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ABSTRACT

“Very early in our mathematical education- in fact in junior high school or early in high school itself- we are introduced to polynomials.  For a seemingly endless amount of time we are drilled, to the point of utter boredom, in factoring them, multiplying them, dividing them, simplifying them.  Facility in factoring a quadratic becomes confused with genuine mathematical talent.” (Herstein, 1975)

This sentiment is all too common in the study of polynomials.  It is based on the view of polynomials as a string of symbols and yet, this is only a small part of polynomials.  The following project presents an overview of polynomial multiplication, offering its historical evolution as well as its progression from elementary school mathematics to university level mathematics.  It also traces the role of variables in the different contexts in which polynomial multiplication is studied. By considering the differences in the polynomial multiplication studied at different levels and in different areas of mathematics, this paper presents a curriculum designed to help students understand the processes of polynomial multiplication rather than just memorize how to perform the computations.  This paper also includes a description of the need for such a curriculum and a justification for the design of this one.  In addition, there are several possible extension activities for the curriculum and a description of my experience using these activities.  
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CHAPTER 1

A BRIEF HISTORY OF POLYNOMIALS

“In most sciences one generation tears down what another has built and what one has established another undoes.  In mathematics alone each generation builds a new story to the old structure.” (Hermann Hankel as quoted on p 207 of Burton, 2002). This evolution can clearly be seen in the case of polynomials.  Polynomials, as we often think of them today, are a string of symbols: numbers, variables, exponents, relational operators, and parentheses to name a few.  Polynomials, however, were not originally born into this form.  It took generation after generation of mathematicians building on each other’s ideas to create the concept of polynomials as we know them today.  In order to understand this evolution, one needs to trace the development of algebra as well as the development of the symbolism now intrinsic to polynomials. 

Algebra was originally expressed verbally; this rhetorical algebra included detailed instructions about how to obtain solutions to specific problems and geometric justifications for the processes. Over time, the lengthy verbal method of communicating algebra was shortened by abbreviating commonly used words, and using symbols for commonly used quantities and operations (Joseph, 2000).  This transitional form between the rhetorical and symbolical algebra is known as syncopated algebra.  Eventually, words gave way to symbols that represented relational operators and unknowns. Introducing symbols to algebra allowed mathematicians to reify many mathematical constructs that had been around for centuries (Sfard, 1995) because they were able to manipulate complicated ideas and expressions as objects.  This revolutionized elementary algebra and helped mathematicians discover new relationships inherent in the constructs. 

Rhetorical and Syncopated Algebra

The first written records of algebra that historians have uncovered come from Egypt, and date back to approximately 1550 BCE.  Some of this work can be attributed to specific individuals, while other works were discovered on Egyptian papyri, suggesting that many people were exploring such ideas at that time (Smith, 1953).  The rhetorical algebra of the Egyptians is quite similar to the algebra we now use, but there is no reason to assume the Egyptians used reasoning similar to the algebraic reasoning we use today (Joseph, 2000).  

Historians believe that the Babylonians began exploring the ideas of algebra almost as early as the Egyptians did (Katz, 1998).  Joseph (2000) argues that the Babylonians were able to develop more sophisticated numerical methods of solving for unknown quantities than the Egyptians because they had an efficient number system that facilitated computations.  He adds that, although the Babylonians mainly explored rhetorical algebra, they were forerunners in syncopated algebra because they used geometric terms to denote unknown quantities.  For example, they used the term for square to refer to the square of an unknown quantity.  

The ideas explored by the Egyptians and the Babylonians were further explored in Alexandria, as students traveling between the regions shared the knowledge they acquired during their journeys (Katz, 1998).  Although this mathematics would not be considered algebra by modern standards, the Greeks of the classical period could solve many present day algebra problems (Smith, 1953).  For instance, in approximately 300 BCE, Euclid wrote The Elements, in which he showed how to find solutions to quadratic equations by using geometry to represent polynomial multiplication.  Over the next 600 years, the Greeks revolutionized algebra by introducing analytic approaches to the study of algebra (Smith, 1953). This was also when Diophantus introduced symbols, but symbol use did not become widespread at this time (Sfard, 1995).  

Historians are not sure when the Chinese first began studying algebra, but there are records of Chinese work that historians believe date back to approximately the same time as the Egyptian, Babylonian, and Greek works.  Over the following centuries the Chinese made many advances in algebra, including writing a book that offered rules for solving algebra problems and deducing many algebraic identities in a fashion similar to how we deduce them today (Smith, 1953). 

Around 500 CE, the Hindus joined the fray by solving linear and quadratic equations (Smith, 1953).  Indian algebra was quite different from its predecessors in that it had letters denoting unknown quantities and abbreviations representing mathematical operations. This was the first systematic method for representing unknowns, and it allowed the Indians to generalize in a way that other mathematicians of their time could not.  For instance, an algorithm similar to the quadratic formula first appeared in Indian manuscripts of this time (Joseph, 2000).  

Shortly after the Hindus began studying algebra, the Arabs and the Persians began the study of algebra as well (Smith, 1953).  Islamic inheritance laws were quite complicated, so the Muslims needed an efficient method of solving for unknowns constrained by complicated stipulations, such as those for dividing assets (Berggren, 1986). Explorations for such a method coincided with the creation of a library in Baghdad filled with books that arrived with intellectuals fleeing from persecution in their homelands.  In creating this library, the Muslims were able to integrate intellectual advances of diverse cultures into cohesive collections by subject (Katz, 1998). By combining the geometric traditions of the Greek Empire with the arithmetic traditions of Babylon, India, and China, Islamic mathematicians were able to make huge contributions to already established algebraic theories.  This led to advances that cultures limited to one of these approaches were not able to make (Joseph, 2000). 

The very name algebra shows its Arab roots because algebra is the distorted Latin transliteration of the title of al-Khowarizmi’s book al-jabr w’al muqabalak (restoration and opposition).  This book was intended to be practical rather than theoretical (Katz, 1998), and, for the first time, systematically studied the ideas of algebra independent from number theory (Berggren, 1986). In this book, Al-Khowarizmi separated equations into six categories, and described algorithms for finding the solutions to each type.  In many of these cases he offered geometric justifications as well as numerical examples (Joseph, 2000).  This work transformed what had been a systematic approach to solving equations into a science that both showed that the processes worked and explained why they worked (Berggren, 1997). 

The Muslim world at this time was also home to the first mathematician to define the laws of exponents, which were deduced from well-known mathematical relationships and definitions (Berggren, 1986). With our modern notation, the laws of exponents seem quite obvious to us.  Nevertheless, given the symbolism of that earlier era, deducing this general relationship was quite a feat.  

In the medieval era, when al-Khowarizmi’s book was translated into Latin, it quickly spread throughout Western Europe (Katz, 1998).  Although many advances in algebra were made during this era, Fibonacci is considered one of the greatest algebraists of the Middle Ages because of his ingenuity in finding solutions to equations that were not solved in al-Khowarizmi’s book.  Another highly influential algebraist of the Middle Ages was the German Jordanus Nemorarius, whose book contained equations quite similar to the ones presently found in algebra textbooks.  Despite these advances, algebra was not studied very deeply during this time period because mathematicians of this age were more interested in applications of mathematics than in the study of mathematics for its own sake (Smith, 1953).  

Algebra was first treated as a topic that deserved serious study during the renaissance.  According to Smith (1953), in 1494, a book was written that roughly summarized the existing knowledge about algebra. A crude symbolism was used in this book, and the focus was on solving equations expressed with this new symbolism .  Thirty years later, another book on the big ideas of algebra was published.  This book offered no advances in algebraic theory, nevertheless, it advanced algebra because the improved symbolism used in it enabled mathematicians to see existing relationships and expand well known algebraic theories.  As new editions of this book were released, this work continued to influence the evolution of algebra.  In 1545 the Ars Magna was published, whose study of solving equations and introduction of complex numbers was incredibly influential in advancing algebra.  

By this time, the ideas of elementary algebra were fairly well developed, but an efficient and consistent system of symbolization was needed (Smith, 1953). This elementary algebra included mathematical operations on unknowns and solving for unknowns.  Polynomial multiplication is an example of operation involving unknowns, so it clearly was one of the original ideas of algebra.  Therefore, in theory, it too was largely perfected  by the end of the seventeenth century.  
Nevertheless, since polynomial multiplication was originally treated verbally and geometrically, polynomials of this era were different beasts than the symbolic ones with which we currently interact.  Therefore, this survey of the development of rhetorical and syncopated algebra thus far still neglects many of the important pieces in the development of polynomial multiplication.  In order to understand the evolution of polynomials to their present reified structure, we need to understand how the symbols used to represent them came into being.  

Symbolic Algebra
Historians widely argue that Viete revolutionized algebra by replacing geometric methods with analytic ones.  By using symbols to represent unknown quantities and operations, he was able to reify many of the ideas that mathematicians had been working with for years (Sfard, 1995).  This drastically changed algebra as well as the future of mathematics (Smith, 1953).  This arithmetization of algebra faced much resistance: generations of mathematicians had grown up with geometric proofs along side their algebraic processes, and they were not eager to replace their traditional methods with this new methodology based only in logic (Goldstein, 2000).  Nevertheless, rhetorical algebra, with its geometric proofs, eventually gave way to symbolic algebra and its accompanying analytic proofs.  

Although the complete transition to symbolical representations of algebra occurred relatively recently, symbols were occasionally used for common ideas centuries before their formal adoption.  For instance, unknown quantities were a central focus in the study of algebra from the very beginning.  Therefore, there were many different names for this idea throughout different eras and cultures (Joseph, 2000; Katz, 1998; Smith, 1953).  

One of the first symbols introduced to mathematics, and to algebra, was a symbol to represent the unknown.  The symbol used, however, varied from region to region.  In the Middle Ages mathematicians began using letters to represent algebraic and geometric quantities (Smith, 1953).  This idea, however, was not widely adopted by mathematicians (Sfard, 1995).  In the sixteenth century, Viete began representing algebra symbolically, and the Europeans adopted that symbolism to represent unknown quantities.  It was not until the seventeenth century, however, that a symbol structure was constructed to represent more than one unknown within a given expression (Smith, 1953).  
Although Europeans widely adopted symbol use in the seventeenth century, there was still much resistance through the nineteenth century.  This resistance stemmed from the fact that symbols were originally introduced to represent a specific unknown or object, an object that had a clear meaning in the physical universe.  However, the reification of algebra enabled mathematicians to perform operations that had no reasonable explanation in an individual’s physical reality (Pycior, 1982).  This tension made many mathematicians skeptical about the new mathematics being performed.  

As symbols for unknowns entered algebra, a structure to symbolize what we now call coefficients needed to be introduced.  Although a few mathematicians created a word for the idea of coefficients, through much of history no specific word existed.  In 1250, the Chinese used sticks to solve equations, and the sticks represented what we now call coefficients (Smith, 1953).  There was nothing representing the unknown in this system, so these coefficients were still quite different from our present day coefficients.  It was around this time that al-Khowarizmi’s book was translated into Latin.   Both this book and its translation expressed algebraic ideas rhetorically, so there was no reason for people to have thought of the idea of coefficients.  Both the word “coefficient” and its use were relatively recent creations, being introduced by Viete when he introduced much of the symbolism currently used in algebra (Smith, 1953).  

The idea of exponents predates its modern symbolism as well.  Originally exponents were limited to small numbers because they represented geometric ideas such as area and volume.  This meant that mathematicians had no reason to consider the existence of a power they could not represent physically (Sfard, 1995).  These low powers were used so often, that symbols for such powers of an unknown quantity were among the original symbols introduced to mathematics and they were given specific names so that they could be easily referenced (Smith, 1953).  

The integral exponents we presently use are generally attributed to Descartes, although he was not the first to use them.  Before the invention of this symbolism, repeated multiplication was often used to represent this idea.  Even once the symbolism was created, it was only used for powers of five or higher, and concatenation was used to represent smaller powers (Smith, 1953).  Eventually mathematicians adopted exponent notation for all powers, including small ones.  

Most of the symbols commonly used in mathematics were originally used in algebra, and were later transferred to arithmetic and other areas of mathematics.  Over time, many different symbols were used to represent common operations, but the conventions widely used today originated in Europe.  For instance, the symbol we currently use for addition comes from the abbreviation of the fourteenth and fifteenth century German word for addition.  Likewise, the minus sign evolved from the abbreviation used in German syncopated algebra.  These symbols were used to indicate increases and decreases far before they were used to indicate operations.  These symbols were in use this way for close to 100 years before the Germans and the Dutch began to use them as operators as well.  These symbols slowly spread to England and then throughout the rest of Europe and beyond (Smith, 1953).  

The symbols for multiplication developed much more slowly.  The lack of such a symbol naturally led to the concatenation we presently use (Smith, 1953).  A dot was eventually introduced to separate numbers, and was adopted to symbolize multiplication in some areas.  The cross that is presently used to symbolize multiplication evolved from diagrams used in seventeenth century England to demonstrate the process of multiplying two digit numbers. A cross was employed to remind students to cross-multiply, examples of this are shown below (taken from Smith, 1953 p. 404).  
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This symbol was not commonly used in arithmetic until the nineteenth century, and was never widely adopted in algebra because it so closely resembles the letter “x”, which was most commonly used to represent unknowns in algebra (Smith, 1953).  

Symbols of aggregation originated with the study of radicals.  In syncopated algebra, the letter “L” and a backward “L” were used to surround terms in an expression, when describing the square root of that expression (Smith, 1953).  This symbolism eventually expanded to other mathematical ideas, and evolved into the parentheses and brackets we use today.  

Overview of the History of Polynomial Multiplication

Having sketched out the development of algebra and the symbols now used to represent polynomials, we now consider polynomials multiplication itself.  The idea of multiplying polynomials can be traced throughout the history of algebra, and, therefore, their evolution parallels that of algebra itself.  For instance, polynomials, and the computations involving them, were originally introduced rhetorically.  Later, the Greeks represented polynomial multiplication geometrically.  One example of this is shown below, where Euclid shows the square of a sum.  
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(adapted from Heath, 1953 pp 588-589).  The Arabs adopted the Greek method of representing relationships geometrically, and even al-Khowarizmi used these geometric models in his derivation and explanations (Berggren, 1986; Joseph, 2000). The Hindus, on the other hand, described all operations and processes, including those involving polynomials, completely verbally (Smith, 1953).

The Chinese created an algorithm for finding the coefficients in the expansion of (a+b)n before Euclid showed the expansion of (a+b)2.  This was not known outside of China, and Khayyam, a Persian mathematician, surprised the mathematics community in 1100 by expanding (a+b)n for values of n that could not be represented geometrically.  He claims to have established this process on his own, but historians have not found any work that shows how he came up with these ideas (Smith, 1953).  

Although informal ideas about polynomial multiplication have been around for as long as algebra, implicit discussion of these ideas was not limited to algebra.  For example, number systems that use place value are based on the principles that polynomials represent.  That said, cultures that used such number systems did not necessarily explicitly connect the ideas of place value do the ideas of polynomials.  For instance, our decimal system is actually polynomials in powers of ten and the Babylonian system involved polynomials in sixty.  Calculations using such number systems require the notion of collecting like terms when numbers are added and the process of multiplying polynomials when numbers are multiplied.  The algorithms used to facilitate these processes allow people to overlook these connections, nevertheless, these ideas and processes are highly related.  

Polynomials formally came into existence as a construct of mathematical definitions.  For instance, Pacioli began his explorations with a few definitions and then he defined operations involving monomials based on those.  Polynomials were how he expressed these operations involving an unknown and its powers.  Operations involving polynomials came up, by chance, in the process (Smith, 1953).   

The history of polynomials is clearly embedded in the history of algebra.  Therefore, the knowledge of their properties progressed alongside every innovation in algebra.  This can be seen in the verbal method in which the multiplication of polynomials was originally described as well as in the geometric proofs that were used in the original derivations of their expansions.  These processes were advanced by the Arabs, just as the rest of algebra was, when algebra was turned into a science that described generalized relationships.  Finally, polynomials, and the operations on them, became reified with the introduction of symbolic algebra, as did all other algebraic ideas.  Therefore, the evolution of the symbols used to represent polynomials is as important as the evolution of the ideas themselves.  This means that the form in which polynomials were represented changed not only as algebra transformed from verbal expressions to symbolic expressions, but also as each new symbol was created.  

Polynomial Multiplication in Modern Mathematics

Mathematicians’ interest in polynomial multiplication did not, however, end with the invention of symbols and the reification of polynomials.  As mathematics progressed, polynomial multiplication continued to play a large role in higher mathematics.  For instance, identities involving the expansion and simplification of products of polynomials are regularly used for substitutions in deductive proofs in areas such as advanced calculus and number theory.  Polynomial multiplication also plays a large role in discrete mathematics, being used in the derivation of formulas, such as the formulas to quickly compute number theoretic functions.  The sciences also depend heavily on polynomial multiplication, and the ideas inherent in it, for derivations as well as for computations.  

Furthermore, according to Pycior (1981), the eventual acceptance of symbolic algebra forced mathematicians to accept manipulations of ideas, regardless of whether the ideas could be manifested in the physical world.  At first, the reification of algebra brought its legitimacy into question, but this transformation eventually inspired mathematicians to consider the study of algebra as an intellectual pursuit that can be removed from its utilitarian functions.  This eventually led to the development, and to the acceptance of modern algebra. Algebraists continued to explore the ideas inherent in polynomial multiplication as they developed modern algebra.  

For instance, algebraists study rings of polynomials.  Although modern day algebraists explore polynomials with integral, rational, and real coefficients, just as earlier mathematicians did, the polynomials studied in modern algebra are not limited to these polynomials.  Since ring theory involves two operations, “multiplication” and “addition”, polynomial multiplication is a fundamental aspect of the study of polynomial rings regardless of the coefficients involved.  

As Gallian (1998) explains, in ring theory the variables do not necessarily represent unknowns, instead they often function more as placeholders.  In that sense these polynomials could be considered sequences, where multiplication of these sequences is defined in a similar fashion to polynomial multiplication.  Nevertheless, these sequences are referred to as polynomials and polynomial multiplication is a crucial component of them.  

Another concept in higher mathematics that utilizes the ideas inherent in polynomial multiplication that was inspired by the reification of algebra is the concept of generating functions.  In this case, polynomials are used to represent the distribution of objects and the coefficients in the product of those polynomials are used to determine the number of ways to distribute the items.  Well-established theorems about the products of polynomials, such as the binomial theorem, are used to determine those coefficients.  Therefore, the development and use of generating functions relied heavily on understanding the process of multiplying polynomials, and the well-known theorems created from centuries of studying polynomials made it possible for combinatorists to efficiently count such possibilities.  

These are just a few of the many examples of the role polynomial multiplication continues to have in mathematics.  In the next chapter these ideas will be explored in more detail.  Furthermore, although it took many great minds centuries to develop polynomial multiplication as we know it today, mathematics students and mathematicians alike regularly use polynomial multiplication and often treat it as a fundamental concept.  Therefore, it is likely that polynomial multiplication will continue to have an important role in the future of mathematics and the evolution of new mathematical ideas.  

CHAPTER 2

MY MATHEMATICAL EXPLORATIONS INVOLVING POLYNOMIAL MULTIPLICATION 

I became inspired to study polynomial multiplication when I saw that many successful university students could not readily see algebraic substitutions that needed to be made in their proofs.  These difficulties were often rooted in an inability to anticipate terms in products of polynomial multiplication.  Furthermore, many successful university students know the binomial theorem, but did not understand from where it came.  This also comes from viewing polynomial multiplication as manipulation of symbols rather than understanding how the terms arise in the product.  Since the students in my mathematics classes have been very successful in mathematics, I feared this problem could be worse in less successful students.  Therefore, I set out to create a curriculum that would help students develop a better understanding of the process of polynomial multiplication.  

In the situations where successful university students had trouble making appropriate substitutions in their proofs, polynomial multiplication was not the explicit object of study.  In these cases, nevertheless, it was a necessary skill.  In advanced mathematics, however, there are situations where polynomial multiplication is a direct object of study.  These topics include generating functions, ring theory, and convolution of sequences.  In this chapter, I will explore these situations as well as whole number multiplication as polynomials in powers of ten.  

Generating Functions
A generating function is a polynomial or power series whose coefficients are the terms of a sequence.  In a sense, “a generating function is a clothesline on which we hang up a sequence of numbers for display” (Wilf, 1994).  The generating function of the sequence a0, a1, a2,… is f(x) = a0 + a1x + a2x2 + … (Goodaire & Parmenter, 1998).  Although it is written in function notation, the purpose is not that it be evaluated at a specific number, so to call it a function is something of a misnomer.   
Nevertheless, generating functions help answer questions about the sequence that is used of coefficients.  Indeed, writing a sequence in this way reifies many properties of the sequence.  This provides mathematicians with another tool with which to answer questions about the sequence.  For example, generating functions can help mathematicians create a simple formula for recurrence relations and can help mathematicians count the number of ways to distribute a given number of objects.  

Operations can be performed on generating functions just like they are performed on polynomials.  For instance, 

given f(x) = a0+ a1x + a2x2 + … and g(x) = b0 + b1x + b2x2 + … , 

f(x) + g(x) = (a0 + b0) + (a1 + b1)x + (a2 + b2)x2 + … ,

f(x)g(x) = (a0b0) + (a1b0+ a0b1)x + (a2b0 + a1b1 + a0b2)x2 + … 
+ (anb0 + an - 1b1 +…+ a0bn)xn + …
For a more concrete example, 

consider f(x) = 1+ x + x2 + x3 + … and g(x) = 1 - x + x2 - x3 + … 

The sum of these two polynomials is

f(x) + g(x) = (1 + 1) + (1 - 1)x + (1 + 1)x2 + (1 -1)x3 + ...

= (2) + (0)x + (2)x2 + (0)x3 + ...

