Graphic Realizations of Sequences

Joseph Richards
Under the direction of
Dr. John S. Caughman

June 6, 2011
This talk is an overview of results developed in the paper “Two sufficient conditions for a graphic sequence to have a realization with prescribed clique size” written by Jian-Hua Yin and Jiong-Sheng Li.
Outline

1. Necessary and sufficient conditions for $\pi \in NS_n$ to be graphic

2. Sufficient conditions for $\pi \in GS_n$ to be A_{r+1}-graphic

3. Sufficient conditions for $\pi \in GS_n$ to be almost A_{r+1}-graphic

4. Applications
Simple Graphs and Degree Sequences
Simple Graphs and Degree Sequences

When is π graphic? When is $\pi_{A_{r+1}}$-graphic? When is π almost A_{r+1}-graphic? Applications
When is π graphic? When is πA_{r+1}-graphic? When is π almost A_{r+1}-graphic?

Simple Graphs and Degree Sequences

(4,3,3,3,2,2,2,1,0)
Sequences in NS_n and GS_n

$NS_n :=$ The family of all decreasing sequences of n whole numbers, $\pi = (d_1, d_2, \ldots, d_n)$ a typical element

$GS_n :=$ All sequences in NS_n which are degree sequences for some simple graph

$\sigma(\pi) :=$ The sum of all n terms of π.
Sequences in NS_n and GS_n

$NS_n :=$ The family of all decreasing sequences of n whole numbers,
$\pi = (d_1, d_2, \ldots, d_n)$ a typical element

$GS_n :=$ All sequences in NS_n which are degree sequences for some simple graph

$\sigma(\pi) :=$ The sum of all n terms of π.

- It is necessary that $\sigma(\pi)$ is even for π to belong to GS_n.
Sequences in NS_n and GS_n

$NS_n :=$ The family of all decreasing sequences of n whole numbers,
$\pi = (d_1, d_2, \ldots, d_n)$ a typical element

$GS_n :=$ All sequences in NS_n which are degree sequences for some
simple graph

$\sigma(\pi) :=$ The sum of all n terms of π.

- It is necessary that $\sigma(\pi)$ is even for π to belong to GS_n. This condition is not sufficient, however. Consider $(4, 1, 1)$.
Sequences in NS_n and GS_n

$NS_n :=$ The family of all decreasing sequences of n whole numbers,
$\pi = (d_1, d_2, \ldots, d_n)$ a typical element

$GS_n :=$ All sequences in NS_n which are degree sequences for some simple graph

$\sigma(\pi) :=$ The sum of all n terms of π.

- It is necessary that $\sigma(\pi)$ is even for π to belong to GS_n. This condition is not sufficient, however. Consider $(4, 1, 1)$.
- It is sufficient that $\sigma(\pi)$ is even and $d_{d_1+1} \geq d_1 - 1$ for π to belong to GS_n (Yin, 2005).
When is π graphic? When is $\pi \text{ A}_{r+1}$-graphic? When is π almost A_{r+1}-graphic? Applications

Sequences in \mathcal{NS}_n and \mathcal{GS}_n

$\mathcal{NS}_n :=$ The family of all decreasing sequences of n whole numbers, $\pi = (d_1, d_2, \ldots, d_n)$ a typical element

$\mathcal{GS}_n :=$ All sequences in \mathcal{NS}_n which are degree sequences for some simple graph

$\sigma(\pi) :=$ The sum of all n terms of π.

- It is necessary that $\sigma(\pi)$ is even for π to belong to \mathcal{GS}_n. This condition is not sufficient, however. Consider $(4, 1, 1)$.
- It is sufficient that $\sigma(\pi)$ is even and $d_{d_1+1} \geq d_1 - 1$ for π to belong to \mathcal{GS}_n (Yin, 2005). This condition is not necessary, though. Consider $(3, 1, 1, 1)$.
A necessary and sufficient condition for π to be in GS_n.

Let the threefold process of

- deleting d_i from π,
- subtracting 1 from the first d_i terms of the new sequence, and
- reordering the resulting terms to be non-increasing

be referred to as *laying off* the term d_i from π.

