◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Graphic Realizations of Sequences

Joseph Richards Under the direction of Dr. John S. Caughman

June 6, 2011

Introduction

This talk is an overview of results developed in the paper "Two sufficient conditions for a graphic sequence to have a realization with prescribed clique size" written by Jian-Hua Yin and Jiong-Sheng Li.

Outline

1 Necessary and sufficient conditions for $\pi \in NS_n$ to be graphic

2 Sufficient conditions for $\pi \in GS_n$ to be A_{r+1} -graphic

3 Sufficient conditions for $\pi \in GS_n$ to be almost A_{r+1} -graphic

4 Applications

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Simple Graphs and Degree Sequences

・ロト ・聞ト ・ヨト ・ヨト

æ.

Simple Graphs and Degree Sequences

・ロト ・四ト ・ヨト ・ヨト

Simple Graphs and Degree Sequences

- $NS_n:=$ The family of all decreasing sequences of n whole numbers, $\pi=(d_1,d_2,\ldots,d_n)$ a typical element
- $GS_n :=$ All sequences in NS_n which are degree sequences for some simple graph
- $\sigma(\pi) :=$ The sum of all n terms of π .

- $NS_n:=$ The family of all decreasing sequences of n whole numbers, $\pi=(d_1,d_2,\ldots,d_n)$ a typical element
- $GS_n :=$ All sequences in NS_n which are degree sequences for some simple graph
- $\sigma(\pi) :=$ The sum of all n terms of π .
 - It is necessary that $\sigma(\pi)$ is even for π to belong to GS_n .

- $NS_n:=$ The family of all decreasing sequences of n whole numbers, $\pi=(d_1,d_2,\ldots,d_n)$ a typical element
- $GS_n :=$ All sequences in NS_n which are degree sequences for some simple graph
- $\sigma(\pi) :=$ The sum of all n terms of π .
 - It is necessary that σ(π) is even for π to belong to GS_n.
 This condition is <u>not</u> sufficient, however. Consider (4, 1, 1).

- $NS_n:=$ The family of all decreasing sequences of n whole numbers, $\pi=(d_1,d_2,\ldots,d_n)$ a typical element
- $GS_n :=$ All sequences in NS_n which are degree sequences for some simple graph
- $\sigma(\pi) :=$ The sum of all n terms of π .
 - It is necessary that σ(π) is even for π to belong to GS_n.
 This condition is <u>not</u> sufficient, however. Consider (4,1,1).
 - It is sufficient that $\sigma(\pi)$ is even and $d_{d_1+1} \ge d_1 1$ for π to belong to GS_n (Yin, 2005).

- $NS_n:=$ The family of all decreasing sequences of n whole numbers, $\pi=(d_1,d_2,\ldots,d_n)$ a typical element
- $GS_n :=$ All sequences in NS_n which are degree sequences for some simple graph
- $\sigma(\pi) :=$ The sum of all n terms of π .
 - It is necessary that σ(π) is even for π to belong to GS_n.
 This condition is <u>not</u> sufficient, however. Consider (4,1,1).
 - It is sufficient that $\sigma(\pi)$ is even and $d_{d_1+1} \ge d_1 1$ for π to belong to GS_n (Yin, 2005). This condition is <u>not</u> necessary, though. Consider (3, 1, 1, 1).

A necessary and sufficient condition for π to be in GS_n .

Let the threefold process of

- deleting d_i from π ,
- subtracting 1 from the first d_i terms of the new sequence, and
- reordering the resulting terms to be non-increasing

be referred to as *laying off* the term d_i from π .

A necessary and sufficient condition for π to be in GS_n .

Let the threefold process of

- deleting d_i from π ,
- subtracting 1 from the first d_i terms of the new sequence, and
- reordering the resulting terms to be non-increasing

be referred to as *laying off* the term d_i from π .

Theorem (Kleitman and Wang, 1973)

A sequence is graphic if and only if it is graphic after laying off any of its terms.

Note: This generalizes a theorem due to Havel and Hakimi (1955).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A second characterization of sequences that are graphic.

Theorem (Erdös and Gallai, 1960)

Let $\pi = (d_1, d_2, \dots, d_n) \in NS_n$. Then π is graphic if and only if $\sigma(\pi)$ is even and, for all $t \in [n]$,

$$\sum_{i=1}^{t} d_i \le t(t-1) + \sum_{i=t+1}^{n} \min(t, d_i).$$

A second characterization of sequences that are graphic.

Theorem (Erdös and Gallai, 1960)

Let $\pi = (d_1, d_2, \dots, d_n) \in NS_n$. Then π is graphic if and only if $\sigma(\pi)$ is even and, for all $t \in [n]$,

$$\sum_{i=1}^{t} d_i \le t(t-1) + \sum_{i=t+1}^{n} \min(t, d_i).$$

For example, the sequence (6, 6, 5, 4, 3, 2, 2) is not graphic since the inequality above does not hold for t = 3.