= 2 + 2x2 + 2x4 + … 

The product of these two polynomials is 

f(x)g(x) = [(1)(1)] + [(1)(1) + [(1)(-1)]x + [(1)(1) + (1)(-1) + (1)(1)]x2 +[(1)(1) + 

(1)(-1) + (1)(1) + (1)(-1)]x3 + …

= (1) + (1 - 1)x + (1 – 1  + 1)x2 + (1 – 1 + 1 –1)x3 + ...

= (1) + (0)x + (1)x2 + (0)x3 + ...

= 1+ x2 + x4 + … 

Identities involving polynomial multiplication and power series are also an important component of working with generating functions.  For instance, 

(1 – x)-1 = 1 + x + x2 + …, is a well known identity involving power series.  From that, it is clear that (1 – x)-1 is another way of representing the generating function of the sequence of 1, 1, 1, ….  Therefore, we can learn about the sequence 1, 1, 1,… by examining the power series 1 + x + x2 + … or by examining the function (1 – x)-1.  

Merris (1996) refers to the latter as the “freeze-dried version.”  He explains the benefits of this form by asking “if you had to stuff f(x) into a backpack, which version would you prefer?”  He adds that “it is easy to reassemble (or generate) the sequence from [the freeze-dried version].”  

Using identities such as this, and properties of polynomial multiplication, freeze-dried versions of many generating functions can be obtained.  For instance, 

(1 + x + x2 + …)2 = 1 + 2x + 3x2 + …

so [(1 – x)-1]2 = (1 – x)-2 = 1 + 2x + 3x2 + …,

which means that (1 – x)-2 represents the generating function for the natural numbers.  

This works for more complicated sequences as well.  For instance, consider the sequence 3, 4, 22, 46, 178,…One way to describe the structure of this sequence is to provide information about its generating function.  The generating function for this sequence is
3 + 4x + 22x2 + 46x3 + … 
3 + 4x + 22x2 + 46x3 +… = (3 + x)(1 + x + 7x2 + …) 

and 
1 + x + 7x2 + … = (1 – 2x + 4x2 – …)(1 + 3x + 9x2 + …) 

then
3 + 4x + 22x2 + 46x3 +… = (3 + x)(1 – 2x + 4x2 - …)(1 + 3x + 9x2 + …).  

By using the identity above 
(1 – x)-1 = 1 + x + x2 + …,

and noting that 
1 – 2x + 4x2 - … = 1 + (-2x) + (-2x)2 + …

and 
1 + 3x + 9x2 + … = 1 + (3x) + (3x)2 + …
we see that 
3 + 4x + 22x2 + 46x3 +… = (3 + x)(1 + 2x)-1(1 – 3x)-1. 

Thus, the generating function for the sequence above can also be rewritten as
 
     3 + x ____
or as       1       +      2__  both of which are 

1 – x – 6x2 
          1 + 2x
   1 – 3x
much simpler and more compact in form than the original expression.  

These examples show some methods that can be used to freeze-dry sequences and their corresponding generating functions.  However, freeze-drying is not always the goal of problems involving generating functions.  For instance, often the goal is to determine the coefficient of the nth term of the generating function.  This could help answer several questions such as what the nth term of a sequence is given a recurrence relation or how many ways n objects can be distributed given specific constraints.  Although the above work can be used to find the coefficient, there are sometimes easier ways to find the coefficients when given different pieces of information.  

Some of the ways these coefficients can be determined are by decomposing complicated generating functions into known ones, using the binomial theorem, and using Taylor’s theorem.  Logic involving the structure of polynomial multiplication is also crucial.  At times one of these methods is enough, but at times they have to be used together.  The following sections will provide examples of each of these methods.  

Generating Functions and Their Relation to Recurrence Relations

In this section, I use the method of decomposing an unknown generating function into familiar generating functions to determine coefficients and solve some recurrences. When given a recurrence relation with an initial condition, generating functions can help find an explicit formula for the nth term of the sequence.  This is done by finding the coefficient of xn in the generating function.  Sometimes it is easy to find such an expression without using generating functions, but at other times it can be quite difficult.  

As an example, consider the recurrence relation an = 3an-1 for n ≥ 0 given a0 = 1.  Although this expression is fairly simple and probably could have been easily found from listing terms, this provides a good example of this principle.  Furthermore, when the relationship is more complicated, however, this is not always the case.  Start by naming the generating function of the sequence, for example 
f(x) = a0+ a1x + a2x2 + a3x3 +…Given this function, clearly the nth term of the sequence is the coefficient of xn.  Given that each term in the relation is three times the previous term, another way to write f(x) is a0 + 3a0x + 3a1x2 + 3a2x3 +… Notice that this is 
3xf(x) + a0.  In other words, f(x) = 3xf(x) + a0 or f(x) - 3xf(x) = a0.  This equation can be solved for f(x) yielding, f(x) = a0/(1-3x).  Since a0 = 1, f(x) = 1/(1-3x).    This is equivalent to 1 + 3x + (3x)2 + (3x)3 + … In other words, f(x) = 1 + 3x + 32x2 + 33x3 + …From this form of the expression, it is clear that the coefficient of xn is 3n, so the nth term of the sequence is 3n.  This answer makes sense given the problem.   

Consider the recurrence relation an = 2an-1 - an-2 for n ≥ 2 given a0 = 3 and a1 = -2.  Start by naming the generating function of the sequence, for example f(x) = a0+ a1x + a2x2 + a3x3 +…Once again, it is clear that the nth term of the sequence is the coefficient of xn.  Given that each term in the relation is dependent on the two preceding terms rather than just one, this is more complicated than the last example.  Given that each term in the relation is two times the previous term less the term before that, another way to write f(x) is a0 + a1x + (2a1 – a0)x2 + (2a2 – a1)x3 +… In the last problem, we used 3xf(x) since each term depended on three times the preceding one.  Similarly, in this case we need to consider 2xf(x) and x2f(x) since each term is dependent on twice the preceding term as well as the term before that one.  Note that 2xf(x) =  2a0x + 2a1x2 + 2a2x3 + 2a3x4 +…
and x2f(x) = a0x2+ a1x3 + a2x4 + a3x5 +…
so f(x) = 2xf(x) - x2f(x) + a0 + (a1 – 2a0)x
and f(x) - 2xf(x) + x2f(x) = a0 + (a1 – 2a0)x.  

Factoring out f(x) produces (1 – 2x  + x2) f(x) = a0 + (a1 – 2a0)x
or (1 – x)2f(x) = a0 + (a1 – 2a0)x
By solving for f(x) and substituting in a0 = 3 and a1 = -2, we find that 

f(x) = (3 – 8x)(1 - x)-2.  You may recognize the second factor from above: it is the generating function for the natural numbers.  Therefore, we can replace (1 - x)-2 with 

1 + 2x + 3x2 + … + (n + 1)xn + …, yielding 

f(x) = (3 – 8x)( 1 + 2x + 3x2 + … + (n+1)xn + …).  By distributing we find that

f(x) = 3(1 + 2x + 3x2 + … + (n+1)xn +  …)  – 8x(1 + 2x + 3x2 + … + (n+1)xn +  …)  

      = ( 3 + 6x + 9x2 + … + 3(n+1)xn +  …)  + ( -8x - 16x2 - 24x3 - … - 8(n+1)nxn+1 -  …)  

      = 3 + (6x -8x ) + (9x2 - 16x2) + … + (3(n + 1)xn – 8nxn) + …   

      = 3 + (6 – 8)x + (9 - 16)x2 + … + [3(n + 1) – 8n]xn + …   

      = 3 - 2x - 7x2 + … + (3 -5n)xn + …   

From this it is clear that the coefficient of xn is 3 – 5n, so the nth term of the sequence is 
3 – 5n.  This answer is less obvious than the earlier one, but can easily be checked by comparing the terms produced by this expression to the first few terms of the recurrence relation.   

Generating functions can help with non-homogenous recurrence relations as well.  For instance, consider the recurrence relation an = -an-1 +2n - 3 for n ≥ 1 given a0 = 1.  Once again, start by naming the generating function f(x) = a0 + a1x + a2x2 + a3x3 +…+ anxn +…, where the nth term of the sequence is the coefficient of xn.  Given that each term is dependent on the preceding term as well as n, this problem is slightly more complicated than the last two.  Nevertheless, it is similar.  By using the process used in the last two problems, another way to write f(x) is a0 + (2 – a0 – 3)x + (2 – a1 – 3)x2 + (4 – a2 – 3)x3 
+ … + (2n – an-1 – 3) xn + … Note that xf(x) =  a0x + a1x2 + a2x3 + a3x4 + … + anxn+1 + …,so f(x) = -xf(x) + a0 + (2 -3)x + (4 – 3)x2 + (6 – 3)x3 + … + (2n – 3) xn + …
and f(x) + xf(x) = a0 + (2 -3)x + (4 – 3)x2 + (6 – 3)x3 + … + (2n – 3) xn + …Factoring out f(x) produces (1 + x) f(x) = a0 - x + x2 + 3x3 + … + (2n – 3)xn + …
By solving for f(x) and substituting in a0 = 1, we find that 

f(x) = (1 - x + x2 + 3x3 + … + (2n – 3)xn + …)(1 + x)-1, which can be rewritten by replacing (1 + x)-1 with 1 + (-x) + (-x)2 + … + (-x)n + …, yielding 

f(x) = (1 - x + x2 - 3x3 + … + (2n – 3)xn + …)(1 - x + x2 - … +(-1)nxn + …) By distributing we find that

f(x) = 1(1 - x + x2 - 3x3 + … + (2n – 3)xn + …) - x(1 - x + x2 - 3x3 + … + (2n – 3)xn 

+ … ) + x2(1 - x + x2 - 3x3 + … + (2n – 3)xn + …) - … + (-1)n(1 - x + x2 - 3x3 

+ … + (2n – 3)xn + …)xn + …

      = 1 + (- x – x) + (x2 + x2  + x2 ) + (- 3x3 + 3x3 - 3x3 + 3x3)+ … 

+ [(2n – 3) xn – (2n – 5) xn + .. + (-1)n-1(-1) xn + (-1)nxn] + … 

      = 1 + (- 1 – 1)x + (1 + 1 + 1)x2 + (-1 + 1 – 1 + 1)x3 + … 

+ [(2n – 3) – (2n – 5) + .. + (-1)n-1(-1) + (-1)n]xn + …

     = 1 - 2x + 3x2 + 0x3 - … + [(2n – 3) – (2n – 5) + ... + (-1)n-1(-1) + (-1)n]xn + …

     = 1 - 2x + 3x2 + … + [(2n – 3) – (2n – 5) + ... + (-1)n-1(-1) + (-1)n]xn + …

From this, it can be obtained that the coefficient of xn is n + 1 if n is even and n – 3 if n is odd.  So the nth term of the sequence is n + 1 if n is even and n – 3 if n is odd.  This answer is much less obvious than the earlier ones, but can be checked by listing the first few terms of the recurrence relation.   

These two examples above show how, through the use of generating functions, the process of polynomial multiplication is used to solve recurrence relations.  Recurrence relations are a nontrivial and notoriously difficult mathematical topic, one that the simple process of polynomial multiplication drastically simplifies.  Therefore, understanding the process of polynomial multiplication is an important tool for solving such problems.  
Generating Functions and Counting Problems: Binomial Theorem and Taylor’s Theorem
In addition to being a powerful tool for calculating terms in recurrence relations, generating functions are also useful tools in counting problems.  In combinatorics, generating functions are used to determine the number of ways to “do something” with a specific number of objects from a collection of objects (Tucker, 2002).  In this situation, we do not yet know the coefficients of the generating function; the goal is to find those coefficients.  
By examining the process of polynomial multiplication and the terms that arise from it, a variety of mathematicians from different cultures noticed a pattern for determining the coefficients of the expansion of (a + b)n.  The formula for the coefficient of the kth term of this expansion when written in descending order is the same as the number of ways to select k objects out of n identical objects.  This is because each term of the product is going to involve one term from each the n factors.  Therefore, all terms of this product will be of the form ak bn-k, where k of the factors are a’s and the remaining n-k are b’s.  In order to get ak, k a’s must be multiplied together.  This means the number of ways to get the term ak bn-k is the same as the number of ways to choose k a’s from n factors.  In other words, the number of ways to choose k objects from n identical objects (often written as (n, k)).  This means the coefficient of the kth term of the expansion of (a + b)n when written in descending order is the same as the number of ways to select k objects out of n identical objects.  This gives us (a + b)n = (n, n)an + (n, n - 1)an-1b + (n, n - 2)an-2b2 + … + (n, 1)abn-1 + (n, 0)bn, which is commonly referred to as the binomial theorem.  By using this relationship, mathematicians realized properties of polynomial multiplication could help with more complicated counting problems as well.  

To extend this reasoning beyond the binomial theorem, mathematicians create polynomials or power series to represent the constraints of the problem.  They then use the properties of multiplication of polynomials and power series to rewrite the product as a single generating function.  The sequence “hanging” on the generating function is the number of ways to do whatever it is you are modeling.  That is, the coefficient of the term ak is the same as the number of ways to “select” k objects within the constraints of the problem.  
In this process, the exponents and the coefficients are important.  The variables act as place holders, generally having no meaning in the problem itself.  The variables provide the formal structure necessary to algebraically manipulate the terms of the corresponding sequence, allowing us to represent complicated problems in forms with which mathematicians and mathematics students are quite comfortable.  By doing this, mathematicians and mathematics students can easily see how to use the properties of polynomial multiplication to help them answer complicated counting questions.  

Although generating functions can be used to count situations with and without constraints, generating functions are particularly useful when there are constraints in the problem.  The use of generating functions to count the number of ways to select objects relies heavily on properties of polynomial multiplication and identities derived from those properties.  This is because polynomials or power series that represent the constraints of the problem are multiplied together to give us the generating function from which the answer is obtained.  
 The first step in using generating functions to count is to create polynomials or power series that represent the number of each object that can be distributed.   For instance, if you have fifteen different types of flowers and you want to count how many different bouquets can be made using no more than one of each type of flower one would write 
(x0 + x1)15 or (1 + x)15.  The first term represents using zero of a given flower and the second term represents using one of that type of flower.  The polynomial is raised to the fifteenth power because there are fifteen different types of flowers with identical constraints.  The expression of xk in the resulting expression would count the number of such bouquets with k flowers.  
Similarly, if the question had been how many different bouquets can be made using at least two of each type of flower, but no more than three of each type of flower the corresponding polynomial expression would be (x2 + x3)15.  The exponent of the first term is two because at least two flowers of each type need to be used, the exponent of the second term is three because three flowers can be used, and there are no more terms because no more than three flowers can be used.  There are once again fifteen different types of flowers with identical constraints so we need to multiply together fifteen such polynomials.  
If instead you only wanted to ensure that you had at least two of each type of flower, the corresponding expression would differ depending on whether there was an infinite supply of flowers or a finite supply of flowers.  In the former case, the expression would involve power series rather than polynomials, but would use the same general idea, using (x2 + x3 + x4 + … )15.  In the latter case, the representative polynomial expression would be (x2 + x3 + … + xm)15, where m is the number of flowers available, if there  were the same number of each type of flower available.  If there were different numbers of each type of flower available, the representative polynomial expression would be (x2 + x3 + … + xm1)(x2 + x3 + … + xm2)… (x2 + x3 + … + xm15), where m1 is the number of flowers of type 1 available, m2 is the number of flowers of type 2 available, etc.  

Finally, if you had different restraints for each type of flower, the polynomial representing the possibility for each flower would be different.  For instance, consider the situation where you want to include no more than two sunflowers, no more than five roses, at least two tulips but no more than five of them, and no more than three of any other type of flower.  In this case, the representative polynomial product would be 

(1 + x + x2)( 1 + x + x2 + x3 + x4 + x5)(x2 + x3 + x4 + x5)(1 + x + x2 + x3)12.  

After setting up polynomials whose exponents represent the constraints presented, the next step is to manipulate the expressions in a way that it is easy to determine the coefficient of the relevant term or terms.  As with recurrence relations above, we will use the technique of expressing the desired generating function in terms of more familiar ones.  In these problems, however, we often encounter the generating function of the binomial theorem along the way.  To proceed, we generally begin by factoring the greatest common factor out of each factor of the product until each factor of the product begins with a one.  After simplifying each of the factors, algebraic identities such as 

1 + x + x2 + … + xm = (1 –  xm+1) / (1 – x) and 1 + x + x2 + … = 1 / (1 – x) are applied to the factors.  Note that only the latter was used in the discussion of recurrence relations.  That is because we were discussing infinite sequences.  The latter identity is only relevant when power series are involved.  So in the case where we are discussing a finite number of terms, or a polynomial, the former identity needs to be used.  

Once the factors of the product have been rewritten in one of the simpler forms, they are combined into as few terms as possible by using properties of exponents.  After the expression has been simplified, identities such as those for determining the coefficients of the terms in the expansion of (1 + x)n, (1 - xm)n, and (1 - x)-n are used.  Often this is enough to manipulate the expression into a form from which the number of possibilities can be counted.  Occasionally, however, the result is the product of polynomials rather than an expanded polynomial.  In this case, the polynomials need to be multiplied, and the ability to anticipate the terms in the product will help determine the appropriate coefficient.   

In the end, the expanded polynomial or power series will be of the form 
a0 + a1x + a2x2 + … + anxn or of the form a0 + a1x + ….  The number of ways to select k objects, subject to the constraints used to create the original expression will be the coefficient of xk.  We can revisit some of the scenarios discussed at the beginning to see this in action.  

In the first example, where we wanted to count how many different bouquets could be made using no more than one of each of fifteen different types of flowers, we began with the expression (1 + x)15.  From this, we immediately know that the coefficient of xk is (15, k) or 15!/[k!(15-k)!].  Therefore, the number of ways to create a bouquet with k flowers using no more than one of any type of flower is (n, k).  If instead we had wanted to know that number of such bouquets that could be created using at most k flowers, the answer would be (15, 1) + (15, 2) + … + (15, k).  

The second example we considered was where the bouquets had at least two of each type of flower, but no more than three.  We began this problem with the expression (x2 + x3)15.  The first step here is to factor out x2, leaving us with [x2(1 + x)]15. This expression is equivalent to x30(1 + x)15. By applying the binomial theorem, we get 

x30[1 + (15, 1)x + (15, 2)x2 + (15, 3)x3 + … + (15, 15)x15].  By distributing the first term we now have x30 + (15, 1)x31 + (15, 2)x32 + (15, 3)x33 + … + (15, 15)x45.  The number of ways to select a bouquet with k flowers is (15, k-30).  

In the case where there are at least two of each flower, and an infinite supply of each type of flower, we start with (x2 + x3 + x4 + … )15.  The first step is to factor out the greatest common factor, leaving us with [x2 (1 + x + x2 + … )]15 or x30(1 + x + x2 + … )15.  This is equivalent to x30(1 - x)-15, which is equivalent to x30[1 + (15, 1)x + (16, 2)x2 + (17, 3)x3 + … + (14 + r, r)xr  +…].  By distributing, we see that this is equivalent to x30 + (15, 1)x31 + (16, 2)x32 + (17, 3)x33 + … + (14 + r, r)xr + 30  +…  By using this expansion, it is clear that the number of ways to create a bouquet with k flowers is (k - 16, k - 30).  

These processes can be applied to the remaining problems discussed above as well as to many other counting problems.  However, the remaining problems can also be solved with Taylor’s theorem.  If the terms of a sequence are given by a differentiable function, then we can often use Taylor’s theorem to deduce the form of the coefficients from the “freeze-dried” form of the generating function.  This is a nice alternate method for extracting coefficients because it does not require factoring the generating function into the small set of familiar ones.  
Taylor’s theorem states that “if f has a power series representation (expansion) at a, that is if f(x) = ∑ cn(x – a)n and |x – a| < R, then cn = f(n)(a)/(n!),” (Stewart, 2001) where f(n)(a) is the nth  derivate of f evaluated at a and R is the radius of convergence.  For our purposes, we will consider a special case of Taylor’s series, that is when a = 0.  These series are referred to as Maclaurin series.  Since we are only using the power series expansion as a formal technique to manipulate the coefficient sequences, it turns out that conclusions drawn from Taylor’s theorem regarding the coefficients are often valid, even in the case where the convergence of the power series is not attained.  
To see this in action, let us consider one of the examples from earlier.  Consider the case where we could use any number of flowers of each type, but there was a finite supply of each type (the same number were available of each type).  Recall that the generating function for this situation was f(x) = (1 + x + x2 + x3 + … + xm)15.  The derivate of this is 15(1 + x + x2 + x3 + … + xm)14(1 + x + x2 + x3 + … + xm), so f’(0)/1! = 15(1 + 0) 14(1 + 0) = 15(1)(1) = 15.  This means there are fifteen different bouquets involving one flower.  This answer is easily confirmed using logic.  
When using this method, there is often not an easy way to create a general answer for the coefficient of xn, nevertheless, coefficients for a given term can be calculated fairly easily.  This can be done by taking repeated derivative or by using some sort of computer algebra system.  Similarly, the process could be used to determine the number of possible bouquets in the other situations, too.  Those derivatives, however, are slightly more complicated as they require several applications of the product rule.  
The point of this latter example is to show that the determination of the coefficients of products of polynomials is not merely a mechanical routine whose importance is limited to rudimentary mathematics.  In fact, it is a prevalent theme in many area of modern mathematics.  These areas include the discrete world of combinatorics and the continuous world, via Taylor’s theorem, of calculus.  
Generating functions helps mathematicians keep track of complicated restriction and efficiently count possibilities involving such restrictions.  Identities and processes that do involve polynomials are essential to such problems.  Although the situations themselves do not involve polynomials, understanding the process of polynomial multiplication allowed mathematicians to see that identities about polynomial multiplication could assist them in efficiently counting complicated situations.  