Theorem (Kleitman and Wang, 1973)

A sequence is graphic if and only if it is graphic after laying off any of its terms.

Note: This generalizes a theorem due to Havel and Hakimi (1955).
When is π graphic? When is π A_{r+1}-graphic? When is π almost A_{r+1}-graphic?

A necessary and sufficient condition for π to be in GS_n.

Let the threefold process of

- deleting d_i from π,
- subtracting 1 from the first d_i terms of the new sequence, and
- reordering the resulting terms to be non-increasing

be referred to as laying off the term d_i from π.

Theorem (Kleitman and Wang, 1973)

A sequence is graphic if and only if it is graphic after laying off any of its terms.

Note: This generalizes a theorem due to Havel and Hakimi (1955).
When is π graphic? When is π A_{r+1}-graphic? When is π almost A_{r+1}-graphic?

A second characterization of sequences that are graphic.

Theorem (Erdős and Gallai, 1960)

Let $\pi = (d_1, d_2, \ldots, d_n) \in NS_n$. Then π is graphic if and only if $\sigma(\pi)$ is even and, for all $t \in [n]$,

$$\sum_{i=1}^{t} d_i \leq t(t - 1) + \sum_{i=t+1}^{n} \min(t, d_i).$$

For example, the sequence $(6, 6, 5, 4, 3, 2, 2)$ is not graphic since the inequality above does not hold for $t = 3$.
A second characterization of sequences that are graphic.

Theorem (Erdös and Gallai, 1960)

Let $\pi = (d_1, d_2, \ldots, d_n) \in NS_n$. Then π is graphic if and only if $\sigma(\pi)$ is even and, for all $t \in [n]$,

$$
\sum_{i=1}^{t} d_i \leq t(t - 1) + \sum_{i=t+1}^{n} \min(t, d_i).
$$

For example, the sequence $(6, 6, 5, 4, 3, 2, 2)$ is not graphic since the inequality above does not hold for $t = 3$.
Outline

1. Necessary and sufficient conditions for $\pi \in NS_n$ to be graphic

2. Sufficient conditions for $\pi \in GS_n$ to be A_{r+1}-graphic

3. Sufficient conditions for $\pi \in GS_n$ to be almost A_{r+1}-graphic

4. Applications
When is π graphic? When is π A_{r+1}-graphic? When is π almost A_{r+1}-graphic? Applications

What is meant by A_{r+1}-graphic?

- A sequence $\pi \in GS_n$ is A_{r+1}-graphic if a realization of π exists with an $(r+1)$-clique on $(r+1)$-vertices of maximal degree.
A sequence $\pi \in GS_n$ is A_{r+1}-graphic if a realization of π exists with an $(r + 1)$-clique on $(r + 1)$-vertices of maximal degree.

Caution: A sequence can be A_{r+1}-graphic and have realizations that don’t even contain a $(r + 1)$-clique. For example, $\pi = (3, 3, 3, 3, 2, 2, 2)$ can be realized as each of the following simple graphs.
What is meant by A_{r+1}-graphic?

- A sequence $\pi \in GS_n$ is A_{r+1}-graphic if a realization of π exists with an $(r + 1)$-clique on $(r + 1)$-vertices of maximal degree.

- A sequence $\pi \in GS_n$ is K_{r+1}-graphic if a realization of π exists with an $(r + 1)$-clique.
What is meant by A_{r+1}-graphic?

- A sequence $\pi \in GS_n$ is A_{r+1}-graphic if a realization of π exists with an $(r + 1)$-clique on $(r + 1)$-vertices of maximal degree.

- A sequence $\pi \in GS_n$ is K_{r+1}-graphic if a realization of π exists with an $(r + 1)$-clique.

