;1>λ  

4. a rationally indifferent cycle if � is a root of unity; and 

5. an irrationally indifferent cycle if 1=λ  but � is not a root of unity. 

 

It can be shown (see notes below) that: 

 

i. attracting (or super-attracting) cycles lie in );( fF  

ii. repelling cycles lie (and are dense) on );( fJ  

iii. rationally indifferent cycles lie on );( fJ  and 

iv. irrationally indifferent cycles may lie in )( fJ  or ).( fF  

 

Notes: 

 

i. As shown above in Theorem 3.2, 1<λ  and ζλζ −<− ppf nn )(�  in a 

neighborhood around �.  This shows that nf �  maps a disc D (centered at �) into 

itself, leading to the conclusion that { }∞
=0)( k

k Df �  is equicontinuous, and thus lies 

in ).( fF  

ii. Proof.  Suppose the origin is a repelling fixed point of f.  Then, near the origin 

...,)( += azzf  where 1>a  and consequently as ,∞→n  ( ) .)0(1 ∞→=′ naf �   
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Suppose for contradiction that 0 is in ).( fF   Then { }nf �  is equicontinuous on a 

neighborhood � of 0, and so some sequence of the iterates nf �  converge 

uniformly on �  to some analytic function g.  Now,  ,0)0( =g  so )0(g ′  is finite.  

On the other hand, the uniform convergence implies that for the given sequence, 

( ) ,)0(lim)0( ∞=	

�

�

� ′
=′ nfg �  which is a contradiction.  Therefore the repelling 

fixed point 0 is in ).( fJ   By conjugation, this implies that any repelling fixed 

point of f is in ).( fJ   If { }kζζ ,...,1  is any repelling cycle for f, then each iζ  is in 

( ),nfJ �  and since ( ) ),( fJfJ n =�  the cycle is in ( ).fJ    � 

iii. See [Beardon, 1991]. 

iv. See [Beardon, 1991]. 

 

The chain rule gives a straightforward way to compute the multiplier.  Assume that 

{ }10 ,..., −kzz  is a cycle in f.  Computing the derivative for several iterates gives: 

( ) ( ) ),()()()()( 01000
2 zfzfzfzffzf ′⋅′=′⋅′=

′�  

( ) ( ) ( ) ),()()()()()( 0120
2

0
2

0
3 zfzfzfzfzffzf ′⋅′⋅′=

′
⋅′=

′ ���  and with repeated 

application of the chain rule we have 

( ) ( ) ( ) ).(...)()()()()( 0210
1

0
1

0 zfzfzfzfzffzf kk
kkk ′⋅⋅′⋅′=

′
⋅′=

′
−−

−− ���   So the multiplier 

is ( ) ),(...)()()( 0210 zfzfzfzf kk
k ′⋅⋅′⋅′=

′
= −−

�λ  the product of the derivative of f at all 

points on the orbit.  Note that this is independent of which 0z  is chosen from the cycle. 
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Example 3.4.  For the polynomial ,1)( 2 −= xxf  { } { },,...0,1,0,1)1( 0 −−=−
∞
=i

if �  and so 

contains the cycle {-1,0} of length k = 2.  The multiplier for this cycle is 

( ) )1(2 −′= �fλ )()( 01 zfzf ′⋅′=  .0)2(0)1()0( =−⋅=−′⋅′= ff  This cycle is therefore 

super-attracting.         � 

 

Another characterization of the Julia set can be found by using the backward orbit of a 

point.  For of a point ∈0z ��, its backward orbit with respect to f is the set 

.)()(
0

0
)(

0 �
�

∞

=

−− =
k

k zfzO   A polynomial f has at most one exceptional point whose 

backwards orbit is finite.  In [Beardon, 1991] it is shown that an exceptional point for f, if 

it exists, lies in ).( fF  

 

Example 3.5.  For ,)( 2xxf =  0 is an exceptional point since { }.0)0( =−O   � 

 

As we discovered above, repelling forward cycles of f lie on ).( fJ   When looking at 

backward orbits, it is therefore not surprising to find that )( fJ  attracts backwards orbits 

of f, as outlined in the following theorems. 

 

Theorem 3.4.  For a polynomial f (of degree � 2), a non-empty open set W which meets 

),( fJ  and for all sufficiently large integers n, ).()( fJWf n ⊃�   (See [Beardon, 1991] 

for proof.)   
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Theorem 3.5.  For a polynomial f of degree at least 2, 

i. If z is not exceptional, then )( fJ  is contained in the closure of ).(zO −  

ii. If ),( fJz ∈  then )( fJ  is the closure of ).(zO −  

Proof.  [Beardon, 1991]  Consider any non-exceptional z and any non-empty open set W 

which meets ).( fJ   As W meets ),( fJ  Theorem 3.4 implies that z lies in some )(Wf n�  

and so )(zO −  meets W, which proves (i).  If z is in ),( fJ  then the closed, completely 

invariant set )( fJ  contains the closure of the backward orbit ),(zO −  and in conjunction 

with (i) yields (ii).         � 

 

In making the connection between the Julia set of a function f and the backward orbit of a 

point, we can actually do better than these two theorems.  Using a metric on the finite sets 

),( 0
)( zf k−�  we can show that they converge to ).( fJ   Note that since the sets )( 0

)( zf k−�  

are finite, they are necessarily compact. 

 

The Hausdorff metric measures the distance between two compact subsets A and B of 

( �, | � | ) as )),(),,(max(),( ABdBAdBAh =  where .minmax),( baBAd BbAa −= ∈∈   To 

compute this metric, first find the point in A which is closest to B, and the point in B that 

is farthest from it, and compute the distance between them (see the line in Figure 3.5, 

below).  Next do the opposite, with B and A.  The Hausdorff distance is the maximum of 

these two values. 
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Example 3.6.  Let { }3,2,1=A  and .7,6,
2
1

�
�
�

�
�
�=B   The values of ba −  are shown in 

Table 3.7. 

 

A 
|a – b| 

1 2 3

0.5 0.5 1.5 2.5

6 5 4 3B 

7 6 5 4

 

,5.25.maxminmax),( =−=−= ∈∈∈ abaBAd AaBbAa  

,61maxminmax),( =−=−= ∈∈∈ babABd BbAaBb  

.6)6,5.2max()),(),,(max(),( === ABdBAdBAh      � 

 

Fig. 3.5.  Computing the Hausdorff metric I. Fig. 3.6.  Computing the Hausdorff metric II. 

Table 3.7.  Computing the Hausdorff metric. 
II. 
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We need only a few more definitions to round out our discussion of iteration theory.  A 

Möbius map is a rational map of the form ,)(
dcz
baz

z
+
+=φ  with ,0≠− bcad  for a, b, c, 

and d fixed complex numbers.  The condition 0≠− bcad  ensures that φ  is 1-1 and 

therefore invertible.  Two polynomials f and g are conjugate if there exists a Möbius map 

φ  such that .1−= φφ �� fg    For two conjugate functions, 

( ) .... 1111 −−−− === φφφφφφφφ ����������
��� kkk ffffg  

 

Theorem 3.6.  If 1−= φφ �� fg  for some Möbius map ,φ  then ))(()( fFgF φ=  and 

)).(()( fJgJ φ=   The sets )(gJ  and )( fJ  are then said to be analytically conjugate, as 

are )(gF  and ).( fF  

 

A Siegel disk is a forward invariant component of )( fF  which is analytically conjugate 

to a Euclidean rotation of the unit disc onto itself.  For our discussion here, we only need 

to know that they are contained in ).( fF  

 

With the Hausdorff metric at our disposal, we now have the following theorem. 