Ring Theory

In modern algebra, mathematicians study systems that have certain properties.  Two of these systems are groups and rings.  The operations of polynomial arithmetic allow us to construct a new group or ring from any other group or ring.  In particular, the structure of polynomial multiplication allows us to construct a new ring from a given ring.  

Rings involve groups, so I will start by describing a group.  A group involves a set and a binary operation, it also meets certain specifications.  These specifications are closure, associativity, existence of an identity, and existence of inverses.  

Note that commutativity is not a requirement for groups.  However, such groups do exist and are called abelian groups.  Furthermore, there are always elements in a group that commute with all other elements in the group; the subset comprised of all such elements is called the center of the group.  

Another system algebraists study is called a ring.  A ring involves an abelian group and a second binary operation.  For simplicity’s sake, the operation with which the set forms a group is often referred to as addition and the other operation is often referred to as multiplication.  The second operation, multiplication, must also be associative and it must distribute over the first operation on the left side as well as on the right side.  Furthermore, the set must also be closed with respect to the second operation.  The multiplication operation need not be commutative, but it can.  In the case that it is, the ring is called commutative.  

Obviously the set of polynomials (with integer, rational, or real coefficients) is an example of a group when the operation is addition and is an example of a ring when the operations are addition and multiplication. There is clearly closure because the sum of two polynomials is a polynomial and the product of two polynomials is a polynomial.  The zero polynomial is clearly the additive identity, and the additive inverse of a polynomial is clearly a polynomial.  Furthermore, in the case of polynomials, multiplication is distributive.  Finally, since addition of polynomials is commutative, the set of polynomials together with addition is clearly an abelian group.  

 “To a certain degree, the notion of a ring was invented in an attempt to put the algebraic properties of the integers into an abstract setting” (Gallian, 1998).  Therefore, because the set of polynomials together with ordinary addition and multiplication is a ring as well, many of the similarities between operations on polynomials and operations on integers are obvious.  Likewise, many of these similarities also exist between operations on polynomials and operations on real numbers, which also form a ring.  
The obviousness of many of the proofs listed above depends on our understanding of the real numbers and the properties polynomials share with the real numbers.  Therefore, these ideas can be extended to polynomials with coefficients from any ring.  In other words, polynomials whose coefficients come from a ring will form a ring with the operations defined on the ring.  In this situation, however, the procedure with which polynomials are multiplied needs to be combined with the “addition” and “multiplication” operations from the ring from which the coefficients come.  

In all of these descriptions, I have assumed that the variables used in the polynomials represent unknown elements from the coefficient ring, just as they do in the mathematics leading up to abstract algebra.  However, this need not be the case.  The variables can also merely serve as place holders to define the multiplication of sequences.  This is sometimes referred to as convolution of sequences.   

To illustrate convolution of sequences, consider the two sequences (a0, a1, a2,…, an) and (b0, b1, b2,…, bm).  For simplicity assume n equals m.  By using convolution, the product of the two sequences is (a0b0, a0b1 + a1b0,…, anbm).  To see where these terms came from, consider the two polynomials a0 + a1x + a2x2 + … + anxn and b0 + b1x + b2x2 +… + bmxm, also assuming that n equals m.  The product of these two polynomial is 

(a0b0) + (a0b1 + a1b0)x + (a0b2 + a1b1 + a2b0)x2 + … + (anbm)xm + n.  Thus the convolution of two sequences is a sequence whose terms are the coefficients of the product of the corresponding generating functions.  

By considering two polynomial of different degree, this example can be extended to show the sum and product of two sequences of different lengths.  To keep track of the terms in the convolution of two sequences, it helps to rewrite the sequences as polynomials.  However, it is not essential to do so.  Ignoring the variables, however, requires a strong understanding of how to arrive at the coefficients in polynomial multiplication.  

When the elements of a ring are sequences and the multiplicative operation is convolution, the rings are called polynomial rings regardless of whether or not the variables are written.  Furthermore, when the elements are written as polynomials, the variable does not need to represent an unknown.  

Polynomial Multiplication- A Specific Case

In addition to exploring where polynomial multiplication is an explicit object of study in advanced mathematics, I also explored how polynomial multiplication is implicitly studied in elementary mathematics.  I did this by rewriting whole numbers as polynomials in powers of ten and then exploring the process of arriving at the product by using the format generally used for multiplying polynomials.  Several interesting things came out of this experience. 

Writing multi-digit whole numbers as polynomials in powers of ten helped me notice that ten is a very easy value at which to evaluate a polynomial, especially when the coefficients are positive.  This was an interesting revelation that was uncovered during a conversation with Sean Larsen (personal communication, February 17, 2005).  People usually evaluate polynomials at zero, one, and negative one assuming they are the simplest values, but ten is often a simple value as well.  Although this is an interesting fact about polynomials, it is not directly relevant to the study of polynomial multiplication.  So I did not spend much time on this fact.  

The next thing I noticed was that replacing the variable with ten changes the procedure for multiplying polynomials.  This is because of the similarity between the coefficients and the “variables.”  This blurred distinction creates a slight different in the process of multiplication.  This is illustrated below.  

Consider the multiplication problem 53 x 24.  Writing the numbers as polynomials in ten produces the expression (5 x 10 + 3)( 2 x 10 + 4).  Applying the standard procedure for polynomial multiplication yields (10 x 102) + (20 x 10) + (6 x 10) + (12).  From here the blurring between the coefficients and the variable is obvious.  Consider the first term of the expanded polynomial.  In this case, the coefficient is identical to the “variable”.  

Several processes can be used to simplify this expression.  These simplification methods, however, do not work when a variable that actually varies is used.  One such simplification process would be to begin by collecting like terms, producing the expression (10 x 102) + (26 x 10) + (12).  If this is done, the next step could be to rewrite the expression as (1 x 103) + [(20 + 6) x 10)] + (10 + 2).  This expression could then be rewritten as (1 x 103) + (20 x 10) + (6 x 10) + (1 x 10) + (2) and then as (1 x 103) + (2 x 102) + (6 x 10) + (1 x 10) + (2).  Collecting like terms produces (1 x 103) + (2 x 102) + (7 x 10) + (2).  The last three steps could not be performed when true variables are used.  The blurry line between the coefficients and the variables makes whole number arithmetic slightly different from polynomial arithmetic.  

On further reflection, this blurry line directly relates to ring theory.  In ring theory it is assumed that the variable is transcendental over the coefficients, that is that there is no polynomial satisfied by x.  By substituting 10 for x, we are not only evaluating the polynomial as a function, we are replacing it with an algebraic element from the coefficient ring.  
In fact, evaluating polynomials with integer coefficients induces a function mapping the polynomials to the integers (similarly if the coefficients were rational or real, the function would map the polynomials to the rationals or the reals respectively).   This function is a homomorphism, not an isomorphism.  That explains why some of the properties transfer from system to system while others do not.  In particular, facts true of polynomial arithmetic are true of base ten arithmetic, whereas the opposite is not always true.  
This blurry line also encouraged me to look at long division involving polynomials as well as synthetic division.  I realized that the connection between the coefficients and variables with base ten numbers allows us to work only with positive numbers, creating the long division algorithm commonly used in the United States.  This difference forces us to use signed numbers when attempting to use the same procedure for long division involving polynomials.  This same difference is inherent in synthetic division, but other complications arise in that situation as well.  

Summary

Reflecting on these explorations, I became aware of the differences in the role of the variable in each of these situations.  The role varies from completely irrelevant to so relevant that it changes the algorithm.  In modern algebra the variable can serve as a place holder, or it can serve the crucial role of representing all or some numbers.  In generating functions the variable has no meaning, serving only as a place holder.  This impacts the identities we can use to rewrite the expressions and the statements we can make about the product of power series (infinite polynomials).  Convolution of sequences does not even include the variable at all.  In whole number multiplication, the variable plays such an important role that it changes the algorithm.  

The wide spectrum of the role played by variables in processes involving polynomial multiplication ranges from the role it plays in whole number multiplication to the role it plays in convolution of sequences.  Exploring the role of the variable in these topics, helps to explain the role that polynomial multiplication plays in higher math.  Furthermore, it shows that polynomial multiplication exists in more mathematics than first meets the eye.  

CHAPTER 3

RATIONALE FOR DEVELOPING A CURRICULUM ON THE MULTIPLICATION OF POLYNOMIALS

As Bob Moses said in his book Radical Equations, “algebra, once solely in place as the gatekeeper for higher math and the priesthood who gained access to it, now is the gatekeeper for citizenship; and people who don’t have it are like the people who couldn’t read and write in the industrial age.”  This quote accurately describes the role algebra currently plays in our society and the weight many people put on it.  Therefore, algebra education plays an important role in promoting social justice.  The gate-keeping role of algebra makes it increasingly important that all people have the opportunity to develop algebraic reasoning and algebraic thinking.  Therefore, it is important to make all concepts in algebra, even the most abstract ones, accessible to all.  

Furthermore, being able to manipulate symbols and arrive at an answer is not the same thing as being adept at algebra.  Students need to understand algebraic concepts rather than merely memorize algorithms for symbolic manipulations.  This means that in order to create equal access for all people, more lessons need to be created that promote student thought about algebraic concepts.  By creating such lessons, teachers will have alternatives for teaching topics that are often difficult for students (Herscovics, 1989).  Without access to this type of lesson, teachers are often dependent on the “drill and kill” approach they experienced in their schooling.   

Polynomials are a core component of beginning algebra; therefore, it is crucial that students have a solid understanding of their properties (Eisenberg & Dreyfus, 1988).  Many teachers of algebra, however, tend to emphasize procedure rather than structure when teaching polynomials (Coopersmith, 1984).  This type of learning makes it difficult for students to apply what they are learning.  Therefore, it is crucial that new lessons are created that promote a conceptual understanding of algebraic structures (referred to from here on out as structural understanding) of polynomial operations.  

Building a structural understanding of polynomials is beneficial in many ways.  This deeper understanding could help students anticipate the form of the products of polynomials.  This will help students in elementary algebra with topics such as factoring and working with rational expressions.  Skills involving polynomials are not only important in beginning algebra; they are also important in almost all math classes after algebra.  As was discussed earlier, the structure involved in polynomial multiplication becomes more important in higher mathematics, where the variables are often eliminated from the conversation.  Therefore, this structural understanding will help students directly and indirectly if they continue on to higher math classes.  
In addition, as mentioned in the last chapter, polynomial operations, including polynomial multiplication, is an object of direct study in higher math classes such as abstract algebra and combinatorics.  Furthermore, the study and use of polynomials is not limited to math classes.  For instance, polynomials are also a foundational topic in many science classes, so a structural understanding of polynomials will also help students later on in their academic careers by enabling them to understand derivations of existing formulas and possibly derive new ones.   The effects of a solid understanding of polynomials directly and indirectly affect many aspects of peoples’ mathematical lives.  Therefore, curricula that promote such an understanding are essential in this day and age.

CHAPTER 4

RATIONALE FOR DEVELOPING THIS CURRICULUM

For the reasons I mentioned earlier, such as the importance of a structural understanding of algebra, the role of algebra in higher mathematics, and the superficial understanding of polynomial multiplication some successful university students seemed to have, I felt that it was important to design a curriculum on multiplying polynomials.  Therefore, I set out to explore mathematical topics that would help me design a curriculum on polynomial multiplication.  I originally thought learning about the historical evolution of polynomial multiplication would help me develop a curriculum.  
As time went on, however, I learned algebra was originally developed rhetorically.  This meant a process for polynomial multiplication was determined before the polynomials we use today were.  Furthermore, I learned that when variables were first introduced, there was a lot of reluctance to accept them, even by the greatest mathematical minds of the time.  This meant that the ideas of rhetorical algebra do not easily transfer to symbolic algebra.  So I decided that the historical evolution of polynomials would not help design a curriculum involving polynomial multiplication as it is manifested in symbolic algebra.  
Therefore, I explored several mathematical topics, in search of a topic that would uncover aspects of polynomial multiplication that would help me develop a curriculum.  None of the topics alone did this, but looking at the topics together did.  As I mentioned earlier, when I reflected on the different topics I explored, I realized that the role of the variable was quite different in the different topics.  I thought this could help me create a lesson involving polynomial multiplication.  
The Multifaceted Role of Variables
On one extreme there was convolution of sequences, which did not use variables at all.  It adopted the process of polynomial multiplication, but variables were not used, not even as placeholders.  This is similar to the role of variables in polynomials as they are studied in abstract algebra.  However, the variable is sometimes used in abstract algebra.  When the variable is used in the expression it can be used as an object that can replaced by another value, but this is not necessary.  

In generating functions variables are used only as placeholders.  In order to help count, generating functions rely on properties of polynomial multiplication such as identities about products and quotients of polynomials.  Other than helping reference those properties, however, the variables serve no function.  

This is in contrast to the role of variables in the polynomials we see in elementary algebra.  In this case, the role of the variable ranges from representing a specific number to representing any number.  For instance, when polynomials are being multiplied together in expressions, the variable can represent any number.  Whereas when variables are used in equations they can represent all numbers, some numbers, or even no number at all.  

On the other end of this spectrum are whole numbers in our base ten system, or in systems using other bases.  In this case the “variable” is a specific number.  Having this specific number distorts the algorithm, because the coefficients merge with the “variable”, allowing terms to be combined that are not combined when the “variable” is not a known constant. 

Although all of these topics use the same basic concept, the topics differed because of the role the variable plays. After noticing this spectrum, I realized that it was the role of the variable that kept me from using history as a starting point for my curriculum.  Therefore, I realized that the role of the variable had been a key component of all of my explorations, and, therefore, needed to be a key component of my curriculum.  

How My Mathematical Explorations Informed this Design on this Curriculum
I began to think about the differences between the roles of variables in the topics I explored, and how that could help me teach students polynomial multiplication.  I also thought about my exploration into ring theory, which reminded me about the similarities between operations involving polynomials and operations involving integers.  I decided to start by thinking about whole numbers, the polynomials with which students are most familiar.  Then I thought about how to highlight the differences between whole numbers and polynomials as they appear in elementary algebra.  

I realized the important difference between whole numbers and polynomials was the blurred distinction between the coefficients and variables in whole numbers.  This impacted the process of collecting like terms in whole number addition.  So I began to think about how to get students to think about whole number addition as collecting like terms and how to transition students from that view of whole number addition to collecting like terms in the polynomial world.  

The addition algorithm used for whole number addition is based on collecting like terms, so asking students to explain the process seemed like a good starting point.  Then asking students to apply the algorithm to time allows them to realize that bases other than ten work as well.  This extends students ideas of like terms, but is still limited because the distinction between variables and coefficients is still fuzzy.  Therefore, I decided to expand the idea of time to include months, something that does not have a clear exchange rate with any smaller unit.  This could help students begin to address the lack of closure that exists when true variables are used.  After expanding the idea of like terms to address the lack of closure in algebra, it seemed appropriate to introduce variables.  
After students have begun to think about whole numbers and time as polynomials, it is time to introduce multiplication.  This is done by first having students look at multiplication involving a single digit number and then a multi-digit number. This allows students to develop the idea of the distributive property.  This also calls on students’ methods for mentally performing calculations.  It seemed important for students to look at the distributive property in the context of whole numbers, time, and variables.  That way, they could eventually extend their ideas to reinvent the algorithm for polynomial multiplication.  

This idea easily extends itself to rational expressions.  This seems like a logical extension because thinking about the process of operations involving fractions clearly extends to rational expressions in the same way operations with whole numbers extend to polynomials.  Furthermore, students often memorize the algorithm for operations involving fractions and do not understand the processes.  Therefore, encouraging students to think deeply about the processes involved in operating on fractions would be beneficial for students.  

Understanding the process of polynomial multiplication and anticipating terms in products also helps students understand the binomial theorem, which in turn helps students better understand polynomial multiplication.  Therefore, I also decided to extend this curriculum to include the binomial theorem.  This activity was inspired by a technique used by Kieran and Saldanha (forthcoming) and allows students to use technology to further their understanding of polynomial multiplication and the binomial theorem.  

Furthermore, the idea of thinking of whole numbers as polynomials in base ten enables students to better understand number systems using other bases.  This is valuable in this technological age since computers are based on binary code.  This also helps students understand the differences between number systems used by different cultures at different time.  Therefore, I also extended this activity to help students understand these ideas.  

Finally, I found learning the history of polynomial multiplication very interesting and it supported my belief that geometric models are not the best way to teach polynomial multiplication.  Therefore, I also decided to extend this activity to teach students about the history of algebra and the obstacles encountered by considering only the geometric basis of polynomial multiplication.  Hopefully this will help students interested in history become more interested in math and students interested in math become more interested in history.  

Other Factors that Informed the Design of this Curriculum

This curriculum was not only influenced by my mathematical explorations, it was also influenced by pedagogical considerations.  For instance, it was based on many suggestion made by organizations such as the National Council of Teacher’s of Mathematics (NCTM).  It was based on ideas expressed by other researchers as well.  

In the 1991 document Professional Standards for Teaching Mathematics, NCTM argued that “tasks that require students to reason and to communicate mathematically are more likely to promote their ability to solve problems and to make connections.”  Since a goal of this curriculum is to foster an understanding of polynomial multiplication that facilitates extension of the concepts, this curriculum was designed with the goal of asking students to reason and communicate about the concepts they are studying.  The design of the problems presented in this curriculum is also consistent with the NCTM stance because the problems were developed “to create opportunities for students to develop this kind of mathematical understanding, competence, interests, and dispositions.” 

Another goal for students of mathematics presented in the NCTM 2000 document Principles and Standards for School Mathematics “is to develop increased abilities in justifying claims, proving conjectures, and using symbols in reasoning.”  In designing this curriculum, this idea was a central focus because it enables students to make sense of new concepts they confront and because it empowers students to construct mathematical concepts even when they are not formally presented to them.  This is important because it helps students assess the reasonableness of their assumptions and conjectures.  

A third important component of mathematics instruction described by the NCTM (1991, 2000) is mathematical discourse.  They argue that by “making conjectures, proposing approaches, and solutions to problems, and arguing about the validity of particular claims, [students] should learn to verify revise, and discard claims on the basis of mathematical evidence.”  The NCTM further argues that teachers need to “pos[e] questions…that elicit…students’ thinking [by] asking students to clarify and justify their ideas.”  The problems presented in this curriculum are posed for exactly this purpose.  Furthermore, they are “based on sound and significant mathematics” in order to “develop students’ mathematical understanding and to stimulate students to make connections and develop a coherent framework for mathematical ideas.”  NCTM argues, and I agree, that by asking students “what makes something true or reasonable in mathematics?” students investigate “fundamental issues about knowledge.”  Also, “over time, [students] learn new ways of thinking from their peers.”  Learning to learn from others will help students learn in other classrooms as well.  

In addition to designing this curriculum with the beliefs of the NCTM in mind, Freudenthal’s (1991) belief that “students should be given the opportunity to reinvent mathematics” was influential as well.  The problems in this curriculum were chosen to encourage students to reinvent ideas in algebra by explicitly reflecting on the mathematics they already do.  The goal is for students to generalize the mathematics they do in concrete situations to the more abstract concepts of algebra.  Although this aspect of the curriculum design was not based directly on NCTM documents, the idea of asking students to extend their prior knowledge is consistent with the beliefs of the NCTM.  

Furthermore, ideas in mathematics are interrelated; the ideas in arithmetic are abstracted into the ideas of elementary algebra, just as the ideas of elementary algebra are abstracted into the ideas of calculus and modern algebra.  Therefore, this curriculum is designed to help students see those connections.  This could help students build the new and abstract ideas of algebra on their prior knowledge of arithmetic as well as be more prepared to extend the ideas of elementary algebra to modern algebra and linear algebra. It was also designed with the goal that students would construct ideas about polynomial multiplication in a way that they could easily extend to the more abstract ideas they will see in higher mathematics rather than in a way that will cause confusion in later classes.  
Finally, this curriculum is designed to help students learn to use the mathematics they know to understand the mathematics they do not yet know.  As Yogi Berra once said, “you can see a lot just by looking.” If we teach students to look, who knows what they will see.  

CHAPTER 5

CURRICULUM OVERVIEW

The goal of this curriculum is for students to construct a process for multiplying polynomials.  It is designed to be used in an algebra or pre-algebra class in which students are learning the ideas of collecting like terms, the distributive property, and polynomial multiplication.  It can be used equally well in a junior high class, high school class, or college class.  The only skills it is assumed students have are an understanding of the basic arithmetic operations (involving whole numbers, decimals, fractions, and time) and exponents.  It is not assumed that students know rules for working with exponents, but it would not be a problem if the did either.  
In order to do this, students will examine the role of the “variable” in different types of “polynomials.”  They start by looking at the structure of arithmetic with multi-digit whole numbers and time.  It is hoped that students will, if they do not already, understand the relationship between the base ten system and the way we write numbers.  By doing this, students will start thinking of multi-digit whole numbers as polynomials in powers of ten.  This idea should help students think of measurements of time as linear combinations of its components as well.  This is important because it will help students generalize the mathematics implicit in the arithmetic they perform in familiar situations to operations on polynomials.  By making informal understandings of arithmetic in familiar situations more explicit, students will develop informal understandings of polynomials, which will help them create their own algorithms for multiplying polynomials.  

This curriculum is divided into four broad activities, each of which addresses a particular aspect of working with polynomials.  These four aspects are collecting like terms, the distributive property and working with exponents, multiplying polynomials, and anticipating the form of products of polynomials.  
An overview of these four activities is listed below.  

Activity 1: Collecting Like Terms

Part A: Students think critically about addition and subtraction of multi-digit whole numbers.  

Part B: Students think critically about addition and subtraction involving time and reflect on the relationship between the questions in Part A and those in Part B.  In this section , students confront the lack of closure in algebra for the first time.  
Part C: Students extend the ideas they constructed in Parts A and B to variables and symbolic algebra.  

