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1. Background

A simple graph, often denoted by G, is a finite set of vertices V and edges E such that
each edge e ∈ E has two distinct endpoints in V and no two edges in E have the same
pair of endpoints. We note that these restrictions mean that simple graphs never have
loops (an edge that begins and ends at the same vertex) or multiple edges (pairs of edges
that connect the same pair of vertices). Often in the literature, a particular drawing with
(labeled or unlabeled) vertices and edges intended to represent a simple graph G is given
the name G as well.

We say that an edge e ∈ E connects two vertices in V if these vertices are the endpoints
of e. Alternatively, we say that v, w ∈ V are adjacent whenever there exists an edge in E
with endpoints v and w. It is convenient to refer to v, w ∈ V as neighbors whenever they
are adjacent, and to use the name vw for the edge connecting vertices v and w. We denote
by Nv the set of all neighbors of v in V . Below is a simple graph G with labeled vertices
and unlabeled edges. Note that, in this graph, v5 is adjacent to v3 and Nv1 = {v2, v3, v4}.

v5

v4 v3

v2v1

Figure 1. Simple Graph G.

A complete graph is a simple graph such that each pair of vertices in V are endpoints
of a particular edge in E. More simply put, every pair of vertices in a complete graph are
adjacent. Complete graphs with n vertices are often denoted Kn. If the vertex v5 were
deleted from the graph G depicted above, along with all edges in the graph with v5 for an
endpoint, the resulting graph G− v5 would be the complete graph on four vertices, K4.

A graph H is said to be a subgraph of a graph G if VH ⊆ VG, and EH ⊆ EG. If V ′ is
a subset of V , then the subgraph of G induced by V ′ is the maximal subgraph of G with
vertex set V ′. We note that maximal, in this context, is meant to indicate that every edge
in E with both endpoints in V ′ is an edge of the subgraph induced by V ′.

A pair of simple graphs G and H are said to be isomorphic if there exists a bijective
map φ : VG → VH such that for all v, w ∈ VG, v is adjacent to w if and only if φ(v) is
adjacent to φ(w). For example, if a particular simple graph has three vertices that are
pairwise adjacent and a second simple graph has no such set of vertices, then the two are
distinct (not isomorphic).
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An n-clique of a graph G is a complete n-vertex subgraph of G. We note that every
n-clique of a graph G is induced by some particular set of n vertices, for a complete
subgraph is clearly maximal. In Figure 2 we offer three different subgraphs of the simple
graph G illustrated in Figure 1. Graph H1 is a subgraph of G that is not maximal, H2

is the subgraph induced by the vertices {v1, v3, v5}, and H3 is a 3-clique of G that is not
isomorphic to H2.

v1

v3

v5

v4 v3

v2v1

(a) Subgraph H1.

v1

v3

v5

v4 v3

v2v1

(b) Subgraph H2.

v4 v3

v2

(c) Subgraph H3.

Figure 2.

Let W represent the set of whole numbers {0, 1, 2, . . . }. Given a simple graph G, we
define d : V → W to be the map which assigns to each v ∈ V the number of edges in E
that have v as an endpoint. We refer to the value d(v) as the degree of v in G. Note that
d(v3) = 2, when v3 is considered as a vertex of the graph H3 given in Figure 2(c).

The degree sequence of a simple graph G is the set of degrees of all vertices in V
written in non-increasing order. It is clear that each simple graph has exactly one degree
sequence, but that the converse need not hold. Below, we offer two distinct simple graphs
G1 and G2 which both have the same degree sequence (3, 3, 2, 2, 2, 2).

(a) Simple graph G1. (b) Simple graph G2.

Figure 3.

We say that a sequence is graphic if it is a degree sequence for some simple graph G. A
graphic sequence is said to be realized by G if it is the degree sequence of G. For example,
the sequence (3, 3, 2, 2, 2, 2) is graphic since it is the degree sequence of the simple graph
G2 depicted above. Note that the sequence (4, 1, 1) is certainly not graphic, since no simple
graph on three vertices can contain a degree four vertex.
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Let the set of all non-increasing sequences of whole numbers consisting of exactly n terms
be denoted NSn, and let the set of the first n positive whole numbers be denoted [n]. Then,
provided di ≥ dj ≥ 0 whenever i and j are whole numbers satisfying 1 ≤ i ≤ j ≤ n, a
typical member of NSn is given by π = (d1, d2, . . . , dn). Let those elements of NSn which
are graphic be collectively denoted GSn. It will be convenient for the discussion to follow
to define the map σ : NSn →W such that σ(π) is equal to

∑n
i=1 di.

A sequence π belonging to GSn is called potentially Kr+1-graphic if there exists a
simple graph G which realizes π and which contains Kr+1 as a subgraph. A sequence π
belonging to GSn is called potentially Ar+1-graphic if there exists a simple graph which
realizes π and whose r + 1 vertices of highest degree induce an r + 1 clique.

Consider, for example, π = (3, 3, 3, 3, 2, 2, 2) ∈ NS7. Note that π is a graphic sequence
(hence an element of GS7) since it is the degree sequence of the simple graph G depicted
in Figure 4(a). Note that G contains no three vertices which are pairwise adjacent, hence
the largest complete subgraph of G is a 2-clique. Despite this relatively small clique size
induced by the vertices in G of largest degree, π is potentially A4-graphic. This can be
easily verified, for π is also realized by the simple graph G∗, illustrated in Figure 4(b), and
the four vertices of largest degree in G∗ induce a 4-clique.

H

G(a) Simple graph G. H

G

(b) Simple graph G∗.

Figure 4.

It is clear that any sequence that is potentially Ar+1-graphic is also potentially Kr+1

graphic. The final goal of this section is to show that the converse holds as well. We arrive
at this conclusion by proving an even stronger result, due to Gould [4], given below.

Theorem 1.1. Let π = (d1, d2, . . . , dn) ∈ GSn and let G be a realization of π containing a
subgraph H with r vertices. Then there exists a realization G∗ of π containing a subgraph H∗

isomorphic to H where the vertices of H∗ are the vertices of G∗ whose degrees correspond
to the first r terms of π.

It is possible that this result is intuitively clear to the reader, but let us attempt to sow
a seed of doubt before diving into a proof of Theorem 1.1. The simple graph G illustrated
in Figure 4(a), is a realization of the sequence (3, 3, 3, 3, 2, 2, 2). Note that one subgraph of
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G is a square (often called a 4-cycle in the literature). Further notice that every subgraph
of G that is a square fails to have for a vertex set the four vertices of G of largest degree.
However, the simple graph G∗ given in Figure 4(b) is also a realization of the same sequence
(3, 3, 3, 3, 2, 2, 2). Since the four vertices of G∗ of largest degree induce a 4-clique, G∗ has
our desired subgraph on its vertices of largest degree.

Let us look at a second example. Notice that the sequence (5, 4, 4, 3, 3, 1, 1, 1) is realized
by the graph G1 illustrated in Figure 5, where vertices are labeled so that d(vi) = di for
all i ∈ [8].

v1v2

v3

v4

v5

v6

v7
v8

v8

v7

v6

v5

v4

v3

v2

v1

Figure 5. Simple Graph G1.

It is easy to see that G1 contains a copy of K4, and that this K4 subgraph has vertices
{v2, v3, v4, v5}. It is also easy to see that G1 does not contain a subgraph K4 on the vertices
in G1 of highest degree. The theorem above implies that a different graphic representation
of (5, 4, 4, 3, 3, 1, 1, 1) exists, call itG2, with aK4 subgraph whose vertices are {v1, v2, v3, v4}.
Indeed, this is the case, as shown in Figure 6.

v1v2

v3

v4

v5

v6

v7
v8

v8

v7

v6

v5

v4

v3

v2

v1

Figure 6. Simple Graph G2.

We now proceed with our proof of Theorem 1.1.

Proof. Let π = (d1, d2, . . . , dn) ∈ GSn and let G be a realization of π containing a particu-
lar subgraph H with r vertices. Let the vertices of G be labeled such that for all i ∈ [n],
vertex vi ∈ V has degree di. List the vertices of H so that the indices of these vertices are
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strictly increasing, and let this list be denoted L.

Inspect L. If L = (v1, v2, . . . , vr), we are finished. Otherwise, L contains at least one
vertex whose index and position in L do not match. Let vk be the left-most vertex in L
whose index k and position, say j, do not match. Note that vertex vk occupies a position
in L that is strictly less than k. In short, j < k, hence d(vj) ≥ d(vk), and we see that
vj has at least as many neighbors in G as vk. If all of the neighbors of vk in H are also
neighbors of vj , then we can form a new list L′ by replacing vk with vj , noting that this
new set of vertices induces a subgraph of G containing H. Otherwise, there must be some
non-empty set of neighbors of vk in H, call them {ai} for i ∈ [m], that are not adjacent to
vj . We depict the situation in Figure 7.

v j v k

a 1 a 2 a m

. . .

v j v k

a 1 a 2 a m

b mb 2b 1

. . .

. . .. . .

. . .

b 1 b 2 b m

a ma 2a 1

v kv j

Figure 7.

Now, it may or may not be the case that edges exist in G that are not drawn above. In
other words, vj and vk may well be neighbors in G, and any pair ai and aj , for i, j ∈ [m]
may be adjacent as well. The critical observation is that the edges drawn most certainly
do exist in G, and no edges exist in G which connect vj to any ai for i ∈ [m].

Recall that vj has at least as many neighbors in G as vk. Since vk has m neighbors
(besides, potentially vj) that vj doesn’t, it must be true that vj has at least m neighbors
(besides, potentially vk) that vk doesn’t. Let a particular set of m neighbors of vj that are
not adjacent to (nor equal to) vk be denoted {bi} for i ∈ [m]. Hence the drawing illustrated
in Figure 8 is a known subgraph of G.

v j v k

a 1 a 2 a m

. . .

v j v k

a 1 a 2 a m

b mb 2b 1

. . .

. . .. . .

. . .

b 1 b 2 b m

a ma 2a 1

v kv j

Figure 8.
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Let each of the edges illustrated in Figure 8 be deleted, and replaced with those edges
depicted in Figure 9.

v j v k

a 1 a 2 a m

. . .

v j v k

a 1 a 2 a m

b mb 2b 1

. . .

. . .. . .

. . .

b 1 b 2 b m

a ma 2a 1

v kv j

Figure 9.

Note that the edge switch just performed has no effect on the degree of any vertex in
G, and that every new edge introduced certainly did not previously exist in G. In short,
we have created a new simple graph G∗ with precisely the same degree sequence that G had.

Note that vj is now adjacent in G∗ to every vertex in H−vk that vk was initially adjacent
to. Furthermore, we have not changed the adjacency or non-adjacency of any other vertex
in H − vk to any other vertex in H − vk. Hence, we may now delete vk from our list L,
replacing it with vj , and our revised list of vertices induces a subgraph of G∗ containing a
subgraph isomorphic to H.

Now, the algorithm described above can be repeated until the (finite) list L becomes
equal to (v1, v2, . . . , vr). When this happens, we will have succeeded in producing a graph
whose r vertices with degrees corresponding to the first r terms of π induce a subgraph
containing a subgraph H∗ isomorphic to H, as desired.

�

One obvious consequence of the preceding theorem is that a sequence that is potentially
Kr+1-graphic is necessarily potentially Ar+1-graphic, a theorem independently established
by Rao [12]. Since the converse of this statement is clear, we have completely verified the
following result.

Corollary 1.1. A sequence π ∈ GSn is potentially Ar+1-graphic if and only if it is poten-
tially Kr+1-graphic.

2. Some necessary and sufficient conditions for π ∈ NSn to be graphic

Let G be an arbitrary simple graph. Since each edge in E has two distinct endpoints,
it is clear that summing the degrees of all vertices in V counts every edge exactly twice.
Concisely,

∑
v∈V d(v) = 2|E|, where |E| is taken to mean the number of edges in E. As

an immediate consequence, every degree sequence necessarily has an even sum. Thus, a
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necessary condition for a sequence π ∈ NSn to belong to GSn is that σ(π) is even.

Before we present a necessary and sufficient condition for a sequence π ∈ NSn to belong
to GSn, we build up a few pieces of needed machinery. Let π = (d1, d2, . . . , dn) be an
arbitrary sequence in NSn, and let 1 ≤ k ≤ n. If we delete dk from π (so that it is a
sequence of length n− 1), subtract 1 from the left-most dk terms remaining, then reorder
the resulting terms to be non-increasing, we form the sequence π′k. We will often write
this new sequence as (d′1, d

′
2, . . . , d

′
n−1). This sequence is called the residual sequence

obtained by laying off dk from π.