 

Theorem 3.7.  [Brown, 2003]  Let f be a polynomial, and 0z  a point which does not lie in 

any attracting cycle or Siegel disk of f.  Then ),()(lim 0
)( fJzf k

k
=−

∞→

�  where the limit is 

taken with respect to the Hausdorff metric on compact subspaces of ( �, | � | ). 
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Attracting cycles are also contained in ),( fF  so we have from Theorem 3.7 that for any 

),(0 fJz ∈ ).()(lim 0
)( fJzf k

k
=−

∞→

�  

 

 

 

 

 



Louis Kaskowitz 31 
 

Section 4: The Independence Fractal of a Graph 

 

We now have the background information needed to tackle our main goal: to associate a 

fractal with our graph.  Once we have found our fractal (and shown it exists for all 

graphs), we then ask what the structure of this fractal can tell us about the structure of the 

graph. 

 

We start with the roots of the reduced independence polynomial for powers of G.  For 

each ,1≥k  let Roots ( )kG
f  be the set of roots of the reduced independence polynomial for 

Gk, a lexicographic power of G.  Roots ( )kG
f  is a finite and therefore compact subset of  

( �, | � | ).  By definition, =− )0()1(�f { ∈z  � : 0)( =zf }, so Roots ( ) ).0()1(−= �ffG   We 

have already shown that lexicographic product is associative, so for ,2≥k  Gk = Gk-1[G], 

which along with Corollary 2.3 implies that .1 GGG
fff kk �−=  

 

So Roots ( )kG
f  =  Roots ( ).1 GG

ff k �−   The roots of the polynomial GG
ff k �1−  consists of 

the set of all points mapped by Gf  to the roots of ,1−kG
f  which is the set 

()1(−�
Gf Roots ( )).1−kG

f   Therefore Roots ( )kG
f  = ()1(−�

Gf Roots ( )).1−kG
f   Since 

Roots ( ) ),0()1(−= �ffG  we have Roots ( ) ).0()( k
G

ff k
−= �  

 

Since �
=

=
α

1

,)(
k

k
kG xixf  we have that 0)0( =Gf , so ).0(0 )1(−∈ �

Gf   Applying )1(−�
Gf  to 

both sides yields ),0()0( )2()1( −− ⊆ ��

GG ff  and by repeated applications gives 
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)0()0( ))1(()( +−− ⊆ k
G

k
G ff ��  for all k.  So for any power k of G, Roots ( )⊆kG

f  Roots ( ).1+kG
f   

That is, roots “stick around” for these polynomials, and once you have found one for 

,kG
f  that root will be a root for all ,mG

f  m > k. 

 

Now, define the independence fractal of a graph G as the set  �(G)
∞→

=
k
lim Roots ( ).kG

f   

The following theorem shows that the independence fractal exists for all graphs G. 

 

Theorem 4.1.  The independence fractal �(G) of a graph G � K1 is precisely the Julia 

set )( GfJ  of its reduced independence polynomial ).(xfG   Equivalently, �(G) is the 

closure of the union of the reduced independence roots of powers of Gk, k = 1,2,…,�. 

Proof.  If G has independence number 1, then G = Kn for some n � 2, and .)( nxxfG =   

Each non-zero point therefore has an unbounded forward orbit, so the Julia set for Gf  is 

{0}.  Now, Gk = (Kn)k = ,kn
K  since by the definition of lexicographic product, all vertices 

adjacent in Kn implies that all vertices in Kn[Kn] will be adjacent, and there will be nk of 

them.  So ,)( xnxf k
G k =  and the set of roots of this polynomial is {0}.  The union and 

limiting root set is therefore ),(}0{ fJ=  and the result holds. 

 

If G has independence number at least 2, then )(xfG  has degree at least 2.  Since 

�
=

=
α

1

,)(
k

k
kG xixf  we have that 0)0( =Gf  and .1)()0( 1 >==′ GVifG   Thus 0 is a 

repelling fixed point of )(xfG  and therefore lies in ( ).)(xfJ G   In particular, z0 = 0 
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satisfies the hypothesis of Theorem 3.7.  This, along with the fact that Roots 

( ) )0()( k
G

ff k
−= �  gives �(G)

∞→
=

k
lim Roots ( )kG

f  = ( ).)0(lim )(
G

k

k
fJf =−

∞→

�  

 

From Theorem 3.5, we know that if ),(0 GfJ∈  then )( GfJ  is the closure of ),0(−O  so 

�(G) = )( GfJ  = CL [ ]=− )( 0zO CL 	



�
�


� ∞

=

−
�

�

0

)( )0(
k

kf  = CL[�
∞

=0k

Roots ( )kG
f ], where CL[] 

denotes topological closure.  So �(G) is the closure of the union of the reduced 

independence roots of powers of Gk, which completes the proof.   � 

 

There are only two graphs which Theorem 4.1 leaves out, the empty graph and G = K1.  

In the latter case, xxfG =)(  and xxf kG
=)(  for all k, so �(G) = {0}.  The case of the 

empty graph is considered in [Brown, 2003].  Theorem 4.1 answers the question of 

whether the limit of the sequence {Roots ( )kG
f } exists in general with respect to the 

Hausdorff metric of compact subsets of ( �, | � | ).  It does, and the limit is �(G), the 

independence fractal of G, which is also the Julia set of .Gf  

 

We can feel comfortable then calling �(G) the independence fractal, since Julia sets are 

typically fractals (in some sense).  By typically, we mean that nearly all Julia sets are 

fractal-like objects.  For instance, for Julia sets generated by the quadratic mapping 

,2
1 czz nn +=+  most values of c produce a fractal.  The resulting object is not a fractal for 
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c = 0 and c = -2, and “it does not seem to be known if these two are the only such 

exceptional values.” [Weisstein, 1999]  

 

Now that we have succeeded in establishing our goal of associating a fractal with each 

graph, we turn our attention to answering a few basic questions about what the structure 

of the fractal says about the graph.  Recall that our overall goal has been to use the fractal 

to somehow “encode” information about the graph.  One obvious attribute of a fractal is 

whether it is a connected set or disconnected set.  As the figures below demonstrate, Julia 

sets of polynomials are not, in general, connected.  The following theorem gives us some 

guidance as to when we will find a connected or totally disconnected Julia set.  A totally 

disconnected set is one whose components (maximally connected subsets) contain just 

one point.  

 

Theorem 4.2. [Beardon, 1991]  Let f be a polynomial of degree at least two.  Its Julia set 

)( fJ  is connected iff the forward orbit of each of its critical points is bounded in  

( �, | � | ).  Its Julia set )( fJ  is totally disconnected if (but not only if) the forward orbit 

of each of its critical points is unbounded in ( �, | � | ). 

 

Example 4.1.  For ,32)( 2 xxxf +=  f has one critical point at  

,
4
3

034)( −=�=+=′ xxxf  and 

�
+ ( ) { } { },0.870,...-1.107,-0.844,-1.125,-,75.)75.(75. 0 −=−=− ∞

=k
kf �  which is bounded.  
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The independence fractal of f is therefore connected by Theorem 4.2, as shown in Figure 

4.1, below. 

 

For ,1)21()( 3 −+= xxf  f has one critical point at ,
2
1

0)21(6)( 2 −=�=+=′ xxxf  and 

�
+ ( ) { } { },166376,...-28,-2,-1,-0.5,-)5.(5. 0 =−=− ∞

=k
kf �  which is unbounded.  So the 

independence polynomial of f is completely disconnected, as is shown in Figure 4.2. 

           � 

  

 

    

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2.  Independence fractal of f(x) = (1 + 2x)3 – 1. 

Fig. 4.1.  Independence fractal of f(x) = 2x2 + 3x. 
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Using Theorem 4.2 we can show that nearly every graph (the only exception being 

complete graphs) is contained in a graph with the same independence number, whose 

independence fractal is disconnected.    