Activity 2: The Distributive Property

Part A: Students think critically about multiplication of a multi-digit whole number by a single digit whole number.  

Part B: Students think critically about multiplication involving time and reflect on the relationship between the questions in Part A and those in Part B.  

Part C: Students extend the ideas they constructed in Parts A and B to variables and symbolic algebra (only involving the first power of variables).  

Part D: Students extend the ideas they constructed in Part C to problems involving powers greater than one of variables.  In doing so, they construct some of the laws of exponents as well.  
Activity 3: Polynomial Multiplication

Part A: Students think critically about multiplication involving time and reflect on the relationship between the questions in Part A and those in Part B.  

Part B: Students extend the ideas they constructed in Part A to variables and symbolic algebra.  

Activity 4: Anticipating terms of products

Part A: Students observe the “special products” of polynomial multiplication such as the difference of two squares and perfect square trinomials.  

Part B: Students think critically about terms that arise in products of polynomials.  

Part C: Students extend the ideas they constructed in Parts A and B to factoring polynomials.  
Activity 5: Culmination

Part A: Students factor more difficult polynomials.    

Part B: Students factor by grouping.  

Part C: Students individually assess their ideas from all five activities.  

Each activity is comprised of several thought provoking problems, each of which involves private think time, small group discussions, and whole class discussions. The whole class discussions are a time for students to compare their answers with those from other groups.  They are also a time for the teacher to encourage reflection on the problem as well as reflection on the similarities and differences between the different problems students have explored during the preceding activities.  

Each activity has a homework assignment related to the topics covered, which should be completed by students and discussed in both small and large groups before the next activity begins.  There is a group assessment after every other activity, which should be completed by students after the homework assignments have been completed and discussed.  After the small groups have completed the quizzes, the whole group should discuss their responses to the quizzes as a class before the class moves on to the next activity.  At the end of the curriculum, there is a review of the material covered in all four activities as well as an individual assessment.

During these activities, the teacher serves as a facilitator.  It is the students’ responsibility to answer the questions and to defend their ideas.  It is the teacher’s role to ask questions that direct students in the appropriate direction and to help students realize how and when to prove or disprove ideas.  Student interaction and discussion are a crucial part of these activities.  

CHAPTER 6

PRESENTATION OF THE CURRICULUM

A NOTE TO TEACHERS:

I should mention a few things about this curriculum before you begin exploring it.  First, I have included a description of all problems, assignments, and activities in the appendix.  This should help you recognize the goals intended in each activity. It should also help you figure out what questions to ask your students to facilitate thinking about topics at the heart of each activity.  

Second, during small and large group discussions, refer back to the concrete examples to help students prove or disprove examples.  Encourage students to do the same on their own too.  This will help students learn to make convincing arguments.  It will also encourage students to explicitly reflect on the previous problems and to explicitly abstract from them.  

Third, if students need more problems for discussion than are listed, have students repeat the protocol with a similar problem.  Be sure to choose a problem that is different enough from the other problems that students still have to think.  If the problem is too similar, students may begin to memorize a procedure to solve the problem rather than thinking about the problem.  It is important to remember that thinking critically is the goal of these activities, not the computations themselves.  If students are not actively reflecting on and abstracting from the problems, they will not develop the understandings they are intended to be developing.  Therefore, supplementary problems need to be chosen carefully. 

Fourth, it is important to give students adequate private think time so they can create their own understandings.  It is also important to encourage multiple ways of solving the problems, so students feel comfortable construct their own procedures rather than performing someone else’s.  Furthermore, it is important to ensure that all students have an opportunity to share their ideas in small groups.  It is also important that you listen to small group discussions so you know what ideas are being expressed in each group.  This way, you can ensure that ideas are shared in whole class discussions.  This is important because it allows for both the sharing of good ideas with all students and addressing any misconceptions they have.  

Fifth, the length and content of this curriculum can easily be modified to suit your needs.  It is important, however, that you do not rush your students; give them enough time to explore each question so they can fully develop the ideas they are constructing.  That said, I have included a few suggested modifications that could be made.  These are intended as ideas to start your thinking about how to adapt this curriculum to your needs, and not as an exhaustive list of possible extensions.  

For instance, this curriculum can be shortened if you do not want to cover all of the topics.  In a pre-algebra course that covers collecting like terms and the distributive property, but not the multiplication of polynomials, you could stop after the first two activities and the first group assessment.  If the intended course of study is algebra, however, rational expressions would be a reasonable topic with which to follow these activities.  An activity on rational expressions is included in chapter six.  An example of a concept from a course after algebra 1 that relies heavily on this idea of anticipating the products of polynomials is the binomial theorem.  An activity that derives the binomial theorem by using this skill is also included in chapter six.  Chapter six includes activities that make historic, geometric, and ethnomathematic connections to polynomial multiplication as well.
 This curriculum could also be extended to linear algebra.  The ideas about collecting like terms could easily be extended to matrix addition and subtraction.  It would be a bit more work to extend the ideas to matrix multiplication, but that too could be done.  

 Finally, it is up to the individual teacher to decide how to use these activities to best meet the needs of given students in a given course.  These activities are intended not only to cover the specific topics presented, but also to inspire ideas that would be beneficial for a specific class.  I hope this curriculum facilitates student learning of polynomial multiplication and inspires teacher adaptation and modification of the ideas presented here.  

Activity 1: Collecting like terms
In this activity students will discuss the structure of multi-digit whole numbers.  They will do this by examining addition and subtraction of multi-digit whole numbers.  By discussing the structure of the base ten system in the context of addition and subtraction, students will develop a deeper understanding of both multi-digit whole numbers and addition.  In doing so, they will develop an informal idea of collecting like terms, which they will apply to unfamiliar situations to construct a formal idea of collecting like terms.  

CLASSWORK - Part A
Ask students how to add 428 + 173

Ask students to think privately about how they solve this problem and why each action is performed.  After students have had adequate time to think, ask them to discuss their ideas in pairs.  Once the small groups have thoroughly discussed the issues at the heart of multi-digit whole number addition, have the groups share their ideas in a whole class discussion.  

The goal of this question is for students to realize they are adding the ones, then tens, and finally the 100’s.  They should see this when they discuss why one “carries” (i.e. that carrying is combining the tens with the tens, the hundreds with the hundreds, etc, in other words, collecting like terms) .  In the process they should begin viewing 428 as 400 + 20 + 8 and 173 as 100 + 70 + 3.  It would be even better if students thought of these numbers as 4x102 + 2x10 + 8, though, it is not essential that they do so.  If students are not ready for this concept the foundation for this idea can still be established (that is that carrying is combining powers of ten).  If students experience difficulties getting started analyzing this problem, either have them explain their procedures for performing this computation in their head and why they separate the numbers into the parts they choose or suggest that students line the numbers up to perform the standard algorithm and  to explain why the numbers line up the way they are and what the process of carrying is.  Make sure they explain that they are combining powers of ten (it is not crucial that they think of them as powers of ten, however, combining ones, tens, hundreds, etc is a good start in that direction).  
Next have students think individually about the process of subtracting 638 from 1037.  Once they have had enough individual time, have them discuss their ideas in dyads.  Follow up the small group discussions with a large group discussion of small group findings.  

The goal of this problem is to check for student understanding of the previous problem by seeing whether students can extend the concepts to subtraction.  That is, to see if students can extend the idea of carrying to the ideas of borrowing.  Once again, realizing that “like terms” (powers of ten) are being collected.  If students cannot do so, it is important to assess whether this is because they did not understand the first problem (i.e. they are still thinking of addition and subtraction in terms of algorithms they memorized) or if it is because they do not see the connections between addition and subtraction (i.e. that addition is the opposite of subtraction).  Both of these skills are essential for a structural understanding of algebra.  Therefore, if students are not successful with this problem it is important to have them discuss more related examples.  If students are successful, they are ready to move on to the examples using time.    
CLASSWORK – Part B 

Next have students think individually about the process of solving the following problem:  

You have a layover at the airport of 6 hours and 12 minutes and you have already been waiting for 4 hours and 37 minutes, how much longer do you have to wait?  

Encourage students to find multiple ways to solve this problem.  Once they have had enough individual time, have them discuss their ideas in small groups.  Follow up the small group discussion by a large group discussion of the findings from the small groups.  In the large group discussion ask students how this discussion is related to the previous one.  

The goal for this problem is that students will once again consider which terms are combined when solving this problem.  Encourage students to solve this problem by setting up the subtraction problem in the standard form and to consider what it means to carry within these constraints.  The aim is to help students understand that not all systems work in base 10, which will in turn help them begin to generalize the processes of addition and subtraction.  The goal of the reflective question in the large group discussion is to encourage students to explicitly address the idea of like terms.  To address the question, students should be asked to take some private think time to think of how they would answer the question, then students should take turns sharing their responses to the question and discuss the ideas shared.  Then the groups should share their ideas with the class and the class can comment and ask clarifying questions about the points made by other groups.  Hopefully students will mention that in each question similar units are being combined (i.e. minutes with minutes and tens with tens etc).  
Next have students add 4 months, 2 weeks, 6 days, and 7 minutes to 3 months, 1 week, 3 days, and 4 hours.  Once students have taken private think time, have them work with their small groups before moving to a whole class discussion.  During small group discussions and the whole class discussions, make sure that students debate what a month is (i.e. is a month four weeks, thirty days, or thirty-one days).  Once again, in the large group discussion, encourage students to explicitly state the ideas they are developing about like terms.  

One of the goals for this problem is to have students really think, once again, about which terms can be combined.  This is an occasion to uncover and address student misconceptions of this issue.  It is also a chance for students to address the lack of closure that they might struggle with in algebra.  By addressing this issue in a specific example, students can use calendar arithmetic to confront the lack of closure they will encounter in algebraic equations.  This question addresses lack of closure because there is no clear conversion between months and weeks or months and days since a month is sometimes thought to be four weeks, while other times it is thought to be thirty days etc.  This way students can deal with this concept on its own rather than tackling it at the same time that they confront the issues related to variables.  Try to ensure that all students have explicitly searched for connection between the problems before moving on to the next problems, by once gain asking them to think about the similarities and differences between the problem and the other problems.  It is important that all students have formally searched for meaning in the problems they are addressing so they are ready to address the more abstract problems toward which they are moving.  

CLASSWORK – Part C 

Now ask students to think about how they would solve a + 3a + 4a + 5b + 2b and to justify their procedures.  Have students take private think time, then move to small group discussions, and finally to a whole class discussion.  In the whole class discussion, ask students how this problem relates to the previous ones.  Also ask students to discuss the differences between the answer to this problem and the answers to the earlier problems.  

The goal of this problem is for students to explicitly formalize their perception of like terms, an idea they have been constructing.  Addressing expressions with no conversion rate between the terms at all will force students to address any misconceptions they have as well as reinforce correct ideas they have been constructing.  This is also an opportunity for students to address lack of closure in algebra.  Make sure students explicitly state that, unlike arithmetic, the sum of algebraic expressions is not always a single term let alone a number.  Asking students how this answer is different from answers in arithmetic is one way to get to that point.  
Next, ask students to find the following sums

1) 3a + 2b + 1 + 7a + 3 + 4 + b

2) 3a + 2c + 3c + 4

3) 2b + 4a + 5c

Once students have worked on the problems on their own, have them compare their answers with their group. Encourage them to justify their answers, particularly when students have different answers for a given problem.  Once all groups have reached consensus, have the groups compare their responses.  In the whole class discussion, just as in the small group discussions, urge students to justify their reasoning.  As always, encourage students to refer back to the concrete examples discussed earlier to support their claims.  

The goal here is for students to test the ideas they have developed about like terms and to formally address the “lack of closure” that can haunt beginning algebra students.  In these problems, students should address constants as well as problems that cannot be simplified.  Another goal of this problem, however, is for students to get accustomed to defending their answers and questioning answers offered to them.  This encourages students to question their own ideas too.  

Next, have students work individually on

1) 7a – 2a + 4b – 3b + 3a

2) 6a + 2b – 3a – b

3) 5a – 4b + 3a

4) 3a – 4b + 3b – 2a

5) 5a + 2b – a – 2b + 4

Follow the routine in the problem above.  

The goal of this problem is for students to see how these problems change when subtraction is introduced.  That is, that they do not change.  However, students do need to realize that the negative sign is attached to the number immediately following it.  In doing this problem, students can refine their ideas about collecting like terms and about terms involving negative coefficients.  
Finally, once again using the routine from the last two problems, have students work on

1) 3m + 4n + 2mn + 2m + n

2) 3x + 4x + 3x2 + 2 + 6

3) 2x + 4y + 5x2 + 6y2 + 1

The goal of this problem is for students to address the issues that arise when terms share a variable, but are not like terms.  Students often want to collect terms that share a variable, even when they are not like terms.  Addressing this will help students cement their ideas about like terms as well as confront any misconceptions they have.  During these problems students are likely to face some conflict because these problems require some deep thought.  Understanding that terms that share a variable are not necessarily like terms will require some accommodation for students, but they will have a more complete idea of like terms after they address these conflicts.  
HOMEWORK
1) Explain to a young child how to subtract 1,074 from 24,153.  Make sure to explain 

    both what you do and why you do it.  

2) a) Explain to a visitor from another country, who uses a different currency than we do, 

         precisely which coins he will receive as change if he pays for something that 

         costs $1.33 with 1 dollar bill and 2 quarters.  Assume he is given the fewest 

         possible number of coins.  

    b) Explain how this problem is related to our class discussions.  

3) Find the following sums

    a) 5q + 4r + 3r + 2q + 6r + 7q

    b) 1 + 2a + 3b –ab + b + 3 + 4a

    c) 2x + 3x3 + 6x2 – x + x3 
    d) 4a + 5b + 1

    e) 3m + 2m – n + 6m + n

Extra credit:  Describe addition and subtraction of decimals in the same way we described addition and subtraction of whole numbers in class.  Be sure to use examples. 

Give students an opportunity to compare their answers with the other students in small groups before turning in their homework.  

The goal of this is to give students the opportunity to apply the processes they have constructed.  It is important for students to discuss their theories with others so they have the opportunity to explicitly defend and question their theories.  

Activity 2: The distributive property
In this activity students will examine both the structure and the process of multiplication of multi-digit whole numbers. By discussing the structure of multiplication in the base ten number system, I aim for them to develop a deeper understanding of the process of multiplication (that is to think about the processes involved in solving multiplication problems and understand why they work rather than merely performing them).  In doing so, it is hoped that students will develop an informal idea of distributing, which they will apply to unfamiliar situations to construct a formal idea of the distributive property.  

CLASSWORK – Part A 

Ask students to think about what happens when you multiply 3 x 123.  Once students have taken some time to think on their own, have them discuss their ideas in small groups and then discuss their observations with the whole class.  Ask students how this discussion relates to the earlier discussion of addition and subtraction.  

The goal of this problem is for students to realize that each of the digits is multiplied by three.  It is important that they think of 123 as 100 + 20 + 3 so they realize that each of the terms is multiplied by 3.  It is even better if they think of it as 1x100 + 2x10 + 3x1  1x102 + 2x10 + 3 and realize that they can think of it as  only the coefficients that are multiplied by 3.  The goal of asking students to explicitly address the connections to the earlier problems is so they are actively thinking about collecting like terms because that is an important part of the distributive property.  

CLASSWORK – Part B 

Next have students think on their own about what happens when you multiply 2 hours and 12 minutes by 4.  Then, in small groups, have students discuss their answers.  Finally, have a whole class discussion.  Ask students to explicitly address the relationship between these two problems.  

The goal of this problem is for students to assess their ideas.  That is, for students to realize each unit of time is multiplied by four.  Another motivation of this problem is for the teacher to assess student ideas in order to address student misconceptions.  This can be done by seeing if students correctly extend the ideas from the previous problem to this problem.  
CLASSWORK – Part C
Following the procedure in the previous problem, ask students to consider 3(a + 2b + 3c).  Also ask students how this problem relates to the earlier activities.  Discuss the differences between the answer to a multiplication problem with whole numbers and the answer to multiplication problems with algebraic expressions.  

The goal of this problem is to have students extend their experience with arithmetic to construct the distributive property in abstract expressions.  Hopefully they realize that each term in the expression needs to be multiplied by three just as each “unit” was multiplied in the earlier problems.  This problem also requires coordination of ideas, because students have to remember that the terms in the product cannot be combined as they are not like terms.  Students may still be struggling with their ideas about collecting like terms, so they may need reminding that those issues are still relevant.  
Now ask students to work on the following problems on their own

1) 3(2a + 4b + 5c)

2) 2(2p -3q + 4r)

3) 4( 2m + n + m + 3n +1)

4) -2(x + 2y -3z)

5) -(2a – b + 2c)

6) 2(p + 2q – r) + 2p + q

Once students have worked on the problem on their own, have them share their answers and the processes by which they arrived at them with their small group.  Have students debate their answers until a consensus is reached.  Once all groups have reached consensus, discuss and debate answers as a class.  Have students share their solution methods in addition to their solution.  Discuss different ways to reach the same answer.  

There are several goals in this activity.  The first one is for students to assess their algorithms for distributing.  The second goal is for students to revisit their ideas of operations with signed numbers. The third goal is for students to combine their ideas of the distributive property with their ideas of collecting like terms. The fourth goal is for students to establish an order of operations for combining the two processes.  
CLASSWORK – Part D
Now ask students to take some private think time on the following problems.   

1) a(2a + 4b + 5c)

2) 2p(2p -3q + 4r)

3) 4m2( 2m + n + m2 + 3n2 +1)

4) -2xy(x + 2y -3z)

5) -ab(2ab – a2 b + 2ab2)

6) 2p(p + 2q – r) + 2p + q

After students have worked on these problems by themselves, have them discuss the problems with their groups.  Once all groups have reached consensus, discuss and debate answers as a class.  Have students share their solution methods and discuss different ways to reach the same answer.  Make sure to discuss the properties students discover about working with exponents.  It is assumed students are already familiar with exponents and what they represent.  If this is not the case, take some time to explain the notation to students.  
The goal of this activity is for students to revisit their ideas about collecting like terms as well as their ideas about the distributive property. Another goal is for students to construct rules for working with exponents.  Students may need to be encouraged to think about what the exponents mean in order to construct operation involving them.  To do this, it could be suggested that students rewrite the terms with exponents without exponents and then to rewrite their answers with exponents.  If students do this, they should be encouraged to reflect back on the relationship between exponents in the factors and the exponents in their product.   Furthermore, this problem gives students an opportunity to assess the order of operations the developed for combining the two processes.  
HOMEWORK
1) Simplify and explain how you arrived at your solution

    a) 2x(3xy)

    b) 2x2(4xy)

    c) (2xy)2
    d) (3xy)2(4xy) 

2) Simplify

    a) 2(x + y) + 3(y + z)

    b) 4a(a + b) + 2b(a + 2b)

    c) 3x(x – y + z) – 2(x + 2y + 3z)

    d) m2(m – n) + n2(n – m) 

Give students an opportunity to compare their answers with other students before turning in their homework.  

The goal of this is to give students the opportunity to build theories about how to apply their processes for distributing, collecting like terms, and working with exponents.  Students should discuss their theories with others so they have the opportunity to assess their ideas about collecting like terms, distributing, and exponents.  

GROUP QUIZ #1

Simplify

1) (2x)2 + 3x(x + 3) +2(x + 1)

2) x2(x + 1) + (3x) 2 + x(2y + 1) – y(x – 2)

The square root of a number, symbolized by √, is what you multiply by itself to get the original number

For example √ 9 = 3, because 3x3 = 9

Since 3 is a whole number, we can write √9 or we can write 3,

√5 is not a whole number, so we simply write √5.

Note that √9 x √9 = 3 x 3 = 9 and √5 x √5 = 5.

Also note that 2√4 = 2 x 2 = 4, which is not the same as √(2 x 4) because 4 is not √8.

3) (√3)2 + 3(y + 2) 

4) (√3)(y – 2) + 3 + √3

5) y((√5) + y) + (√5)(y + 1)

After each group has completed the quiz, discuss the answers as a group

The goal of this quiz is to have students apply their concepts of collecting like terms, distributing, and operations with exponents to both new and old situations.  This will show the teacher any misconceptions students have that need to be addressed (for instance, students may have a hard time figuring out what like terms are in the context of radicals).  Address any misconceptions (such as confusions that rise in collecting like terms involving radicals) before moving on to the next topic.  

Activity 3: Multiplying polynomials
In this activity students will discuss the process of multiplication with multi-digit whole numbers. By discussing the structure of multiplication in the context of the base ten number system, students will develop a deeper understanding multiplication.  In doing so, they will develop an informal idea of polynomial multiplication, which they will apply to unfamiliar situations to construct a formal process for polynomial multiplication.  

CLASSWORK – Part A 

Ask students to think about what happens when they multiply 12 x 43.  Once students have taken their private think time, have them discuss their ideas in small groups, then share their observations with the whole class.  

For this activity it is important that students think of 12 as 10 + 2 and 43 as 40 + 3, which they should realize to do after the last two activities.  The goal of this problem is to have students use this realize that multiplying 43 by 12 is the same as multiplying 40 by 10, 3 by 10, 40 by 2, and 3 by 2 and adding the products.  Thinking of the partial products in whole number multiplication should help students develop ideas about how to multiply polynomials.  The multiplication algorithm is based on this idea, so asking students to explain the algorithm is one way to get at this.   However, students are likely to have methods for mentally multiplying numbers that rely heavily on these ideas as well.  So asking students to explain their mental processes is another way to get at the ideas.  Having students share both methods will help students think about the process of multiplication from multiple perspectives.  
CLASSWORK – Part B 

Next have students think on their own about what happens when they multiply 2 hours and 2 minutes by 14.  Then have students discuss their ideas in small groups. Then have their groups share their ideas with the whole class.  Make sure you ask students to explicitly address the relationship between these two problems.  

