Save the Gnomes
 Optimal Strategy Hat Games

Jaime Bushi

March 21, 2012

Introduction

What is a Hat Game?

A Hat Game is a specific type of strategy puzzle that involves finding the 'best' outcome for a given set of parameters.

Now, these particular puzzles are called 'hat games' since all of them are placed in a context where we have a given number of players, and we place hats of varying colors on their heads.

These types of games are frequently called 'gnome hat games' since often the players are said to be gnomes who are in jail and will be executed if they guess wrong and/or the group 'loses.'

So our goal is to

What is a Hat Game?

A Hat Game is a specific type of strategy puzzle that involves finding the 'best' outcome for a given set of parameters.

Now, these particular puzzles are called 'hat games' since all of them are placed in a context where we have a given number of players, and we place hats of varying colors on their heads.

These types of games are frequently called 'gnome hat games' since often the players are said to be gnomes who are in jail and will be executed if they guess wrong and/or the group 'loses.'

So our goal is to Save the Gnomes!

Variations

These games have variations including, but not limited to,

- number of players
- number of hat colors
- visual information available to players
- auditory information available to players
- random uniform vs. non-uniform hat distributions
- rule of how hat colors are chosen (ie, based on fair coin flip vs. not fair coin flip)
- sequential vs. simultaneous guessing
- ability to pass or guess vs. being required to guess
- desired results (ie, majority guess correct, no one guess incorrect, highest probability to win for a specified definition of a win, etc...)
- adversarial vs. non-adversarial settings
- types of strategies allowed, etc.

So, one can imagine how wide an assortment of games can be defined.

Overview

During this presentation we will discuss several hat games and give their solutions with brief justifications and a sample game. These preliminary hat games are defined in order to construct a fourth game. For this last game we will define a strategy, sketch the proof of its optimality and provide a sample game.

Ebert's Hat Game

Justification
Example Game
Majority Hat Game
Hats-on-a-line Game
New Hats-on-a-Line
Game
Example Game

Conclusion
The End

Jaime Bushi

The Game/Rules

Introduction

Ebert's Hat Game
The Game/Rules
The Strategy
Example Game
Example Game
Justification
Justification
Justification
Example Game
Majority Hat Game
Hats-on-a-line Game

Example Game
Conclusion
The End

In 1998 Todd Ebert proposed the following problem in his PhD thesis.
There are 3 gnome prisoners (Elandria, Nisse and Mano) in a cell. Each has a hat placed on their head by the evil jailer. The hats can be one of two possible colors (black or red) and are chosen based on the outcome of a flip of a fair coin. The rules are as follows:

The Game/Rules

In 1998 Todd Ebert proposed the following problem in his PhD thesis.
There are 3 gnome prisoners (Elandria, Nisse and Mano) in a cell. Each has a hat placed on their head by the evil jailer. The hats can be one of two possible colors (black or red) and are chosen based on the outcome of a flip of a fair coin. The rules are as follows:

- No prisoner can see their own hat color, but each gnome can see the hat color of every other gnome.
- No communication is allowed between prisoners, except for a strategy-planning meeting before the game begins.
- Each gnome can either guess their hat color or pass.
- All prisoners will guess simultaneously.

The Game/Rules

In 1998 Todd Ebert proposed the following problem in his PhD thesis.
There are 3 gnome prisoners (Elandria, Nisse and Mano) in a cell. Each has a hat placed on their head by the evil jailer. The hats can be one of two possible colors (black or red) and are chosen based on the outcome of a flip of a fair coin. The rules are as follows:

- No prisoner can see their own hat color, but each gnome can see the hat color of every other gnome.
- No communication is allowed between prisoners, except for a strategy-planning meeting before the game begins.
- Each gnome can either guess their hat color or pass.
- All prisoners will guess simultaneously.

All gnomes are pardoned if at least one gnome guesses correctly and no gnome guesses incorrectly, otherwise they are all executed.

The Game/Rules

In 1998 Todd Ebert proposed the following problem in his PhD thesis.
There are 3 gnome prisoners (Elandria, Nisse and Mano) in a cell. Each has a hat placed on their head by the evil jailer. The hats can be one of two possible colors (black or red) and are chosen based on the outcome of a flip of a fair coin. The rules are as follows:

- No prisoner can see their own hat color, but each gnome can see the hat color of every other gnome.
- No communication is allowed between prisoners, except for a strategy-planning meeting before the game begins.
- Each gnome can either guess their hat color or pass.
- All prisoners will guess simultaneously.

All gnomes are pardoned if at least one gnome guesses correctly and no gnome guesses incorrectly, otherwise they are all executed. What is the best strategy so the gnomes have the highest probability to survive?