 

Theorem 4.3.  Every graph G with independence number at least two is an induced 

subgraph of a graph H with the same independence number, whose independence fractal 

is disconnected. 

Proof.  Since )(xfG  has degree at least 2, we can write that 

,...)( 2
21

α
α xaxaxaxfG +++=  where � is the independence number of G, each ai is a 

positive number or zero, a� is at least one, and a1 � 2, since a1 is the number of vertices in 

the graph.  So ,...)( 1
2

21 AxaxaxaxaxfG +=+++= α
α  which, along with the fact that 

a1 � 2 leads to ,2)(1 1 zAzazfz G >+=�>  since .0...1 2
2 >++=�> α

α zazaAz   

This in turn implies that there exists a real number R > 1 such that 

,2)( zzfRz G >�>  so the forward orbit of z is unbounded in ( �, | � | ). 

 

Now, not every critical point of Gf  is a root of .Gf   Indeed, for a root r of both Gf ′  and 

,Gf  its multiplicity as a root of Gf  is one greater than its multiplicity as a root of .Gf ′   

But ,1degdeg +′= GG ff  and so, if every critical point of Gf  were a root of Gf  then in 

fact Gf  must have only one critical point c, and .)()( αcxaxfG +=   But we know that 

),(xfx G  (since the constant term of our modified independence polynomial is always 0) 

and so c = 0 and .)( αaxxfG =   This could only be the case if � = 1, which it is not. 
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Let c then be a critical point of Gf  for which ,0)( ≠= wcfG  and choose a positive 

integer p large enough that .Rwp >⋅   For the graph ],[ pKG  we have 

[ ] ),()( pxfxf GKG p
=  a critical point of which is .

p
c

  But then [ ] ,)( wcf
p
c

f GKG p
==��

�

�
��
�

�
 and 

[ ] ( ) ∞→= )( pwfwf k
G

k
KG p

��  as .∞→k   Hence, by Theorem 4.2, the graph ],[ pKG  

which has independence number �, and of which G is an induced subgraph, has a 

disconnected independence fractal.        � 

 

Theorem 4.3 goes beyond proving that for nearly every graph G such a graph 

(disconnected independence fractal, same independence number, G an induced subgraph) 

exists.  It actually finds the graph, and shows that once p becomes sufficiently large, 

][ pKG  has a disconnected independence fractal for all large p.  The following theorem 

shows that we can extend this result to [ ].GK p   

 

Theorem 4.4.  For a graph G and positive integer p, [ ] )()( pxfppxf GGK p
⋅=  

[ ] ).(xfp
pKG⋅=   That is, [ ] [ ],pp KGGK ff �� φφ =  where φ  is the Möbius map .pxx�   

Hence,  �( [ ]GK p ) = p � �( ][ pKG ). 

Proof.  Kp a complete graph implies that .)( pxxf
pK =   We know from Corollary 2.3 that 

[ ] ( ),)()( xffxf HGHG =  and from Theorem 4.3 [ ] ),()( pxfxf GKG p
=  so 

[ ] ( ) [ ] ).()()()( xfppxfppxffpxf
ppp KGGGKGK ⋅=⋅==   For φ  defined above, φ  is a 
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Möbius map, and [ ] [ ] ,
)1(

GKKG pp
ff =−�

�� φφ  so by Theorem 3.6, 

[ ]( ) [ ]( )( ) [ ]( ).
ppp KGKGGK fKpfKfK ⋅== φ       �  

 

Theorem 4.4 shows that the independence fractal of [ ]GK p  is a p-scaling of the 

independence fractal of ].[ pKG   This implies that if the independence fractal of ][ pKG  

is disconnected, then the independence fractal of [ ]GK p  will also be disconnected.  Since 

[ ]GK p  is the join of p copies of G, Theorem 4.4 has the following corollary. 

 

Corollary 4.5.  If G is a graph with independence number at least 2, then for all 

sufficiently large p, the join of p copies of G has a disconnected independence fractal. 

 

We have shown that for any graph G (with connected or disconnected independence 

fractal), there are many (in fact, infinitely many) graphs with G as an induced subgraph 

and a disconnected independence fractal.  Since the graph [ ]GK p  is connected for G 

connected, it appears that there is no correlation between the connectivity of a graph and 

the connectivity of its independence polynomial. 



Louis Kaskowitz 39 
 

Section 5: The Mandelbrot Set & Other Examples 

 

While we have not yet discovered a structural link between G and its independence 

fractal, we can use some results from iteration theory and fractal geometry, in particular 

the study of the Mandelbrot set, to completely describe the independence fractals of 

graphs with independence number up to 2. 

 

For non-empty graphs (graphs with E(G) non-empty), � > 0.  Graphs with independence 

number 1 are the complete graphs, and .)( nxxf
nK =   The only unbounded orbit for this 

polynomial is z = 0, so the Julia set for these graphs is {0}. 

 

The Mandelbrot set �, pictured below in Figure 5.1, is the set of all complex numbers c 

for which the Julia set of the polynomial cx +2  is connected.  As was shown in Theorem 

4.2, )( 2 cxJ +  is connected only when the critical point  002)( 2 =�==+ xxcx
dx
d

 

has a bounded forward orbit.  For values of c outside the Mandelbrot set, the forward 

orbit of 0 is unbounded, so )( 2 cxJ +  is totally disconnected, otherwise known as fractal 

dust.  It is shown in [Beardon, 1991] that � is contained in the disk .2<c  
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For a graph G with independence number 2, and with n vertices and m non-edges (that is 

G  has m edges), .)( 2 nxmxxfG +=   We can use a Möbius transformation to find 

polynomials of the form cx +2  which are conjugate to .Gf   Taking ,
2

)(
n

mxx +=φ  we 

have 
m
n

m
x

x
2

)()1( −=−�φ  and 

( )
2222

)(
2

2)1(2)1( n
m
n

m
x

mn
m
n

m
x

m
n

nxmxmfxg GG +�
�

�
�
�

� −+�
�

�
�
�

� −=	


�
�

� ++== −− ��
��� φφφ  

.
222242

2
2

2
2

2

22

2

2

2

22

�
�

�
�
�

�−+=+−++−= nn
x

n
m

mn
m

mnx
m
nm

m
nxm

m
xm

 

 

So ,
22

)(
2

2
�
�

�
�
�

�−+= nn
xxgG  and by Theorem 3.6, �(G) ( ),)( 2)1( cxJ += −�φ  where 

.
22

2

�
�

�
�
�

�−= nn
c  

Fig. 5.1.  The Mandelbrot set. 
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This result shows that �(G) ( ) ,
2

22
)(

2
2

2)1(

m
n

m

nn
xJ

cxJ −
�
�

�

�

�
�

�

�
�
�

�
�
�

�−+

=+= −�φ   which is a 

scaling and shifting of ).( 2 cxJ +   As shown above, the connectivity of )( 2 cxJ +  (and 

therefore the connectivity of �(G)) depends entirely on the value c, which in our case is 

,
22

2

�
�

�
�
�

�− nn
 a value dependent only on n, the number of vertices in the graph.  The 

following examples describe the independence fractals of graphs with independence 

number � = 2.  G non-empty implies that .3≥n  

 

Example 5.1.  There are two graphs with � = 2 and n = 3, ,21 KK ∪  

the disjoint union of a point and an edge, and P3, the path on three 

vertices.  The reduced independence polynomials of these two graphs 

are analytically conjugate to 

2
2

22
)( �

�

�
�
�

�−+= nn
xxgG .