The goal of this problem is for students to test their ideas about multiplication.  This is also a good opportunity for the teacher to assess student understanding of the ideas of partial products in order to address any misconceptions students have developed in regards to the topic (such as forgetting to multiply each unit by each number and collecting like terms as appropriate).  
CLASSWORK – Part C
Following the procedure above, ask students to consider the product of (a + b)(3a + 2b).  Once they have worked on the problem on their own, have them discuss their ideas in small groups.  During the whole class discussion, ask students how this problem relates to the earlier activities

The goal of this problem is to have students extend their informal ideas about arithmetic to polynomial multiplication by thinking of the partial products they uncovered in the earlier problems.  Students may still be struggling with their ideas about collecting like terms, distributing, and working with exponents, so it is important to help students solidify those ideas as they develop new ideas about new processes.  
Now ask students to work on the following problems on their own.

1) (x + y)(x + y +z)

2) (a – b)(2a – 3b)

3) (p + q + r + s)(p + q + r + s + t)

4) (2m + 3n) (4m + 5n + 6)

5) (x2 + x + 1)(2x2 + 3x + 4)

Then have students share their answers and the processes by which they arrived at them with a small group.  Have students debate their answers until a consensus is reached.  Once all groups have reached consensus, discuss and debate answers in the large group.  Have students share their solution methods and discuss different ways to reach the same answers.  

The goal of these problems is for students to extend and assess their ideas of polynomial multiplication. By asking students to extend their ideas of polynomial multiplication to polynomials with more than two terms, students are being asked to realize that all terms in one polynomial still need to be multiplied by all terms in the other polynomial.  This is also an opportunity for the teacher to discover student misconceptions (such as only multiplying some of the terms and confusion about like terms) and to address them directly.  

Now ask students to take some private think time on the following 

1) (x + 3)(x + 4)(x + 5)

2) (2x2 + 5)(3x + 4)

3) (2x2 + 5) (3x2 + 4x) + x + 5

4) (a2 + 2) (3a2 + 4a) + (a + 3)(2a + 5)

5) (a + ab + b)(2a + 3b + b2)

6) (2p + 3q)(4r + 5s)

Once students have worked on all six problem on their own, have them discuss their answers in their small groups.  Once small groups have agreed on answers, compare and discuss answers with the whole class.  Make sure students explain how they arrived at their answers.  Also acknowledge and encourage multiple methods of arriving at correct answers.  

The goal of these problems is, once again, to have students extend and assess their ideas of polynomial multiplication.  In this problem terms involving exponents and multiple variables are being introduced for the first time.  This requires students to readdress laws of exponents and like terms in more complicated situations than the earlier problems.   This is also another opportunity for the teacher to discover student misconceptions and to address them.  

HOMEWORK
1) Simplify

    a) (a + b)2
    b) (p + q)(p – q)

    c) (2m – 3n)2
    d) (2x – 1)(2x + 1)

    e) (3a – 2b) 2 

    f) (2c + 2d) 2 

    g) Use your procedure to find 132 byt thinking of 13 as 10 + 3
2) Describe at least 3 patterns you notice in number 1. 
3) Simplify

    a) 2(x + 3)(x – 5)

    b) 3(x2 + 4)(x + 4)

    c) –(x – 3)(3 – x)

    d) 2x(x2 + x + 1)2

Give students an opportunity to compare their answers with the other students in their group before turning it in.  

The goal of this activity is for students the opportunity to build theories about how to apply their processes for collecting like terms, working with exponents, distributing, and multiplying polynomials.  It is also for students to begin recognizing patterns such as the difference of two squares and the square of a binomial.  Students should discuss their theories with others so they have the opportunity to assess if their theories are correct or not.  This way students can be sure they noticed the patterns they were intended to notice in the first part of the homework and to be sure they correctly multiplied the polynomials and  simplified the terms.  Also note that this is the first time students are thinking about squaring a polynomial.  It is important they realize they need to multiply each term in the polynomial by all of the other terms, and not just square each term.  If students have trouble with this, make sure you remind them what exponents mean and to rewrite the expression without exponents.  This may help them see how to square a polynomial.  
Activity 4: Anticipating terms of products
In this activity students will predict the terms of products of polynomials without actually multiplying them.  By predicting the structure of the products of polynomials, they will develop a deeper understanding of both the process and the product of polynomial multiplication.  In doing so, they will develop an informal idea of factoring which will help them to construct a process for doing so.  

CLASSWORK – Part A 

Ask students to match the expressions on the left with the term(s) on the right that could appear in their expansions without actually multiplying out the expressions. Also ask them to explain why each term will appear in the product.  Do not worry about the coefficients.

For example:  if the problem was r(p + q + 1), 

the answer would be (d) 

because r(p + q + 1) = pr + qr + r, 

so r is the only term listed below that appears in the product

Note that in this example there is only one answer choice that works, for the following problems, however, you might want to select more than one choice.  


1) (p + q)(r + s)



a) 1


2) (p + q)(r + 1)



b) p


3) (p + 1)(q + 1)



c) q


4) (1 + p)(q + 1)



d) r


5) (p + q) + (r + s) 



e) s

After students have taken private think time, ask them to discuss their ideas in small groups.  Once groups have arrived at answers, ask students to multiply out the expressions to check if they are right. Then discuss the results as a class.  

The goal of this activity is to have students think about what terms arise in products of polynomials.  This will help students anticipate products of polynomials and will help students factor because they will be more aware of how and why terms arise in the product of polynomials.  

Ask students to match the expressions on the left with the term(s) on the right that could appear in their expansions without actually multiplying out the expressions. Also ask them to explain why each term will appear in the product.  Once again, without worrying about the coefficients.


1) (x + 1)2




a) 1


2) (x2 + 1) 2




b) x


3) (x2 + x + 1) 2



c) x2

4) (x2 + 1)(x + 1)



d) x3

5) (x + 1)(x2 + x) 



e) x4
After students have taken private think time, ask them to discuss their ideas in small groups.  Once groups have arrived at answers, ask students to multiply out the expressions to check if they are right. Then discuss the results as a class.  

The goal of this activity is once again to have students think about what terms arise in products of polynomials.  This will help them extend their ideas from the earlier problem to a situation where only one variable is used and where polynomials are being squared.  Because of those changes, these problems are slightly more difficult than the earlier ones.  This to should help students anticipate products of polynomials and will help students factor.  

Ask students to match the expressions on the left with the term(s) on the right that could appear in their expansions without actually multiplying out the expressions.  Also ask them to explain why each term would appear in the product.  Once again, do not worry about the coefficients.


1) (x + 1)3




a) 1


2) (x2 + 1)( x2 + x)(x + 1)


b) x


3) (x2 + x + 1)2(x + 1)



c) x2

4) (x2 + 1)(x + 1) 2



d) x3

5) x(x + 1)(x2 + x) 



e) x4
After students have taken private think time, ask them to discuss their ideas in small groups.  Once groups have arrived at answers ask them to multiply out the expressions to check if they are right and then discuss the results as a class.  

The goal of this activity is to have students continue thinking about what terms arise in products.  These problems are more difficult than the earlier problems because they involve three factors rather than just two.  This means students have to coordinate more processes and revise their previous strategies for answering these questions to including a third term.  This will help reinforce student ideas about polynomial multiplication by making students think about which terms get multiplied together to create the terms in the product.   
Ask students to match the expressions on the left with the term(s) on the right that could appear in their expansions without actually multiplying out the expressions.  Once again ask them to explain why they would.  This time ask students to take the coefficients into account, not just the variables.  


1) (x + 1)2




a) x


2) (x2 + 1) 2




b) 2x


3)(x2 + x + 1) 2




c) x2

4) (x2 + 1)(x + 1)



d) 2x2

5) (x + 1)(x2 + x) 



e) 3x2
After students have taken private think time, ask them to discuss their ideas in small groups.  Once groups have arrived at answers ask students to multiply out the expressions to check if they are right.  Then discuss the results as a class.  

The goal of this activity is to have students further their thinking about what terms arise in products.  The difference between this activity and the earlier activities is that in these activities students are not only thinking about what terms arise, they are also thinking about how many of each term will arise.   This too will help students anticipate products of polynomials and will help students factor by helping students understand how terms arise in the product of polynomials.  
Ask students to match the expressions on the left with the term(s) on the right that could appear in their expansions without actually multiplying out the expressions.  Once again ask them to explain why.  Once again, taking the coefficients into account, not just the variables.  


1) (x + 1)3




a) x


2) (x2 + 1)( x2 + x)(x + 1)


b) 2x


3) (x2 + x + 1)2(x + 1)



c) x2

4) (x2 + 1)(x + 1) 2



d) 2x2

5) x(x + 1)(x2 + x)



e) 3x2
After students have taken private think time, ask them to discuss their ideas in small groups.  Once groups have arrived at answers ask students to multiply out the expressions to check if they are right.  Then discuss the results as a class.  

The goal of this activity is to have students further their thinking about what terms and how many of them arise in the products polynomials.  These problems are more difficult than the problems on the previous page because they involve three polynomials rather than just two.  Once again, these means students have to coordinate more factors at one time and think about how three polynomials are multiplied together.  This will help students anticipate products of polynomials and will help students factor.  
CLASSWORK – Part B 

Ask students to fill in the blanks to make the following expressions true

1) (x + 2)(x + __) = x2 + 5x + 6

2) (x + 1)(__ + 3) = 4x2 + 7x + 3

3) (x + __)2 = x2 + 6x + __

4)  (2x +  __)(x + 2) = 2x2 + 7x + __

5) (x + __) (x + __)= x2 + 5x + 4

Encourage students to multiply out the expressions to check if they are right before discussing their answers with their groups.  Once groups have arrived at consensus, discuss the results as a class.  

The goal of this activity is also to have students further their thinking about what terms arise in products.  These problems do this by having students think about how terms arise in a product.  These questions are different from the earlier problems in that they ask students to think about the terms in the factors rather than just the terms in the products.  They also ask students to coordinate the terms of the factors with the terms on the products.  This will help students’ understanding of polynomial multiplication because it asks them to look at the process from a different perspective.  Furthermore, this will help students anticipate products of polynomials and will help students develop informal rules for factoring polynomials by asking them to think deeply about the process of multiplication as well as how factors and products are related.  
Again, ask students to fill in the blanks to make the following expressions true.

1) (x2 + x + 2)(x + __) = x3 + __x2 +3x + 2

2) (x2 + x + 1)(__ + 3) = 2x3 + 5x2 + __x + 3

3) (x2 + x + __)2 = x4 + 2x3 + 3x2 + 2x + __

4) (x2 + 2x + __)(x3 + __ + 2) = x5 + 4x4 + 7x3 + 8x2 + 4x + __

5) (x2 + 2x + __)(2x2 + x + __) = 2x4 + 5x3 + 12x2 + 14x + 12

Encourage students to multiply out the expressions to check if they are right before discussing their answers with their groups.  Once groups have arrived at a consensus, discuss the results as a class.  

The goal of this activity is, once again, for students to further their thinking about what terms arise in products and to coordinate the terms in the factors with the terms in the products.  These problems are more difficult than the ones on the previous apge because they involve trinomials as well as binomials.  This will help students anticipate products of polynomials and will help students factor.  
HOMEWORK
1) Describe what the terms in the following products will look like without actually multiplying.  Explain why the terms will look like you describe. (Note: explanations matter more than answers, you will get full credit if even if your answers on parts a-d are wrong, as long as you carefully explain your reasoning on parts a -f.  You will not get full credit if all are correct but your explanations are not thorough.)

    a) (a + 1)(a + 2)(a + 3)

    b) (a + 1)(b + 1)(c + 1) (d + 1)

    c) (x3 + 1)( x2 + 1)(x + 1)

    d) (2x2 + 1)( 2x2 – 1)(x + 1)

    e) Multiply the polynomials to see if your predictions were correct

    f) Explain why any incorrect predictions were incorrect

2) Fill in the blanks (Note: no partial credit will be given, so make sure your answer works!)

    a) 2x(x + 3)(x + __) = 2x3 + 8x2 + 6x

    b) (x + 5)(x - __) = x2 + 2x + __

    c) (2x + 3)(3x - __) = 6x2 + 11x + __

    d) (__ + __)(x2 + 6) = 3x3 + 2x2 + 18x + __

    e) (__ + __)(2x – 3) = 6x2 – 9x

    f) (3x + 4)(3x + __) = 9x2 – 16

    g) (2x2 + __)(x2 + 1) + __ = 2x4 + 5x2 + 1

3) Find polynomials whose product is (Note: no partial credit will be given here either.)  

    a) 16 - 49x2 

    b) 4x6 - 12x3 + 9

    c) x2 + 5x + 6

    d) x2 - 5x + 6

    e) x2 + 5x - 6

    f) x2 - 5x - 6

Students can check all of these problems on their own, so they do not need time to discuss their answers with their classmates, but students need to be warned of this ahead of time if you decide not to give students time discuss their answers.  That way students will know that they need to check their answers on their own carefully because they will not be able to compare with their classmates.  

The goal of this assignment is to have students think about what terms arise when polynomials are multiplied and to test their theories about polynomial multiplication (questions 1 and 2).  It is also an opportunity for students to make their informal ideas about factoring explicit (question 3)t.  Furthermore, it is a chance for students to realize they can tell if their answers are correct on their own and to make students accountable for checking their work whenever possible.  
Be sure to discuss with students that what they are doing in question #3 is called factoring.  They may be able to guess this term because it is a term they are familiar with from whole number multiplication.  Allow them to guess the word before telling it to them; you may need to make the connection to whole number multiplication explicit to help them guess the word.  To do this, you could remind students about the relationship between whole numbers and polynomials we have been using throughout the curriculum.  Then, you could ask students for an example of an analogous problem to number three using whole numbers rather than polynomials.  They may answers this by asking for the factorization of a number or by showing a factor tree.  Either way, the word factor could easily arise.  
GROUP QUIZ #2

Simplify

1) 2a2(a2 + 1)(a + 1) – a2 (a + 2) - (a - 1) 

2) (a + b)2 + (a – b)2 – a(a + b) –b (a – b)

3)  (m + 2)(m2 - 2m + 4) 

4) (m - 3)(m2 + 3m + 9) 

5)  (m2 - 2)(m4 + 2m2 + 4) 

6) (m3 + 3)(m6 - 4m3 + 9) 

7) Describe any patterns you see in problems 3-6
After each group has completed the quiz, discuss the answers as a class
The goal of this quiz is to have students apply their concepts of collecting like terms, distributing, multiplying polynomials, and operations with exponents to both new and old situations.  This will show the teacher any misconceptions students have that need to be addressed.  Another goal of this problem is for students to notice the identities for the sum of cubes and the difference of cubes.  Address any problems before moving on (such as mistakes in multiplying, distributing, and collecting like terms and students not observing the identities in questions three through six.  

Activity 5: Review
In this activity students will review the concepts they learned over the course of the past four activities.  They will test the processes they have constructed in new situations.  This will encourage students to reflect on the topics the covered during these activities and generalize the processes and ideas they developed.  Therefore, it is important that all assignment and assessments have been discussed before moving on to this point in the curriculum.  

CLASSWORK – Part A 

Ask students to completely factor (if possible) the following expressions.  

1) x6 - 1

2) x6 - 64

3) 8x6 - 1

4) 9x6 - 1

5) 10x6 – 1

6) 8x6 – 64

7) 9x6 – 64

8) 10x6 – 64

Encourage students to multiply out the expressions to check if they are right before discussing their answers with their groups.  Encourage students to discuss their solution methods.  Once groups have agreed on the final factorization, discuss the results as a class.  

In the group discussion, have students share their different solution strategies.  Discuss the fact that some strategies more easily lead to the answer than other strategies.  Be sure to discuss the fact that there are several equivalent answers. 

The goal of this activity is, once again, for students to further their thinking about what terms arise in products.  It is also to help students begin to factor.  These problems involving using the difference of squares and the sum and difference of cubes identities.  These problems  involve factoring multiple times, so they show students that factoring can take multiple steps.  Students may realize this as they use different strategies (for instance the difference of squares versus the difference of cubes) and realize that the answers are equivalent by fully factoring the expressions.  Furthermore, these problems helps students develop symbol sense (Arcavi, 1994) because it will help them learn to determine which of several equivalent expressions is best for a given situation.  They learn this from these activities because some factored forms of the expressions make it easier to factor completely than others.  For instance, if the first problem is though of as the difference of squares, it immediately become the sum and difference of cubes, both of which are easy to factor.  Whereas, if the students start with the difference of cubes, it takes more work to factor the resulting trinomial.  
Ask students to factor (if possible) the following expressions.  

1) x2 + 5x + 6

2) x2 - 5x + 6

3) x2 + 5x - 6

4) x2 - 5x - 6

5) x2 + 8x + 16

6) x2 - 8x + 16

7) x2 + 8x - 16

8) x2 - 8x - 16

9) x2 + 4x + 12

10) x2 - 4x + 12

11) x2 + 4x - 12

12) x2 - 4x - 12

Encourage students to multiply out their answers to check if they are right before discussing their answers with their groups.  Encourage students to discuss their solution methods.  Once groups have agreed on the final factorization, discuss the results as a class.  

In the group discussion have students share their different solution strategies.  Be sure to discuss the fact that all correct answers are equivalent, even though they are from different strategies and in different formats.  

The goal of this activity is, once again, for students to further their thinking about what terms arise in products.  The first four problems on this page get at the heart of factoring because different factors create similar looking products.  By factoring these, students are forced to think about when both factors involve addition and when both factors involve subtraction as well as which factor has a positive term and which a negative term when the operations are different.  The last eight problems encourage students think critically about how terms arise while they search for factors of the polynomials.  This is because some of the problems are not factorable, which means students have to think about how they know if a polynomial is not factorable.  All of these pieces of these questions will help students formalize the process of polynomial multiplication by using the concepts inherent in it to factor.    
Ask students to factor (if possible) the following expressions.  

1) 3x2 - x + 4

2) 2x2 + 5x + 2

3) 35x2 - 57x - 44

4) 3x2 - 4x + 1

5) 6x2 + 13x + 6

6) 2x2 + x – 1

7) 2x2 - 5x + 12

8) 9x4 + 18x2 + 8

9) 18x2 + 3xy - 10y2
10) 12x2 - 31xy + 20y2
Encourage students to multiply out the expressions to check if they are right before discussing their answers with their groups.  Encourage students to discuss their solution methods.  Once groups have agreed on the final factorization, discuss the results as a class.  

In the group discussion have students share their different solution strategies.  Be sure to discuss the fact that all correct answers are equivalent, even though they are from different strategies and in different formats.  

The goal of this activity is, once again, for students to further their thinking about what terms arise in products.  These problems ask students to extend the processes they constructed for factoring in the earlier problems to polynomials with leading coefficients other than one.  Furthermore, these problems ask student to formalize their ideas about what terms arise in products of polynomials by using those ideas to factor.    
Ask students to factor (if possible) the following expressions.  

1) 20x2 + 100x + 125

2) x3 - x2 – 6x

3) 12x2 + 28x - 24

4) 18x3 - 21x2 – 9x

5) 5x2 + 10x + 30

6) x2 + 8x

7) 36x - 49 x3
8) 81x2 - 64x

9) x5 - 6x3 + 5x

10) 5x2 + 8xy - 10y2
Encourage students to multiply out the expressions to check if they are right before discussing their answers with their groups.  Encourage students to discuss their solution methods.  Once groups have agreed on the final factorization, discuss the results as a class.  

In the group discussion have students share their different solution strategies.  Be sure to discuss the fact that all correct answers are equivalent, even though they are from different strategies and in different formats.  

The goal of this activity is, once again, for students to further their thinking about what terms arise in products.  These problems require students to factor out a common factor.  For some of these problems that is all that is required, while others require students to factor further after extracting the common factor.  This will remind students that factoring out monomials is part of factoring.  It will also show students that doing so is an important first step in factoring.  It is also for students to formalize this skill by using it to factor.    
CLASSWORK – Part B 

Ask students to factor (if possible) the following expressions.  

1) x3 + 3x2 + 2x + 6

2) 3x3 + 2x2 + 3x + 2

3) 18x3 - 21x2 + 30x - 35

4) ax - bx + ay - by

5) 6x2 - 3x + 2xy - y

6) x13 + x7 + 2x6 + 2

7) 4x5 + 6x4 + 6x3 + 9x2
8) x6 – x4 – x2 + 1

9) 14x3 + 18x2 - 21x + 27

10) x2 + 2xy + y2 - 1

Students may need a lot of coaching when attempting these problems.  Encourage students to look for common factors in pairs, and then help them notice the like terms.  Also, encourage students to multiply out their solutions to check if they are correct before discussing their answers with their groups.  Encourage students to discuss their solution methods.  Once groups have agreed on the final factorization, discuss the results as a class.  

In the group discussion have students share their different solution strategies.  Be sure to discuss the fact that all answers are equivalent, even though they are from different strategies and in different formats.  

