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Friendship Theoremn a party o people,
suppose that every pair of people has exactly onexwn friend.

Then there is a person in the party who knows erex\else.

Introduction

The friendship theorem is a well-known and simpétexd theorem from graph
theory with many applications outside the fieldvé&al different proofs have been
provided over the years, and in this project, wesater some of the recent work
surrounding this theorem. First we will presenbaarview of the history and
development of the problem. After introducing dltlee necessary notation and
preliminaries, we will then give a careful treatrhehone particularly nice approach to
the problem, a fascinating article by Herbert \hiit provides a geometric proof using
projective planes. His proof begins by assumingctireclusion of the theorem is false,
uses this assumption to construct a projectiveeptan of the “party,” and then produces
a contradiction with the incidence matrix of thejpctive plane — this then proves the
theorem true.

As the theorem sounds so “combinatorial,” mathecraats have historically
searched for a proof that relies solely on comlinalt arguments. However, much
simpler arguments, one of which we will examineehelelve into related branches of
mathematics and tie together simple facts fromalirségebra and matrix theory. None of
Wilf's arguments stray far beyond a basic undergaael linear algebra course, and his
projective plane arguments are intuitive and sinbpleomprehend, even for one who has

not taken courses in geometry or graph theory.



History and development

The Friendship Theorem traces its roots back todtaively early days of graph
theory. Most authors recognize that the first mh#id proof was given by Erdds, Rényi
and Sés in 1966 in a Hungarian journal, althoudly ag an un-named theorem, and
since then many different proofs have been giveatbgr authors. The theorem was
originally presented in very un-friendly language:

Theorem(Erdos): IfGy is a graph in which any two points are connected path
of length 2 and which does not contain any cycleofth 4, them = 2k+1 andG,
consists ok triangles which have one common vertex.

Translated into the then-developing language gblgtaeory, we have something
which much more closely resembles Wilf's statentdribe friendship theorem:

Theorem(Huneke): IfG is a graph in which any two distinct vertices haxactly
one common neighbor, th€éhhas a vertex joined to all others.

A flurry of activity surrounding the theorem ocoeudrin the late sixties and early
seventies. Since then the production of entirely peoofs has slowed, but an increasing
number of applications and extensions have surfeadating to block designs and coding
theory. Historically, true combinatorial proofs leayeen hard to come by, especially
simple ones, and most proofs rely on algebraicriiegcies.

Wilf gave a proof in 1969 (which we will examinetims paper) with roots in
linear algebra and projective geometry. He compilite®igenvalues of the incidence
matrix of the graph, and uses this to produce #@radiction. This will become a common
way to prove the Friendship Theorem, although Wil unique in that it starts by

delving into geometry.



By 1972, Judith Longyear and T. D. Parsons hadldped a proof based on
counting neighbors, walks and cycles in regulaplysa Their paper also incorporates an
extension into set theory. Both Longyear and Wiference an unpublished proof given
by G. Higman in lecture form at a 1969 conference@mbinatorics, but no known
printed record of this exists.

More recently, J. M. Hammersley provided a procd 4983 conference that
avoided using eigenvalues but involved admittediyplicated numerical techniques.
Hammersley also extends the friendship theoremviiat he calls the “love problem.”
Friendship is usually taken to be irreflexive (@magnot be friends with oneself), but
love, as he points out, can be narcissistic anddarreflexive relation. Hammersley’s
work is beyond the scope of this paper, but inisréeresting variation with many
unsolved problems.

In 1999, Aigner and Ziegler immortalized the Frishigp Theorem iProofs from
THE BOOK covering what were (in Erdds’ opinion) the greatbeorems of all time. In
his 2001 undergraduate textbdokroduction to Graph TheornD. B. West includes a
proof similar to Longyear and Parsons’ that cowet®imon neighbors of vertices and
cycles.

Craig Huneke claims he first heard of the theorerh975 while in graduate
school. He constructed a graph-theoretic proofdasecounting walks of prime length
p, but did not publish it until nearly two decadatel. After consulting with a colleague
and refining his results, Huneke published the prothe American Mathematical
Monthlyin 2002, his goal being “one proof which is mooenbinatorial, and another

proof which ... in some sense combines the combiitatavith the linear algebra” (193).



A number of authors insinuate or directly mentibattprevious proofs have been
complicated or hard to understand. Each author plesits that their own proof is either
elementary or easy to understand, seemingly welgtal of one-upping their peers. In
the abstract for Longyear and Parsons’ paper, ¢tem prior proofs have relied on
“sophisticated mathematics” and that their papeegi‘an elementary graph theoretic
proof.” Wilf states that he gives “a proof whichgsite elementary, though no wholly

elementary proof is known.”