4
3

2
3

2
3 2

2
2 −=�

�

�
�
�

�−+= xx   For )(xgG , the forward orbit of 0 is 

�
+ ( ) { } { },.6929,...-.2390,-.7148,-.1875,-.75,-0,)0(0 0 ==

∞

=k
k

Gg �  which is bounded and 

so 
4
3−  is in the Mandelbrot Set and �

�

�
�
�

� −
4
32xJ  is connected. 

 

 

P 3 2 1 K K ∪ 

Fig. 5.2.  Two graphs 
with � = 2 and n = 3. 
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For ,21 KKG ∪=  xxxfG 32)( 2 +=  with m = 2 and n = 3, so 

( ) .
4
3

22
)1( −=−=− x

m
n

m
x

x�φ   �(G) ,
4
3

2
4
3

4
3

2

2)1( −
�
�

�
�
�

� −
=��

�

�
��
�

�
�
�

�
�
�

� −= −
xJ

xJ�φ  which is a 

scaling and shifting of ,
4
32
�
�

�
�
�

� −xJ  and therefore is connected. 

 

 For ,3PG =  xxxfG 3)( 2 +=  with m = 1 and n = 3, so ( ) .
2
3

2
)1( −=−=− x

m
n

m
x

x�φ   

�(G) ,
2
3

4
3

4
3 22)1( −�

�

�
�
�

� −=��
�

�
��
�

�
�
�

�
�
�

� −= − xJxJ�φ  which again is a scaling and shifting of 

,
4
32
�
�

�
�
�

� −xJ  and therefore is also connected.      � 

 

We can say a bit more about the independence fractals of graphs with � = 2 and n = 3.  

We show in Theorem 5.1, below, that �
�

�
�
�

� −
4
32xJ  is contained in a the box 

.
2
3

,
2
3

2
3

,
2
3

	



�
�


�
−×	


�
�

�− ii   Since both graphs are conjugate to ,
4
3

)( 2 −= xxgG  this result 

allows us to find boxes bounding their Julia sets. 

 

Theorem 5.1.  The Julia set �
�

�
�
�

� −
4
32xJ  is contained in the box 

,
2
3

)Im(
2
3

)Re(:
��

�
�
�

��

�
�
�

≤≤ zandzz  where ∈z  �, z = a + bi, az =)Re(  and .)Im( bz =  
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Proof.  For ,
4
3

)( 2 −= xxg  
2

2
2

22

4
3

)(
4
3

)( −+=−= biazzg ( )
2

22 2
4
3

iabba +�
�

�
�
�

� −−=  

( ) ( ) 	



�
�


� −�
�

�
�
�

� −−	



�
�


� +�
�

�
�
�

� −−= iabbaiabba 2
4
3

2
4
3 2222 ( )2

2
22 2

4
3

abiba −�
�

�
�
�

� −−=  

222224222224 4
16
9

4
3

4
3

4
3

4
3

bababbbaabaa +++−++−−−=  

.
16
9

2
3

2
3

2 222244 ++−++= bababa  

 

Since ,04 ≥a  if we assume 
2
3>b  

16
9

2
3

2
3

2)( 222242 ++−+≥� bababzg  

.
4
9

16
9

8
9

2
3

2
3

16
9

16
9

2
3

2
3

2
3

2
3

2
2
3 22
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4
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�
�
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�
�

�
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�
�

�
�
�
�

�
+�

�
�

�
�
�
�

�
> aaaa  

Similarly, since ,0,, 224 ≥abb if we assume 

2
3>a

16
9

2
3

)( 242 +−≥� aazg
16
9

2
3

2
3

2
3

24

+�
�

�
�
�

�−�
�

�
�
�

�> .
4
9

16
9

8
27

16
81 =+−=  

So 
2
3>b  or 

2
3>a .

2
3

)(
4
9

)( 2 >�>� zgzg  

 

Now, choose a z such that 
2
3>b  or .

2
3>a  Then ε+=

2
3

)(zg  for some ,0>ε  and 

[ ] .3
2
3

3
2
3

4
3

2
3

4
3

)(
4
3

)()( 2
2

222 εεεε +>++=−�
�

�
�
�

� +≥−≥−= zgzgzg �   Similarly, 

[ ] ,3
2
3

4
3

3
2
3

4
3

)()( 2
2

223 εε +>−�
�

�
�
�

� +≥−= zgzg ��  and ( ) εkk zg 3
2
3

)(1 +≥+�  for each 
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.1≥k   This in turn implies that ( ) ∞→)(zg k�  as ,∞→k  so z is not in the Julia Set of g.  

Therefore, all points in �
�

�
�
�

� −
4
32xJ  must be contained in the box 

.
2
3

)Im(
2
3

)Re(:
��

�
�
�

��

�
�
�

≤≤ zandzz        � 

 

We can in fact show that the bounding box around �
�

�
�
�

� −
4
32xJ  found in Theorem 5.1 is a 

tight box (that is, the best box we can find).  For ,
4
3

)( 2 −= xxg  

2
3

4
3

4
9

4
3

2
3

2
3

2

=−=−�
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�=�
�

�
�
�

�g  and ,13
2
3

2
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3 >=�
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�
�
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�
�

�′g so 
2
3

 is a repelling fixed point 

and therefore in ( ).gJ   Likewise, 
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�
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�
�
�
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( )gJ  is completely invariant, so 
2
3±  and i

2
3±  are all in ( ),gJ  making 
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�
�
�
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�

≤≤
2
3

)Im(
2
3

)Re(: zandzz  a tight box around .
4
32
�
�

�
�
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Example 5.1. (cont.)  We found that for ,21 KKG ∪=  �(G) .
4
3

2
4
32

−
�
�

�
�
�

� −
=

xJ
  

Applying this transformation to the bounding box we found above, we can say that 

�(G) ( )
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32 2
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xxJ  
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�
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�−= ii  

For ,3PG =  we apply the transformation: 

�(G) 	



�
�


�
−−−−×	


�
�

� −−−−⊆−�
�

�
�
�

� −=
2
3

2
3

,
2
3

2
3

2
3

2
3

,
2
3

2
3

2
3

4
32 iixJ

[ ] .
2
3

,
2
3

0,3 	



�
�


�
−−×−= ii   

Figures 5.3 and 5.4 show the plots of ( )21 KKJ ∪  (on the left) and )( 3PJ  (on the right).  

It is no coincidence that they have a similar look, since each is simply a scaling and 

shifting of .
4
32
�
�

�
�
�

� −xJ         � 

 

      

 

 

 

Figs. 5.3 and 5.4.  The Julia sets of graphs with � = 2 and n = 3. 
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Example 5.2.  For a graph G with � = 2 and n = 4, the reduced independence polynomial 

is analytically conjugate to 
2

2

22
)( �

�

�
�
�

�−+= nn
xxgG 22 −= x  with .2)( += mxxφ   In 

[Devaney, 1992] it is shown that the Julia Set for the polynomial 2)( 2 −= xxgG  is 

simply the interval [ ].2,2−   Applying 
mm

x
mm

x
x

2
2
4

)()1( −=−=−�φ  to the interval [ ]2,2−  

gives �(G) ( ) [ ] .0,
422

,
22

)2(),2(]2,2[ )1()1()1(
	


�
�

�−=	

�

�

� −−−=−−=−= −−−

mmmmm
��� φφφ  

 

The graph ,4 eKG −=  the complete graph on four vertices 

with one edge removed, has � = 2, n = 4, and m = 1 non-

edge.  xxxfG 4)( 2 +=  and .22)( +=+= xmxxφ   The 

independence fractal for this graph is therefore 

�(G) [ ].0,40,
1
4

0,
4 −=	


�
�

�−=	

�

�

�−=
m

 

 

The graph ,2 2KG =  the disjoint union of 2 copies of ,2K  has  � = 2, n = 4, and m = 4 

non-edges.  xxxfG 44)( 2 +=  and .242)( +=+= xmxxφ   The independence fractal for 

this graph is therefore �(G) [ ].0,10,
4
4

0,
4 −=	


�
�

�−=	

�

�

�−=
m

    � 

 

Example 5.3.  For graphs G with � = 2 and n � 5, the reduced independence polynomial 

is analytically conjugate to cxxgG += 2)(  where 

K4 - e 2K2

Fig. 5.5.  Graphs with � = 2 and n = 4. 
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c   Since the Mandelbrot set is contained in 

the disk ,2<c  our c lies outside the Mandelbrot set, and therefore )( 2 cxJ +  is totally 

disconnected.  This implies that �(G) ( ))( 2)1( cxJ += −�φ  is also totally disconnected. 