Suppose that a graph G contains at least four vertices, and that two of these vertices
have the property that each has a neighbor the other does not. For convenience, we assign
the names v and w to the vertices of G with this property. Let a be a neighbor of v that
is not adjacent to w and b be a neighbor of w that is not adjacent to v. We thus find that
G has the subgraph H depicted below in Figure 10(a).

v w

a

bb

a

wv

(a) Subgraph H.

v w

a

bb

a

wv

(b) Subgraph H∗.

Figure 10.

Note that the edges vw and ab may very well belong to E, but for our purposes this
is irrelevant. The main observation to make at this point is that the edges vb and wa
certainly do not belong to E. Now, let edges va and wb be deleted and replaced by edges
vb and wa. For convenience, let this new modified version of the graph G be designated
G∗. It is clear that G∗ is a simple graph containing the subgraph H∗ illustrated above in
Figure 10(b).

The critical observation is that none of the vertices in this subgraph H∗ have a degree
any different than they started out having in H. Indeed, no vertex in G∗ has a degree any
different than it had as a vertex in G, since our edge switch could only possibly have im-
pacted the degrees of the vertices v, w, a, and/or b. In particular, G and G∗ have identical
degree sequences. The modification we have just performed to transform G into G∗, which
we henceforth call a 2-switch, will prove useful in the discussion to follow.
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Our first theorem of this section is a result due to Kleitman and Wang [6] (a gener-
alization of an algorithm due to Havel and Hakimi). The observation is that a sequence
π ∈ NSn and any possible residual sequence formed by laying off a term of π are either
both graphic or both not graphic.

Theorem 2.1. Let π = (d1, d2, . . . , dn) ∈ NSn and let k ∈ [n]. Then π ∈ GSn if and only
if π′k ∈ GSn−1.

Proof. First, suppose that π′k is a graphic sequence. Let a graph G be drawn realizing π′k.
Now, each vertex of G has some particular degree, and dk of these degrees are 1 smaller
than they were prior to the laying off of dk. Let the corresponding dk vertices of G be con-
nected to a new vertex, say w. Clearly w has degree dk. In fact, it is clear that the degrees
of the vertices of this new graph are, when arranged from greatest to least, precisely equal
to π. Since π has a graphic realization, we conclude that π ∈ GSn.

Next, suppose that π = (d1, d2, . . . dn) is a graphic sequence. Let a graph G be drawn
realizing π such that for all i ∈ [n], vertex vi ∈ V has degree di. Recall that Nvk

is the
set of all dk neighbors of vertex vk. Collect dk vertices of V − {vk} with maximal degree
sum, denoting this set Mvk

. Now, if Nvk
= Mvk

then deleting vertex vk from G results in
a realization of π′k directly. Suppose instead that Nvk

6= Mvk
. Then since these sets have

equal cardinalities, there must exist some va ∈ Nvk
and vj ∈Mvk

such that neither vj nor
va belongs to Nvk

∩Mvk
. Now, va is a neighbor of vk, and vj is not. Furthermore, vj has at

least as many neighbors as va by construction of Mvk
. Therefore, vj must have a neighbor

vb which is not a neighbor of va (since va is known to have a neighbor vk which is not a
neighbor of vj). In short, the vertex set {va, vb, vj , vk} induces the subgraph of G depicted
in Figure 11 below.

vb

vav j

v k

v w

a

b

b a
w

Figure 11.

We have satisfied the necessary conditions for employing our 2-switch. By removing
edges vjvb and vavk and adding edges vjvk and vavb, we produce the graph G∗ with exactly
the same degree sequence that G has. Furthermore, if we reconstruct Nvk

and Mvk
for this

new graph G∗, we find that the cardinality of their intersection is exactly 1 larger than it
was before (vj has been included by our introduction of edge vjvk). Thus, by repeating the
procedure described above as many times as needed (a necessarily finite number of times),
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we will eventually produce a graph whose vertex vk is adjacent to dk vertices of highest
degree other than vk. Once this has been accomplished, we need only delete vertex vk to
produce a realization of π′k, hence π′k ∈ GSn−1, as desired.

�

Our next theorem, a result of Erdös and Gallai [2], provides another necessary and suffi-
cient condition for a sequence in NSn to be graphic. The proof we offer is closely modeled
after a proof given by Choudum [15].

Theorem 2.2. Let π = (d1, d2, . . . , dn) ∈ NSn such that σ(π) is even. Then π ∈ GSn if
and only if for all t ∈ [n],

t∑
i=1

di ≤ t(t− 1) +
n∑

i=t+1

min(t, di).

Before we begin our proof, we note that some versions of this theorem, including the
version cited by Li et al. in [1], place t ∈ [n− 1] rather than [n]. This is a matter of taste,
since the claim holds trivially for t = n. For brevity, let the family of sequences consisting
of exactly n terms satisfying the inequality above for all t ∈ [n] be collectively referred to
as EGn in honor of Erdös and Galliai. Then, for π ∈ NSn with an even sum, we wish to
establish that π ∈ GSn if and only if π ∈ EGn.

Proof. First, suppose that π = (d1, d2, . . . , dn) ∈ GSn. Let a graph G be drawn realizing
π, such that for all i ∈ [n], vi ∈ V has degree di. Let Vt := {vi}i∈[t]. Now the sum

∑t
i=1 di

can be thought of as an enumeration of edges in E with at least one endpoint in Vt. Note
that those edges in E with both endpoints in Vt will be counted twice by this sum. Since
no more than

(
k
2

)
edges in E can have endpoints exclusively in Vt, edges with both end-

points in Vt can contribute no more than 2
(

t
2

)
= t(t − 1) to

∑t
i=1 di. On the other hand,

those edges in E with exactly one endpoint in Vt will be counted exactly once by the sum∑t
i=1 di. Note that, for each i such that t+ 1 ≤ i ≤ n, the number min(t, di) is the largest

possible number of neighbors that di has in Vt. Consequently, the sum
∑n

i=t+1 min(t, di)
is at least as large as the number of the number of edges in E with exactly one endpoint
in Vt. Hence, we find that

∑t
i=1 di ≤ t(t−1)+

∑n
i=t+1 min(t, di), hence π ∈ EGn as desired.

Next, we prove that π ∈ EGn implies π ∈ GSn by means of induction on the sum σ(π).
First, suppose that σ(π) = 0. Then both

∑t
i=1 di and

∑n
i=t+1 min(t, di) are necessarily

equal to zero as well (for each di is itself equal to zero). Furthermore, t(t− 1) is a strictly
increasing function on the domain (1

2 ,∞). Since t(t − 1) = 0 for t = 1, we learn that
t(t− 1) ≥ 0 for all t ∈ [n]. Hence the desired inequality holds for all π ∈ NSn whose terms
have sum 0. Furthermore, the sequence π is clearly graphic, since it can be realized as
n distinct vertices with no edges. Hence, every π ∈ EGn such that σ(π) = 0 is also an
element of GSn, as desired.
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Next, suppose that σ(π) = 2. One way that this could occur is if d1 = 2 and all
other terms equal zero. However, we see that our inequality fails for t = 1, in that the
left side is equal to 2 while the right side is equal to zero. The only remaining possi-
bility is that d1 = d2 = 1 and all remaining terms equal zero. If we set t = 1, we see
that

∑1
i=1 di =

∑n
i=2 min(1, di) = 1, hence our inequality holds. If t ≥ 2, we see that∑t

i=1 di = 2. Since t(t − 1) = 2 when t = 2, and t(t − 1) is strictly increasing over the
domain of interest, it follows that t(t− 1) ≥

∑t
i=1 di, and our inequality holds once more.

Thus, the only sequence π ∈ NSn such that σ(π) = 2 and π ∈ EGn has precisely two
terms equal to 1 and the remaining n − 2 terms equal to zero. This is clearly graphic as
well, realized by any simple graph with n vertices and 1 edge.

Having established a sufficient base case, we now set the stage for our inductive step.
Suppose, for our induction hypothesis, that every sequence in NSn with even sum s − 2
belonging to EGn has a graphic realization. (Note that this automatically guarantees s
is even.) Let π = (d1, d2, . . . , dn) be an arbitrary sequence in NSn such that σ(π) = s
and π ∈ EGn. Since membership in neither EGn nor membership in GSn is in any way
impacted by any string of zero terms at the tail of π, we may assume without loss of gen-
erality that dn ≥ 1.

Now π is a sequence that begins with a string of terms equal to d1 (though the string
may be quite short). Let dk be the final term in this string of terms equal to d1, or the term
dn−1, whichever comes first. By our choice of dk, we guarantee ourselves that dk−1 ≥ dk+1,
or dk − 1 = dn−1 − 1 ≥ dn − 1. In either case, we see that

π∗ = (d1, . . . , dk−1, dk − 1, dk+1, . . . , dn−1, dn − 1)

is a sequence belonging to NSn such that σ(π∗) = s − 2. As a notational convenience in
the work to follow, we rename these terms (e1, e2, . . . , en) so that

ei =

{
di, if i 6= k, n;
di − 1, otherwise.

Before going any further, we require one additional tool. In particular, we will frequently
need the inequality

min(a, b)− 1 ≤ min(a, b− 1) ∀a, b ∈ R. (1)

This is easily verified. Suppose first that a ≤ b, thus min(a, b)− 1 = a− 1. Since a− 1
is obviously not greater than a, and a − 1 ≤ b − 1 by hypothesis, the inequality holds.
Next, suppose instead that b < a. It follows that min(a, b) − 1 = b − 1 which is very
clearly not larger than a or b − 1, and the inequality holds once more. We conclude that
min(a, b) − 1 ≤ min(a, b − 1) holds for any a, b ∈ R, as claimed. Having settled this, we
now proceed to verify that π∗ ∈ EGn by considering five different cases which together
represent every possible scenario.



12 JOSEPH RICHARDS

(1) Suppose that k ≤ t ≤ n. By hypothesis,
∑t

i=1 di ≤ t(t − 1) +
∑n

i=t+1 min(t, di),
hence (

t∑
i=1

di

)
− 1 ≤ t(t− 1) +

(
n∑

i=t+1

min(t, di)

)
− 1

Since k ≤ t, one of the terms of
∑t

i=1 di is dk, and we may declare that the 1
that has been subtracted from the left side has the lone effect of changing dk to
dk − 1 = ek. Thus, the left side may be rewritten as

∑t
i=1 ei. Now, we declare

that the one subtracted from the right side has the effect of changing the final
term of

∑n
i=t+1 min(t, di) from min(t, dn) to min(t, dn)− 1. Since min(t, dn)− 1 ≤

min(t, dn − 1) by (1), we have that
n∑

i=t+1

min(t, di)− 1 ≤
n−1∑

i=t+1

min(t, di) + min(t, dn − 1) =
n∑

i=t+1

min(t, ei).

Piecing these results together we find that
∑t

i=1 ei ≤ t(t − 1) +
∑n

i=t+1 min(ei, t),
as desired.

(2) Suppose that t ∈ [k − 1] and dt ≤ t − 1. We note that for this case (and each
remaining case), 1 ≤ t < k, hence dt and all terms of π with smaller index than t
precede dk, and are therefore equal to dk = dt. It follows that

t∑
i=1

di =
t∑

i=1

ei = tdt.

Now, by hypothesis, dt ≤ t− 1, hence
∑t

i=1 ei ≤ t(t− 1). Also, since dk, dn, and t
are all equal to at least one, the expression

∑n
i=t+1 min(t, di) has at least two terms

each at least equal to 1. Thus
∑n

i=t+1 min(t, di)− 2 is non-negative. Note that, by
once more employing (1), we have

0 ≤
n∑

i=t+1

min(t, di)− 2 ≤
n∑

i=t+1

min(t, ei).

Adding this (necessarily non-negative) sum to the right hand side of
∑t

i=1 ei ≤
t(t−1), derived a few sentences ago, we have

∑t
i=1 ei ≤ t(t−1)+

∑n
i=t+1 min(t, ei),

as desired.