Preliminaries: Definitions and concepts

In our discussion of the Friendship Theorem, wé lbélexamining relationships
between people. To give this a mathematical treatmee need to consider the people of
our party and their friendship as commonly-usedgetoic objects. We will assume for
simplicity that whenever we refer to a graph, i&isimple graph, with no loops or

multiple edges.

Projective planes and the three plane axioms

We will define a geometric structuReon our party, which we will then show is a
projective plane. A geometric structuPes composed of points, lines, and an incidence
relation between them.

* The “points”p of P are the people of the party.

* The “line” [(x) of P is the set of all friends of

» The incidence relationpfll(x)” is that a poinip belongs to liné(x) if p knowsx.

We imagine then a set of people represented bygaiith lines connecting those
who know each other. Any arbitrary graph could thegresent visually some collection
of relationships, although only certain familiesgoaphs will be shown to satisfy the
friendship theorem.

A geometric structur® is a projective plane if it satisfies the threejective plane
axioms. As a projective plane is an abstract caneey the “lines” need not be
represented by what we would usually think of aedi nor the points, as we shall see in
our examples.

P1: Given any two distinct points, there is exacthedine incident with both of them.



P2: Given any two distinct lines, there is exactlyegoint incident with both of them.

P3: There are four points, no three of which areicedr.

Definitions associated with a projective plane

If P is a finite projective plane of order, we define that (Hall 205-7):

» each line oP containan + 1 points,

* each point oP is onm+ 1 lines, and

« There arer? + m+ 1 points anar’ + m + 1 lines for some integen > 1.

The first two properties are definitions basedlmndrder of the projective plane, and
the third can be derived from the first two: Comsien arbitrary poinp of our projective
planeP. By the second property, there ane- 1 lines incident t@. By the first property,
since each line contaims + 1 points, and each of these lines are alreazlglent with the
pointp, each of the lines also contamsther points. So we hawe+ 1 lines withm

points on each one, and the pgntvhich gives usn(m + 1) + 1 =n¥ + m + 1 points.

> m+ 1 lines




Now consider an arbitrary lineof our projective plan®. By the first property, there
arem + 1 points incident tb. By the second property, since each point is gridom +
1 lines, and each of these points is already imtittethe lind, each of the points is also
incident tom other lines. So we have + 1 points each incident talines, as well as our

original linel, which gives usn(m + 1) + 1 =m* + m+ 1 lines.

mlines
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-~ /

m+ 1 points

Here,m can be infinite (as is the case with the realguiye plane) or finite. For

simplicity and space, we will restrict our discussto finite projective planes.

Incidence matrix of a projective plane — definition& properties

The incidence matriA of a projective plan® is a matrix representation of which
points lie on which lines. We identify th point with thei™ row of A, and thg™ line
with thej™ column ofA. Then for a point and a lind, if pointi lies on ling, put a “1” in
theij™ position ofA; otherwise put a zero. Or, in our context, foraspni and a set of
friends of another persqnif personi is friends with persop put a “1” in theij™ position

of A; otherwise put a zero.



Some facts from linear algebra

Later in our discussion it will be useful to knometeigenvalues of amysquare
matrix of the formJ + ml. Recall that the multiplicities of amsquare matrix must sum
to n. We will show that the desired eigenvalues are

m+n once, with eigenvector for whichxg =x; =X, ..., and

m with multiplicity n — 1 for the complementary eigenvectprx; + ... =0

Recall that the eigenvalues of a ma#iare numberd such thalAx = Ax has a
nonzero solution vector, and each such soluti@misigenvector associated with the
corresponding value of. We will use the fact that & is ann-square triangular matrix,
then the eigenvalues éfare the entries on the main diagonaAd@Anton 340).

LetA=J+ml, so

m O O m+1 1 1

Om OO 1 m+1 1
A= + =

0O 0 m

1 1 m+l

Consider the equatioflix = Ax, and letx = 1, the all-ones vector. Then

m+l 1 1 Y1) ((m+1)+1+1+..) (m+n 1
1 m+1 1 1] |1+(m+2)+1+...| |m+n 1

Ax = = = =(m+n) | = Ax,
1 1 m+1 -|1] |[1+1+(m+2)+...| |m+n 1

som+ nis an eigenvalue with eigenvectrandxy = x; =X, .... SinceA is symmetric,
the eigenvalues & are all real numbers, and eigenvectors from diffeeigenspaces are
orthogonal (Anton 358). We know=m + n is an eigenvalue & with eigenvectod.