The goal of this activity is, once again, for students to further their thinking about what terms arise in products.  In these problems students confront factoring by grouping.  If students have difficulty constructing this idea, encourage them to group the terms into pairs and to find the greatest common factor in each pair.  Then point out to students that they are left with like terms, which can be collected.  Then help students realize that that result is the product of two polynomials, so it is a factored form of the original polynomial.      
INDIVIDUAL ASSESSMENT 
1) Add


a) 7x3 + 6x2 + 4x + 1 - 7x3 + 6x2 - 4x + 5

b) 3x4 + -5x2 - 6x + 5 + -4x3 + 6x2 + 7x – 1

c) (7x4 – 5x + 6) – (3x2 + 8x – 12) + (8x2 – 10x + 3)

d) (-xy4 – 7y3 + xy2) + (-2xy4 + 5y – 2) – (-6y3 + xy2)

2) Multiply and simplify as appropriate


a) 2y(4y – 6)


b) 4x2(3x + 6)


c) 2x(3x2 + 4x – 3)


d) 10x(-y5 – xy3 + 12x)


e) (5x – 6)(x + 2)


f) (4x4 + x4)(x2 + x)


g) (2x + 3y)(2x – 3y)


h) (x + 2)3

i) (x2 + x + 1)( 3x2 + 2x + 1)

3) Factor (if possible)


a) x2 + 49 + 14x


b) x3 – 18x2 + 81x


c) 2x2 - 128


d) 3x3y – 2x2y2 + 3x4y – 2x3y2

e) –x4 + 7x2 +18


f) x8 - 1


g) x3 + 4x2 + x + 4


h) x4 + 9

CHAPTER 7

EXTENSIONS

Extension 1
This lesson is intended to extend the ideas of polynomials students have constructed to rational expressions.  This is a good next activity for an algebra class because it builds on the skills students just developed.  Students are once again asked to deeply explore the properties of arithmetic with which they are familiar in order to construct strategies for working with rational expressions.  In the first activity, students are asked to think about what it means to reduce fractions.  Immediately after that, they discuss multiplying and dividing fractions.  In the second activity, students deal with addition and subtraction of fractions by using the ideas they developed in the earlier activity.  

CLASSWORK

Ask students to think privately about how to reduce12/30.  After students have had adequate time to think, ask them to discuss their ideas in small groups.  Encourage students to use several different representations to explain their thinking.  Once the small groups have thoroughly discussed the issues at the heart of reducing fractions, have the groups share their ideas in a whole class discussion.  In the whole class discussion, be sure that students realize that they are looking at the numerator and denominator as the product of numbers and not as the sum of numbers.  

The goal of this problem is for students to think deeply about the fractions with which they are familiar.  This should help students extend their ideas about fractions to rational expressions involving unknowns.  This example will also serve as a concrete example to which students can refer while they are constructing formal ideas about rational expressions.  This will be helpful because it will offer students an example to help them justify their ideas.  
Now ask students how to reduce (x + 4)(x + 1) and x2 + 5x + 6.  





     (x + 1)(x + 2)
  x2 – 9

After students have had adequate private think time, have them discuss their ideas with small groups.  Encourage students to think of a way to assess if their answers are correct.  Also encourage students to refer back to the concrete example they just worked with to justify their claims.  

Once the small groups have reached a consensus, have the small groups share their answers with the other groups in a whole class discussion.  Ask the groups to share the different methods they found for assessing if their answers were correct.  

The goal of this problem is for students to extend their ideas of reducing fractions to reducing rational expressions.  It is also to encourage students to think of polynomials as products of other polynomials.  This will help students more efficiently find common denominators for rational expressions.  Another goal of this problem is to help students learn to assess if expressions are equivalent on their own.  If students try to cancel terms that are being added, point them back to the numerical example and ask what happens if that process were used there.  
Now ask students to multiply the following rational expressions.  

1) 3 . 2

4   9

2)   (x – 4)(x – 2) . (x + 3)(x + 2)

      (x + 3)(x – 2)    (x – 4)(x + 5) 

3)  x2 - 6x + 9 . x2 – 5x + 6
      x2 – x – 6     x2 - 9 

4)  x3 - 5x2 – 6x . x2 – 5x + 6
       x2 – x – 6         x4 - 16 

5)  x2 - 6x + 9      .  x2 – 4x + 5 .    x2 – 5x + 4_ 
      x2 – 7x + 12         x2 - 1 
      x2 – 7x + 12         

6)  x2 - 2x - 3 . x2 + 2x - 3
      x2 – 1            x2 - 9 

7)  x2 – 5x – 6   . x2 – 5x + 6
      x2 + 5x – 6    x2 + 5x + 6 

8)         x2 - 4x + 9      .  x2 – 6x + 5
      x3 - 5x2 + 6x - 30     x2 – x + 3

Encourage students to check their answers before comparing with their neighbors.  Have students share their methods for solving and checking in addition to their answers.  After all small groups have reached a consensus, discuss the different answers and methods students used to arrive at their answers.  Make sure students realize that there are multiple ways of expressing the correct answer.  

The goal of this activity is for students to learn how to multiply rational expressions.  This will help students when they need to work with rational expressions later on and it will reinforce students’ factoring skills. This will also further students’ understanding of fractions and operations with polynomials by asking them to look at each of these perspective from a different angel.  

Now ask students to divide the following rational expressions.  

1)   3  ÷  12

4       7

2)  x2 - 6x + 9  ÷   x2 – 5x + 6
      x2 – x – 6         x2 - 9 

3)  x2 + 2x - 8  ÷   x2 – 7x + 12
      x2 + x – 12      x2 – 2x - 8 

4)  x2 + x + 6  ÷   x2 – x + 6
      x2 + x – 6      x2 – x - 6 

5)       x2 - 6x      ÷    x2 – 1   ÷   x2 – 5x – 6 
      x3 + x2 + x         x3 - 1        x2 + 5x – 6         

Encourage students to check their answers before comparing with their neighbors.  Have students share their methods for solving and checking in addition to their answers.  After all small groups have reached a consensus, discuss the different answers and methods students used as a class.  Make sure students realize that there are multiple ways of expressing the correct answer.  

The goal of this activity is for students to learn how to divide rational expressions.  This will help them when they need to work with rational expressions later on and it will reinforce their skills with factoring. This will also further students’ understanding of fractions and operations with polynomials by having students treat those as basic skills they use while constructing new ideas.  

HOMEWORK

Compute the following given

a = 2,   b = x – 1,   c = x2 + 3x – 4,   d = x2 + 5x + 6,   e =       x + 4    ,   f = x2 + 4x + 1    




         x2 + 2
          x2 + 3x - 4            x2 + 5x + 6         x2 + 5x + 6       

1) a ∙ b

2) a ÷ b

3) b ÷ a

4) c ∙ a

5) c ÷ a

6) b ÷ c

7) c ∙ d

8) e ∙ d

9) e ÷ f

10) b ∙ c ÷ f

CLASSWORK

Ask students to think privately about how to add ½ and ¾ .  After students have had adequate time to think, ask them to discuss their ideas in small groups.  Encourage students to use several different representations to explain their thinking.  Once the small groups have thoroughly discussed the issues at the heart of adding fractions, have the groups share their ideas in a whole class discussion.    

The goal of this problem is for students to think deeply about addition of fractions.  In doing so, encourage them to explicitly state that finding a common denominator creates “like terms”, which is why it is essential to find a common denominator before adding or subtracting (you can do this by asking students how this problem relates to collecting like terms).  This will help students with operations involving fractions by having them think more deeply about the process from a different perspective.  This should help students extend their ideas about fractions to rational expressions involving unknowns.  This example will also serve as a concrete example that students can refer to while they are constructing formal ideas about the addition of rational expressions.  

Now ask students to add the following rational expressions.  

1) 3 + 2

4    9

2)  x2 + 5x - 6   +    x2 + 9x + 18
         x – 6                   x - 6 

3)   (x – 5)(x – 2)   +   (x - 3)(x + 2)

      (x + 3)(x – 2)        (x – 2)(x + 5) 

4)            x – 6   __   +   x2 – 5x + 6
       x3 – x2 + x – 1          x4 - 16 

5)  x2 + 5x + 6   +       x2 – 1      +    x2 + 3x  
           x2 – 9           x2 – x - 2 
       x2 + x          

Encourage students to check their answers before comparing their answers with their neighbors.  Have students share their methods for solving and checking in addition to sharing their answers.  After all small groups have reached a consensus, discuss the different answers and solution methods as a class.  Make sure students realize that there are multiple ways of expressing the correct answers.  

The goal of this activity is for students to learn how to add rational expressions.  This will help them when they need to work with rational expressions later on and it will reinforce their skills of working with fractions, collecting like terms, and factoring. This will also further students’ understanding of fractions and operations with polynomials. Furthermore, this activity will help students develop a list of strategies to simplify complicated problems.  

Now ask students to subtract the following rational expressions.  

1)       1      _       x + 4__
      x2 – 16      x2 – 3x - 4 

2)        6       _        3    _
       9 - x2          12 + 4x 

3)   x + 1   _   x - 1
       x - 1        x + 1

4)    x – 3    _   x + 3  _  5x2 + 27

      2x + 6       3x - 9      6x2 - 54

5)        x + 2      _   2 + x    +     2 – x _

      x2 + 5x + 6       4 - x2      x2 + x - 6

Encourage students to check their answers before comparing with their neighbors.  Have students share their methods for solving and checking in addition to sharing their answers.  After all small groups have reached a consensus, discuss the different answers and solution strategies as a class.  Make sure students realize that there are multiple ways of expressing the correct answers.  

The goal of this activity is for students to learn how to subtract rational expressions.  This will help them when they need to work with rational expressions later on and it will reinforce their skills of collecting like terms, distributing, and factoring. This will also further students’ understanding of fractions and operations with polynomials. 

Now ask students to perform the following computations.  

1)    2x3 + 4x2 – 6x   .      2x3 – 2x_ _
               4x2 – 1              2x3 + 5x – 3x 

2)            6           +       3    _
       2x2 – 5x - 3       2x3 + x2 – 2x - 1

3)           1          _             1      __
       2x2 – x – 1      2x3 - 8x2 + 6x 

4)      6x2 + x – 1     ÷         9x2 – 1   __

       4x2 + 10x + 4        2x2 + 12x + 16 

5)      8x3 + 4x2 – 4x    ÷         8x2 – 2   __

                x2 + 3x               2x2 + 7x + 3 

6)            x          _           2       _
       2x2 + x – 6       4x2 – 4x - 3

7)             2            +               1           _
       2x2 + 8x + 6       2x3 + 6x2 + x + 3

8)    4x3 - 4x2 + 4x - 4  . 3x3 + 3x2 – 27x_- 27
               4x2 – 1                       2x4 – 2 

Encourage students to check their answers before comparing with their neighbors.  Have students share their methods for solving and checking in addition to sharing their answers.  After all small groups have reached a consensus, discuss the different answers and methods of getting there as a class.  Make sure students realize that there are multiple ways of expressing the correct answers.  

The goal of this activity is for students to determine which process to use when solving each problem.  This will reinforce the ideas they have constructed about operations with rationale expressions and it will reinforce their skills of collecting like terms, distributing, and factoring. This will also further students’ understanding of fractions and operations with polynomials. 

HOMEWORK
Perform the indicated operation, reduce all answers

1)                x__  ___  ÷     y _

      3x2 + 3xy – x + y       x – y

2) xy – 3x   ÷     y - 3_

          y                 x 

3) ( 1 + 1 ) ÷  ( 1 _ 1 )
      m   n        m   n 

4) ( 1 –  1  ) ÷  (1    1 )
              x2              x 

5)      x2       ÷      x  _

     x2 - y2        y + x 

6) ( x + y ) ÷  ( 2 _ 3 )
      2    3        x    y

These problems are more difficult that the earlier problems because they require students to coordinate the different processes they constructed in the earlier activities and to think deeply about order of operations.  Reflecting on the processes constructed in class will help students further their ideas about those processes.  

GROUP QUIZ 

Find the value for ? that makes the following equations true

1)      4x      +  ?   =     2x__ 
      x2 – 1                  x - 1 

2)  x2 – 5x – 6    _  ?  =  x2 – 5x + 6
      x2 + 5x – 6    
 x2 + 5x + 6 

3)   x2 -  y2     ÷  ?   =   x - y
         xy2                        y3  

4)  x2 – 5x – 6    .  ?  =  x2 – 5x + 6
      x2 + 5x – 6    
 x2 + 5x + 6 

5)  x2 - x - 20    ÷  ?   =      1   _
    x2 + 7x + 12               x – 5 

6)       x – 5        -  ?  =        x2 – x – 26 __
      x2 - 4x – 5    
  x3 + x2 - 25x - 25 

7)    2x2 - x + 6      +  ?   =   5x2 + x + 1
      5x2 + 6x + 1                    5x + 1 

8)   5x + 10    .  ?  =  x2 + 5x + 6
        x + 4    
         x2 + 5x + 4

This quiz asks students to think deeply about the processes involved in operations involving rational expressions because the problems ask students to think about how the answers arise.  Reflecting on where answers come from helps students solidify their ideas about the processes themselves.  

Extension 2
In this lesson students learn a little about the historical developments of the multiplication of polynomials.  This activity will help students understand the development of algebra.  It will also help visual students see a geometric approach to the multiplication of polynomials.  Furthermore, it will help students make connections between algebra and geometry.  This lesson could be extended into a geometry lesson when students find areas and volumes of unconventional shapes by breaking them in to simpler shapes.  

CLASSWORK

Ask students to find the area of a square with side length a.  

Encourage students to draw a picture in addition to writing the answer.  This problem might be difficult for students who have not yet confronted the lack of closure in algebra because they might be expecting a numerical answer.  Make sure that all students are comfortable with the answer to this question before moving on to ensure that all students are comfortable with what is being asked of them.  

The goal of this problem is to remind students about geometry and geometric models and for students to review area.  It is also for students to confront lack of closure the face in algebra through a geometric model.  These skills will all be essential in the later problems.  

Once students are comfortable with that problem, ask students to find the area of a rectangle with length a and width b.  

This problem should not be difficult for students given the last problem, but it is an important question to ask students to ensure that students are comfortable with the lack of closure they will face in their answers to future problems.  

The goal of this problem is to ensure that students are comfortable with the processes they are using (how to use a geometric model) as well as with what is being asked of them (to draw a picture and to write an expression) before moving on to more complex problems.  

Now ask students to find the area of a rectangle with length a and width a + b.  

Encourage students to draw a picture to help them find a solution.  Discuss the different answers students find as a class.  Hopefully some students will have written a(a + b) and other students will have written a2 + ab.  Discuss why both answers are correct and why that means they are equivalent.  Also discuss how this problem relates to what students have learned in the earlier activities.  

The goal of this problem is for students to think about how to divide large areas into smaller areas of which they already know the area.  This will help students see a visual model of the distributive property.  
Next have students find as many expressions as they can think of that express the area of a square with side length a + b.  

Ask students to explain how they found each expression and why it makes sense.  Have students discuss the answers they found individually in small groups, then discuss the expressions and accompanying representations as a class.  Once again, be sure to ask students how these ideas relate to the ideas they constructed in class.  

Use this opportunity to teach the students about the historical development of polynomials.  At this point, explain to them that these properties were originally developed geometrically.  Be sure to tell them that these processes are different than those processes because they use variables.  Variable use allows us to reify the algebraic representation of the area model, which allows us to analyze the geometric processes from an analytic stance.  Although this is not true to the original discovery of these ideas, it allows students to gain some insight into the evolution.  If students have a strong background in geometry, show them the original derivations, such as the ones found in The Elements.  

The goal of this problem is for students to make connections between the distributive property, collecting like terms, polynomial multiplication, and the geometric models.  This will help students reinforce the algebraic ideas they have constructed as well as the geometric ideas with which they are working.  

Once students are comfortable with the various expressions and how they are related, ask students to find the following products.  Encourage them to use any method they like to expand the expressions, and to use a different method to check if their answers are correct.  

1) (a + 1)(b + 1)

2) a(a – b)

3) (a + b)(a – b)

4) (a + 1)(a + b)

5) a(a + b + c)

6) (a + b)(a + b +c)

7) (a + b)(a + b +c)

8) (a + b + c)2
Once students are confident in their answers, have them discuss their answers and methods of finding them within a small group.  Once the small groups have reached a consensus, have the small groups share their results as a group.  Encourage the class to find as many different ways of expressing the products as possible.  Discuss which methods students liked best for which problems and why.  

The goal of these questions is for students to reinforce the algebraic ideas they have constructed and to have them use the geometric models to do so.  

HOMEWORK
Find the following products using any method you like, then check your answers by using a different method and correcting whichever method was incorrectly used if the answers differ.  

1) 2(x + y)

2) (x + 2)(x + 3)

3) (x + 2)(x + y)

4) (2x + 3)(x + 1)

5) (x + 2)(x – 2)

6) 2(x + 3)(x + 2)

7) 2x(x – 3)

8) (2x + 1)(2x – 1)

Students should have all of these problems correct if they checked the problems.  It would, however, be useful for students to discuss which processes they used and why.  

The goal of this assignment is for students to reflect on the processes they are using and to reinforce their algebraic ideas with geometric ones and vice versa.  This will help visual students with symbolic manipulation and help less visual students understand geometric models.  
CLASSWORK
Provide students with materials such as legos, clay, and construction paper that they can use to build three-dimensional models.  

Ask students to determine the volume of a cube with sides of length a.  

Encourage them to draw or build a model.  Have students start on their own, and then discuss their ideas in small groups.  

Discuss the models students used as well as how they found the volume as a class.  Make sure students explain why a formula works if they cite a formula as their process.  

The goal of this problem is for students to gain familiarity with a three-dimensional model and to review volume.  These skills will be essential as students explore the following problems.  Students often have difficulty visualizing things in three dimensions from two dimensional pictures, so it is important to give them material with which they can build model three dimensional models.  
Once students are comfortable with their models and answers, ask students to determine the volume of a rectangular prism with length a, width b, and depth a + b.  Have students compare the various expressions and models students made first in small groups, and then with the whole class.  Once again, make sure to discuss the equivalence of the various expressions, as well as how this relates to the ideas constructed in the earlier activities.  

The goal of this problem is for students to become more familiar with the three-dimensional model.  It is also for them to begin making connections between the algebraic ideas about polynomial multiplication they constructed earlier and the geometric ideas they are exploring.  

Next, have students determine the volume of a cube with sides of length a + b.  Have students compare the various expressions and models used in small groups before discussing with the whole class.  Also have students discuss the connections between these answers and the algebraic ideas they constructed in earlier activities.  

The goal of this question is for students to more deeply explore the geometric representations of the algebraic ideas they are constructing. This could help students reinforce both concepts by providing visual students a visual representation of the ideas and helping abstract students learn to visualize.  
Next have students find the expansion of (a + 1)3.  Have students work on this problem on their own before working in small groups. Discuss the answers and methods used in a class discussion once all small groups have found at least one method for solving the problem.  Be sure to discuss the relationship between the various answers and methods used.  

The goal of this problem is for students to gain confidence in working with the models and to reinforce the connections students are seeing between the different representations.  
Next have students find the expansion of (a + 1)4.  Have students work on this problem on their own before working in small groups. 

Discuss the answers and methods used in a class discussion.  Discuss which methods worked in this situation and which ones did not. Also discuss situations where each of the methods would work and would not work.  At this point spend some time discussing how this relates to the historical evolution of polynomial multiplication.  In doing so, explain to students that since these ideas were originally explored geometrically, algebraists did not have any reason to consider exponents that could not be expressed geometrically because they did not realize such powers existed.  Therefore, many of the ideas did not exist until algebraic expressions were reified.  

The goal of this problem is for students to see the limitation of geometric representations for these problems (that only whole number powers of three or less can be used), and to help them see the strength of symbolic algebra and its accompanying analytical methods (that all exponents can be used).  Another goal is to help students deeply understand the impact of symbols on the historical evolution of algebra, and mathematics in general, as well as the evolution of polynomials (they allowed mathematicians to study concepts that could not be represented in our physical reality).
HOMEWORK
Find the following products using any method you chose. Check your answers using a different method and reconcile any differences that arise.  

1) 2(x + y + 3)

2) 2(x + 1)(x + 2)

3) x(x + 1)(x + 2)

4) 2x(x + 1)(x + 2)

5) x(x + 1)(x – 1)

6) x2(2x + 1)

7) x2(2x + 1)(x + 2)

8) (x + 1)(x + 2)(x + 3)

9) (x + 1)(x + 2)(x + 3)(x + 4)

10) (x + 1)(x + 2)(x + 3)(x + 4)(x + 5)

Since students may not be able to check all of these products using alternate methods, allow students an opportunity to compare their answers with their peers.  Also have students discuss which method they like better for each type of problem and why.  

The goal of this activity is for students to practice working on problems and to have an opportunity to choose which methods they prefer (geometric or analytic) in different situations.  It is also for students to determine methods for checking their answers.  Another goal of this problem is for students to strengthen their appreciation of the power and elegance of symbol use.  

CLASSWORK
Next ask students to find the area of the following shapes.  Encourage students to write as many different expressions as they can think of to express the given relationships. 
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First have students work on their own, and then share their answers in small groups.  Once all suggested answers have been discussed in small groups, share the answers as a class.  

The goal of this task is for students to further their ideas of working with quadratic expressions and geometric figures.  This will help students with geometric processes as well as the algebraic ones.  
Next have students simplify the following expressions.  

1) (x + 3)(x + 2) + (x + 1)(x – 1)

2) (x + y)(x + 1) – (x – y)(x + 1)

3) (x + y)2 + x2
4) (x + y)2 + (x – y)2
5) 3(x + 1)(x + 3) + (x + 1)(x – 1) – 2(x + 1)

Encourage students to find as many different ways of finding the answer as possible, and to use these to check their answers.  Once students have worked on the problems on their own, have students share their answers and approaches in small groups, and then as a class.  

The goal of this task is for students to deepen their understanding of algebraic expressions by using geometric models.  In turn, it is for students to deepen their understanding of area by using the models to help develop algebraic ideas.  

HOMEWORK
Simplify the following expressions using any method you would like.  Then use a different method to check your answers.  If your answers differ, correct your errors that led to incorrect answers.  

1) (x + 1)(x + 2)(x + 3) + (x + 1)(x)(2)

2) (x + 1)3 + x(x + 1)(x – 1)

3) (x + y)2x + x2(x + y)

4) (x + y)3 – x3 

5) (x + y)3 + x2y + xy2
The goal of these problems is for students to practice using all of the processes they have learned and to select which methods (geometric or analytic) they like best in given situations.  