(3) Suppose that t ∈ [k − 1] and dt = t. We will need to verify, for reasons soon to
be clear, that

∑n
i=t+2 di is at least equal to 2. It is clear that this inequality holds

if
∑n

i=t+2 di has at least two terms, since each such term is greater than or equal
to dn which is itself greater than or equal to 1 by assumption. Now, if

∑n
i=t+2 di

consists of only one term, then dt+2 = dn, and in particular, t = n − 2. Since
n− 1 = t+ 1 ≤ k by hypothesis while k ≤ n− 1 by our construction of dk, we find
that k = n − 1. Hence the sequence π consists of k = n − 1 copies of t = n − 2,
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followed by a single term dn. In other words, σ(π) = (n − 1)(n − 2) + dn. Since
both σ(π) and (n − 1)(n − 2) are even, it follows that dn is as well. Finally, since
dn ≥ 1, we conclude that dn is, in fact, an even integer greater than or equal to 2.
Thus, we can be quite certain that, regardless of how many terms

∑n
i=t+2 di has,

it is irrefutably greater than or equal to 2.

Now then,
∑t

i=1 ei =
∑t

i=1 di = tdt = t2 = t2 − t + t = t(t − 1) + dt+1. By
adding

∑n
i=t+2 di − 2 to the right hand side of this equality, shown in the previous

paragraph to be non-negative, we derive the inequality
t∑

i=1

ei ≤ t(t− 1) + dt+1 +
n∑

i=t+2

di − 2. (2)

Furthermore, since di ≤ dt = t for i > t, it follows that

t(t− 1) + dt+1 +
n∑

i=t+2

di − 2 = t(t− 1) +
n∑

i=t+1

min(t, di)− 2

≤ t(t− 1) +
n∑

i=t+1

min(t, ei). (3)

Combining inequalities (2) and (3) yields
∑t

i=1 ei ≤ t(t− 1) +
∑n

i=t+1 min(t, ei), as
desired.

(4) Suppose that t ∈ [k − 1], dt ≥ t+ 1, and dn ≥ t+ 1. Now,
t∑

i=1

ei =
t∑

i=1

di ≤ t(t− 1) +
n∑

i=t+1

min(t, di)

by hypothesis. Furthermore, each term in the sum
∑n

i=t+1 min(t, di) is equal to t
due to our assertion that dn ≥ t+1. In fact, the sum would remain unchanged even
if we reduce both dk and dn by 1, since both dk−1 and dn−1 are still greater than
or equal to t. In short,

∑n
i=t+1 min(t, di) =

∑n
i=t+1 min(t, ei), and we immediately

have the conclusion
∑t

i=1 ei ≤ t(t− 1) +
∑n

i=t+1 min(t, ei), as desired.

(5) Finally, suppose that t ∈ [k − 1], dt ≥ t+ 1, and dn ≤ t. Since dn ≤ t, there exists
some particular term in π that is the smallest indexed term to be less than or equal
to t; let this term be denoted dr. Note that min(di, t) = t for all i ∈ [r− 1] whereas
min(di, t) = di for all i ≥ r.

Now, we claim that there does not exist a t ∈ [k − 1] such that
t∑

i=1

di = t(t− 1) +
n∑

i=t+1

min(t, di).
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For, suppose there does exist such a t. Then

tdt =
t∑

i=1

di = t(t− 1) +
r−1∑

i=t+1

min(t, di) +
n∑

i=r

min(t, di)

= t(t− 1) + t(r − 1− t) +
n∑

i=r

di

= t(r − 2) +
n∑

i=r

di. (4)

Multiplying both sides of (4) by t+1
t yields

(t+ 1)dt = (t+ 1)(r − 2) +
t+ 1
t

n∑
i=r

di

> (t+ 1)(r − 2− t+ t) +
t+ 1
t

n∑
i=r

di −
1
t

n∑
i=r

di

= t(t+ 1) + (t+ 1)(r − 1− (t+ 1)) +
n∑

i=r

di

= t(t+ 1) +
r−1∑

i=t+2

(t+ 1) +
n∑

i=r

di. (5)

Now, consider the expression min(t + 1, di). Since di is defined to be strictly
greater than t for all i < r, we see that min(t + 1, di) = t + 1, for i ∈ [r − 1].
Furthermore, di is known to be less than or equal to t for all i ≥ r, hence min(t+
1, di) = di for r ≤ i ≤ n. Finally, we note that (t+ 1)dk =

∑t+1
i=1 di since t+ 1 ∈ [k].

Thus, we may rewrite (5) as

t+1∑
i=1

di > (t+ 1)(t) +
n∑

i=t+2

min(t+ 1, di),

which is a direct contradiction of the hypothesis that π ∈ EGn. For our trouble,
we may now conclude that, for all t under consideration in this case, the following
strict inequality holds:

t∑
i=1

di < t(t− 1) +
n∑

i=t+1

min(t, di).

Recall that dk = dt is strictly larger than t, hence min(t, dk) = min(t, dk − 1) =
min(t, ek). Finally, subtracting one from the right side of the inequality above and
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recalling that min(t, dn)− 1 ≤ min(t, dn − 1) yields
t∑

i=1

ei =
t∑

i=1

di ≤ t(t− 1) +
n∑

i=t+1

min(t, di)− 1

≤ t(t− 1) +
n∑

i=t+1

min(t, ei),

as desired. Since this case was the only remaining case to check, we conclude that
π∗ ∈ EGn.

Since π∗ ∈ EGn, we conclude by our induction hypothesis that π∗ is graphic. Let a
graph G be drawn realizing π∗, such that for all i ∈ [n], vi ∈ V has degree ei. In particular,
we focus our attention on the vertices labeled vk and vn. If these two vertices are not
adjacent, then we may clearly add an edge connecting them, immediately producing a
graph that realizes π. Suppose instead that they are adjacent. We note that G has
a maximum degree e1 of no greater than n − 1, and that the vertex vk (having degree
ek = dk − 1 ≤ d1 − 1 = e1 − 1) may therefore have a degree of no greater than n − 2. In
short, there exists some vertex in G− vk that is not adjacent to vk, say va. Now since va is
not equal to vk or vn, ea = da ≥ dn > dn− 1 = en, hence the vertex va has more neighbors
that vertex vn. Consequently, va has a neighbor, say vb, that is not adjacent to vn. Similar
to a situation we have seen before in this paper, we learn that {va, vb, vn, vk} induces the
subgraph of G depicted in Figure 12 below.

vb

vavn

vk

v w

a

b

b a

w

Figure 12.

Since the edges vnvb and vkva are certainly not edges belonging to G, we may perform
a 2-switch. Our new graph G∗ still faithfully realizes π∗, but certainly does not have an
edge connecting vk to vn. By adding this edge, we have produced a graph which realizes
π. Hence, π ∈ GSn and our proof is complete.

�

Before moving on, let us consider the sequence (6, 6, 5, 4, 3, 2, 2). Since the sum of the
first three terms of this sequence is 17 whereas 3(3 − 1) +

∑7
i=4 min(3, di) is only 16, this

sequence is not graphic by Theorem 2.2. It is interesting to note that laying off the first
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three terms of (6, 6, 5, 4, 3, 2, 2) produces a sequence that is no longer strictly whole num-
bers. Perhaps, given a sequence π ∈ NSn, a failure to satisfy the inequality given in
Theorem 2.2 for some t ∈ [n] corresponds exactly to an instance of laying off the first
t terms of π and producing a sequence containing at least one term that is not a whole
number. To our knowledge, this conjecture is open.

Our final result of this section is a sufficient condition for a sequence π ∈ NSn to belong
to GSn which will prove most useful in the sequel. Both the theorem and its proof are
from Yin et al. [1].

Theorem 2.3. If π = (d1, d2, . . . , dn) ∈ NSn, such that σ(π) is even and dd1+1 ≥ d1 − 1,
then π is graphic.

We note that the statement of the theorem above differs slightly from that given in [1].
In particular, we do not adopt the convention of replacing d1 with r, even though this
will lead to subscripts with subscripts. We intend to use r as a variable in a different, yet
similar, context later in our discussion, and wish to avoid unnecessary confusion.

Before we offer a proof of Theorem 2.3, consider the sequence (5, 5, 5, 4, 4, 4, 3, 2, 1, 1).
We could certainly create residuals of this ten term sequence by laying off one term after
another, until we arrived at a sequence we could easily identify as being graphic or not.
Alternatively, we could verify that this sequence satisfies the inequality of Theorem 2.2 for
1 ≤ t ≤ 10. However, both of these plans seem rather tedious. Indeed, it is easy to see that
a sequence of any great length would quickly make both of theses approaches untenable.
Thus it is rather remarkable that observing an even number of odd entries along with a
sixth term of at least four allows us to conclude that this sequence is certainly graphic by
Theorem 2.3.

On the other hand, we note that Theorem 2.3 is a sufficiency condition for a sequence
to be graphic, not a necessary one. Indeed, the sequence (3, 1, 1, 1) is graphic as shown in
Figure 13, even though the fourth term of this sequence is not at least 2. Thus we note
that this rather powerful tool for determining if a given sequence in NSn is graphic, though
quite useful and easy to apply, does not characterize all graphic sequences.

Figure 13.
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Proof. We have that π ∈ NSn and that π has an even sum. If we can show that, for all
t ∈ [n], the inequality

t∑
i=1

di ≤ t(t− 1) +
n∑

i=t+1

min(t, di)

holds, then π ∈ GSn by Theorem 2.2. In order to demonstrate that π indeed satisfies the
inequality above, we consider four separate cases.

(1) Suppose that 1 ≤ t ≤ d1 − 1. Clearly the sum
∑t

i=1 di consists of t terms, each no
larger than d1. As a result,

∑t
i=1 di ≤ td1. Note that td1 = t(t− 1) + t(d1 + 1− t).

Hence
t∑

i=1

di ≤ t(t− 1) + t(d1 + 1− t)

= t(t− 1) +
d1+1∑
i=t+1

t.

By hypothesis, dd1+1 ≥ d1 − 1 ≥ t. Consequently di ≥ t, hence min(t, di) = t, for
all i ∈ [d1 + 1]. This gives us the inequality

t∑
i=1

di ≤ t(t− 1) +
d1+1∑
i=t+1

min(t, di).

Finally, since dd1+1 is well-defined by hypothesis, it is clear that d1 + 1 ≤ n. Thus
we certainly do not decrease the sum on the right by adding over all i such that
t+ 1 ≤ i ≤ n. Thus

t∑
i=1

di ≤ t(t− 1) +
n∑

i=t+1

min(t, di),

as desired.

(2) Suppose that d1 + 1 ≤ t ≤ n. For identical reasons to those given above,
t∑

i=1

di ≤ t(t− 1) + t(d1 + 1− t).

By hypothesis, d1 + 1 − t ≤ 0. Clearly the inequality above will still hold if we
replace the non-positive term t(d1 + 1− t) with one that is non-negative. In short,
we once more have the desired inequality

t∑
i=1

di ≤ t(t− 1) +
n∑

i=t+1

min(t, di).
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(3) Suppose that t = d1 and dd1 = d1 − 1. Since dd1 ≥ dd1+1 ≥ d1 − 1, this is the
least value possible for dd1 to take on. Note that the largest value that di can
take on for each i ∈ [d1 − 1] is d1. Hence,

∑t
i=1 di =

∑d1
i=1 di is not greater than

d1(d1− 1) + d1− 1. Since dt+1 = dd1+1 ≥ d1− 1 by hypothesis and t = d1 > d1− 1
by inspection, we find that min(t, dt+1) ≥ d1− 1. Putting these thoughts together,
we have the desired inequality

t∑
i=1

di ≤ d1(d1 − 1) + d1 − 1 = t(t− 1) + d1 − 1

≤ t(t− 1) + min(t, dt+1)

≤ t(t− 1) +
n∑

i=t+1

min(t, di).

(4) Finally suppose that t = d1 and dd1 = d1. Clearly, this is the largest (and only
other) value possible for dd1 to take on. Now, let us assume for the moment that
dd1+1 = d1 − 1 and dd1+2 = 0. Then π is a sequence consisting of d1 terms each
equal to d1, a single term equal to d1 − 1, and every remaining term equal to 0.
Thus, σ(π) = d1(d1) + d1 − 1 = (d1 + 1)(d1)− 1. Since (d1 + 1)(d1) is the product
of two consecutive integers, it is even. Consequently σ(π) is odd, contradicting our
hypothesis. We conclude that our assumption was false, and either dd1+1 6= d1 − 1
or dd1+2 6= 0. By hypothesis, these assertions are equivalent to saying dd1+1 = d1

or dd1+2 ≥ 1.