 

It is known that for ,2−<c  )( 2 cxJ +  is contained in the interval [ ]qq,−  where 
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 so 
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q =  and )( 2 cxJ +  is contained in the interval .
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,
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�− nn
  Applying 

m
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nn�φ   The result is 

that for graphs G with � = 2 and n � 5, �(G) is a dusty subset of the interval .0, 	

�

�

�−
m
n

 

 

For any graph G with � = 2 and n � 5, ,)( 2 nxaxxfG +=  and 0 is a fixed point of .Gf   

( ] ,12)0( 0 >=+=′ nnaxfG  so 0 is a repelling fixed point and therefore lies in ).( GfJ   
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 ),(0 GfJ∈  and )( GfJ  invariant imply that ),( GfJ
m
n ∈−  so the bounding interval of 

	


�
�

�− 0,
m
n

is the best we can do. 

 

The graph ,32 KKG ∪=  the disjoint union of 2K  with ,3K  has  

� = 2, n = 5, and m = 6 non-edges.  xxxfG 56)( 2 +=  and 

�(G) is a dusty subset of the interval  .0,
6
5

0, 	


�
�

�−=	

�

�

�−
m
n

 

           � 

 

Using the Mandelbrot set, we have now described the independence fractals for all graphs 

with independence number 2.  Using the results from Examples 5.1-5.3, we can 

summarize the location of these fractals in the following theorem. 

 

Theorem 5.2.  If G is a non-empty graph with independence number 2 having n vertices 

and m non-edges, and ∈z �(G), then 

(i) ,0)Re( ≤≤− z
m
n

 and 

(ii) 0)Im( =z  unless n = 3, in which case .
2

3
)Im(

2
3

m
z

m
≤≤−  

 

Now that we have a good idea of the behavior of independence fractals for graphs with � 

= 2, it is natural to consider other families of graphs.  The graphs baK  are the disjoint  

32 KK ∪

Fig. 5.6.  A graph with � = 2 and n � 5. 
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union of a copies of .bK   The graphs baK ;  are the family of complete multipartite graphs.  

Graphs in both families can have arbitrarily high independence numbers.  We conclude 

this section of examples with a theorem which ties these two families together via their 

independence fractals. 

 

Theorem 5.3.  The independence fractal of baK  is connected if b = 2 and a is even, and 

totally disconnected otherwise.  Likewise, the independence fractal of baK ;  is connected 

if b = 2 and a is even, and totally disconnected otherwise. 

Proof.  First note that [ ],bab KKaK =  1)1()( −+= a
K

xxf
a

 and .)( bxxf
bK =   This 

implies that [ ] ( ) ( ) 1)1()()()( −+==== a
KKKKKaK bxbxfxffxfxf

ababab
 and 

,)1()( 1−+=′ a
aK bxabxf

b
 whose only critical point is .

1
b

z −=   By Theorem 4.2, �(G) will 

be connected when the forward orbit of  z is bounded, and totally disconnected otherwise. 

 

We are considering only non-empty graphs, so b � 2.  For all a � 1 and b � 2, 

( ) .11111
1

1
1 −=−−=−��

�

�
��
�

�
�
�

�
�
�

�−+=�
�

�
�
�

�− a
a

aK b
b

b
f

b
   

 

8K3

 

K3:3

 

Fig. 5.7.  The graphs 8K3 and K3:3. 
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Case 1:  b = 2, a even.  ( ) ( ) ,121
2

−+= a
aK xxf  and the forward orbit of 

b
1−  is 

,,...0,0,1,
2
1

2
11

00
2 �

�
�

�
�
� −−=

�
�
�

�
�
�

�
�

�
�
�

�−=
�
�
�

�
�
�

�
�

�
�
�

�−
∞

=

∞

= k

k
aK

k

k
aK f

b
f

b

��  which converges to 0 and is 

therefore bounded in ( �, | � | ).  Thus, � ( )baK  is connected. 

 

Case 2:  b � 3, a even.  1
1 −=�
�

�
�
�

�−
b

f
baK  and ( ) .1121)1(1 >−≥−−=− aa

aK bf
b

  Note that 

( ) ,121)21(1)1(1 1 +>=−+>−+=�> zzzbzzfz a
aKb

 so the forward orbit of 
b
1−  is 

unbounded, and � ( )baK  is totally disconnected. 

 

Case 3:  a � 3, a odd.  1
1 −=�
�

�
�
�

�−
b

f
baK  and ( ) .121)21(1)1(1 3 −<−=−−≤−−=− a

aK bf
b

  

Note that ( ) ,121)21(1)1(1 1 −<+==−+<−+=�−< zzzzzbzzfz a
aKb

 so the 

forward orbit of 
b
1−  is unbounded, and � ( )baK  is totally disconnected. 

 

Case 4:  a = 1.  Then ,bb KaK =  whose independence fractal we know is {0}, and thus 

totally disconnected. 

 

This proves that the independence fractal of baK  is connected if b = 2 and a is even, and 

totally disconnected otherwise.  Now, [ ]abba KKK =;  and [ ],bab KKaK =  so by Theorem 
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4.4, � ( )baK ;  = b � � ( ),baK  and � ( )baK ;  is connected precisely when � ( )baK  is, which 

completes the proof.         �  
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Section 6: Conclusion 

 

By defining the independence fractal, we set out to create a new piece of identification 

for each graph.  This task is completed, but there are many unanswered questions about 

this new construction.  From our preliminary work here, it is easier to talk about what the 

fractal does not tell us.  We showed that a connected graph does not necessarily have a 

connected independence fractal, and the converse as well.  While we were able to use the 

Mandelbrot set to analyze the independence fractal of graphs with independence number 

up to 2, all other graphs with � � 2 await our attention.  The Mandelbrot set for cubics is 

contained in ��x �, and is not well understood, so we will need to find another guide for 

many of the remaining graphs. 

 

Some questions which remain for further study include: 

 

• When do two graphs have analytically conjugate independence fractals? 

• For which graphs G is �(G) connected? 

• For groups or families of graphs (Cayley graphs, Cyclic graphs, or Polygons, 

etc.), is there a structure from the graph which is passed to the independence 

fractal? 

• Do structural aspects of a graph (vertex or edge transitivity, for example) show up 

in independence fractals? 