- A sequence is A_{r+1}-graphic if and only if it is K_{r+1}-graphic.
Example

(5, 4, 4, 3, 3, 1, 1, 1)
Example

\[(5, 4, 4, 3, 3, 1, 1, 1)\]
Theorem (Gould, 1999)

Suppose a sequence $\pi = (d_1, d_2, \ldots, d_n)$ has a realization G with a subgraph H on r vertices. Then there exists a realization G^* of π with a subgraph H^* isomorphic to H such that the vertices of H^* are the vertices of G^* corresponding to the first r terms of π.
Sketch of proof

Let $\pi = (d_1, d_2, \ldots, d_n) \in GS_n$.
Let G be a realization of π.
Let H be a subgraph of G.
Sketch of proof

Let $\pi = (d_1, d_2, \ldots, d_n) \in GS_n$.
Let G be a realization of π.
Let H be a subgraph of G.

$$(v_1, \ldots, \underbrace{v_k}_{\text{position } j}, \ldots, v_m)$$
Sketch of proof

Let \(\pi = (d_1, d_2, \ldots, d_n) \in GS_n \).

Let \(G \) be a realization of \(\pi \).

Let \(H \) be a subgraph of \(G \).

\[
(v_1, \ldots, v_k, \ldots, v_m)
\]

(position \(j \))

Note that \(j < k \) thus \(d_j \geq d_k \),

thus \(v_j \) has at least as many
neighbors as \(v_k \).
Sketch of proof

Let $\pi = (d_1, d_2, \ldots, d_n) \in GS_n$. Let G be a realization of π. Let H be a subgraph of G.

$$(v_1, \ldots, v_k, \ldots, v_m)$$

position j

Note that $j < k$ thus $d_j \geq d_k$, thus v_j has at least as many neighbors as v_k.
Sketch of proof

Let \(\pi = (d_1, d_2, \ldots, d_n) \in GS_n \).
Let \(G \) be a realization of \(\pi \).
Let \(H \) be a subgraph of \(G \).

\[(d_1, \ldots, \underbrace{d_k}_{\text{position } j}, \ldots, d_m)\]

Note that \(j < k \) thus \(d_j \geq d_k \),
thus \(v_j \) has at least as many
neighbors as \(v_k \).
A modified laying off procedure

Let \(\pi = (d_1, d_2, \ldots, d_n) \in NS_n \).

\(\pi_0 := (d_1, d_2, \ldots, d_n) \)
A modified laying off procedure

Let $\pi = (d_1, d_2, \ldots, d_n) \in NS_n$.

$\pi_0 := (d_1, d_2, \ldots, d_n)$

$\pi_1 := (d_2 - 1, d_3 - 1, \ldots, d_{r+1} - 1, d_{r+2}^{(1)}, \ldots, d_n^{(1)})$
Let $\pi = (d_1, d_2, \ldots, d_n) \in NS_n$.

$\pi_0 := (d_1, d_2, \ldots, d_n)$

$\pi_1 := (d_2 - 1, d_3 - 1, \ldots, d_r+1 - 1, d_{r+2}^{(1)}, \ldots, d_n^{(1)})$

$\pi_i := (d_{i+1} - i, d_{i+2} - i, \ldots, d_{r+1} - i, d_{r+2}^{(i)}, \ldots, d_n^{(i)})$
A modified laying off procedure

Let $\pi = (d_1, d_2, \ldots, d_n) \in NS_n$.

$\pi_0 := (d_1, d_2, \ldots, d_n)$

$\pi_1 := (d_2 - 1, d_3 - 1, \ldots, d_{r+1} - 1, d_{r+2}^{(1)}, \ldots, d_n^{(1)})$

$\pi_i := (d_{i+1} - i, d_{i+2} - i, \ldots, d_{r+1} - i, d_{r+2}^{(i)}, \ldots, d_n^{(i)})$

Theorem (Rao, 1979)

A sequence $\pi \in NS_n$ is A_{r+1}-graphic if and only if π_{r+1} is graphic.
Two sufficient conditions for \(\pi \in GS_n \) to be \(A_{r+1} \)-graphic

Let us suppose \(\pi = (d_1, d_2, \ldots, d_n) \in GS_n \) where \(n \geq r + 1 \).
Two sufficient conditions for $\pi \in GS_n$ to be A_{r+1}-graphic

Let us suppose $\pi = (d_1, d_2, \ldots, d_n) \in GS_n$ where $n \geq r + 1$.