If the first of the two assertions holds, then min(d1, dd1+1) = d1. If the second
holds, then min(d1, dd1+1) + min(d1, dd1+2) ≥ (d1 − 1) + 1 = d1. Either way, we
learn that

∑n
i=d1+1 min(d1, di) is greater than or equal to d1. Therefore,

t∑
i=1

di =
d1∑
i=1

di = d1(d1) = d1(d1 − 1) + d1

≤ d1(d1 − 1) +
n∑

i=d1+1

min(d1, di)

= t(t− 1) +
n∑

i=t+1

min(t, di),

as desired. Now, in each of the exhaustive cases above our sequence π ∈ NSn

with even sum satisfied the inequality
∑t

i=1 di ≤ t(t − 1) +
∑n

i=t+1 min(t, di) for
all t ∈ [n]. Therefore, we conclude that π ∈ GSn by Theorem 2.2, completing our
proof.

�
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3. Some sufficient conditions for π ∈ NSn to be potentially Ar+1-graphic

We will find frequent need, in the discussion to follow, of a modified version of the lay-
ing off procedure described earlier. Let us fix positive whole numbers n and r such that
n ≥ r + 1. Let π = (d1, d2, . . . , dn) ∈ NSn be a sequence with d1 ≤ n − 1 and dr+1 ≥ r.
Our modified laying off procedure will produce a family of sequences, {πi} for 0 ≤ i ≤ r+1.

We begin by defining π0 := π. Next, we define

π1 := (d2 − 1, d3 − 1, . . . , dr+1 − 1, d(1)
r+2, . . . , d

(1)
n ),

where (d(1)
r+2, . . . , d

(1)
n ) is simply the sequence (dr+2 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn) re-

ordered so as to be non-increasing. Note that our modified laying off procedure consisted
of deleting the first term d1, subtracting 1 from each of the next d1 terms, then reorganizing
the last n − r − 1 terms of our sequence to be non-increasing. This is, in fact, very much
our general plan for producing πi, and we state this explicitly.

For i ∈ [r + 1], and given the sequence

πi−1 = (di − (i− 1), di+1 − (i− 1), . . . , dr+1 − (i− 1), d(i−1)
r+2 , . . . , d(i−1)

n ),

we define
πi := (di+1 − i, di+2 − i, . . . , dr+1 − i, d(i)

r+2, . . . , d
(i)
n ),

where (d(i)
r+2, . . . , d

(i)
n ) is simply a reordering of the last n − r − 1 terms so that they are

non-increasing.

We note that laying off di− i+ 1 from πi−1 to generate πi causes di− i+ 1 terms to each
get 1 smaller, starting with the term indexed with an i+1. Hence, the largest indexed term
to have 1 subtracted from it, when forming πi from πi−1, will be indexed by the integer
i+ di − i+ 1 = di + 1.

Before we consider a theorem that depends on the family of sequences {πi} for 0 ≤ i ≤
r+ 1 just defined, we consider a concrete example. Let π = (5, 4, 4, 3, 3, 1, 1, 1) ∈ NS8. Let
us fix r + 1 = 4, which is certainly less than or equal to 8. The algorithm described above
produces the following family of sequences:

π0 = (5, 4, 4, 3, 3, 1, 1, 1)

π1 = (3, 3, 2, 2(1), 1(1), 1(1), 0(1))

π2 = (2, 1, 1(2), 1(2), 1(2), 0(2))

π3 = (0, 1(3), 1(3), 0(3), 0(3))

π4 = (1(4), 1(4), 0(4), 0(4))

The modified laying off procedure described above consists of removing the leading term
di−i+1 twice (once when it is deleted and a second time when 1 is subtracted from each of
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the next di− i+ 1 terms). In short, an even number, namely 2(di− i+ 1), is removed from
the sum total of πi−1 in order to generate πi. Concisely, σ(πi−1) − σ(πi) = 2(di − i + 1).
Consequently, σ(π) is even if and only if σ(πi) is even for all i ∈ [r + 1].

Our next theorem asserts that the sequence πr+1 tells us a great deal about whether π
is potentially Ar+1-graphic or not. In particular, we shall see that π is potentially Ar+1-
graphic if and only if πr+1 is graphic. Note that, from the concrete family of sequences
we constructed above, this implies (5, 4, 4, 3, 3, 1, 1, 1) is potentially A4-graphic since the
sequence (1, 1, 0, 0) is quite clearly graphic. The theorem is due to Rao [12], but the proof
that follows is our own.

Theorem 3.1. Fix whole numbers n and r such that n ≥ r+ 1. Let π = (d1, d2, . . . , dn) ∈
NSn with dr+1 ≥ r. Then π is potentially Ar+1-graphic if and only if πr+1 is graphic.

Proof. First, suppose that π = (d1, d2, . . . , dn) is potentially Ar+1-graphic. Let G be a
graph that realizes π such that for all i ∈ [n], vi ∈ V has degree di, and so that the r + 1
vertices of highest degree induce an (r + 1)-clique. We proceed with the same style proof
used in verifying Theorem 2.1.

Denote by N1 the d1 neighbors of vertex v1. Denote by M1 the set of vertices {vi} for
2 ≤ i ≤ dd1+1. If N1 = M1 then deleting vertex v1 from G results in a realization of π1.
If instead N1 6= M1, then since these sets have equal cardinalities, there must exist some
va ∈ N1 and vb ∈ M1 such that va does not belong to M1 and vb does not belong to N1.
Note that neither vb nor va is a vertex belonging to the induced r+ 1-clique in G, as all of
these vertices belong to M1 ∩N1, by construction. Now, va is a neighbor of v1, and vb is
not. Furthermore, vb has at least as many neighbors as va by construction of M1. Thus,
since va has a neighbor that vb does not have, it follows that vb has a neighbor vc that is
not adjacent to va. In short, our graph contains the subgraph illustrated in Figure 14.

vc

vbva

v1

Figure 14.

Note that edges v1vb and vavc are known not to belong to G. Thus we may perform a
2-switch, creating a new graph G∗ with the same degree sequence that G has. If we reform
sets N1 and M1 for this new graph, we find that their intersection is larger by exactly
one element (for vb has been included). Furthermore, we note that no vertex belonging
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to the induced r + 1-clique has been added to or removed from this clique in our process.
Therefore, we have a new graph G∗ which is an Ar+1 graphic realization of π. It is clear
that this procedure can be repeated until the intersection of N1 and M1 is equal to N1.
Finally, deleting vertex v1 from the resulting graph produces a realization of π1.

We have seen in the preceding paragraph that whenever π is potentially Ar+1 graphic,
there exists an Ar+1 graphic realization of π such that removing the vertex of highest
degree produces a graphic realization of π1. We note that π1 is Ar graphic by virtue of
Corollary 1.1. Consequently, we need merely follow the steps outlined above to produce a
realization (necessarily Ar−1 graphic) of π2. Indeed, by repeating the procedure, we will
certainly produce a graphic realization of πr+1, as was desired to show.

Next, suppose that πr+1 is graphic. Let a simple graph G be given that realizes πr+1.
To this graph add a new vertex. Some set of terms in πr+1 each got one smaller in the
process of forming πr+1 from πr, and these terms are the degrees of a specific set of vertices
in G. Connect each of these vertices to the new vertex. It is clear that the resulting graph
is a realization of πr. It is equally clear that this procedure can be repeated until a graphic
realization of π is produced. All that remains is a verification that the resulting r + 1
vertices with largest degrees in this realization induce an (r + 1)-clique. But this is clear
as well; by the manner in which our laying off process was defined, each vertex added to
πi to ultimately realize πi−1 is always adjacent to every vertex previously added. Hence,
we see that if πr+1 is graphic, it does indeed follow that π is potentially Ar+1-graphic.

�

In order to derive further sufficient conditions for π ∈ NSn to be potentially Ar+1-
graphic, we will need to develop some rather technical machinery. First, we define a specific
number associated with each sequence in the family {πi} for 0 ≤ i ≤ r + 1. Recall that a
typical element of this family is given by πi = (di+1− i, di+2− i, . . . , dr+1− i, d(i)

r+2, . . . , d
(i)
n ).

In particular, this sequence has the (n− r−1) term tail (d(i)
r+2, . . . , d

(i)
n ). Let ti ∈ [n− r−1]

be the unique whole number that exactly counts the number of elements of this tail that
are within 1 (in size) of d(i)

r+2. Put another way, ti := max{j|d(i)
r+2 − d

(i)
r+1+j ≤ 1}.

Earlier we constructed a concrete family of sequences from π = (5, 4, 4, 3, 3, 1, 1, 1) with
r + 1 = 4. By the definition just given of ti for 0 ≤ i ≤ r + 1, we have the following:

π0 = (5, 4, 4, 3, 3, 1, 1, 1) t0 = 1

π1 = (3, 3, 2, 2(1), 1(1), 1(1), 0(1)) t1 = 3

π2 = (2, 1, 1(2), 1(2), 1(2), 0(2)) t2 = 4

π3 = (0, 1(3), 1(3), 0(3), 0(3)) t3 = 4

π4 = (1(4), 1(4), 0(4), 0(4)) t4 = 4
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Next, we consider the following lemma, due to Yin et al. [1]. Essentially, this lemma
gives us a clearer picture of what the final n−r−1 terms of πi look like for each i ∈ [r+1].

Lemma 3.1. Let n and r be fixed positive whole numbers such that n ≥ r + 1, and let
π = (d1, d2, . . . dn) ∈ NSn such that dr+1 ≥ r, σ(π) is even and n − 2 ≥ d1 ≥ · · · ≥ dr ≥
dr+1 = · · · = dd1+2 ≥ dd1+3 ≥ · · · ≥ dn. Let ti be as defined above. Then:

(1) tr+1 ≥ tr ≥ · · · ≥ t0 ≥ d1 + 1− r.
(2) For each i ≥ 1, d(i)

r+1+k = d
(i−1)
r+1+k for k > ti. Consequently, d(r+1)

r+1+k = dr+1+k for
k > tr+1.

(3) σ(πi−1)− σ(πi) = 2(di − i+ 1) for i ∈ [r + 1]. Consequently,
∑r+1

i=1 di = r(r + 1) +∑n
r+2 di − σ(πr+1).

Proof. We consider each of the proposed statements in turn.

(1) Recall that t0 is defined so that dr+1+t0 is the term of π with largest index within
1 of dr+1. Since, by hypothesis, dr+1 = dd1+2, we see immediately that the index
r+ 1 + t0 is not less than the index d1 + 2. It follows that r+ 1 + t0 ≥ d1 + 2, hence
t0 ≥ d1 + 1− r.

Let i ∈ [r+1] and consider πi = (di+1− i, di+2− i, . . . , dr+1− i, d(i)
r+2, . . . , d

(i)
n ). In

particular, note that the tail of this sequence is non-increasing, and that the first
ti elements of this tail are all within 1 of d(i)

r+2 and strictly larger than d(i)
r+1+ti+1 by

definition of ti.

Now, laying off the leading term of πi (to form πi+1) reduces the first several
terms of πi by 1. Suppose this laying off results in all of (d(i)

r+2, d
(i)
r+3, . . . , d

(i)
r+1+ti

)
being reduced by 1. Since dr+1+ti > dr+1+ti+1 by definition of ti, we see that re-
ordering the tail of πi to form πi+1 does not involve reordering any of the first ti
such terms. Furthermore, these first ti terms are just as within 1 of dr + 2 as they
started out being. In short, ti+1 is certainly not less than ti. Suppose instead that
the laying off process results instead in none of the terms of (d(i)

r+2, d
(i)
r+3, . . . , d

(i)
r+1+ti

)
being reduced by 1. Clearly no reordering of the tail of the resulting sequence is
then required to form πi+1, and we once more find that ti+1 is not less than ti.