• Is the relationship between a graph and its subgraphs, complement, line graphs, 

etc., coded in a useful way in the independence fractal?  
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Section 7: Appendices 
 
Appendix 1 – Derive Output 
 
f(x):=x^2+3*x 
APPROX(SOLVE(f(x),x)) 
 
[[-3,0],  
[0,0]] 
APPROX(SOLVE(f(f(x)), 
x)) 
 
[[-1.5,-0.8660254037],  
[-1.5,+0.8660254037],  
[-3,0],  
[0,0]] 
APPROX(SOLVE(f(f(f(x))
), x)) 
 
[[-2.473561483,-
0.4447718087],  
[-
2.473561483,+0.4447718
087],  
[-0.5264385166,-
0.4447718087],  
[-
0.5264385166,+0.444771
8087],  
[-1.5,-0.8660254037],  
[-1.5,+0.8660254037],  
[-3,0], 
[0,0]] 
APPROX(SOLVE(f(f(f(f(x
)))), x)) 
 
[[-2.473561483,-
0.4447718087],  
[-
2.473561483,+0.4447718
087],  
[-0.5264385166,-
0.4447718087],  
[-
0.5264385166,+0.444771
8087],  
[-1.870294046,-
0.6005657033],  
[-
1.870294046,+0.6005657
033],  
[-1.129705953,-
0.6005657033],  
[-
1.129705953,+0.6005657
033],  
[-2.823553112,-
0.1680218967],  
[-
2.823553112,+0.1680218
967],  
[-0.1764468876,-
0.1680218967],  
[-
0.1764468876,+0.168021
8967],  
[-1.5,-0.8660254037],  
[-1.5,+0.8660254037],  
[-3,0], 
[0,0]] 
APPROX(SOLVE(f(f(f(f(f
(x))))), x)) 
 
[[-2.59348316,-
0.2746113178],  
[-
2.59348316,+0.27461131
78],  

[-0.4065168395,-0.2746113178],  
[-0.4065168395,+0.2746113178],  
[-2.473561483,-0.4447718087],  
[-2.473561483,+0.4447718087],  
[-0.5264385166,-0.4447718087],  
[-0.5264385166,+0.4447718087],  
[-1.609782566,-0.7652485375],  
[-1.609782566,+0.7652485375],  
[-1.390217433,-0.7652485375],  
[-1.390217433,+0.7652485375],  
[-2.94116317,-0.05829384907],  
[-2.94116317,+0.05829384907],  
[-0.05883682909,-
0.05829384907],  
[-
0.05883682909,+0.05829384907],  
[-0.7616782576,-0.4067100214],  
[-0.7616782576,+0.4067100214],  
[-1.870294046,-0.6005657033],  
[-1.870294046,+0.6005657033],  
[-1.129705953,-0.6005657033],  
[-1.129705953,+0.6005657033],  
[-2.238321742,-0.4067100214],  
[-2.238321742,+0.4067100214],  
[-2.823553112,-0.1680218967],  
[-2.823553112,+0.1680218967],  
[-0.1764468876,-0.1680218967],  
[-0.1764468876,+0.1680218967],  
[-1.5,-0.8660254037],  
[-1.5,+0.8660254037],  
[-3,0], 
[0,0]] 
APPROX(SOLVE(f(f(f(f(f(f(x)))))
), x)) 
 
[[-0.01961126197,-
0.01968869648],  
[-
0.01961126197,+0.01968869648],  
[-2.59348316,-0.2746113178],  
[-2.59348316,+0.2746113178],  
[-0.4065168395,-0.2746113178],  
[-0.4065168395,+0.2746113178],  
[-2.473561483,-0.4447718087],  
[-2.473561483,+0.4447718087],  
[-0.5264385166,-0.4447718087],  
[-0.5264385166,+0.4447718087],  
[-1.609782566,-0.7652485375],  
[-1.609782566,+0.7652485375],  
[-1.390217433,-0.7652485375],  
[-1.390217433,+0.7652485375],  
[-0.2689002082,-0.1651815816],  
[-0.2689002082,+0.1651815816],  
[-1.719408839,-0.6257982096],  
[-1.719408839,+0.6257982096],  
[-1.28059116,-0.6257982096],  
[-1.28059116,+0.6257982096],  
[-2.94116317,-0.05829384907],  
[-2.94116317,+0.05829384907],  
[-0.05883682909,-
0.05829384907],  
[-
0.05883682909,+0.05829384907],  
[-2.404974232,-0.4228012856],  
[-2.404974232,+0.4228012856],  
[-0.5950257679,-0.4228012856],  
[-0.5950257679,+0.4228012856],  
[-1.957469074,-0.4445218745],  
[-1.957469074,+0.4445218745],  
[-1.042530925,-0.4445218745],  
[-1.042530925,+0.4445218745],  
[-2.502695309,-0.3815957502],  
[-2.502695309,+0.3815957502],  
[-0.4973046908,-0.3815957502],  

[-0.4973046908,+0.3815957502],  
[-0.7616782576,-0.4067100214],  
[-0.7616782576,+0.4067100214],  
[-1.870294046,-0.6005657033],  
[-1.870294046,+0.6005657033],  
[-1.129705953,-0.6005657033],  
[-1.129705953,+0.6005657033],  
[-2.238321742,-0.4067100214],  
[-2.238321742,+0.4067100214],  
[-2.980388738,-0.01968869648],  
[-2.980388738,+0.01968869648],  
[-2.731099791,-0.1651815816],  
[-2.731099791,+0.1651815816],  
[-2.861489551,-0.1008495869],  
[-2.861489551,+0.1008495869],  
[-0.1385104482,-0.1008495869],  
[-0.1385104482,+0.1008495869],  
[-2.823553112,-0.1680218967],  
[-2.823553112,+0.1680218967],  
[-0.1764468876,-0.1680218967],  
[-0.1764468876,+0.1680218967],  
[-1.535028157,-0.8320998394],  
[-1.535028157,+0.8320998394],  
[-1.464971842,-0.8320998394],  
[-1.464971842,+0.8320998394],  
[-1.5,-0.8660254037],  
[-1.5,+0.8660254037],  
[-3,0], 
[0,0]] 
APPROX(SOLVE(f(f(f(f(f(f(f(x)))
)))), x)) 
 
[[-0.006536847612,-
0.006591624456],  
[-
0.006536847612,+0.006591624456]
,  
[-0.01961126197,-
0.01968869648],  
[-
0.01961126197,+0.01968869648],  
[-1.82014362,-0.5959758777],  
[-1.82014362,+0.5959758777],  
[-1.179856379,-0.5959758777],  
[-1.179856379,+0.5959758777],  
[-0.5179117511,-0.4236380184],  
[-0.5179117511,+0.4236380184],  
[-2.142133911,-0.3461286396],  
[-2.142133911,+0.3461286396],  
[-0.8578660885,-0.3461286396],  
[-0.8578660885,+0.3461286396],  
[-2.59348316,-0.2746113178],  
[-2.59348316,+0.2746113178],  
[-0.4065168395,-0.2746113178],  
[-0.4065168395,+0.2746113178],  
[-1.617403276,-0.7034794389],  
[-1.617403276,+0.7034794389],  
[-1.382596723,-0.7034794389],  
[-1.382596723,+0.7034794389],  
[-2.473561483,-0.4447718087],  
[-2.473561483,+0.4447718087],  
[-0.5264385166,-0.4447718087],  
[-0.5264385166,+0.4447718087],  
[-1.609782566,-0.7652485375],  
[-1.609782566,+0.7652485375],  
[-1.390217433,-0.7652485375],  
[-1.390217433,+0.7652485375],  
[-0.0912640468,-0.05862758781],  
[-0.0912640468,+0.05862758781],  
[-0.2689002082,-0.1651815816],  
[-0.2689002082,+0.1651815816],  
[-1.719408839,-0.6257982096],  
[-1.719408839,+0.6257982096],  
[-1.28059116,-0.6257982096],  
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[-
1.28059116,+0.62579820
96],  
[-2.94116317,-
0.05829384907],  
[-
2.94116317,+0.05829384
907],  
[-0.05883682909,-
0.05829384907],  
[-
0.05883682909,+0.05829
384907],  
[-2.404974232,-
0.4228012856],  
[-
2.404974232,+0.4228012
856],  
[-0.5950257679,-
0.4228012856],  
[-
0.5950257679,+0.422801
2856],  
[-0.3832719662,-
0.1990287075],  
[-
0.3832719662,+0.199028
7075],  
[-1.564266972,-
0.7846144247],  
[-
1.564266972,+0.7846144
247],  
[-1.435733027,-
0.7846144247],  
[-
1.435733027,+0.7846144
247],  
[-2.831624961,-
0.1432819905],  
[-
2.831624961,+0.1432819
905],  
[-0.1683750385,-
0.1432819905],  
[-
0.1683750385,+0.143281
9905],  
[-0.2032536778,-
0.1630239],  
[-
0.2032536778,+0.163023
9],  
[-2.451852783,-
0.4370948183],  
[-
2.451852783,+0.4370948
183],  
[-0.548147216,-
0.4370948183],  
[-
0.548147216,+0.4370948
183],  
[-1.957469074,-
0.4445218745],  
[-
1.957469074,+0.4445218
745],  
[-1.042530925,-
0.4445218745],  
[-
1.042530925,+0.4445218
745],  
[-2.502695309,-
0.3815957502],  
[-
2.502695309,+0.3815957
502],  
[-0.4973046908,-
0.3815957502],  