Let &be another eigenvalue Afwith eigenvectow. Thenlw = 0, since the

eigenvectors are orthogonal, and



1w = Aw=(J +ml)w = Jw+mw= 0+ mw,

since

1w=0

111 w,) (10w +10v, +100, +...) (0
Jue 111 |w| |100+10W, +10v+...| |0 o
1111 - “lo|

w, | |10, +10w, +10v, +...| |0

ThusAw = mw, andm s also an eigenvalue 8f Sincelli = 0, the eigenvector
w must satisfywp +wy + ... = 0, as desired.
For the multiplicities, we use properties of theéetiminant under elementary row

operations.

Add the second row @ to the first, the third row to the first, and sothrough
all n rows ofA — call this new matri8, and note that det = detB:

m+n m+n m+n
1 m+1l 1
1 1 m+1

Now multiply the first row oB by

L , and call this new matri&€. Note that
m+n

1
m+n

detB = detC.

-10 -



1 1 1
|1 m+1 1
1 1 m+l
Add the negative of the first row @fto the second, the third, and all successive

1 1

rows, and call this new matrR. Note that detC = detD.
m+n m+n
1 1 1
Om OO
D=
0 0 m

Multiplying the first row bym + n then yields a new matri, for which detA =

detE:

m+n m+n m+n
0 m 0
0 0 m
Now we have a symmetrin;square upper-triangular matrix. The determinant of
this new matrixE is equal to the determinant of our original ma&jxso they have the
same eigenvalues, which are the entries on the diagonal. Thus we have eigenvalue

m + n with multiplicity one, and eigenvalua with multiplicity n— 1.

-11 -



Example: Projective plane of order 2: The Fano plaa

The smallest finite projective plane is of ordes 2, and is known as the Fano
plane. There are seven points and seven lines lis@ctontains exactly three points, and
each point is incident to exactly three lines.He tiagram below, we can consider the
straight lines and the inscribed circle to be thed of the Fano plane and the numbered
circles to be the points. However, because of tladity of projective planes, we could
also consider the straight lines and circle tohee“points” and the numbered circles to

be the “lines,” and the result would still be ajpotive plane.

Image from PlanetMath.org

If we consider the points of the Fano plane tohgedircles numbered
{1,2,3,4,5,6,7}, the lines are given by the segmemnnecting points {1,2,4}, {2,3,5},

{3,4,6}, {4,5,7}, {5,6,1}, {6,7,2}, and {7,1,3}.

Verifying the projective plane axioms
It is easy to verify the three projective planeoaxs by examination. By our
definition of the Fano plane, and examination ef diegram above, given any two

distinct points, there is exactly one line incidesth both of them. Similarly, given any
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two distinct lines, there is exactly one point demt with both of them. For the third
projective plane axiom we can find numerous exampfdour points such that no line is
incident with more than two of them — for examples set of points {3,5,6,7} satisfies

this axiom.

Incidence matrix of the Fano plane

We defined above that the incidence ma#iaf a projective plane is a matrix
representation of which points lie on which linkentifying thei™ point with thei™ row
of A, and thg"™ line with thej™ column ofA, the incidence matriA of the Fano plane

would then be given by

1110000
1001100
1000011
A={01 01010
0100101
0011001
0010110

Note that each row and column has three 1's, cooreging to the dual facts that
each point lies on exactly three lines and eaghdontains exactly three points. Note too
that any pair of rows or columns has a single doimmon, corresponding to the facts,
respectively, that there is a single line incideith two unique points and two unique

lines are incident to a unique point.
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Example: Projective plane of order 3

The next largest finite projective plane is of arde= 3. There are 13 points and
13 lines, each line contains exactly four pointg] aach point is incident to exactly four
lines. In the diagram below, we can consider thraght and curved segments to be the
lines and the circles to be the points. The thregeptive plane axioms can still be
verified by examination, though not quite as clgdrle to the increased complexity of

the graph.