The only other possibility is that the laying off process under consideration will
reduce only part of (d(i)

r+2, d
(i)
r+3, . . . , d

(i)
r+1+ti

) by 1. Let us denote by d(i)
a , for r+ 2 <

a < r + 1 + ti, the term of πi with largest index that is reduced by 1 in our laying
off procedure to form πi+1. Since d(i)

r+2 − d
(i)
r+1+ti

≤ 1, we see immediately that

d
(i)
r+1+ti

≥ d(i)
r+2 − 1, hence we have the non-increasing sequence

d
(i)
a+1, . . . , d

(i)
r+1+ti

, d
(i)
r+2 − 1, . . . , d(i)

a − 1.
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Now d
(i)
a ≥ d

(i)
r+2 − 1, since r + 2 < a < r + 1 + ti. But d(i)

r+2 − 1 > d
(i)
r+1+ti+1 by

definition of ti, hence d(i)
a − 1 ≥ d(i)

r+1+ti+1. Therefore

d
(i)
a+1, . . . , d

(i)
r+1+ti

, d
(i)
r+2 − 1, . . . , d(i)

a − 1︸ ︷︷ ︸
ti terms

, d
(i)
r+1+ti+1, . . . , d

(i)
n

is non-increasing and is therefore equal to (d(i+1)
r+2 , . . . , d

(i+1)
n ). In particular, d(i)

a+1 =

d
(i+1)
r+2 and d

(i)
a − 1 = d

(i+1)
r+1+ti

. Note that d(i)
a is either equal to d

(i)
a+1 or one larger

by virtue of our index a being strictly between r+ 2 and r+ 1 + ti. In either case,
d

(i)
a − 1 is certainly within 1 of d(i)

a+1. Thus d(i+1)
r+2 − d

(i+1)
r+1+ti

≤ 1, and we find once
more that ti+1 is not less than ti. Since we have now examined every possible case,
we conclude that ti+1 ≥ ti for all i ∈ [r+1]. Along with the fact that t0 ≥ d1+1−r,
which we derived earlier, we have the desired combined inequality

tr+1 ≥ tr ≥, . . . , t1 ≥ t0 ≥ d1 + 1− r.

(2) Recall that the sequence πi is formed by deleting the leading term of πi−1, sub-
tracting 1 from each of the remaining terms up through the term indexed by the
integer di + 1, and reordering the last n − r − 1 terms to be non-increasing. If it
turns out that di + 1 < r + 1 + ti−1 for each i ∈ [r + 1], then by the last case
considered in the preceding proof, none of the terms d(i−1)

r+1+ti−1+1, . . . , d
(i−1)
n will be

reordered (or reindexed) in this modified laying off process. In short, we would
have d(i−1)

r+1+k = d
(i)
r+1+k for all (relevant) k ≥ ti−1 + 1. In fact, since ti + 1 ≥ ti−1 + 1

for all i ∈ [r+1], we need only insist that k > ti, as desired. Hence, all that remains
is to show that the inequality di+1 < r+1+ti−1 does, in fact hold for all i ∈ [r+1].

First, we note that the inequality in question can be rewritten di + 1− r ≤ ti−1.
Thus, if i = 1, the inequality to be verified is d1 + 1− r ≤ t0, which was shown true
in the preceding proof. Suppose, for an induction hypothesis, that di + 1− r ≤ ti−1

for some particular i ∈ [r]. Since di+1 ≤ di by hypothesis and ti−1 ≤ ti by the
preceding proof, we have di+1 + 1 − r ≤ di + 1 − r ≤ ti−1 ≤ ti. Since we have
succeeded in completing our inductive step, we conclude the inequality holds for
all i ∈ [r + 1], as desired.

Now, we have verified that d(i−1)
r+1+k = d

(i)
r+1+k for all k > ti. Since tr+1 is greater

than or equal to ti for all i ∈ [r+1], setting k > tr+1 makes d(i−1)
r+1+k = d

(i)
r+1+k true for

all i ∈ [r+1]. Stringing these r distinct equalities together gives us dr+1+k = d
(r+1)
r+1+k

for k > tr+1, as was to be proven.
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(3) We have shown earlier that σ(πi−1)− σ(πi) = 2(di − i+ 1) for i ∈ [r + 1]. Writing
this equality out for each i ∈ [r + 1] and summing the results together yields

σ(π0)− σ(πr+1) = 2(
r+1∑
i=1

di −
r+1∑
i=1

(i− 1)).

We note that σ(π0) =
∑r+1

i=1 di +
∑n

r+2 di, and that
∑r+1

i=1 (i − 1) = 1
2r(r + 1).

Subtracting
∑r+1

i=1 di from both sides of the equation above and adding r(r + 1)
yields the desired

r+1∑
i=1

di = r(r + 1) +
n∑

r+2

di − σ(πr+1).

�

The following lemma is another piece of technical machinery which will prove useful in
the sequel. The inequality is of some interest, but of critical importance is how much we
learn about the structure of our given sequence if and when the bound is realized.

Lemma 3.2. Let n and r be fixed positive whole numbers such that n ≥ r + 1, and let
π = (d1, d2, . . . dn) ∈ NSn such that dr+1 ≥ r, σ(π) is even and n − 2 ≥ d1 ≥ · · · ≥ dr ≥
dr+1 = · · · = dd1+2 ≥ dd1+3 ≥ · · · ≥ dn. If tr+1 ≤ d(r+1)

r+2 , then
r+1∑
i=1

di ≤ r(r + 1) + d
(r+1)
r+2 (dr+1 − d(r+1)

r+2 + 1)− 1,

with equality if and only if

(a) d(r+1)
r+3 = · · · = d

(r+1)
r+1+tr+1

= d
(r+1)
r+2 − 1

(b) dr+1 = · · · = dr+1+tr+1, and
(c) tr+1 = d

(r+1)
r+2 .

Proof. By Lemma 3.1(2),

πr+1 = (d(r+1)
r+2 , d

(r+1)
r+3 , . . . , d

(r+1)
r+1+tr+1

, d
(r+1)
r+1+tr+1+1, . . . , d

(r+1)
n )

= (d(r+1)
r+2 , d

(r+1)
r+3 , . . . , d

(r+1)
r+1+tr+1

, dr+1+tr+1+1, . . . , dn).

Note that the first tr+1 terms of πr+1 are all at least d(r+1)
r+2 −1 by definition of tr+1. Hence,

σ(πr+1) ≥ d(r+1)
r+2 + (tr+1 − 1)(d(r+1)

r+2 − 1) +
n∑

i=r+2+tr+1

di, (6)

with equality if and only if d(r+1)
r+3 = · · · = d

(r+1)
r+1+tr+1

= d
(r+1)
r+2 − 1. Meanwhile, consider the

last n − r − 1 terms of π, namely (dr+2, . . . , dr+1+tr+1 , dr+1+tr+1+1, . . . , dn). Since each of
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the first tr+1 terms of this sequence are no larger than dr+1 due to the fact that π ∈ NSn,
we have

n∑
i=r+2

di ≤ tr+1dr+1 +
n∑

i=r+2+tr+1

di, (7)

with equality if and only if dr+1 = · · · = dr+1+tr+1 . Combining inequalities (6) and
(7) with our result from Lemma 3.1(3) (which involves adding and subtracting the sum∑n

i=r+2+tr+1
di) yields

r+1∑
i=1

di = r(r + 1) +
n∑

i=r+2

di − σ(πr+1)

≤ r(r + 1) + tr+1dr+1 −
(
d

(r+1)
r+2 + (tr+1 − 1)(d(r+1)

r+2 − 1)
)

= r(r + 1) + tr+1(dr+1 − d(r+1)
r+2 + 1)− 1 (8)

≤ r(r + 1) + d
(r+1)
r+2 (dr+1 − d(r+1)

r+2 + 1)− 1. (9)

Note that the inequality between lines (8) and (9) is justified by hypothesis, and the bound
is realized if and only if tr+1 = d

(r+1)
r+2 . It is therefore now clear that the inequality

r+1∑
i=1

di ≤ r(r + 1) + d
(r+1)
r+2 (dr+1 − d(r+1)

r+2 + 1)− 1

depends on three others, whose conditions for equality are known. Hence, as desired,
equality holds in the inequality displayed above if and only if

(a) d(r+1)
r+3 = · · · = d

(r+1)
r+1+tr+1

= d
(r+1)
r+2 − 1

(b) dr+1 = · · · = dr+1+tr+1 , and
(c) tr+1 = d

(r+1)
r+2 .

�

We are finally in a position to be able to prove a rather powerful sufficient condition for
π ∈ NSn to be potentially Ar+1-graphic. Both the theorem and the proof are due to Yin
et al. [1].

Theorem 3.2. Let n and r be fixed positive whole numbers such that n ≥ r + 1, and let
π = (d1, d2, . . . dn) ∈ NSn such that dr+1 ≥ r, σ(π) is even and n − 2 ≥ d1 ≥ · · · ≥ dr ≥
dr+1 = · · · = dd1+2 ≥ dd1+3 ≥ · · · ≥ dn. If di ≥ 2r − i for each i ∈ [r − 1], then π is
potentially Ar+1-graphic.

Proof. Recall that π is potentially Ar+1-graphic if and only if πr+1 is graphic, as verified
in Theorem 3.1. Hence, we need only focus our attention on proving that

πr+1 = (d(r+1)
r+2 , d

(r+1)
r+3 , . . . , d

(r+1)
r+1+tr+1

, dr+1+tr+1+1, . . . , dn)
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is graphic. To do so, we consider three separate cases, enumerated below.

(1) Suppose tr+1 ≥ d(r+1)
r+2 +1. It follows immediately that d

d
(r+1)
r+2 +1

≥ dtr+1 . Since tr+1

is clearly less than r+ 1 + tr+1, we also have the inequality dtr+1 ≥ dr+1+tr+1 . Fur-
thermore, dr+1+tr+1 ≥ d

(r+1)
r+2 − 1 by definition of tr+1. Stringing these inequalities

together yields d
d
(r+1)
r+2 +1

≥ d(r+1)
r+2 − 1, thus πr+1 is graphic by Theorem 2.3.

(2) Suppose tr+1 ≤ d(r+1)
r+2 and dr+1 ≥ 2r − 1. Note that since π ∈ NSn, the first r + 1

terms of the sequence (d1, d2, . . . , dn) are each greater than or equal to dr+1. Thus
we have the inequality

∑r+1
i=1 di ≥ (r + 1)dr+1, with equality holding if and only

if d1 = · · · = dr+1. We combine this result with the one derived in Lemma 3.2,
obtaining (r + 1)dr+1 ≤ r(r + 1) + d

(r+1)
r+2 (dr+1 − d(r+1)

r+2 + 1)− 1, hence

0 ≤ (r − dr+1)(r + 1) + d
(r+1)
r+2 (dr+1 − d(r+1)

r+2 + 1)− 1.

Now, for all x ∈ R, let f(x) = x(dr+1−x+ 1). Note that f attains its maximum
value when x = 1+dr+1

2 , and is strictly decreasing on the domain (1+dr+1

2 ,∞). Now,
by assumption, d(r+1)

r+2 ≥ tr+1. Furthermore, tr+1 ≥ d1 + 1 − r by Lemma 3.1(1).
Since d1 ≥ dr+1, we clearly have d1 + 1 − r ≥ dr+1 + 1 − r. Finally, since by
hypothesis 1+dr+1

2 ≥ r, we have dr+1 + 1 − r ≥ 1+dr+1

2 . Combining this set of
inequalities, we have

d
(r+1)
r+2 ≥ tr+1 ≥ d1 + 1− r ≥ dr+1 + 1− r ≥ 1 + dr+1

2
.

In particular, we see that d(r+1)
r+2 ≥ dr+1 +1−r, and that both of these values belong

to the domain (1+dr+1

2 ,∞). Therefore, f(d(r+1)
r+2 ) ≤ f(dr+1 + 1− r), and we have

0 ≤ (r − dr+1)(r + 1) + d
(r+1)
r+2 (dr+1 − d(r+1)

r+2 + 1)− 1

= (r − dr+1)(r + 1) + f(d(r+1)
r+2 )− 1

≤ (r − dr+1)(r + 1) + f(dr+1 + 1− r)− 1

= (r − dr+1)(r + 1) + (dr+1 + 1− r)r − 1
= 2r − dr+1 − 1
≤ 0.

Thus f(d(r+1)
r+2 ) = f(dr+1 + 1 − r), and we learn that d(r+1)

r+2 = dr+1 + 1 − r. Since

2r − dr+1 − 1 = 0, we learn that d(r+1)
r+2 = r. Indeed, since our many inequalities

have proven to be equalities, we have d(r+1)
r+3 = · · · = d

(r+1)
r+1+tr+1

= d
(r+1)
r+2 − 1 = r− 1
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and tr+1 = d
(r+1)
r+2 = r, which together reveal that

πr+1 = (r,
r−1 terms︷ ︸︸ ︷

r − 1, . . . , r − 1, d2r+2, . . . , dn).