Extension 3
In this activity students will use their understanding of the base ten system to work with numbers in other bases.  This will help students understand systems used in our society, such as binary code, as well as the number systems used in other cultures.  This will help students gain an understanding of how different number systems work.  It will also help students become aware of differences and similarities between different cultures.  This activity involves a few historical connections as well.  Understanding other number systems with different bases will help students better understand operations on the base ten system as well as on polynomials.  

CLASSWORK

Begin by discussing the idea of binary systems with students.  For instance, ask them if they have heard of binary before and, if so, what it is.  If students do not know, ask them to think about the prefix bi.  Remind students that we have a decimal system, and ask them to think about the prefix dec.  Use the prefixes to have students make connections between the use of a base ten and the name decimal system.  Have them use that idea to predict the base of a binary system.  In this discussion, be sure to discuss the fact that the metric system is another example of a base ten system.  Also make sure that students are aware that the binary system is the framework upon which digital computing is based.  

The goal of this activity is for students to develop ideas about the existence of other number systems.  It is also for them to begin making connections between the decimal system and the binary system.  Furthermore, students will begin developing informal ideas about how the binary system works.  This is also an opportunity for students to see connections between the math they are learning and life outside of the classroom.  This activity will do this because computers rely heavily on the binary system.  
Ask students to think privately about how we write 2, 5, 12, and 128 in the base ten system.  Ask them to express these numbers in terms of powers of ten.  Once students have taken adequate private think time, ask them to compare their answers with their groups.  

Once all groups have reached an agreement, discuss the answers as a class.  Make sure students discuss writing the numbers using powers of ten written with exponent notation, not just with expanded powers of 10.  During this discussion ask students why we used powers of ten, and ask them what numbers we would use powers of in the binary system. 

The goal of this activity is for students to start thinking about what it means to work with a base ten system and to begin formalizing their ideas about the binary system.  
Ask students to think privately about how to express 2, 5, 12, and 128 as powers of two.  Ask them to predict how we would write these numbers in a base two system.  Once students have taken adequate private think time, ask them to compare their answers with their groups.  

Once all groups have had adequate time to discuss their ideas, discuss the answers as a class.  

The goal of this activity is for students to start thinking about what it means to work with a base ten system and to begin formalizing their ideas about systems with different bases.  
Now tell the students that the Babylonians used a sexigesimal system.  Ask students to think privately about how to express 2, 5, and 128 as powers of sixty.  Ask them to predict how we would write these numbers in a base sixty system.  Once students have taken adequate private think time, ask them to compare their answers with their groups.  

Once all groups have had adequate time to discuss their ideas, discuss the answers as a class.  

The goal of this activity is for students to start thinking about what it means to work with a base ten system and to begin formalizing their ideas about systems with different bases.  
All of the numbers above required one or two places to express the numbers, ask students to try to find a number that would take exactly three places to express and one that would take more than three.  You may wish to give examples of what this means using the decimal system.  

After students have had adequate private think time, have them compare their answers as a group.  Also have them compare how they found their answers.  

Once individual groups have had enough time for discussion, have the small groups discuss their answers and their solutions for finding them.  During this discussion, ask students how these number systems relate to polynomials.  

The goal of this activity is for students to think critically about how numbers are expressed.  It is also for students to gain a deeper understanding of number systems with different bases.  It is hoped that this understanding will help students better understand operations involving polynomials.  
HOMEWORK

Explore different cultures from present day or the past.  Find a culture other than the Babylonians that used a system other than the three we have discussed.  Give a brief description of the culture, then describe the number system they use(d).  Explain how to work with the number system to someone who has not studied number systems using different bases.  Also, express at least five different numbers using the number system you are studying (they should be non-trivial examples).  Finally, try to find other cultures, past or present, or subjects that use the same number system.  

Extension 4
In this activity students will use their skills in anticipating the terms in the products of polynomials to generate the binomial theorem.  This activity is designed for students who know the formula for combinations, but can be modified for students who do not.  Students will begin by looking at several concrete examples, and will use the patterns they recognize to generate the general formula.  The binomial theorem is a useful theorem in mathematics, one that many students merely memorize.  The ability to anticipate terms in the product of polynomials, which students have developed over the course of this curriculum, will help students derive this formula.  This activity is designed to incorporate computer algebra systems (CAS) into the classroom, if such systems are available.  CAS is not, however, required for this activity.  

CLASSWORK

Ask students to complete the following chart on their own.  

Complete the following chart by working across each row.  Be sure to complete the ENTIRE row for a given expression before moving on to the next expression.  

	
	Predict the coefficient of the given variable for the given expression.
	Check your predictions by expanding the expression. If your answer is different, explain why that is.  

	
	1
	x
	x2
	x3
	x4
	x5
	x6
	

	(x + 1)2

	
	
	
	
	
	
	
	

	(x + 1)3

	
	
	
	
	
	
	
	

	(x + 1)4

	
	
	
	
	
	
	
	

	(x + 1)5

	
	
	
	
	
	
	
	

	(x + 1)6

	
	
	
	
	
	
	
	


It is important that students complete the chart one row at a time so they reflect on the solutions before moving on to the next expression.  This approach follows an idea elaborated in Kieran & Saldanha (forthcoming).  Encourage students to generate a general formula for the expansion of (x + 1)n before they discuss their answers with their group members.  Once students have completed the chart and made their predictions, have students compare their answers with their group.  Ask the small groups to discuss how they predicted their answers in addition to comparing their answers.  Once the small groups have shared their strategies, discuss the different strategies and reasonings used in a whole class discussion.  Be sure that students explicitly state the patterns they have observed.  If students know the formula for counting combinations be sure they use it. If they do not know the formula, teach it to them, or have them create an expression that expresses the same relationship.  

Note that if you have access to CAS, it would be a good idea to have students use that to check their products, otherwise checking the products could take a long time!  If you do not have access to CAS, you might want to skip the final column and have students carefully explain their reasoning, only checking the expansions for small values of n and when there is a disagreement.  

The goal of this activity is for students to revisit their ideas about when and why certain terms arise in products.  It is also for students to begin constructing the binomial theorem.  If CAS is used, another goal is for students to learn to use technology to help them check their answers and make generalizations.
Ask students to use the pattern they observed above to predict the expansion of the following expressions

Complete the following chart by working across each row.  Be sure to complete the ENTIRE row for a given expression before moving on to the next expression.  

	
	Predict the expansion of the given expression.
	Check your predictions and explain any discrepancies in your predictions.

	(a + b)2

	
	

	(a + b)3

	
	

	(a + b)4

	
	

	(a + b)5

	
	

	(a + b)6

	
	


Once students have completed the chart, have them compare their answers with their group.  Ask the small groups to discuss how they predicted their answers in addition to comparing their answers.  Once the small groups have shared their strategies, discuss the different strategies and reasonings in a whole class discussion.  Once again, make sure that students explicitly state the pattern they have observed, and encourage students to generate a general formula for the expansion of (a + b)n.

Once again it would be a good idea to have students use CAS to check their products, if they have access to it, otherwise you may want to modify when and how students check their answers.   

Once again the goals of this activity are for students to revisit their ideas about which terms arise in products and why, to formally construct the binomial theorem, and to learn to use technology to check answers and make generalizations.
HOMEWORK
Using the logic we used in deriving the formula for the binomial theorem, can you predict a formula for the following expressions?

1) (a + b + 1)n
2) (a + b + c)n
3) (x2 + x + 1)n 

These problems are challenge problems; they may be quite difficult for many students!

CHAPTER 8

SOLUTIONS AND RESPONSES TO THE ACTIVITIES
In the following section there are possible solutions to all of the activities in this curriculum.  Many of the questions have several possible equivalent solutions, so the absence of an answer does not necessarily mean the answer is incorrect.  Furthermore, since many of the activities are discussion based, the “solutions” contain many of the important issues that hopefully will arise in class conversations.  That does not mean that all possible conversations are included.  Teachers need to decide which strands of conversation to follow and which ones to leave behind.  Finally, although these solutions are intended to work as an answer key, they are also intended to help people using this curriculum understand the goal of a given task if the goal is not clear to them from the prompt.  The solutions are organized in order they are presented, and each individual prompt is specified by the page number on which it appears.  
Activity 1
Pg 40: 
I began by thinking of the number 428 as 400 + 20 + 8 and 173 as 100 + 70 + 3.  Then I started to actually add the numbers by looking at the ones.  8 + 3 is 11, which is 10 + 1.  Therefore, I knew there was a 1 in the ones place, and I added the ten I just mentioned to the 2 tens and 7 tens in the problems.  That gave me 10 tens, or 1 hundred.  Then I added that hundred to the other hundreds in the problem (4 and 1): 4 + 1 + 1 = 6, so there are 6 hundreds.  So in the end, we have 6 hundreds, no other tens, and 1 one, making the answer 601.  

Pg 41: 
After breaking 1037 into 1000 + 30 + 7 and 638 into 600 + 30 + 8, I started with the ones.  However, because 8 is bigger than 7, I had to look to the tens place as well so I had more than 8.  Therefore, I instead broke 1037 into 1000 + 20 + 17.  After taking 8 ones away from 17 ones, I was left with 9 ones.  Then I attempted to do the same with the tens, however, I once again did not have enough tens to complete the process, so I had to redivide the 1020 I had left into 900 + 100 + 20 or 900 + 120.  The 120 meant I had 12 tens, so I could now easily take 3 tens away, leaving me with 9 tens.  Finally, I took the 6 hundreds in 638 away from 9 hundreds I still had left from 1037.  That left me with 3 hundreds.  This means that I ended up with 3 hundreds, 9 tens, and 9 ones, or 399.  
Pg 42: 

I started with the hours.  When I had been waiting for 4 hours, I had 2 hours and 12 minutes to wait still.  Then, I had to deal with the 37 minutes.  After 12 more minutes of waiting I would only have two more hours to wait.  Since 37 is 25 + 12, I still had 25 minutes to wait.  To figure out how much I had to wait still, I broke one of the 2 hours I still had to wait into 60 minutes.  60 – 25 is 35, so after waiting for another 25 minutes, I would have 1 hour and 35 minutes left to wait still.  

Pg 43:

I started this problem in a similar manner to the last one.  4 months plus 3 months makes 7 months.  Then I got to the weeks, and, since 2 + 1 is 3, I got 3 weeks.  3 days plus 6 days is 9 days, and 1 week is 7 days, so I broke the 9 days into 1 week and 2 days.  I combined this with the 7 months and 3 weeks from before.  This gave me 7 months, 4 weeks, and 2 days.  The 4 weeks got me thinking, I often think of 4 weeks as a month.  If we are talking about work days that is fine, but if we are trying to think about how much medicine to take on a trip, we need to think of months as 30 or 31 days, depending on the month.  Because I did not know what to do next, I waited until it was time to discuss our answers.  The people in my small group all assumed 4 weeks was a month, but when I brought up the issue I was having, they realized it was an issue too. So we called the teacher over, and she smiled at us.  We then had a class discussion, and I discovered that other people were having similar issues to the ones I was having, and we discussed how we needed to know more information in order to solve the problem.  In the conversation, the teacher told us that was the point of the problem.  She explained that in the earlier problems we knew the exchange rate, so we could simplify the problems into simple and neat solutions, but here, we could not combine months, days, and weeks without knowing more information.  She likened this to the proverbial combining apples and oranges.  
Pg 44:

I solved this problem by combining the a’s and the b’s.  I had 1 a, 3 a’s, and 4 a’s.  Since 1 + 3 + 4 is 8, I knew I had 8 a’s.  Next I combined the b’s, giving me 7 b’s.  Therfore, my answer was 8a + 7b.  Although it was hard to leave my answer looking like that, I thought about the earlier problem and how we could not combine some of our objects because we did not know how they related to each other, and since I did not know how a and b related to each other, I left my answer broken up into a’s and b’s.  
Pg 45: 

Using the reasoning described above, I got 

1) 10a + 3b + 8

2) 3a + 4c + 4

3) 4a + 2b +5c.  

Pg 46: 


1) 8a + b


2) 3a + b


3) 8a – 4b


4) a – b


5) 4a + 4

Pg 47:


1) 5m + 5n + 2mn

2) 7x + 3x2 + 8

3) 2x + 5y + 5x2 + 6y2 + 1
Pg 48:

1) First think of 1,074 as 1000 + 70 + 4 and 24,153 as 20,000 + 4,000 + 100 + 50 + 3.  Then Since 4 is bigger than 3, regroup 24,153 into 20,000 + 4,000 + 100 + 40 + 13.  Since 13 is bigger than 4, you can easily take 4 from 13, giving you 9 ones.  Next look at the tens, since 40 is smaller than 70, you run into the same problem as before, so regroup again, giving you 20,000 + 4,000 + 140.  70 from 140 is 70, so for now we are left with 70 + 9 or 79.  Now we move to the hundreds, but since neither number has any hundreds, we move to the thousands.  We have to take 1 thousand from 4 thousands, giving us 3 thousands.  Since the smaller number ends at thousands, we are done.  We now have 20, 000 + 3,000 + 70 + 9 or 23,079.  

2) a) First, since what you bought costs more than a dollar, obviously you will not get the bill back.  The question becomes how 33 cents relates to 2 quarters.  2 quarters is 50 cents, and 50 cents take away 33 cents is 17 cents.  The biggest coin smaller than 17 cents is a dime, so you will get a dime back, leaving you with 7 cents.  The biggest coin less than 7 cents is a nickel, so you also get a nickel, leaving you with 2 cents.  The only way to get 2 cents is 2 pennies.  Therefore, you get a dime, a nickel, and 2 pennies.  

b) First of all, it is subtraction, and we talked about subtraction today.  Secondly, we had to trade the quarter into cents so we could relate the 33 cents to the 2 quarters.  Thirdly, we had to rebreak the 17 cents we were left with into coins in order to make the change.  This is like what we were doing with ones, tens, and hundreds as well as with hours, months, days, and weeks as well as with the letters.  

3) a) 17q + 13r

    b) 6a + 4b –ab + 4
    c) x + 6x2 + 2x3 

    d) 4a + 5b + 1

    e) 11m

EC) We have to add like pieces, just like with whole numbers.  With decimals we have to add tenths to tenths, hundredths to hundredths etc.  Also, When we find ourselves with more than 10 hundredths (for example), we have to break them into tenths and hundredths.  Likewise with other place values.  Also, we have to regroup when we are subtracting just like with whole numbers.  
Activity 2
Pg 50:

When I multiply, I start by thinking of 123 as 100 + 20 + 3, so 3 x 123 is 3 x 100 + 3x20 + 3x3, or 300 + 60 + 9 =369.  
Pg 51: 


Similarly, I  get 4 x 2 hours and 4 x 12 minutes, which is 8 hours and 48 minutes.  

Pg 52:

Given how I did the last problems I guess I would do this by 3xa + 3x2b + 3x3c which is 3a + 6b + 9c.  

Pg 53: 


1) 6a + 12b + 15c
2) 4p – 6q + 8r

3) 12m + 16n + 4

4) -2x -4y + 6z

5) -2a + b -2c

6) 4p + 5q -2r

Pg 54:

1) 2a2 + 4ab + 5ac

2) 4p2 – 6pq + 8pr

3) 8m3 + 4m2n + 4m4 + 12m2n2 + 4m2 

4) -2x2y – 4xy2 + 6xyz

5) -2a2b2 + a3b2 -2a2b3 

6) 2p2 +4pq-2pr + 2p + q

Pg 55: 

1) a) 6x2y

    b) 8x3y

    c) 4x2y2 

    d) 36x3y3 

2) a) 2x + 5y + 3z

    b) 4a2 + 6ab + 4b2 

    c) 3x2 +-3xy + 3xz -2x -4y -6z

    d) m3 - m2n - n2m + n3 
Pg 56: 

1) 7x2 + 11x + 2
2) x3 + 10x2 + x + xy + 2
3) 5 + 3y
4) (3y - (3 + 3
5) 2(5y + y2 + (5
Activity 3

Pg 58: 
I think of 12 as 10 + 2, so the problem becomes 10x43 + 2x43.  The question then becomes how to do those problems. Since 43 is 40 + 3, I can solve  those by thinking of it as (10x40 + 10x3) + (2x40 + 2x3).  That gives me (400 +30) + (80 +6) which is 400 + (30 +80) + 6 or 400 + 110 + 6 which is 400 + 100 + 10 + 6 which simplifies to 516.  

Pg 59:

14(2 hours  + 14 minutes) is 10(2 hours + 14 minutes) + 4(2 hours + 14 minutes)

= (20 hours + 140 minutes) + (8 hours + 56 minutes)

= (20 hours + 2 hours + 20 minutes) + (8 hours + 56 minutes)

= 30 hours + 76 minutes

= 30 hours + 1 hour + 16 minutes

= 31 hours and 16 minutes

Pg 60:

Following the process from the previous problems, I guess I would break (a + b) into a + b, giving me a(3a + 2b) + b(3a + 2b).  That equals 3a2 +2ab +3ab + 2b2.  That simplifies to 3a2 + 5ab + 2b2.

Pg 61: 

1) x2 + 2xy + y2 + xz + yz

2) 2a2 -5ab + 3b2 
3) p2 + 2pq + 2pr + 2ps + pt + q2 + 2qr + 2qs + qt + r2 + 2rs + rt + s2 + st
4) 8m2 + 22mn + 15n2 + 12m + 18n
5) 2x4 + 5x3 + 6x2 + 7x + 4
Pg 62:

1) x3 + 12x2 + 47 x + 60

2) 6x3 + 8x2 + 15x + 20

3) 6x4 +8x3 + 15x2 + 21x + 5
4) 3a4 + 4a3 + 8a2 + 19a + 15
5) 2a2 + 5ab + 3b2 + 2a2b + 4ab2 + b3
6) 8pr + 12 qr + 10ps + 15qs
Pg 63:

1) a) a2 + 2ab + b2 

    b) p2 - q2 

    c) 4m2 – 12mn + 9n2 

    d) 4x2 - 1

    e) 9a2 -12ab + 4b2 

    f) 4c2 + 8cd + 4d2 
    g) 169
2) When the two sets of parentheses have the same terms, but one is a sum and the other is a difference, you get the difference of each of the terms squared.  When you square a binomial your answers has the square of each of the terms and twice the product of the two terms.  

3) a) 2x2 – 4x -30

    b) 3x3 + 12x2 + 12x + 48
    c) 9 -18x + x2 
   d) 2x5 + 4x4 + 6x3 + 4x2 + 2x
Activity 4

Pg 65:
1) none

2) b & c

3) b & c

4) b & c

5) b, c, d, e

Pg 66: 

1) a, b, c

2) a, c, e

3)  a, b, c, d, e

4) a, b, c, d

5) b, c, d

Pg 67:

1) a, b, c, d

2) a, b, c, d, e

3) a, b, c, d, e

4) a, b, c, d, e

5) c, d, e

Pg 68: 

1) b & c
2) d
3) b & e
4) a & c
5) a & d
Pg 69:

1) e

2) a & d

3) none

4) b & d

5) c

Pg 70: 

1) 3
2) 4x
3) 3, 9
4) 3, 6
5) 1, 4 or 4, 1
Pg 71: 

1) 1, 2
2) 2x, 5
3) 1, 1
4) 3, 2x2, 6
5) 2, 6
Pg 72: 

1) a) You will get  an a3 because there are 3 a’s, 3 + 2 + 1 a2’s because each pair of a’s will then be multiplied by the number in the other set of parentheses, you will get 3x2 + 2x1 + 3x1 a’s because each time you use just one a you will have to use the constant in each of the other factors, and your constant will be 3x2x1
b) You will have abcd, abc, abd, acd, bcd, ab, ac, ad, bc, bd, cd, and 1 because you will either use none of the 1’a, 1 on the 1’s, 2 of the ones, 3 of the ones, or all of the ones
c) If you use all of the ones, you will get a 1, , if you use none of the ones you will get x6, if you use one of the ones you will get x5, x4, or x3 and if you use two ones you will get x3, x2, or x. 
d) Using the same reasoning you will get: -1, 4x5, 4x4, 3x2, -3x2, -2x2, -2x, and 2x2
2) a)1
b) 3, -15

c) -1, 3

d) 3x, 2

e) 3x (or 2x + x or 4x – x etc)

f) -4

g) 3, -2 or 1, 2x2 

3) a) (4 – 7x)(4 + 7x)
b) (2x – 3) 2 

c) (x + 3)(x + 2)

d) (x - 3)(x - 2)

e) (x + 6)(x – 1)

f) (x – 6)(x + 1)

Pg 74: 

1) 2a5 + 2a4 - 2a2 – a + 1
2) a2 – 2ab + 3b2 
3) m3 + 8
4) m3 - 27
5) m6 - 8
6) m9 + 27
7) You end up with two terms in all of the expressions.  
Activity 5
Pg 76: 

1) (x – 1)(x + 1)(x2 + x + 1)(x2 – x + 1)
2) (x8 + 8)(x – 1)(x7 + x6 + x5 + x4 + x3 + x2 + 1)
3) (2x3 + 1)(2x2 -1)
4) (3x3 + 1)(3x3 – 1)
5) Fully Factored
6) 8(x2 -2)(2x4 + 2x2 + 4)
7) (3x3 + 8)(3x3 – 8)
8) 2(5x2 – 32)
Pg 77:

1) (x + 3)(x + 2)
2) (x – 3)(x – 2)
3) (x + 6)(x – 1)
4) (x – 6)(x + 1)
5) (x + 4) 2 
6) (x – 4) 2 
7) Not possible
8) Not possible
9) Not possible
10) Not possible
11) (x + 6)(x – 2)
12) (x – 6)(x + 2)
Pg 78:

1) (3x -4 )(x + 1)
2) (2x + 1)(x + 2)
3) (5x – 11)(7x + 4)
4) (3x – 1)(x – 1)
5) (3x + 2)(2x + 3)
6) (2x – 1)(x + 1)
7) (2x + 3)(x – 4)
8) (3x2 + 4)(3x2 + 2)
9) (6x + 5y)(3x – 2y)
10) (4x – 5y)(3x – 4y)
Pg 79: 

1) 5(2x + 5) 2 
2) x(x – 3)(x + 2)
3) 4(3x2 + 7x – 6)
4) 3x(3x + 1)(2x – 3)
5) 5(x2 + 2x + 6)
6) x(x + 8)
7) x(6 – 7x)(6 + 7x)
8) x(81x – 64)
9) x(x2 – 5)(x + 1)(x – 1)
10) Not possible
Pg 80: 
1) (x2 + 2)(x + 3)
2) (3x + 2)(x2 + 1)
3) (6x – 7)(3x2 + 5)
4) (a –b)(x + y)
5) (2x – 1)(3x – y)
6) (x7 + 2)(x + 1)(x – 1)(x2 + x + 1)(x2 – x + 1)
7) (2x + 3)(2x2 + 3)
8) (x + 1) 2(x – 1)2(x2 + 1)
9) (7x + 9)(2x2 – 3)
10) Not possible
Pg 81:

1) a) 12x2 + 6
    b) 3x2 – 4x2 + x2 + x + 4
    c) 7x2 + 5x - 23x + 21
    d) -3xy4 – y3 + 5y - 2
2) a) 8y2 – 12y
    b) 12x3 + 24x2 
    c) 6x3 + 8x2 – 6x
    d) -10xy5 – 10x2y2 + 120x2 
    e) 5x2 + 4x - 12
    f) 5x6 + 5x5
    g) 4x2 – 9y2 
    h) x3 + 6x2 +12x + 8
    i) 3x4 + 5x3 + 6x2 + 3x + 1
3) a) (x + 7)2 
    b) x(x – 9)2 
    c) 2(x + 8)(x – 8)
   d) x2y(3x – 2y)(1 + x)
   e) –(x2 + 2)(x + 3)(x – 3)
   f) (x4 + 1)(x2 + 1)(x + 1)(x – 1)

   g) (x2 + 1)(x + 4)
   h) Not possible
Extension 1
Pg 84:  
12 is 4 groups pf 3 and 30 is 10 group of 3, so 12/30 is the same as 4/10.  However,  4 is 2 groups of 2 and 10 is 5 groups of 2, so 4/10 is the same as 2/5.  