[-0.4973046908,+0.3815957502],  
[-2.321902847,-0.3807008405],  
[-2.321902847,+0.3807008405],  
[-0.6780971525,-0.3807008405],  
[-0.6780971525,+0.3807008405],  
[-0.7616782576,-0.4067100214],  
[-0.7616782576,+0.4067100214],  
[-1.870294046,-0.6005657033],  
[-1.870294046,+0.6005657033],  
[-1.129705953,-0.6005657033],  
[-1.129705953,+0.6005657033],  
[-1.511517825,-0.8547054453],  
[-1.511517825,+0.8547054453],  
[-1.488482174,-0.8547054453],  
[-1.488482174,+0.8547054453],  
[-2.238321742,-0.4067100214],  
[-2.238321742,+0.4067100214],  
[-2.482088248,-0.4236380184],  
[-2.482088248,+0.4236380184],  
[-2.953510601,-0.03469172734],  
[-2.953510601,+0.03469172734],  
[-0.04648939882,-
0.03469172734],  
[-
0.04648939882,+0.03469172734],  
[-2.980388738,-0.01968869648],  
[-2.980388738,+0.01968869648],  
[-2.731099791,-0.1651815816],  
[-2.731099791,+0.1651815816],  
[-2.616728033,-0.1990287075],  
[-2.616728033,+0.1990287075],  
[-2.993463152,-0.006591624456],  
[-2.993463152,+0.006591624456],  
[-2.861489551,-0.1008495869],  
[-2.861489551,+0.1008495869],  
[-0.1385104482,-0.1008495869],  
[-0.1385104482,+0.1008495869],  
[-2.796746322,-0.1630239],  
[-2.796746322,+0.1630239],  
[-2.53035477,-0.3036809396],  
[-2.53035477,+0.3036809396],  
[-0.4696452297,-0.3036809396],  
[-0.4696452297,+0.3036809396],  
[-2.908735953,-0.05862758781],  
[-2.908735953,+0.05862758781],  
[-2.823553112,-0.1680218967],  
[-2.823553112,+0.1680218967],  
[-0.1764468876,-0.1680218967],  
[-0.1764468876,+0.1680218967],  
[-1.884274956,-0.5501285977],  
[-1.884274956,+0.5501285977],  
[-1.115725043,-0.5501285977],  
[-1.115725043,+0.5501285977],  
[-1.535028157,-0.8320998394],  
[-1.535028157,+0.8320998394],  
[-1.464971842,-0.8320998394],  
[-1.464971842,+0.8320998394],  
[-1.5,-0.8660254037],  
[-1.5,+0.8660254037],  
[-3,0], 
[0,0]] 
APPROX(SOLVE(f(f(f(f(f(f(f(f(x)
))))))), x)) 
 
[[-0.002178917838,-
0.002200404485],  
[-
0.002178917838,+0.002200404485]
,  
[-0.01553136173,-
0.01168489735],  
[-
0.01553136173,+0.01168489735],  
[-0.5039536922,-0.3531359101],  
[-0.5039536922,+0.3531359101],  
[-0.006536847612,-
0.006591624456],  
[-
0.006536847612,+0.006591624456]
,  

[-0.01961126197,-
0.01968869648],  
[-
0.01961126197,+0.01968869648],  
[-0.2372153859,-0.150738628],  
[-0.2372153859,+0.150738628],  
[-1.82014362,-0.5959758777],  
[-1.82014362,+0.5959758777],  
[-1.179856379,-0.5959758777],  
[-1.179856379,+0.5959758777],  
[-0.05636305212,-
0.04962535447],  
[-
0.05636305212,+0.04962535447],  
[-0.5179117511,-0.4236380184],  
[-0.5179117511,+0.4236380184],  
[-0.6115536442,-0.3959042852],  
[-0.6115536442,+0.3959042852],  
[-1.5206742,-0.8390101451],  
[-1.5206742,+0.8390101451],  
[-1.479325799,-0.8390101451],  
[-1.479325799,+0.8390101451],  
[-2.142133911,-0.3461286396],  
[-2.142133911,+0.3461286396],  
[-0.8578660885,-0.3461286396],  
[-0.8578660885,+0.3461286396],  
[-2.59348316,-0.2746113178],  
[-2.59348316,+0.2746113178],  
[-0.4065168395,-0.2746113178],  
[-0.4065168395,+0.2746113178],  
[-1.617403276,-0.7034794389],  
[-1.617403276,+0.7034794389],  
[-1.382596723,-0.7034794389],  
[-1.382596723,+0.7034794389],  
[-2.473561483,-0.4447718087],  
[-2.473561483,+0.4447718087],  
[-0.5264385166,-0.4447718087],  
[-0.5264385166,+0.4447718087],  
[-0.4057152779,-0.2513644697],  
[-0.4057152779,+0.2513644697],  
[-1.609782566,-0.7652485375],  
[-1.609782566,+0.7652485375],  
[-1.390217433,-0.7652485375],  
[-1.390217433,+0.7652485375],  
[-0.5705447583,-0.4220829522],  
[-0.5705447583,+0.4220829522],  
[-0.0912640468,-0.05862758781],  
[-0.0912640468,+0.05862758781],  
[-2.984468638,-0.01168489735],  
[-2.984468638,+0.01168489735],  
[-2.466444403,-0.4421906951],  
[-2.466444403,+0.4421906951],  
[-0.5335555963,-0.4421906951],  
[-0.5335555963,+0.4421906951],  
[-0.1742490383,-0.1597728497],  
[-0.1742490383,+0.1597728497],  
[-1.658945173,-0.6260923271],  
[-1.658945173,+0.6260923271],  
[-1.341054826,-0.6260923271],  
[-1.341054826,+0.6260923271],  
[-0.03060082477,-
0.01994951025],  
[-
0.03060082477,+0.01994951025],  
[-0.4287741643,-0.2781747124],  
[-0.4287741643,+0.2781747124],  
[-1.984980831,-0.3568477526],  
[-1.984980831,+0.3568477526],  
[-1.015019168,-0.3568477526],  
[-1.015019168,+0.3568477526],  
[-0.2689002082,-0.1651815816],  
[-0.2689002082,+0.1651815816],  
[-1.609057447,-0.7474221357],  
[-1.609057447,+0.7474221357],  
[-1.390942552,-0.7474221357],  
[-1.390942552,+0.7474221357],  
[-2.815093114,-0.166183981],  
[-2.815093114,+0.166183981],  
[-0.1849068856,-0.166183981],  
[-0.1849068856,+0.166183981],  
[-1.719408839,-0.6257982096],  
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[-
1.719408839,+0.6257982
096],  
[-1.28059116,-
0.6257982096],  
[-
1.28059116,+0.62579820
96],  
[-1.145769521,-
0.5979694644],  
[-
1.145769521,+0.5979694
644],  
[-0.3111661383,-
0.1455748573],  
[-
0.3111661383,+0.145574
8573],  
[-2.94116317,-
0.05829384907],  
[-
2.94116317,+0.05829384
907],  
[-0.05883682909,-
0.05829384907],  
[-
0.05883682909,+0.05829
384907],  
[-2.216354664,-
0.3839778147],  
[-
2.216354664,+0.3839778
147],  
[-0.783645335,-
0.3839778147],  
[-
0.783645335,+0.3839778
147],  
[-2.404974232,-
0.4228012856],  
[-
2.404974232,+0.4228012
856],  
[-0.5950257679,-
0.4228012856],  
[-
0.5950257679,+0.422801
2856],  
[-0.3832719662,-
0.1990287075],  
[-
0.3832719662,+0.199028
7075],  
[-1.564266972,-
0.7846144247],  
[-
1.564266972,+0.7846144
247],  
[-1.435733027,-
0.7846144247],  
[-
1.435733027,+0.7846144
247],  
[-2.831624961,-
0.1432819905],  
[-
2.831624961,+0.1432819
905],  
[-0.1683750385,-
0.1432819905],  
[-
0.1683750385,+0.143281
9905],  
[-0.2032536778,-
0.1630239],  
[-
0.2032536778,+0.163023
9],  
[-1.593243404,-
0.7683223893],  