Note that the term d2r+2, being the term immediately to the right of dr+1+tr+1 ,
is r− 2 or smaller by definition of tr+1. Also note that r+ (r− 1)2 is the sum of an
odd and even integer, hence odd. Since σ(πr+1) is even, it must be the case that
d2r+2 ≥ 1. Thus, if we lay off the first term of πr+1 we have

(
r−1 terms︷ ︸︸ ︷

r − 2, . . . , r − 2, d′2r+2, . . . , d
′
n)

where the tail (d′2r+2, . . . , d
′
n) is to be interpreted as a reordering of the last n−2r−1

terms so that they are non-increasing. This sequence is certainly a non-increasing
sequence of whole numbers, has an even sum, and has the property that d(r−2)+1 ≥
(r−2)−1, thus by Theorem 2.3 it is graphic. By Theorem 2.1, it follows that πr+1

is graphic as well, as desired.

(3) Suppose tr+1 ≤ d
(r+1)
r+2 and dr+1 ≤ 2r − 2. Since dr+1 is at least r by hypothesis,

we may rephrase the condition dr+1 ≤ 2r − 2 as dr+1 = r + x for some x such
that 0 ≤ x ≤ r − 2. Consider the sum

∑r+1
i=1 di =

∑r−x−1
i=1 di +

∑r+1
i=r−x di. Since

di ≥ 2r − i for all i ∈ [r − 1], we find that

r−x−1∑
i=1

di ≥
r−x−1∑

i=1

(2r − i) =
(3r + x)(r − x− 1)

2
.

It is clear that each of the x+ 2 terms in the sum
∑r+1

i=r−x di is at least as large as
dr+1. Combining this result with the previous one, we find that

r+1∑
i=1

di ≥
(3r + x)(r − x− 1)

2
+ (x+ 2)dr+1.

Combining this inequality with the one obtained in Lemma 3.2 yields the rather
cumbersome inequality

0 ≤ r(r + 1) + f(d(r+1)
r+2 )− 1− (3r + x)(r − x− 1)

2
− (x+ 2)dr+1.

We have already seen that d(r+1)
r+2 ≥ tr+1 ≥ d1 + 1 − r in the preceding case

analysis. Since, by hypothesis, d1 ≥ 2r−1, we immediately have d1+1−r ≥ r. Since
dr+1 < 2r − 1, we clearly see that r > 1+dr+1

2 . Combining this set of inequalities,
we have

d
(r+1)
r+2 ≥ tr+1 ≥ d1 + 1− r ≥ r > 1 + dr+1

2
.
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In particular, d(r+1)
r+2 ≥ r, and both of these integers belong to the domain (1+dr+1

2 ,∞).

Thus, f(d(r+1)
r+2 ) ≤ f(r). Using this inequality (along with dr+1 = r + x) we have

0 ≤ r(r + 1) + f(d(r+1)
r+2 )− 1− (3r + x)(r − x− 1)

2
− (x+ 2)dr+1

≤ r(r + 1) + f(r)− 1− (3r + x)(r − x− 1)
2

− (x+ 2)dr+1

= r(r + 1) + r(dr+1 − r + 1)− 1− (3r + x)(r − x− 1)
2

− (x+ 2)dr+1

= r(r + 1) + r(x+ 1)− 1− (3r + x)(r − x− 1)
2

− (x+ 2)(r + x)

= −1
2

(x− (r − 2)) (x− (r − 1)) .

Since the roots of the final quadratic expression above are consecutive integers,
and the leading coefficient is negative, it cannot take on a strictly positive value
for any integer x. Thus we conclude that −1

2 (x− (r − 2)) (x− (r − 1)) ≤ 0 (with
equality possible only for x = r−2). Since equality is not only possible but certain,
we have that f(d(r+1)

r+2 ) = f(r), hence d(r+1)
r+2 = r. Since all our inequalities have

again proven to be equalities, we once more have d
(r+1)
r+3 = · · · = d

(r+1)
r+1+tr+1

=

d
(r+1)
r+2 − 1 = r − 1, thus

πr+1 = (r,
r−1 terms︷ ︸︸ ︷

r − 1, . . . , r − 1, d2r+2, . . . , dn).

Hence, for identical reasons to those given in the preceding case, we conclude that
πr+1 is graphic. Since we have now investigated all possible cases, we conclude that
π is potentially Ar+1-graphic, as desired.

�

Before moving on to the next section, we offer one final sufficient condition for π ∈ NSn

to be potentially Ar+1-graphic, also due to Yin et al. [1]. The reader will notice that the
conditions of the following theorem are quite similar in many respects to those given in
Theorem 3.2. There are two main differences, however. One is that we impose stricter
requirements on how much longer our sequence must be than the desired clique size of our
hoped for graphic realization. The other is that we need only verify that a single term of
our sequence is in some sense “large enough”, rather than checking to see that each of our
first several terms are, as needed in Theorem 3.2.

Theorem 3.3. Let n and r be fixed positive whole numbers such that n ≥ 2r + 2, and
let π = (d1, d2, . . . dn) ∈ NSn such that dr+1 ≥ r, σ(π) is even and n − 2 ≥ d1 ≥ · · · ≥
dr ≥ dr+1 = · · · = dd1+2 ≥ dd1+3 ≥ · · · ≥ dn. If d2r+2 ≥ r − 1, then π is potentially
Ar+1-graphic.
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Proof. As we did in the previous proof, we consider three separate cases, enumerated below.

(1) Suppose that tr+1 ≥ d(r+1)
r+2 +1. For reasons identical to those given in the preceding

proof, we have that πr+1 is consequently graphic, thus π is potentially Ar+1-graphic
by Theorem 3.1.

(2) Suppose that tr+1 ≤ d
(r+1)
r+2 and dr+1 ≥ 2r − 1. Since di ≥ dr+1 ≥ 2r − 1 ≥ 2r − i

for all i ∈ [r − 1], π satisfies all necessary conditions for employing Theorem 3.2,
hence π is potentially Ar+1-graphic in this case as well.

(3) Suppose that tr+1 ≤ d(r+1)
r+2 and dr+1 ≤ 2r−2. In our analysis of case 2 in our proof

of Theorem 3.2, we derived the inequality

0 ≤ (r − dr+1)(r + 1) + f(d(r+1)
r+2 )− 1

where f(x) = x(dr+1 − x + 1). The conditions necessary for asserting the above
inequality are all met in this case as well. Now, recall that f is a strictly decreasing
function on the domain (1+dr+1

2 ,∞). Further note that since dr+1 ≤ 2r − 2, we
have that 1+dr+1

2 ≤ r − 1
2 < r. Now

(r − dr+1)(r + 1) + f(r + 1)− 1 = (r − dr+1)(r + 1) + (r + 1)(dr+1 − r)− 1
= −1
< 0.

Therefore, d(r+1)
r+2 must not be greater than or equal to r + 1. But this means

that d(r+1)
r+2 ≤ r, and since tr+1 ≤ d

(r+1)
r+2 by hypothesis, we find that tr+1 ≤ r.

Consequently, r + 1 + tr+1 + 1 ≤ 2r + 2, thus dr+1+tr+1+1 ≥ d2r+2 ≥ r − 1. But
dr+1+tr+1+1 ≤ d(r+1)

r+2 −2 = r−2 by definition of tr+1. We have reached a contradic-
tion, hence we find that no π can satisfy the conditions of this third case. Having
now considered every possibility, we conclude that π is Ar+1-graphic, as desired.

�

Consider, for example the sequence (5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2). We could convince our-
selves fairly readily, by an application of Theorem 2.3, that this sequence is graphic. How-
ever, it is not immediately clear that a graph which realizes this sequence will necessarily
contain a clique of any given size. Note that there are an even number of odd terms, that
the fifth term through seventh terms are equal and at least four, and that the tenth term is
at least three. By the preceding theorem, we deduce that there exists a graph that realizes
our sequence with a K5 subgraph.
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In the next section, we limit our attention to sequences in GSn. The two theorems stated
and proved are both due to Yin et al. [1], and are the key results of this paper.

4. Two sufficient conditions for π ∈ GSn to be potentially Ar+1-graphic

Our first theorem of this section is quite similar to Theorem 3.2, though here we are
interested in sequences already known to be graphic. The other key difference is that, in
the theorem to follow, we are not forcing our sequence π = (d1, d2, . . . , dn) ∈ GSn to satisfy
the rather stringent condition

n− 2 ≥ d1 ≥ · · · ≥ dr ≥ dr+1 = · · · = dd1+2 ≥ dd1+3 ≥ · · · ≥ dn,

which was a necessary assumption in Theorem 3.2.

Theorem 4.1. Let n and r be fixed positive whole numbers such that n ≥ r + 1, and let
π = (d1, d2, . . . dn) ∈ GSn such that dr+1 ≥ r. If di ≥ 2r − i for all i ∈ [r − 1], then π is
potentially Ar+1-graphic.

Proof. We will prove this theorem by means of induction on r. If r = 1, then by hypothesis
d2 ≥ 1. In other words, regardless of our choice of n satisfying n ≥ r + 1, any graph
realizing such a sequence π ∈ GSn necessarily contains an edge. Since this is a copy of K2,
we immediately conclude that π is indeed potentially A2-graphic.

Now, suppose that the theorem holds for a particular (positive) integer value r − 1. In
other words, we assume that for every n−1 that is at least (r−1)+1 and every π ∈ GSn−1

such that d(r−1)+1 ≥ r− 1, if di ≥ 2(r− 1)− i for all i ∈ [(r− 1)− 1], then π is potentially
A(r−1)+1-graphic. We wish to verify that the theorem holds for the integer r as well, thus
we let π be an arbitrary sequence of length n ≥ r+ 1 which satisfies each of the conditions
of this theorem. We break up our argument into a pair of cases.

(1) Suppose that d1 = n − 1 or that there exists some integer t such that r + 1 ≤
t ≤ d1 + 1 and dt > dt+1. Laying off d1 from π produces the sequence π′1 =
(d′1, d

′
2, . . . , d

′
r, . . . d

′
n−1). Clearly n−1 ≥ (r−1) + 1, since by assumption n ≥ r+ 1.

It is also clear that π′1 is graphic, by Theorem 2.1. Thus, we have already verified
the first two conditions necessary for employing our induction hypothesis. Before
verifying the third condition, we note that d1 of the terms of π′1 are one less than
they were as terms of π. Note that there does not exist a term to the right of dd1 +1
that is greater than dr+1 − 1. Thus, we find that the sequence (d′1, . . . , d

′
r) is equal

to the sequence (d2 − 1, . . . , dr+1 − 1), for all reordering that occurs in our laying
off process will necessary occur to the right of d′r. In particular, we have

d′i = di+1 − 1 for all i ∈ [r]. (10)

Equality (10) yields d′r = dr+1 − 1, whereas dr+1 − 1 ≥ r − 1 by hypothe-
sis. Consequently, we learn that d′(r−1)+1 = d′r ≥ r − 1, which is the third of
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our four induction hypothesis conditions. Finally, note that di+1 ≥ 2r − (i + 1)
for each i ∈ [r − 2], by hypothesis. Incorporating this fact with (10), we have
d′i ≥ 2r − (i + 1) − 1 = 2(r − 1) − i for all i ∈ [(r − 1) − 1], and we have there-
fore met every condition necessary to assert that π′1 is potentially A(r−1)+1-graphic.

Let G be a simple graph realizing π′1 whose r vertices of highest degree induce
the subgraph Kr. It is clear that adding a new vertex to G and connecting this
vertex to each of the vertices whose degrees were reduced by 1 in passing from π to
π′1 will necessarily involve connecting our new vertex to each of the r vertices in G
with highest degree. In short, by adding our new vertex, we have formed a graph
G∗ whose r + 1 vertices of highest degree induce a Kr+1 subgraph, and this graph
is a realization of π. Hence π is potentially Ar+1-graphic, as claimed.