Image from A. McRae’s Finite Geometry Problem Page

Incidence matrix of the projective plane of order 3

The incidence matrix of the projective plane ofesr@ would be a 13x13 matrix. Each
row and column would have four 1’s, correspondmghe dual facts that each point lies
on exactly four lines and each line contains eydotlr points. In addition, any pair of

rows or columns would have a single 1 in commomesponding to the facts,
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respectively, that there is a single line incideith two unique points and two unique

lines are incident to a unique point.
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Wilf's proof of the Friendship Theorem

The friendship theorem is a well-known theorem frgraph theory with many
applications outside the field. Many proofs haverbprovided, and this article by
Herbert Wilf provides a geometric one using prajecplanes. It begins by assuming the
conclusion of the theorem is false, uses this apiomto construct a projective plane
out of the “party,” and then produces a contradictvith eigenvalues of the incidence

matrix of the projective plane — this then proves theorem true.

Preliminary hypotheses

The Friendship Theorem states: In a party people, suppose that every pair of
people has exactly one common friend. Then theagisrson in the party who knows
everyone. Assume the conclusion is false, so tiseret a person in the party who knows
everyone else. Before we go on, we need two hygeththat guarantee the existence of
friends and non-friends given an arbitrary person.

H1: If x andy are different, they have a unique common frie(dy).
H2: For everyx there is & # x such thay does not knowx.

The relation of “knowing” is assumed irreflexive, the statementx‘does not

know X" is a correct statement, and symmetric, sodbes not knowy theny does not

know x (and similarly for “knows”).

The party as a projective plane

We defined a geometric structure above on our partg wish to show the party
can be represented as a projective plane. To shiewgttucture is a projective plane, we

need to show it satisfies the three projective @laxioms:
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P1: Given any two distinct points, there is exacthedine incident with both of them.
By our H1 assumption, since different poirtandy in P have auniquecommon
friend F(x,y), we can say that every pair of points lies amm@ueline; this is the line
consisting of all friends df(x,y), so &y)OI(F(x,y)). This proves P1.
P2. Given any two distinct lines, there is exactlyeguoint incident with both of them.
Also by our H1 assumption, every pair of linePihas exactly one point in
common, sinc&x) n I(y) = {F(x,y)}. The linel(x) consists of all friends of, the linel(y)
consists of all friends of, so they must intersect in the unique common driefx andy
defined by H1. This proves P2.
P3: There are four points, no three of which areigeér.
To showP is a projective plane, we need only pr&& which Wilf calls a
lemma:
Lemma 1There is a set of four points Bf no three of which lie on a line.
Proof. First we need to show thRtdoes in fact contain four points.

» Suppose has only one point. Then H2 is contradicted, for there is no pgint
such thay does not knowx.

* Suppose has only two pointg andy. Then H1 is contradicted, for there is no
common friend~(x,y).

» Suppose has only three points y, andz. By H1,x andy have a common friend,
the only option being, soz = F(x,y). By H1,y andz have a common friend, the
only option being, sox = F(y,z). By H1,x andz have a common friend, the only
option beingy, soy = F(x,2). But then all three points y, andz are friends with

each other, contradicting H2.
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ThusP must contain at least four points.
Choose four distinct points & If no three lie on a line, we are done. Otherwise
some three have a common friemds shown in Fig. 1. Here solid lines denote

“knowing.”

Fig. 1

By H2, there is & such thab does not knove, as shown in Fig. 2. Here dashed

lines denote “not knowing.”

By H1, a andb must have a common friekda,b), and also byi1, a andF(a,b)

must have a common frief{a,F(a,b)), as shown in Fig. 3.

-18 -



F(a,F(a,b)) F(a,b)

Pick another friend ad different fromF(a,b) andF(a,F(a,b)), and label iz Here,
z cannot knowF(a,F(a,b)) sinceF(a,b) anda would then have two common friendg —
andF(a,b). We now have the picture in Fig. 4. We claim tia points £(a,b), a, b,
satisfy the lemma; that is, no three of them lieadime (or, in our context, no three of

them are mutual friends).

F(a,F(a,b)) F(a,b)

Consider all possible combinations of three pomisof these four.

Suppose F(a,b),a,z} have a common friend. It must Ib€a,F(a,b)) since we
already defined above thatdoes not knovib. But we also defined thatdoes not know
F(a,F(a,b)), and if this were truez andF(a,b) would have two common friendsa-and

F(a,F(a,b)). This is a contradiction, so these three cabedtiends. (See Fig. 5.)
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F(a,F(a,b)) F(a,b)

Suppose E(a,b),a,b} have a common friend. A logical choice wouldB@,b)
since this is already the uniqgue common friend ahdb. However,a does not knovb,

so these three cannot be friends. (See Fig. 6.)

F(a,F(a,b)) F(a,b)

Suppose E(a,b),z,b} have a common friend. Sineeis already the common
friend ofz andF(a,b), anda does not knovb, we have a contradiction, so these three

cannot be friends. (See Fig. 7.)