The Strategy

Introduction

Ebert's Hat Game
The Game/Rules
The Strategy
Example Game
Example Game
Justification
Justification
Justification
Example Game
Majority Hat Game
Hats-on-a-line Game
New Hats-on-a-Line Game

Example Game
Conclusion
The End

The following guessing strategy is optimal.
Let each gnome guess 'red' if both the others are wearing black, 'black' if the others are both wearing red, and 'pass' if they are wearing opposite colors.

Example Game

The following table shows how the guesses would occur for any hat configuration.

configuration	Elandria	Nisse	Mano
$B B B$	R	R	R
$B B R$	P	P	R
$B R B$	P	R	P
$R B B$	R	P	P
$B R R$	B	P	P
$R B R$	P	B	P
$R R B$	P	P	B
$R R R$	B	B	B

So, suppose the hat configuration is $B B R$ (Elandria receives a black hat, Nisse a black hat and Mano a red hat). Then the guess configuration would be $P P R$ and the gnomes are free.

Example Game

Introduction

Ebert's Hat Game

The Game/Rules
The Strategy
Example Game
Example Game
Justification
Justification
Justification
Example Game
Majority Hat Game
Hats-on-a-line Game
New Hats-on-a-Line Game

Example Game
Conclusion
The End

configuration	Elandria	Nisse	Mano	outcome
$B B B$	R	R	R	lose
$B B R$	P	P	R	win
$B R B$	P	R	P	win
$R B B$	R	P	P	win
$B R R$	B	P	P	win
$R B R$	P	B	P	win
$R R B$	P	P	B	win
$R R R$	B	B	B	lose

We can see in the table each gnome still has a 50% chance of guessing correctly but, all the incorrect guesses are concentrated in the $B B B$ and $R R R$ configurations. So, by following this strategy, the group wins with probability $\frac{6}{8}=75 \%$!

Justification

Introduction

Ebert's Hat Game
The Game/Rules
The Strategy
Example Game
Example Game
Justification
Justification
Justification
Example Game
Majority Hat Game
Hats-on-a-line Game

Example Game

Conclusion
The End

This strategy is inspired by an object of coding theory called a Hamming code. Hamming codes are a well-known class of codes that exist for some hypercubes. They have the following properties:

Justification

The Game/Rules
The Strategy
Example Game
Example Game
Justification
Justification
Justification
Example Game
Majority Hat Game
Hats-on-a-line Game

Example Game
Conclusion
The End

This strategy is inspired by an object of coding theory called a Hamming code. Hamming codes are a well-known class of codes that exist for some hypercubes. They have the following properties:

- The minimum distance between any two codewords is 3 .
- No two codewords are adjacent to each other, and any other vertex of $\{0,1\}^{n}$ is adjacent to exactly one codeword.
- Hamming codes only exist for $\{0,1\}^{n}$ where $n=2^{m}-1$ for some integer $m \geq 2$. So, Hamming codes exist for dimensions $3,7,15,31, \ldots$
- Of the 2^{n} vertices of $\{0,1\}^{n}, 2^{n-m}$ of them are codewords for the Hamming code. So, the fraction of vertices that are in the code is $\frac{1}{2^{m}}$ (small).

Justification

The Game/Rules
The Strategy
Example Game
Example Game
Justification
Justification
Justification
Example Game
Majority Hat Game
Hats-on-a-line Game
New Hats-on-a-Line Game

Example Game
Conclusion
The End

This strategy is inspired by an object of coding theory called a Hamming code. Hamming codes are a well-known class of codes that exist for some hypercubes. They have the following properties:

- The minimum distance between any two codewords is 3 .
- No two codewords are adjacent to each other, and any other vertex of $\{0,1\}^{n}$ is adjacent to exactly one codeword.
- Hamming codes only exist for $\{0,1\}^{n}$ where $n=2^{m}-1$ for some integer $m \geq 2$. So, Hamming codes exist for dimensions $3,7,15,31, \ldots$
- Of the 2^{n} vertices of $\{0,1\}^{n}, 2^{n-m}$ of them are codewords for the Hamming code. So, the fraction of vertices that are in the code is

Justification

Introduction

Ebert's Hat Game
The Game/Rules
The Strategy
Example Game
Example Game
Justification
Justification
Justification
Example Game
Majority Hat Game
Hats-on-a-line Game

Example Game

Conclusion
The End

We must notice several things regarding our game and $\{0,1\}^{n}$:

- For 2 colors every vertex of $\{0,1\}^{n}$ coincides with a one of our possible hat configurations if we denote black as 0 and red as 1 . - example: $B B R \sim 001$

Justification

We must notice several things regarding our game and $\{0,1\}^{n}$:

- For 2 colors every vertex of $\{0,1\}^{n}$ coincides with a one of our possible hat configurations if we denote black as 0 and red as 1 .
- example: $B B R \sim 001$
- Every player corresponds to a unique edge of $\{0,1\}^{n}$. -example: If the configuration is 10110 , then player 1 corresponds to the $(\mathbf{1 0 1 1 0}, \mathbf{0} 0110)$ edge, player 2 to the $(10110,11110)$ edge and so forth.