Theorem (Yin, 2005)

*If $d_{r+1} \geq r$ and either
 * $d_i \geq 2r - i$ for all $i \in [r - 1]$, or
 * π has at least $2r + 2$ terms and $d_{2r+2} \geq r - 1$

then π is A_{r+1}-graphic.*
Two sufficient conditions for \(\pi \in GS_n \) to be \(A_{r+1} \)-graphic

Let us suppose \(\pi = (d_1, d_2, \ldots, d_n) \in GS_n \) where \(n \geq r + 1 \).

Theorem (Yin, 2005)

If \(d_{r+1} \geq r \) and either

- \(d_i \geq 2r - i \) for all \(i \in [r - 1] \), or
- \(\pi \) has at least \(2r + 2 \) terms and \(d_{2r+2} \geq r - 1 \)

then \(\pi \) is \(A_{r+1} \)-graphic.

Note this condition is certainly not necessary. For example, we have already learned that \((5, 4, 4, 3, 3, 1, 1, 1)\) is \(K_4 \)-graphic.
When is π graphic? When is π A_{r+1}-graphic? When is π almost A_{r+1}-graphic? Applications

$(5, 4, 4, 3, 3, 1, 1, 1)$

Diagram with vertices labeled $v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8$. Edges connect v_1 to v_2, v_3, and v_4; v_2 to v_3 and v_4; v_3 to v_4; v_4 to v_5, v_6, and v_7; v_5 to v_6; v_6 to v_7; and v_7 to v_8.
Outline

1. Necessary and sufficient conditions for $\pi \in NS_n$ to be graphic
2. Sufficient conditions for $\pi \in GS_n$ to be A_{r+1}-graphic
3. Sufficient conditions for $\pi \in GS_n$ to be almost A_{r+1}-graphic
4. Applications
Almost A_{r+1}-graphic?

We declare π to be almost A_{r+1}-graphic whenever π has a realization that is one edge shy of containing a copy of K_{r+1}.
Almost A_{r+1}-graphic?

We declare π to be almost A_{r+1}-graphic whenever π has a realization that is one edge shy of containing a copy of K_{r+1}.

Theorem (Yin, 2005)

If π is an element of GS_n with at least $r + 1$ terms and either

- $d_{r+1} \geq r - 1$ and $d_i \geq 2r - i$ for all $i \in [r - 1]$, or
- π has at least $2r + 2$ terms, $d_{r-1} \geq r$, and $d_{2r+2} \geq r - 1$

then π is almost A_{r+1}-graphic.
Almost A_{r+1}-graphic?

We declare π to be almost A_{r+1}-graphic whenever π has a realization that is one edge shy of containing a copy of K_{r+1}.

Theorem (Yin, 2005)

If π is an element of GS_n with at least $r + 1$ terms and either

- $d_{r+1} \geq r - 1$ and $d_i \geq 2r - i$ for all $i \in [r - 1]$, or
- π has at least $2r + 2$ terms, $d_{r-1} \geq r$, and $d_{2r+2} \geq r - 1$

then π is almost A_{r+1}-graphic.

This condition is not necessary, which can be noted by once again considering the graphic sequence $(5, 4, 4, 3, 3, 1, 1, 1)$.
Outline

1. Necessary and sufficient conditions for $\pi \in NS_n$ to be graphic
2. Sufficient conditions for $\pi \in GS_n$ to be A_{r+1}-graphic
3. Sufficient conditions for $\pi \in GS_n$ to be almost A_{r+1}-graphic
4. Applications
A pair of conjectures and recent theorems which can be proven using the tools described in this talk

Theorem (Conjectured by Erdös in 1991)

Let π be a sequence in GS_n. Then π is A_{r+1}-graphic if

- $r^2 \leq \frac{2}{3}n$ and
- $\sigma(\pi) \geq (r - 1)(2n - r) + 2$.

Theorem (Yin, 2005)

Let π be a sequence in GS_n. Then π is almost A_{r+1}-graphic if

- $3r^2 - r - 1 \leq n$ and
- $\sigma(\pi) \geq (r - 1)(2n - r) + 2 - (n - r)$.
Thank you for attending this presentation!

A special thank you also to Dr. John Caughman and Dr. Joyce O’Halloran for helping me prepare this 501 project.