F(a,F(a,b)) F(a,b)
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Suppose §,z,b} have a common friend. It must Ib€a,b) since this is already the
unique common friend @& andb. Butz cannot knowF(a,b), for otherwisd-(a,b) anda
would have two common friendsandF(a,F(a,b)), a contradiction, so these three cannot

be friends. (See Fig. 8.)

F(a,F(a,b)) F(a,b)

Since no three of the points can be friends, neetlof them can lie on a line, and
we have prove®3. Wilf then calls this a lemma:

Lemma 2The structurd® is a finite projective plane.

Examining the incidence matrix of the party

Let A denote the incidence matrix of our projective plBnFrom our definitions
above, and our knowledge of incidence matriceskmeav thatA must be if? + m + 1)-
square since there amé + m+ 1 points and lines (corresponding to “peopled an
“friends” in this problem). We also know that sire&ch line contains + 1 points and
each point is om + 1 lines, each row and columnAghould haven + 1 entries labeled
“1.” Wilf tells us thatA has the following properties:

Al: Ais symmetric

A2: Tracep) =0

A3:A’=Q, whereg;= [m+1ifi=j,

1 ifiz].
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Consider Al: Any incidence matrix is symmetric -aipointi lies on lingj
(necessitating a “1” in thig" position ofA), then lingj contains point (necessitating a
“1” in the ji™ position ofA).

Consider A2: Our incidence matrix has zero traeealse all its diagonal
elements are zero. Thi& element ofA corresponds to asking “Is persiffiends with
person?” Since we defined “friendship” as irreflexivegtanswer is, “no,” necessitating
a zero in all diagonal places.

Consider A3: When we squaketo getQ, theij™ entry is found by taking the dot
product of thé™ row of A and thg" column ofA. Or, sinceA is symmetric, thé" row of
A and thg"™ row of A. This is equivalent to the number of points ang timesi andj
have in common, which s + 1 ifi =) (the same line has + 1 points on it, and hence
m+ 1 points in common with itself), and 1i i j (by the definition of a projective plane,
two lines meet in one unique point).

m+1l 1 1
1 m+l1 1

Note thatA? is also (’ + m + 1)-square, and® = =34 mi,
1 1 m+1 ---

wherel is the identity matrix and has ones in every entry.

Finding a contradiction

We will deduce a contradiction from these threepprties ofA. Wilf seeks to
prove the following lemma:
Lemma 3 There exists no projective plane of order 1 whose incidence matrix is

symmetric with trace zero.
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If we can prove this lemma, we will have shown th@tsuch projective plane can
exist based on our original assumption that thersgtalf of the friendship theorem was
false; therefore, it must be true. We do so by taning a contradiction from Al, A2,
and A3.

Proof. Based on information we discovered from A3, we calculate the
eigenvalues of®. We know tha#\? is an (m? + m + 1)-square matrix of the forth+ ml.
We showed earlier that the eigenvalues ofi-gquare matrix in this form are

m+n once, and

m with multiplicity n — 1.

In A3, we have amf® + m + 1)-square matrix of the forth+ ml, the eigenvalues
of which are

m+ (M +m+1)=m’+2m+1 a simple eigenvalue with multiplicity 1, and

m with multiplicity (m® +m+ 1) —1 =m? +m.

SinceA? is (m? + m + 1)-square, all the multiplicities must summtd+ m + 1;

note that here they do indeed obey this rule.

We know that if an eigenvalue &f is A, a corresponding eigenvalueffs JA .

Hence the eigenvalues Afare:

Jm? +2m+1= \/(m+1)2 =m+1 (a simple eigenvalue, with multiplicity 1)
++/m (with multiplicity z4)

-Jm (with multiplicity &)
SinceAis ("* + m + 1)-square, all the multiplicities must sunmtd+m + 1, and
since the eigenvalua + 1 has multiplicity 1, we must have

,L11+,L12:n12+m.

-23-



We also note that all multiplicities (including and/s) must be integers, since

the multiplicity of an eigenvalue represents thenbar of times it appears as a zero of the
characteristic polynomial.