Outline

Necessary and sufficient conditions for $\pi\in NS_n$ to be graphic

2 Sufficient conditions for $\pi \in GS_n$ to be A_{r+1} -graphic

3 Sufficient conditions for $\pi \in GS_n$ to be almost A_{r+1} -graphic

4 Applications

What is meant by A_{r+1} -graphic?

• A sequence $\pi \in GS_n$ is A_{r+1} -graphic if a realization of π exists with an (r+1)-clique on (r+1)-vertices of maximal degree.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

What is meant by A_{r+1} -graphic?

• A sequence $\pi \in GS_n$ is A_{r+1} -graphic if a realization of π exists with an (r+1)-clique on (r+1)-vertices of maximal degree.

<u>Caution</u>: A sequence can be A_{r+1} -graphic and have realizations that don't even contain a (r + 1)-clique. For example, $\pi = (3, 3, 3, 3, 2, 2, 2)$ can be realized as each of the following simple graphs.

What is meant by A_{r+1} -graphic?

- A sequence $\pi \in GS_n$ is A_{r+1} -graphic if a realization of π exists with an (r+1)-clique on (r+1)-vertices of maximal degree.
- A sequence $\pi \in GS_n$ is K_{r+1} -graphic if a realization of π exists with an (r+1)-clique.

What is meant by A_{r+1} -graphic?

- A sequence $\pi \in GS_n$ is A_{r+1} -graphic if a realization of π exists with an (r+1)-clique on (r+1)-vertices of maximal degree.
- A sequence $\pi \in GS_n$ is K_{r+1} -graphic if a realization of π exists with an (r+1)-clique.
- A sequence is A_{r+1} -graphic if and only if it is K_{r+1} -graphic.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example

Example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Theorem (Gould, 1999)

Suppose a sequence $\pi = (d_1, d_2, ..., d_n)$ has a realization G with a subgraph H on r vertices. Then there exists a realization G^* of π with a subgraph H^* isomorphic to H such that the vertices of H^* are the vertices of G^* corresponding to the first r terms of π .

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Sketch of proof

Let $\pi = (d_1, d_2, \dots, d_n) \in GS_n$. Let G be a realization of π . Let H be a subgraph of G.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Sketch of proof

Let
$$\pi = (d_1, d_2, \dots, d_n) \in GS_n$$

Let G be a realization of π .
Let H be a subgraph of G.

$$(v_1, \ldots, \underbrace{v_k}_{\text{position } j}, \ldots, v_m)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sketch of proof

Let
$$\pi = (d_1, d_2, \dots, d_n) \in GS_n$$

Let G be a realization of π .
Let H be a subgraph of G.

$$(v_1, \ldots, \underbrace{v_k}_{\text{position } j}, \ldots, v_m)$$

Note that j < k thus $d_j \ge d_k$, thus v_j has at least as many neighbors as v_k .

Sketch of proof

Let
$$\pi = (d_1, d_2, \dots, d_n) \in GS_n$$

Let G be a realization of π .
Let H be a subgraph of G.

$$(v_1,\ldots,\underbrace{v_k}_{\text{position }j},\ldots,v_m)$$

Note that j < k thus $d_j \ge d_k$, thus v_j has at least as many neighbors as v_k .

Sketch of proof

Let
$$\pi = (d_1, d_2, \dots, d_n) \in GS_n$$

Let G be a realization of π .
Let H be a subgraph of G.

$$(d_1, \ldots, \underbrace{d_k}_{\text{position } j}, \ldots, d_m)$$

Note that j < k thus $d_j \ge d_k$, thus v_j has at least as many neighbors as v_k .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A modified laying off procedure

Let
$$\pi = (d_1, d_2, \ldots, d_n) \in NS_n$$
.

 $\pi_0 := (d_1, d_2, \ldots, d_n)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A modified laying off procedure

Let
$$\pi = (d_1, d_2, ..., d_n) \in NS_n$$
.

$$\pi_0 := (d_1, d_2, \dots, d_n)$$

$$\pi_1 := (d_2 - 1, d_3 - 1, \dots, d_{r+1} - 1, d_{r+2}^{(1)}, \dots, d_n^{(1)})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A modified laying off procedure

Let
$$\pi = (d_1, d_2, \dots, d_n) \in NS_n.$$

 $\pi_0 := (d_1, d_2, \dots, d_n)$
 $\pi_1 := (d_2 - 1, d_3 - 1, \dots, d_{r+1} - 1, d_{r+2}^{(1)}, \dots, d_n^{(1)})$
 $\pi_i := (d_{i+1} - i, d_{i+2} - i, \dots, d_{r+1} - i, d_{r+2}^{(i)}, \dots, d_n^{(i)})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A modified laying off procedure