Pg 85: 

The numerator has (x + 4) groups of (x + 1) and the denominator has (x + 2) groups of (x + 1), so it reduces to (x + 4)/(x + 2).  Similarly, we have to factor the numerator and denominator of the second fraction so we can see what common size pieces they can each be grouped in to.  The numerator is (x + 3)(x + 2) and the denominator is (x + 3)(x – 3), so the numerator is (x + 2) groups of (x + 3) and the denominator is (x – 3) groups of (x + 3), so it is equivalent to (x + 2)/(x – 3)
Pg 86: 


1) 1/6
2) (x + 2)/(x + 5)
3) [(x – 3)(x – 2)]/[(x + 3)(x + 2)]
4) [x(x – 6)(x + 1)]/[(x2 + 4)(x + 2)2]
5) (x – 5)/(x – 4)
6) 1
7) already reduced
8) [(x2 – 4x + 9)(x – 1)]/[(x2 – x + 3)(x2 + 6)]
Pg 87: 

1) 7/16
2) [(x – 3)(x + 3)]/[(x + 2)(x - 2)]
3) [(x – 2)(x + 2)]/[(x - 3)2]
4) already reduced
5) [(x – 6)(x + 6)(x – 1)]/[(x + 1)(x – 3)(x – 2)]
Pg 88:

1) 2x - 2
2) 2/(x – 1)
3) (x – 1)/2

4) [2(x + 4)(x – 1)]/(x2 + 2)
5) [(x + 4)(x – 1)]/(2x2 + 4)
6) (x2 + 2)/(x + 4)
7) [(x + 3)(x + 2)]/(x2 + 2)
8) 1/(x – 1)
9) (x + 4)/(x2 + 4x + 1)
10) [(x – 1)(x + 4)(x – 1)(x + 3)(x + 2)]/[(x2 + 2)(x2 + 4x + 1)
Pg 89: 
To add ½ and ¾ I first need to find a common denominator so I am talking about the same size pieces (just like when we were talking about adding whole numbers and collecting like terms, we needed to be talking about the same unit of measurement to combine terms).  1/2 is the same as 2/4, which can be found by breaking each of the halves into 2 pieces.  2/4 plus 3/4 is 5/4, so the answers is 5/4.  
Pg 90: 

1) 35/36
2)  [2(x + 6)(x + 1)]/(x – 6)
3) (x2 – x -31)/(x2 + 3x -10)
4) (2x4 – 9x3 – 6x2 – 25x -18)/(x6 + 4x4 - x2 – 4)
5) (3x3 – 4x2 – 14x + 17)/(x3 – 4x2 +x + 6)
Pg 91: 

1) (-x2 – 7x -15)/(x3 + x2 – 16x – 16)
2) (15 + 3x)/(36 – 4x2)
3) 4x/(x2 – 1)
4) (5x2 + 12x + 27)/(54 – 6x2)
5) (x – 3)/(x2 + x – 6)
Pg 92: 

1) (2x4 + 4x3 + 2x2 + 6x)/(4x2 – 1)
2) (6x2 + 3x – 15)/(2x4 – 5x3 – 5x2 + 5x + 3)
3) (2x2 – 8x – 1)/(2x4 – 14x3 – 2x2 + 6x)
4) (x + 4)/(3x + 1)
5) (2x2 + 2x – 2)(2x – 1)
6) (2x2 – x - 4)/(4x3 + 4x2 – 11x – 6)
7) (2x2 + x + 2)/(2x4 + 8x3 + 7x2 + 4x + 3)
8) [6(x2 + 1)(x + 3)(x – 3)]/[(2x + 1)(2x – 1)]

Pg 93:

1) x/(3xy – y)
2) x2/y
3) (n + m)/(n – m)
4) (x + 1)/(x2 – x)
5) x/(x – y)
6) (3x2y + 2xy2)/(12y – 18x)
Pg 94: 
1)(2x – 2)/(x + 1)
2) -120x/(x4 + 10x3 + 25x2 – 36)
3) y(x + y)/x
4) (x4 -25x2 + + 60x – 36)/(x4 – 25x2 – 60x – 36)
5) (x – 5)2/(x + 3)
6) 1/(x2 – 25)
7) (5x3 + 4x2 + 3x – 5)/(5x2 + 6x + 1)
8) (x + 3)/(5x + 5)
Extension 2
Pg 96: 

The area of a square with side length a is a2.  

Pg 97: 


The area is ab
Pg 98: 

I broke the rectangle into 2 parts, one with area a2 and one with area ab, since the area of the entire rectangle is covered by both of those areas, the entire area is a2 + ab.  

Pg 99: 

I could do it by looking at two rectangle, that would give me a(a + b) + b(a + b) or (a + b)a + (a + b)b.  Instead I could break it into 4 rectangles, giving me a2 + ab + ab + b2.  

Pg 100:
1) ab + a + b + 1
2) a2 - ab
3) a2 - b2 
4) a2 + a + ab + b
5) a2 + ab + ac
6) a2 + 2ab + ac + b2 + bc
7) a2 + 2ab + ac + b2 + bc
8) a2 + 2ab + 2ac + b2 + 2bc + c2 
Pg 101: 


1) 2x + 2y
2) x2 + 5x + 6

3)x2 + 2x + xy + 2y

4) 2x2 + 5x + 3

5) x2 - 4
6) 2x2 + 10x + 12
7) 2x2 – 6x
8) 4x2 – 1
Pg 103: 


a2b + ab2 

Pg 104: 


a3 + 3a2b + 3ab2 

Pg 105: 


a3 + 3a2 + 3a

Pg 106: 


I tried to build a model, but I couldn’t.  


a4 + 4a3 + 6a2 + 4a + 1

Pg 107: 


1) 2x + 2y + 6
2) 2x2 + 6x + 4
3) x3 + 3x2 + 2
4) 2x3 + 6x2 + 4
5) x3 - x
6) 2x3 + x2 
7) 2x4 + 5x3 + x2 
8) x3 + 6x2 + 11x + 6
9) x4 + 10x3 + 35x2 + 50x + 24
10) x5 + 15x4 + 85x3 + 225x2 + 274x 120
Pg 108:
x2 + 3x + ax, 2ab + 2cd + ad, 2xz + 2xy

There are many different ways to write all of these expressions, these are just the most simplified versions of them

Pg 109: 


1) 2x2 + 5x + 5
2) 2xy + y
3) 2x2 + 2xy + y2 
4) 2x2 + 2y2 
5) 4x2 + 10x  + 7
Pg 110: 


1) x3 + 8x2 + 13x + 6
2) 2x3 + 3x2 + 2x + 1
3) 2x3 + 3x2y + y2x
4) 3x2y + 3xy2 + y
5) 2x3 +4x2y + 4xy2 + y
Extension 3
Pg 113: 


2x 100, 5x100, 1x10 + 2x100, 1x102 + 2x10 + 8

Pg 114: 


1x2, 1x22 + 1x20, 1x23 + 1x22 + 1x20, 1x27

10, 101, 1101, 10000000

Pg 115: 


2x600, 5x600, 2x60 + 8


2, 5, 28

Pg 116: 

For binary, the base ten numbers 4-7 work.  For base sixty, the base ten numbers 216,000-12,959,999 work.  

Extension 4

Pg 119: 

	
	Predict the coefficient of the given variable for the given expression.

	
	1
	x
	x2
	x3
	x4
	x5
	x6

	(x + 1)2

	1
	2
	1
	0
	0
	0
	0

	(x + 1)3

	1
	3
	3
	1
	0
	0
	0

	(x + 1)4

	1
	4
	6
	4
	1
	0
	0

	(x + 1)5

	1
	5
	10
	10
	5
	1
	0

	(x + 1)6

	1
	6
	15
	20
	15
	6
	1


Pg 121: 
	
	Predict the expansion of the given expression.

	(a + b)2

	a2 + 2ab + b2

	(a + b)3

	a3 + 3a2b + 3ab2 + b3

	(a + b)4

	a4 + 4a3b + 6a2b2 + 4ab3 + b4

	(a + b)5

	a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4+ b5

	(a + b)6

	a6 + 6a5b + 15a4b2 + 20a3b3 + 15a2b4 + 6ab5 + b6


CHAPTER 9
MY EXPERIENCE WITH THE CURRICULUM

I taught this curriculum, or at least parts of it, in different forms in two different situations.  I had very different experiences in each situation, but I enjoyed both of them.  My first experience working with this curriculum was with my thirteen year old neighbor who struggles with math.  We worked on the entire curriculum with additional practice on the topics implicit and explicit in this curriculum, but we did not do all of the extensions.  My next experience with this curriculum was with an algebra class at a large university.  In this situation we covered the same material I covered with my neighbor.  In the class, however, several students showed interest in various aspects that were addressed in the extensions, so I invited them to work on those extensions with me in small groups.  I will now describe these experiences in more detail.  

Experiences with an Individual Student

When my neighbor approached me about working with her son on his math over the summer, this curriculum seemed like the perfect activity for us to do together.  This was because it would give him a chance to look critically at the math he struggled with, helping him build a deeper understanding of that mathematics.  He could then use that understanding to help him build an understanding for algebraic ideas, which could help him have more success when he formally studies algebra in school.    

When we began the activity, he did not have trouble completing the first addition problem.  He did, however, have trouble explaining the process, which provided us with the perfect opportunity to begin the discussion about the addition algorithm.  We then moved on to a multi digit subtraction problem to see how deeply he had internalized our conversation.  He did not solve the subtraction problem as quickly as he had the addition problem and he struggled at explaining the process.  When I reminded him of our earlier conversation and encouraged him to think of the problem in terms of it he was eventually able to talk through the algorithm, although it took a fair amount of coaching.  

We next moved on to considering arithmetic involving time.  He was able to answer the question without using the algorithm, but also had difficulty explaining his ideas.  He tried completing the problems using the addition algorithm, to see if that helped.  When doing this, he got a different answer than he had mentally.  This did not bother him.  When I pointed out this paradox, he had a hard time extending the ideas we had explored with whole number arithmetic to time.  After a lot of discussion, he eventually was able to explain what it meant to carry in this context and correctly use the algorithm. 

When we moved on to the problem where there was no clear unit to use for carrying, he did not notice the dilemma.  He immediately assumed a month had four weeks and was ready to go on.  After we discussed how many days there were in different months, he did not immediately see a connection to the problem.  After some discussion, he asked me if the appropriate conversion for this problem was in fact four weeks.  This nicely led us to a conversation as to whether or not you could always carry.  I felt that we were now ready to move on to variables.  

My neighbor did not immediately collect like terms correctly, but after some discussion he was successful at the problems where the coefficients were positive.  He had more difficulty, however, when the problem contained different powers of the same variables and when there were signed numbers involved.  So we spent a while practicing with signed numbers.  

Having become more comfortable with signed numbers, we moved on to the issue of different powers of the same variable.  I directed him back to the multi digit numbers, but he had hard time seeing them as linear combinations of powers of ten.  He could see the numbers as their partial sums, but he experienced difficulties seeing the exponents inherent in the problem.  He eventually saw that the different powers of variables could not be collected, but it was through substitution rather than from the intended analogy.  He did not come up with the idea of using substitution on his own, and it took a while for him to figure out why and how substitution could help him.  

He successfully completed much of the homework assignment, but eraser marks suggested that he still had some difficulty with the problems involving the signed numbers.  He had difficulty with the extra credit, and it became clear it was because he did not really know what the decimals places represented.  

Having successfully completed the addition and subtraction problems, we moved on to multiplication problems.  My neighbor completed the problems that were building up to the distributive properly very easily.  In fact, he completed many of the problems on the distributive property themselves quite easily as well.  Although he forgot about the idea of like terms at first, combining his answers in to a single term.  He was a little confused about what to do with the problems involving the rules of exponents, but with a little prodding he quickly derived the rules and completed those problems as well.  

My neighbor performed quite well on the assessment at the end of these two units.  He was able to extend this idea of like terms to radicals that were already simplified, but he had a hard time simplifying the radicals.  I decided that that aspect was outside of the goal of the problem, so we did not spend much time on it.   Furthermore, this was intended to be a group quiz, meaning that it was probably particularly difficult for him to complete on his own.  Therefore, I skipped most of the problems involving radicals.  

We next moved on to multi digit multiplication, which caused us some difficulty.  I believe this is because my neighbor had memorized, rather than understood the algorithm he was taught in school.  We spent some time talking about how we do mental arithmetic in our head, which helped a bit.  I decided the discussion of mental arithmetic got to the heart of the issue as much as the algorithm did, so we moved on.  

He did not readily extend the idea of multiplication to polynomials.  He still had some difficulties coordinating all of the ideas he had constructed during the process of the curriculum.  That said, in short order he had all of the processes coordinated and was successfully completing the problems.  He did not immediately notice the patterns I hoped he would notice in the special products, but once he began to notice patterns he noticed many of them.  

Furthermore, he was successfully able to anticipate the products of polynomials.  He was also quickly able to complete the fill in the blank problems.  In addition he had relatively little difficulties factoring polynomials with leading coefficients of one.  He did make more mistakes with problems involving signed numbers than those involving all positive numbers.  Nevertheless, he was beginning to make fewer mistakes with signed numbers.  He did not, however, successfully develop an efficient process for factoring polynomials in general.  

I tried to move on to the rational expressions extension, however, his difficulties with factoring made it difficult for him to successfully complete many of the problems.  We did discuss fractions in the same way we had discussed whole numbers and decimals.  He did not immediately extend his ideas about decimals to fractions; nevertheless, with some prodding he did connect the two ideas.  He did not extend the ideas about fractions to rational expressions as quickly as I would have thought; nonetheless, he eventually successfully completed some of the problems.  

I think my neighbor benefited from doing these activities because it gave him a different perspective from which to view arithmetic.  It also provided him with an opportunity to practice the types of problems with which he needed help.  Furthermore, it showed him where the ideas were going and that he needed to master them because he would continue to use them.  That said, some of the weaknesses in his background made it difficult for him to complete many of these activities.  Also, many of these activities were designed to be done with partners or in small groups, so it was difficult for him to complete these activities on his own.  At times I was not able to help him develop ideas without prodding him a lot, meaning that he was not constructing these ideas as much as I would have liked.  

Experiences of a Group of Students

My algebra class at the university proved to be just as interesting, but in very different ways.  My students seemed to appreciate starting out their first class with a discussion of arithmetic.  I believe this is because many of them have math phobia, and it made the class less threatening.  Nevertheless, they did not know quite what to make of me or the class at first.  Also, they were looking for what answer I wanted them to give me.  I think it was helpful to start with this problem because the students were able to learn the structure and style of the class before we moved on to more difficult math.  

Many different answers were offered, and eventually a foreign student explained that it was because we were using the decimal system (he had studied the idea of number systems with different bases in high school).  As he explained what he meant by that, many students were interested in learning more.  This immediately made me think of my ethnomathematic extension I had already written, and the next day I handed out the assignment as extra credit.  However, no one turned it in.  

As we moved on to the first problem involving time, the first student to offer a solution in the class discussion converted the hours into minutes and used exactly the algorithm we had used before.  Although this was a perfectly valid solution, it defeated the purpose of the problem.  Luckily, a few people eventually offered solutions that used the idea of like terms.  

When I presented the second problem involving time, a student raised her hand and asked how many days she should assume are in a month.  This immediately thwarted the discussions that were supposed to happen in the dyads, however, it presented us with the opportunity for a class discussion.  The class quickly began using the phrase like terms, which I assume is because this was not their first experience with the idea.  Nevertheless, I was impressed that they made the connection that we were working towards so quickly on their own.  

The students successfully completed the questions on completing like terms, something that I cannot necessarily attribute to the activity since this was not the first time many students had seen this idea.  I decided to introduce the idea of radicals at this point, to challenge the students a bit.  At first they were afraid of the radicals, but after a little discussion most groups were able to add radicals that were already simplified.  Some students had intuitions that some could be simplified, but no one figured out on his or her own how to do so.  With a class discussion and some coaching from me they eventually came up with an idea, however, many students still had trouble with the idea.  

On the homework, very few of the students attempted the extra credit problem asking them to look at decimals in this light.  Of those that did, very few went into detail, with most just showing the problem or stating what they did.  This showed that we still needed a little more time on the ideas of explaining and exploring.  

As we moved on to the distributive property, the students flew through it.  A few students were still grappling with the idea of explaining where the product came from rather than just stating the answer, while other students easily described multiplication as partial products.  The students also quickly did the problems involving the distributive property, including those involving rules of exponents.  Once again, however, this could be based on their previous experience with the concept. 

I then extended the idea to include radicals.  Some students immediately used intuition to correctly simplify the problems, some were stumped, and yet others used their calculators to assess if answers were correct.  The idea of using calculators quickly caught on around the class, which lead the students to want to give approximate answers.  I reminded them about the difference between rounded answers and approximate answers and placed the ideas of radicals in a historical context.  Some of my students seemed interested in learning more about the history, so I invited all interested students to do the historical extension.  Nevertheless, none of the students took me up on the offer.  

When we moved towards polynomial multiplication, most students described the multiplication of multi digit whole numbers in terms of partial products.  They did this through a variety of ways including describing their mental processes and describing the reasons behind the algorithm many of them performed.  When students simply performed the algorithm, their classmates pushed for more, which told me they had been enculturated into the activities.  

As we moved to using variables, several students reverted to the process of FOIL they had learned at other points in their careers, which worried me quite a bit.  These students, however, all got the problems involving trinomials wrong.  This showed them that they needed to have a deeper understanding of the process rather than merely memorizing an algorithm.  Although I was disappointed that my students had gotten problems wrong, I was glad that it motivated them to understand rather than to memorize.  

As we moved on toward factoring students were beginning to anticipate terms in the products.  When I first asked students to do so, they were confused by the directions.  Once they got the hang of it, however, they did quite well with the problems.  They were also able to successfully fill in the blanks in multiplication problems quite quickly.  Furthermore, they were able to successfully factor problems involving leading coefficients of one.  This was not, however surprising since students often factor those with ease.  It took them a while to extend their ideas to other polynomials.  Nevertheless, they eventually did.  

Many students were using their calculators that can factor to help them find answers, and then worked backwards from the answers their calculators gave them.  Since this was consistent with the extension I created on the binomial theorem, it seemed like a great time to mention that activity.  The students generally seemed excited to be invited to use their calculators and to learn how to use their calculators to help figure out processes.  Ten of the students turned in the assignment, but none of them completed the entire thing.   

By the time we began working on the rational expressions extension, students were quite used to the format of the activity.  Many of them had difficulty with the concepts in fractions, however, as they worked together to remember how fractions worked they described the concepts to each other in the same terms we had been describing the other number systems.  Furthermore, they quickly extended their ideas to those of rational expressions.  

In general, I enjoyed teaching this curriculum.  As I asked students to think about the questions, I immediately realized some of the discussions were better suited for pairs than for small groups.  At other times, even though I thought the conversations might not warrant more than two people, many students seemed to need more support.  So I switched between dyads and small groups depending on the air in the classroom.  At times I let the students decide on their own how many people they wanted in their groups as well.  It was my first time using discourse in this way in a class, but these activities seemed to successfully help my students learn the intended concepts.  Furthermore, my students seemed to enjoy it, as they regularly came up to me after class to tell me how much fun they were having.  I look forward to adapting these activities over time and I would love to hear any modifications others have to offer.  
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