[-1.593243404,+0.7683223893],  
[-1.406756595,-0.7683223893],  
[-1.406756595,+0.7683223893],  
[-0.5237166602,-0.4377343188],  
[-0.5237166602,+0.4377343188],  
[-0.0682222888,-0.05693059012],  
[-0.0682222888,+0.05693059012],  
[-2.451852783,-0.4370948183],  
[-2.451852783,+0.4370948183],  
[-0.548147216,-0.4370948183],  
[-0.548147216,+0.4370948183],  
[-1.957469074,-0.4445218745],  
[-1.957469074,+0.4445218745],  
[-1.042530925,-0.4445218745],  
[-1.042530925,+0.4445218745],  
[-2.263111603,-0.3904906403],  
[-2.263111603,+0.3904906403],  
[-0.7368883961,-0.3904906403],  
[-0.7368883961,+0.3904906403],  
[-0.1608913847,-0.1133892113],  
[-0.1608913847,+0.1133892113],  
[-1.757827552,-0.5889225899],  
[-1.757827552,+0.5889225899],  
[-1.242172447,-0.5889225899],  
[-1.242172447,+0.5889225899],  
[-2.502695309,-0.3815957502],  
[-2.502695309,+0.3815957502],  
[-0.4973046908,-0.3815957502],  
[-0.4973046908,+0.3815957502],  
[-0.5138353931,-0.3978110851],  
[-0.5138353931,+0.3978110851],  
[-2.321902847,-0.3807008405],  
[-2.321902847,+0.3807008405],  
[-0.6780971525,-0.3807008405],  
[-0.6780971525,+0.3807008405],  
[-0.7616782576,-0.4067100214],  
[-0.7616782576,+0.4067100214],  
[-1.870294046,-0.6005657033],  
[-1.870294046,+0.6005657033],  
[-1.129705953,-0.6005657033],  
[-1.129705953,+0.6005657033],  
[-1.873898134,-0.5845105634],  
[-1.873898134,+0.5845105634],  
[-1.126101865,-0.5845105634],  
[-1.126101865,+0.5845105634],  
[-1.897195562,-0.4792360193],  
[-1.897195562,+0.4792360193],  
[-1.102804437,-0.4792360193],  
[-1.102804437,+0.4792360193],  
[-2.943636947,-0.04962535447],  
[-2.943636947,+0.04962535447],  
[-1.511517825,-0.8547054453],  
[-1.511517825,+0.8547054453],  
[-1.488482174,-0.8547054453],  
[-1.488482174,+0.8547054453],  
[-2.238321742,-0.4067100214],  
[-2.238321742,+0.4067100214],  
[-2.486164606,-0.3978110851],  
[-2.486164606,+0.3978110851],  
[-1.503822332,-0.8622515657],  
[-1.503822332,+0.8622515657],  
[-1.496177667,-0.8622515657],  
[-1.496177667,+0.8622515657],  
[-2.688833861,-0.1455748573],  
[-2.688833861,+0.1455748573],  
[-1.854230478,-0.5979694644],  
[-1.854230478,+0.5979694644],  
[-2.571225835,-0.2781747124],  
[-2.571225835,+0.2781747124],  
[-1.536081751,-0.8124271327],  
[-1.536081751,+0.8124271327],  
[-1.463918248,-0.8124271327],  
[-1.463918248,+0.8124271327],  
[-2.429455241,-0.4220829522],  
[-2.429455241,+0.4220829522],  
[-2.594284722,-0.2513644697],  
[-2.594284722,+0.2513644697],  
[-2.825750961,-0.1597728497],  
[-2.825750961,+0.1597728497],  
[-2.482088248,-0.4236380184],  
[-2.482088248,+0.4236380184],  

[-2.953510601,-0.03469172734],  
[-2.953510601,+0.03469172734],  
[-0.04648939882,-
0.03469172734],  
[-
0.04648939882,+0.03469172734],  
[-2.476283339,-0.4377343188],  
[-2.476283339,+0.4377343188],  
[-2.980388738,-0.01968869648],  
[-2.980388738,+0.01968869648],  
[-2.731099791,-0.1651815816],  
[-2.731099791,+0.1651815816],  
[-2.616728033,-0.1990287075],  
[-2.616728033,+0.1990287075],  
[-2.993463152,-0.006591624456],  
[-2.993463152,+0.006591624456],  
[-2.388446355,-0.3959042852],  
[-2.388446355,+0.3959042852],  
[-2.861489551,-0.1008495869],  
[-2.861489551,+0.1008495869],  
[-0.1385104482,-0.1008495869],  
[-0.1385104482,+0.1008495869],  
[-2.796746322,-0.1630239],  
[-2.796746322,+0.1630239],  
[-2.53035477,-0.3036809396],  
[-2.53035477,+0.3036809396],  
[-0.4696452297,-0.3036809396],  
[-0.4696452297,+0.3036809396],  
[-2.931777711,-0.05693059012],  
[-2.931777711,+0.05693059012],  
[-2.997821082,-0.002200404485],  
[-2.997821082,+0.002200404485],  
[-2.839108615,-0.1133892113],  
[-2.839108615,+0.1133892113],  
[-2.908735953,-0.05862758781],  
[-2.908735953,+0.05862758781],  
[-2.969399175,-0.01994951025],  
[-2.969399175,+0.01994951025],  
[-2.496046307,-0.3531359101],  
[-2.496046307,+0.3531359101],  
[-2.823553112,-0.1680218967],  
[-2.823553112,+0.1680218967],  
[-0.1764468876,-0.1680218967],  
[-0.1764468876,+0.1680218967],  
[-2.868217125,-0.07273286665],  
[-2.868217125,+0.07273286665],  
[-0.131782874,-0.07273286665],  
[-0.131782874,+0.07273286665],  
[-1.884274956,-0.5501285977],  
[-1.884274956,+0.5501285977],  
[-1.115725043,-0.5501285977],  
[-1.115725043,+0.5501285977],  
[-1.535028157,-0.8320998394],  
[-1.535028157,+0.8320998394],  
[-1.464971842,-0.8320998394],  
[-1.464971842,+0.8320998394],  
[-2.762784614,-0.150738628],  
[-2.762784614,+0.150738628],  
[-1.5,-0.8660254037],  
[-1.5,+0.8660254037],  
[-3,0], 
[0,0]] 
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