Previously, we were able to find eigenvalueédify manipulatingA to produce
an upper-triangular matrix with the desired eigénes along the main diagonal, the
number of times they appear on the main diagonalety their multiplicity. We also

showed earlier that the traceMis zero. Combining these two facts, we get
,ul(\/ﬁ)+,u2(—\/ﬁ)+1(m+l) =0
(th -, Wm+m+1=0
Using the fact that, from abovg, = m? + m — 16, we substitute this in to get
((m2 + m—uz)—u2W+ m+1=0

(m2 +m—2yZW+m+1:O

m? +m=-2u LU S
* Ym Jm
m2+m+\/ﬁ+i:2y2
Jm

1, 1
Im+m+Jm+— | =
2( Jm m] e

We will show that the expression on the left carb®tn integer. We know that

bothm andzs, are integers, becauseis the order of our projective plane gids the

multiplicity of one of its eigenvalues. Leét= Jm+—= in the above equation.

Jm
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Substituting this in and solving forwe gett = 24, —m? —m, sot must be an integer

since bottm and /s are integers. Ifis an integer, clearl§f is also an integer. However,

t2 :(\/ﬁ+ﬁJ(\/ﬁ+%J —mAll S =me 2+t

m m

{2 =m+2+
m

. . 1 .
and since we are only considerimg> 1, the terri— means that’ cannot be an integer.
m

Thust is also not an integer, and singeis defined in terms df /4 cannot be an integer.
This is a contradiction, which proves the lemmac8iwe have proved the lemma, this
contradicts our original assumption that the sedwltlof the friendship theorem is false,
so the theorem must be true:
Friendship Theoremin a party ofn people, suppose that every pair of people has
exactly one common friend. Then there is a persdhe party who knows everyone else.
Translating this into graph theory, graphs satigfythe friendship theorem are

variations on the “windmill graph.” Some examples given below.

Two couples, Three couples, Four couples,
one common one common one common
friend friend friend

-25 -



Recent work

Numerous authors have tried to find generalizatioinor limitations on the
friendship theorem, in addition to the sought-aftdéean” proofs. The friendship theorem
considers, in Wilf's terminology, a party where ka@ouple has exactly one common
friend. A common variation is to considgroupsof people in a party, rather than just
couples, and to count how many peapléhose groupsave exactly one common friend.

Some examples are given below.

2 groups, 1 3 groups, 1 2 groups, 2
couple per couple per couples per
group with 1 group with 1 group with 1
common frien common frien common frien

Katherine Heinrich examines just such a scenarleer 1990 paper, “The graphs
determined by an adjacency property.” Her goahafaper is to determine all grafBs
of order at leadt + 1 with the property that for arkysubsetS of V(G), there is a unique
vertexx, X 0 V(G) — S which has exactly two neighbors$hAs Heinrich notes, the case
k = 2 is described by the friendship theorem, ardcgimsiders only the cases when 3.

The paper hypothesizes that a gr&pbatisfying this property has exacky 1
vertices, is regular of degree 2, and is thus texatisjoint union of cycles. To do this,
Heinrich first proves that for the base case3,G must be a cycle of length four. She

does so by defining a vertex set and counting ptesedges on that set, limiting them to
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those satisfying the property in the hypothesisnkieh’s next result, that the graphs
must be regular of degree 2, follows naturally fritva property. She then proves that the
specified graphs must also have a vertex of degresmsk by considering whethes

has a vertex of more than 2 but less tkiahis produces a contradiction.

Heinrich’s final theorem in the paper postulatest there ar@o graphs satisfying
the given property. She proves this by exhaustigehsidering all possible cases
involving the desired unique vertex, its neighbars] the neighbors of its neighbors. In
all of the cases a graph is constructed which edndts one of the properties proved thus
far, and since these are all the possible casagapis exist which satisfy her variation.

Heinrich’s work is a useful application of Erddsiginal ideas, although because
it IS necessary to consider so many cases it cdeobnsidered a clean combinatorial
proof. Results specifying graphs tliatexist, rather than ones thadn’t, are often more
widely applicable, but her results are nonethedesmteresting extension of the

friendship theorem.
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Conclusion

The proof of the friendship theorem has undergoaay changes over the years
as mathematicians search for a simple, combinaymaaf. They have consistently been
foiled in this respect, as most simple proofs mayfindings from linear algebra, graph
theory, or both, and the truly combinatorial argaisere often a long and circuitous
route to the truth. However, various proofs of ihiportant theorem have the distinction
of drawing together many branches of mathematius related facts from a variety of
fields. Tidbits of information about symmetric ma#s and real eigenvalues mesh, while
results from modern geometry tie together grapbrghand linear algebra to give clean
results. Future mathematicians may find a pathdbast not stray from one field, but for

NOw NUMeEerous avenues exist to arrive at the newtlasion we have found here.
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