Let
$$\pi = (d_1, d_2, \dots, d_n) \in NS_n.$$

 $\pi_0 := (d_1, d_2, \dots, d_n)$
 $\pi_1 := (d_2 - 1, d_3 - 1, \dots, d_{r+1} - 1, d_{r+2}^{(1)}, \dots, d_n^{(1)})$
 $\pi_i := (d_{i+1} - i, d_{i+2} - i, \dots, d_{r+1} - i, d_{r+2}^{(i)}, \dots, d_n^{(i)})$

Theorem (Rao, 1979)

A sequence $\pi \in NS_n$ is A_{r+1} -graphic if and only if π_{r+1} is graphic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Two sufficient conditions for $\pi \in GS_n$ to be A_{r+1} -graphic

Let us suppose $\pi = (d_1, d_2, \dots, d_n) \in GS_n$ where $n \ge r+1$.

Two sufficient conditions for $\pi \in GS_n$ to be A_{r+1} -graphic

Let us suppose $\pi = (d_1, d_2, \dots, d_n) \in GS_n$ where $n \ge r+1$.

Theorem (Yin, 2005)

If $d_{r+1} \ge r$ and either • $d_i \ge 2r - i$ for all $i \in [r-1]$, or • π has at least 2r + 2 terms and $d_{2r+2} \ge r - 1$ then π is A_{r+1} -graphic.

Two sufficient conditions for $\pi \in GS_n$ to be A_{r+1} -graphic

Let us suppose $\pi = (d_1, d_2, \dots, d_n) \in GS_n$ where $n \ge r+1$.

Theorem (Yin, 2005)

If $d_{r+1} \ge r$ and either • $d_i \ge 2r - i$ for all $i \in [r-1]$, or • π has at least 2r + 2 terms and $d_{2r+2} \ge r - 1$ then π is A_{r+1} -graphic.

Note this condition is certainly not necessary. For example, we have already learned that (5, 4, 4, 3, 3, 1, 1, 1) is K_4 -graphic.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

(5, 4, 4, 3, 3, 1, 1, 1)

Outline

2 Sufficient conditions for $\pi \in GS_n$ to be A_{r+1} -graphic

3 Sufficient conditions for $\pi \in GS_n$ to be almost A_{r+1} -graphic

Applications

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Almost A_{r+1} -graphic?

We declare π to be <u>almost</u> A_{r+1} -graphic whenever π has a realization that is one edge shy of containing a copy of K_{r+1} .

Almost A_{r+1} -graphic?

We declare π to be <u>almost</u> A_{r+1} -graphic whenever π has a realization that is one edge shy of containing a copy of K_{r+1} .

Theorem (Yin, 2005)

If π is an element of GS_n with at least r+1 terms and either

- $d_{r+1} \ge r-1$ and $d_i \ge 2r-i$ for all $i \in [r-1]$, or
- π has at least 2r+2 terms, $d_{r-1} \ge r$, and $d_{2r+2} \ge r-1$

then π is almost A_{r+1} -graphic.

Almost A_{r+1} -graphic?

We declare π to be <u>almost</u> A_{r+1} -graphic whenever π has a realization that is one edge shy of containing a copy of K_{r+1} .

Theorem (Yin, 2005)

If π is an element of GS_n with at least r+1 terms and either

- $d_{r+1} \ge r-1$ and $d_i \ge 2r-i$ for all $i \in [r-1]$, or
- π has at least 2r+2 terms, $d_{r-1} \ge r$, and $d_{2r+2} \ge r-1$

then π is almost A_{r+1} -graphic.

This condition is not necessary, which can be noted by once again considering the graphic sequence (5, 4, 4, 3, 3, 1, 1, 1).

Outline

- 2 Sufficient conditions for $\pi \in GS_n$ to be A_{r+1} -graphic
- 3 Sufficient conditions for $\pi \in GS_n$ to be almost A_{r+1} -graphic

Applications

A pair of conjectures and recent theorems which can be proven using the tools described in this talk

Theorem (Conjectured by Erdös in 1991)

Let π be a sequence in GS_n . Then π is A_{r+1} -graphic if

•
$$r^2 \leq rac{2}{3}n$$
 and

•
$$\sigma(\pi) \ge (r-1)(2n-r) + 2.$$

Theorem (Yin, 2005)

Let π be a sequence in GS_n . Then π is almost A_{r+1} -graphic if

•
$$3r^2 - r - 1 \le n$$
 and

•
$$\sigma(\pi) \ge (r-1)(2n-r) + 2 - (n-r).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Thank You

Thank you for attending this presentation!

A special thank you also to Dr. John Caughman and Dr. Joyce O'Halloran for helping me prepare this 501 project.