(2) Suppose that d1 6= n − 1 and dr+1 = · · · = dd1+2. Since π is assumed to be
graphic, it must be the case that d1 ≤ n − 2. In short, we have n − 2 ≥ d1 ≥
· · · ≥ dr ≥ dr+1 = · · · = dd1+2 ≥ · · · ≥ dn. Consequently, by Theorem 3.2, π is
potentially Ar+1-graphic. Since we have considered every possible case, we find
that we have successfully completed our inductive step. The proof of the theorem
is thus complete.

�

While Theorem 4.1 provides a relatively simple set of of inequalities to verify in order
to conclude that a given graphic sequence contains an (r + 1)-clique, it is important to
keep in mind that these conditions are sufficient but not necessary. Indeed, the sequence
(5, 4, 4, 3, 3, 1, 1, 1) realized in Figure 6, is clearly both graphic and potentially A4-graphic.
However, this sequence fails to satisfy the conditions of Theorem 4.1. In short, the theo-
rem just given is not a simple characterization of all graphic sequences that are potentially
Ar+1-graphic, just a tool for verifying when a graphic sequence certainly is Ar+1-graphic.

Next, we offer our second sufficient condition for π ∈ GSn to be potentially Ar+1-graphic.
Again, we note the clear similarity between the result to follow and a previous theorem
(Theorem 3.3).

Theorem 4.2. Let n and r be fixed positive whole numbers such that n ≥ 2r + 2, and
let π = (d1, d2, . . . dn) ∈ GSn such that dr+1 ≥ r. If d2r+2 ≥ r − 1, then π is potentially
Ar+1-graphic.

Proof. We prove this theorem by induction on r as well. If r = 1 we once again have d2 ≥ 1,
indicating that, regardless of our choice of n satisfying n ≥ 2r+2, any graph realizing such
a sequence π ∈ GSn contains at least one edge, hence π is clearly A2-graphic.

Now, suppose that the theorem holds for a particular (positive) integer value r − 1.
In other words, we assume that for every n − 1 that is at least 2(r − 1) + 2 and every
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π ∈ GSn−1 such that d(r−1)+1 ≥ r − 1, if d2(r−1)+2 ≥ (r − 1) − 1, then π is potentially
A(r−1)+1-graphic. We wish to verify that the theorem holds for the integer r as well, thus
we let π be an arbitrary sequence of length n ≥ 2r+2 which satisfies each of the conditions
of this theorem. We break up our argument, once again, into a pair of cases.

(1) Suppose that d1 = n−1 or that there exists some integer t such that r+1 ≤ t ≤ d1+1
and dt > dt+1. Form π′1 = (d′1, d

′
2, . . . , d

′
n−1) by laying off d1. Note that since

n ≥ 2r + 2 by hypothesis, it follows that n − 1 ≥ 2r + 1 > 2(r − 1) + 2, thus
we satisfy the first condition of our inductive hypothesis. By Theorem 2.1, π′1 is
graphic, and we thereby meet our second condition as well. Now, for reasons iden-
tical to those given in the preceding proof, we have d′i = di+1 − 1 for i ∈ [r]. For,
r+1 ≤ i ≤ n−1, however, the strongest similar claim we can make is d′i ≥ di+1−1,
due to potential reordering.

Next, d′(r−1)+1 = d′r = dr+1 − 1, and by hypothesis dr+1 ≥ r. Thus d′(r−1)+1 ≥
r − 1, and we have met the third condition of our induction hypothesis. Finally,
d′2(r−1)+2 = d′2r ≥ d2r+1 − 1 ≥ d2r+2 − 1. Since d2r+2 ≥ r − 1 by hypothesis, we
have d′2(r−1)+2 ≥ (r−1)−1. Consequently, we have satisfied every condition of our
inductive hypothesis, and can now assert that π′1 is potentially A(r−1)+1-graphic.
By reasons identical to those given in the preceding proof, we conclude that π is
thereby potentially Ar+1-graphic, as desired.

(2) Suppose that d1 6= n − 1 (hence d1 ≤ n − 2) and that dr+1 = · · · = dd1+2. In
particular, we have n − 2 ≥ d1 ≥ · · · ≥ dr ≥ dr+1 = · · · = dd1+2 ≥ · · · ≥ dn. Since
in this case we have satisfied all necessary conditions to employ Theorem 3.3, we do
so, concluding that π is potentially Ar+1-graphic. Once again, we have completely
examined every case, thus our inductive step has been successfully made. Hence,
the proof of the theorem is complete.

�

Consider the sixty-six term sequence (
11 terms︷ ︸︸ ︷

11, . . . , 11,
10 terms︷ ︸︸ ︷

10, . . . , 10, . . . , 3, 3, 3, 2, 2, 1). The pres-
ence of an even number of odd terms guarantees that our sequence has a necessarily even
sum. The twelfth term is clearly 10, thus Theorem 2.3 guarantees us that we can find a
graph which realizes our sequence. Since the eleventh term of our sequence is at least ten
and the twenty-second term is at least nine, Theorem 4.2 assures us that we can find a
graph realizing our sequence that contains an 11-clique. This author finds the existence
claim of such a graph rather remarkable.

Next, consider the eleven term sequence (8, 8, . . . , 8). It is clear that this sequence is
graphic by Theorem 2.3. Though it exceeds the scope of this paper, this sequence is not
realizable by a graph containing a K6 subgraph, Yin et al. in [1]. In particular, any
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2r + 1 term sequence whose terms are all equal to 2r − 2 is graphic, but not potentially
Kr+1-graphic. Hence the condition n ≥ 2r + 2 is best possible for Theorem 4.2. Indeed, a
sequence that has 2r+ 2 terms whose first 2r+ 1 terms are each r and last terms is r−2 is
graphic but not potentially Kr+1-graphic as well, Yin [1]. Thus the condition d2r+2 ≥ r−1
is best possible as well.

5. Sufficient conditions for π ∈ GSn to be nearly potentially Kr+1-graphic

In the preceding section we gave two sufficient conditions for a graphic sequence to be
potentially Ar+1-graphic (hence, potentially Kr+1-graphic). In this section we consider a
slightly less restrictive goal. When is a graphic sequence practically able to be realized
with a prescribed clique size? In particular, when can we come within a single edge of
a complete subgraph of some desired size? We prove two sufficient conditions for such a
scenario in the next pair of theorems, both due to Yin et al. [1]. Note that, in the theorems
and arguments to follow, when we write Kr+1−e we mean a simple graph on r+1 vertices
that is one edge shy of being complete.

Theorem 5.1. Let n and r be fixed positive whole numbers such that n ≥ r + 1, and let
π = (d1, d2, . . . dn) ∈ GSn such that dr+1 ≥ r − 1. If di ≥ 2r − i for all i ∈ [r − 1], then π
has a realization containing Kr+1 − e as a subgraph.

Proof. If r = 1, then by hypothesis d1 ≥ 1. In other words, regardless of our choice of n
satisfying n ≥ r + 1, any graph realizing such a sequence π ∈ GSn necessarily contains
an edge, hence at least two vertices. Since any two vertices of any graph clearly form the
subgraph K2 − e, we have established that the theorem holds for r = 1. We therefore
assume that r ≥ 2 for the remainder of this proof.

Given π = (d1, d2, . . . , dn), if dr+1 ≥ r, then by Theorem 3.2, π is potentially Ar+1-
graphic. It is clear that any graph that has an induced subgraph Kr+1 certainly contains
Kr+1−e as a subgraph. Thus, we may assume without loss of generality that dr+1 ≤ r−1,
hence dr+1 = r − 1.

Note that since di ≥ 2r− i for all i ∈ [r−1], we have dr−1 ≥ 2r−(r−1) = r+1. In other
words, dr−1 > dr+1. Now, let us form π′r+1 = (d′1, d

′
2, . . . d

′
n−1) by laying off dr+1 = r − 1.

Since each di for i ∈ [r − 1] is at least as large as dr−1, and dr−1 is strictly larger than
dr+1, we see that any reordering that takes place in our laying off process will be restricted
to only the terms (d′1, . . . , d

′
r). In particular, we note that all of the r − 1 terms that have

been reduced by 1 are among the first r terms of π′r+1.

Since, by hypothesis, n ≥ r + 1, we have n − 1 ≥ (r − 1) + 1. Furthermore, since π is
graphic, Theorem 2.1 guarantees us that π′r+1 is graphic as well. Thus, we have satisfied the
first two conditions necessary for invoking Theorem 4.1. Now, d′i = di+1 for r ≤ i ≤ n− 1
since the last n − r − 2 terms of π certainly do not get reordered in passing from π to
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π′r+1. Thus, d′(r−1)+1 = d′r = dr+1 = r − 1, and we have satisfied the third condition for
applying Theorem 4.1. Finally, we note that d′i ≥ di+1− 1 for 1 ≤ i ≤ r− 1 since these are
precisely the terms of π that might get reordered in passing from π to πr+1. By hypothesis,
di+1 ≥ 2r−(i+1) for all i ∈ [r−2]. Consequently, d′i ≥ di+1−1 ≥ 2r−(i+1)−1 = 2(r−1)−i
for all i ∈ [(r − 1)− 1], and we have now met every condition necessary for invoking The-
orem 4.1. We conclude that π′r+1 is potentially A(r−1)+1-graphic.

Let G be a graph realizing π′r+1 whose r vertices of highest degree induce the complete
graph Kr. To the graph G, we add a new vertex, connecting this new vertex to each of
those r−1 vertices whose degrees correspond to those entries of π that were reduced by 1 in
passing from π to π′r+1. We have already seen that these vertices are among those vertices
of r largest degree. Hence the graph G∗ that results, which clearly realizes π, contains a
subgraph Kr along with an additional vertex that is adjacent to r−1 of the vertices which
induce the subgraph Kr. In short, our graph G∗ contains the subgraph Kr+1 − e, hence π
has precisely the realization desired.

�

Our second sufficient condition for π ∈ GSn to be nearly potentially Kr+1-graphic is
strongly reminiscent of Theorem 4.2 in much the same way that the previous result resem-
bled Theorem 4.1.

Theorem 5.2. Let n and r be fixed positive whole numbers such that n ≥ 2r + 2, and let
π = (d1, d2, . . . dn) ∈ GSn such that dr−1 ≥ r. If d2r+2 ≥ r − 1, then π has a realization
containing Kr+1 − e as a subgraph.

Proof. Let π = (d1, d2, . . . , dn) be a sequence satisfying the conditions of this theorem. If
dr+1 ≥ r, then by Theorem 4.2, π is potentially Ar+1-graphic, hence π has a realization
containing Kr+1 as a subgraph. Thus, we may assume without loss of generality that
r − 1 ≥ dr+1. Also, we note that one of the conditions of this theorem is dr−1 ≥ r, which
is undefined for r ≤ 1. Thus we may also safely assume that r ≥ 2.

Now r − 1 ≥ dr+1 ≥ · · · ≥ d2r+2. Since d2r+2 is itself greater than or equal to r − 1 by
hypothesis, we find that dr+1 = · · · = d2r+2 = r − 1. Let us form π′r+1 = (d′1, d

′
2, . . . d

′
n−1)

by laying off dr+1. Since dr+1 = r − 1, it is clear that in our laying off process, we will
subtract 1 from each di for i ∈ [r − 1]. Since dr−1 ≥ r, we find that di − 1 is greater than
or equal to r− 1 = dr+2 for all i ∈ [r− 1]. Consequently, any reordering that needs to take
place in our laying off procedure will only involve the first r terms of π. In short, those
terms reduced by 1 in the laying off procedure will certainly be among the first r terms of
π′r+1.

Since, by hypothesis, n ≥ 2r + 2, it follows that n − 1 ≥ 2r + 1 > 2(r − 1) + 2. Since
π is graphic, π′r+1 is graphic as well by Theorem 2.1. For identical reasons to those given
in the preceding proof, d′i = di+1 for r ≤ i ≤ n − 1, hence d′(r−1)+1 = r − 1. Finally,
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d′2(r−1)+2 = d′2r = d2r+1 = r − 1 > (r − 1) − 1. Thus, we find that π′r+1 satisfies the
conditions necessary for invoking Theorem 4.2, and we conclude that π′r+1 is potentially
A(r−1)+1-graphic. For precisely the same reasons as those given in the last paragraph of
our proof of Theorem 5.1, we conclude that π has a realization that contains the subgraph
Kr+1 − e, as desired.

�

6. Applications

We begin this section with a pair of simple consequences of Theorems 4.1 and 4.2. The
first is a result credited to Rao [13], and the second is a result due to Li et al. [10].

Theorem 6.1. Let n and r be fixed positive whole numbers such that n ≥ r + 1, and let
π = (d1, d2, . . . dn) ∈ GSn. If dr+1 ≥ 2r − 1, then π is potentially Ar+1-graphic.

Proof. Note that di ≥ dr+1 ≥ 2r − 1 ≥ 2r − i for all i ∈ [r − 1]. Also, 2r − 1 ≥ r for all
positive integers r, hence dr+1 ≥ r. We have therefore satisfied every condition necessary
to invoke Theorem 4.1, and we conclude that π is potentially Ar+1-graphic, as claimed.

�

Theorem 6.2. Let n and r be fixed positive whole numbers such that n ≥ 2r + 2, and let
π = (d1, d2, . . . dn) ∈ GSn such that dr+1 ≥ r. If n − 2 ≥ d1 ≥ · · · ≥ dr = dr+1 = · · · =
dd1+2 ≥ dd1+3 ≥ · · · ≥ dn ≥ r − 1, then π is potentially Ar+1-graphic.

Proof. It is quite clear that d2r+2 ≥ dn ≥ r−1. Since every condition necessary for invoking
Theorem 4.2 has been satisfied, we conclude that π is potentially Ar+1-graphic, as desired.

�

We have now developed several useful tools for deciding when a given sequence of non-
increasing whole numbers is graphic, and when it is able to be realized with a prescribed
clique size. In a sense, these realizations depend on both the structure of our sequence
and on individual term size. In other words, it is critical to know whether or not, in some
sense, the terms of our sequence have a variety of different values and or wild jumps in
size. Indeed, in order to have realizations with a particular desired clique, we need to know
that our vertex degrees are large enough and/or plentiful enough.

Let us consider this question of graphic realizations from a slightly different direction
than we have pursued thus far. Let σ(Kr+1, n) be defined to mean the smallest sum that a
sequence belonging to GSn must have in order to be guaranteed to have some realization
containing a Kr+1 subgraph. Clearly, this minimum sum will depend on both r and n. It
was observed by Erdös et al. [3] that the n term (non-increasing) sequence consisting of r−1
copies of n−1 followed by n−r+1 copies of r−1 is graphic, but that it is uniquely realized.
Critical to our discussion, this unique realization does not contain a Kr+1 subgraph. Thus,
we learn that an n term sequence with sum (r−1)(n−1)+(n−r+1)(r−1) = (r−1)(2n−r)
is not guaranteed to have a Kr+1 subgraph. In short, σ(Kr+1, n) ≥ (r − 1)(2n − r) + 2
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(since our sum must remain even to be graphic at all).

Progress toward pinning down σ(Kr+1, n) further has been made by several contribu-
tors, as noted by Yin et al. [1]. Erdös et al. [3] conjectured that for large enough values
of n, σ(Kr+1, n) = (r − 1)(2n − r) + 2. This conjecture has been demonstrated true for
several specific pairs of values r and n by several contributors (see Yin [1]). The theorem
that follows, first stated and proven by Yin [11], settles the conjecture once and for all. We
offer (and prove) the theorem below as an application of the tools developed in this paper.

Theorem 6.3. σ(Kr+1, n) = (r − 1)(2n− r) + 2 for n ≥ 3
2r

2.

Proof. We have already seen that σ(Kr+1, n) ≥ (r − 1)(2n − r) + 2 by the discussion
above. Hence we will have succeeded in proving this theorem if we can show σ(Kr+1, n) ≤
(r−1)(2n−r)+2 for n ≥ 3

2r
2. In other words, we wish to show if n ≥ 3

2r
2, then any sequence

π = (d1, d2, . . . , dn) ∈ GSn such that σ(π) ≥ (r−1)(2n−r)+2 is potentially Kr+1-graphic.

If r = 1, we must verify that every graphic sequence with at least two terms whose
sum is at least two has a K2 subgraph. This is very clearly the case, as such a sequence
will always be realized by a graph with at least one edge, and each edge is a copy of K2.
Therefore, we assume without loss of generality that r ≥ 2.

Suppose that dr+1 ≤ r−1. Note that σ(π) =
∑r

i=1 di +
∑n

i=r+1 di, whereas by Theorem
2.2 we have

∑r
i=1 ≤ r(r − 1) +

∑n
i=r+1 min(r, di). Hence we find that σ(π) ≤ r(r − 1) +

2
∑n

i=r+1 min(r, di). Since each di for r + 1 ≤ i ≤ n is no larger than r − 1, it follows that
min(r, di) = di for these same values of i. Consequently the sum

∑n
i=r+1 min(r, di) is not

larger than n− r copies of r − 1. Thus,

σ(π) ≤ r(r − 1) + 2(n− r)(r − 1) = (r − 1)(2n− r),

which contradicts our hypothesis that σ(π) has sum greater than or equal to (r − 1)(2n−
r) + 2. We therefore find that dr+1 ≥ r.

If either di ≥ 2r− i for each i ∈ [r−1] or d2r+2 ≥ r−1, then by Theorem 4.1 or Theorem
4.2 we have that π is potentially Ar+1-graphic, and we are done. Hence, we consider the
only remaining possibility. Namely, we assume that d2r+2 ≤ r − 2 and there exists some
i ∈ [r − 1] such that di ≤ 2r − i − 1. Clearly the first i − 1 terms of π are no larger than
the first term, itself no larger than n− 1. The 2r + 2− i terms from di to d2r+1 are each
no larger than di, itself no larger than 2r − i− 1. Finally the remaining n− 2r − 1 terms
are each no larger than d2r+2, itself no larger than r − 2. Putting these thoughts together
yields

σ(π) ≤ (i− 1)(n− 1) + (2r + 2− i)(2r − i− 1) + (n− 2r − 1)(r − 2)

= n(i− 1 + r − 2)− (i− 1)− (2r + 1)(r − 2) + (2r + 2− i)(2r − i− 1). (11)
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Now since 1 ≤ i, we may replace every i being subtracted in (11) with a one and our
inequality symbol will be pointing the desired direction. Likewise, since i ≤ r− 1, we may
replace every i being added in (11) with r − 1. The result is

σ(π) ≤ n(2r − 4)− (2r + 1)(r − 2) + (2r + 1)(2r − 2)

= n(2r − 4) + (2r + 1)r

= (2r − 2)n− 2n+ (2r + 1)r.

Finally, we make use of our bound n ≥ 3
2r

2. Since 2n ≥ 3r2, we have

σ(π) ≤ (2r − 2)n− 3r2 + (2r + 1)r

= (2n− r)(r − 1)

< (2n− r)(r − 1) + 2,

which is a contradiction. Since we have now considered every possible case, our proof is
complete.

�

Yin et al. [13] posed a similar question to the one just considered. Instead of insisting
that our graph have a copy of Kr+1 as a subgraph, suppose we only require that it nearly
has a copy of Kr+1. In other words, how large of a sum must a graphic sequence of length
n have in order to have a realization that contains Kr+1− e as a subgraph? Once more, it
is clear that the answer to this question will depend on both n and r. Our intuition would
lead us to expect the lower bound on this sum to be no greater than (r−1)(2n−r)+2, since
this lower bound guarantees a Kr+1 subgraph. Indeed this is the case. Several solutions of
σ(Kr+1 − e, n) have been found for small values of n and r by a number of contributors,
(see [1]). Yin et al. [14], established that for r ≥ 2 and n ≥ r + 1, we have

σ(Kr+1 − e, n) ≥

{
(r − 1)(2n− r) + 2− (n− r) if n− r is even,
(r − 1)(2n− r) + 1− (n− r) if n− r is odd.

Yin conjectured that these lower bounds are realized for large enough n. This conjecture
is proven by Yin et al. in [1]. We offer both the theorem and proof below.

Theorem 6.4. If r ≥ 2 and n ≥ 3r2 − r − 1, then

σ(Kr+1 − e, n) =

{
(r − 1)(2n− r) + 2− (n− r) if n− r is even,
(r − 1)(2n− r) + 1− (n− r) if n− r is odd.

Proof. Let n and r (≥ 2) be positive whole numbers such that n ≥ 3r2 − r − 1 and take
π = (d1, d2, . . . , dn) ∈ GSn such that σ(π) ≥ (r− 1)(2n− r) + 2− (n− r). We demonstrate
below that such a sequence must necessarily have a realization containing Kr+1 − e as a
subgraph.
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Let g(x) = 3x2 − 2x − 2. Note that g is a strictly increasing function on the domain
(1
3 ,∞). Since r ≥ 2 and g(2) = 6, we conclude that 3r2 − 2r − 2 ≥ 0. It follows that

3r2 − r − 1 ≥ r + 1, hence n ≥ r + 1.

Now, let us suppose that dr+1 ≤ r − 2. By Theorem 2.2, we have σ(π) =
∑r

i=1 di +∑n
i=r+1 di ≤ r(r − 1) +

∑n
i=r+1 min(r, di) +

∑n
i=r+1 di. Since di ≤ dr+1 ≤ r − 2 for

r + 1 ≤ i ≤ n, these last two sums are identical. Indeed the n − r terms of each sum are
each no greater than dr+1, itself no greater than r−2. Thus, σ(π) ≤ r(r−1)+2(n−r)(r−2).
Simple algebra thus reveals

σ(π) ≤ r(r − 1) + 2(n− r)(r − 2)

= r(r − 1) + (2n− 2r)(r − 1)− (2n− 2r)

= (r − 1)(2n− r)− 2(n− r)
< (r − 1)(2n− r)− (n− r) + 2,

a contradiction. Thus it must be the case that dr+1 ≥ r − 1.

Next, we suppose that dr−1 ≤ r− 1. Once again invoking Theorem 2.2, we have σ(π) =∑r−2
i=1 di +

∑n
i=r−1 di ≤ (r − 2)(r − 3) +

∑n
i=r−1 min(r − 2, di) +

∑n
i=r−1 di. Since r − 2 ≥

min(r − 2, di) for all relevant i, the second to last sum is no greater than n− r + 2 copies
of r − 2. Meanwhile, since dr−1 ≤ r − 1, the final sum is clearly no larger than n − r + 2
copies of r − 1. Thus σ(π) ≤ (r − 2)(r − 3) + (n − r + 2)(r − 2) + (n − r + 2)(r − 1) =
(r − 2)(n− 1) + (n− r + 2)(r − 1). Consequently

σ(π) ≤ (r − 1)(n− 1)− (n− 1) + (n− r + 1)(r − 1) + (r − 1)

= (r − 1)(2n− r)− (n− r)
< (r − 1)(2n− r)− (n− r) + 2,

a contradiction. We conclude that dr+1 ≥ r.

Now, if either di ≥ 2r − i for all i ∈ [r − 1] or d2r+2 ≥ r − 1, then we will have
met all the conditions necessary to employ Theorem 5.1 or Theorem 5.2. Let us assume
to the contrary that d2r+2 ≤ r − 2 and that there exists some i ∈ [r − 1] such that
di ≤ 2r− i− 1. By an argument identical to the one given in the preceding proof, we have
that σ(π) ≤ (2r − 2)n− 2n+ (2r + 1)r. Note that since n ≥ 3r2 − r − 1,

σ(π) ≤ (2r − 2)n− 2n+ (2r + 1)r

≤ (2r − 2)n− n− (3r2 − r − 1) + (2r + 1)r

= (r − 1)(2n− r) + 1− (n− r)
< (r − 1)(2n− r) + 2− (n− r),

a contradiction. We conclude that the conditions necessary for employing either Theorem
5.1 or Theorem 5.2 hold, hence π has a realization containing Kr+1 − e as a subgraph.
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Since we have shown that a graphic sequence with sum at least (r−1)(2n−r)+2−(n−r)
has the desired subgraph Kr+1 − e, we conclude that σ(Kr+1 − e, n) is no greater than
this figure. Note that (r − 1)(2n − r) = 2n(r − 1) − r(r − 1) is certainly an even integer.
In particular, since every graphic sequence has an even degree sum, if n − r is odd, then
σ(Kr+1 − e, n) must be strictly less than (r − 1)(2n− r) + 2− (n− r). We conclude that

σ(Kr+1 − e, n) ≤

{
(r − 1)(2n− r) + 2− (n− r) if n− r is even,
(r − 1)(2n− r) + 1− (n− r) if n− r is odd.

This result, along with the one given in the discussion prior to the statement of Theorem
6.4, concludes this proof.

�
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