Justification

We must notice several things regarding our game and $\{0,1\}^{n}$:

- For 2 colors every vertex of $\{0,1\}^{n}$ coincides with a one of our possible hat configurations if we denote black as 0 and red as 1 .
- example: $B B R \sim 001$
- Every player corresponds to a unique edge of $\{0,1\}^{n}$. -example: If the configuration is 10110 , then player 1 corresponds to the $(\mathbf{1 0 1 1 0}, \mathbf{0} 0110)$ edge, player 2 to the $(10110,11110)$ edge and so forth.
- Finally, all players correspond to an edge incident with the configuration.

Justification

Introduction

Ebert's Hat Game
The Game/Rules
The Strategy
Example Game
Example Game
Justification
Justification
Justification
Example Game

We must notice several things regarding our game and $\{0,1\}^{n}$:

- For 2 colors every vertex of $\{0,1\}^{n}$ coincides with a one of our possible hat configurations if we denote black as 0 and red as 1 .
- example: $B B R \sim 001$
- Every player corresponds to a unique edge of $\{0,1\}^{n}$. -example: If the configuration is 10110 , then player 1 corresponds to the $(\mathbf{1 0 1 1 0}, \mathbf{0} 0110)$ edge, player 2 to the $(10110,11110)$ edge and so forth.
- Finally, all players correspond to an edge incident with the configuration.
-example: If 101 is our configuration then Elandria~ $(001,101)$, Nisse $\sim(101,111)$, and Mano~ $(100,101)$.
(101)

Justification

For Ebert's game we consider the hypercube $\{0,1\}^{3}$ shown.
The codewords here are 000 and 111. Our strategy is equivalent to any player who sees a possible codeword to guess the color that would make the configuration not a codeword. Then the following are true,

- If our configuration is a codeword everyone will guess incorrectly.
- If our configuration is not a codeword then only the player who see a possible codeword will guess (correctly). There is only one player who see a possible codeword as every vertex is adjacent to only one codeword.

Example Game

Introduction

Ebert's Hat Game
The Game/Rules
The Strategy
Example Game
Example Game
Justification
Justification
Justification
Example Game

Majority Hat Game

Hats-on-a-line Game

Consider a sample game with hat configuration $R R B$ we can see that only Mano sees a possible codeword ($1,1,1$), so only Mano would guess and he would guess the opposite of $1=$ Red, i.e. $0=$ Black and be correct, freeing our captives!

Majority Hat Game

Justification

Justification
Example game
Hats-on-a-line Game
New Hats-on-a-Line
Game
Example Game

Conclusion
The End

Jaime Bushi

The Game/Rules

In 1992, prior to Ebert's paper, Aspenes, Beigel, Furst and Rudich proposed the following game.
There are 3 gnome prisoners (Elandria, Nisse and Mano) in a cell. Each has a hat placed on their head by the evil jailer. The hats can be one of two possible colors (black or red) and are chosen based on the outcome of a flip of a fair coin. The rules are as follows:

The Game/Rules

In 1992, prior to Ebert's paper, Aspenes, Beigel, Furst and Rudich proposed the following game. There are 3 gnome prisoners (Elandria, Nisse and Mano) in a cell. Each has a hat placed on their head by the evil jailer. The hats can be one of two possible colors (black or red) and are chosen based on the outcome of a flip of a fair coin. The rules are as follows:

- No player can see their own hat color but each person can see the hat color of every other person.
- No communication is allowed between players except for a strategy planning meeting prior to the start of the game.
- Each player must guess their hat color, no passing allowed.
- Players will all guess simultaneously.

The Game/Rules

In 1992, prior to Ebert's paper, Aspenes, Beigel, Furst and Rudich proposed the following game. There are 3 gnome prisoners (Elandria, Nisse and Mano) in a cell. Each has a hat placed on their head by the evil jailer. The hats can be one of two possible colors (black or red) and are chosen based on the outcome of a flip of a fair coin. The rules are as follows:

- No player can see their own hat color but each person can see the hat color of every other person.
- No communication is allowed between players except for a strategy planning meeting prior to the start of the game.
- Each player must guess their hat color, no passing allowed.
- Players will all guess simultaneously.

All gnomes are pardoned if the majority of the gnomes guesses correctly, otherwise they are all executed.

The Game/Rules

In 1992, prior to Ebert's paper, Aspenes, Beigel, Furst and Rudich proposed the following game. There are 3 gnome prisoners (Elandria, Nisse and Mano) in a cell. Each has a hat placed on their head by the evil jailer. The hats can be one of two possible colors (black or red) and are chosen based on the outcome of a flip of a fair coin. The rules are as follows:

- No player can see their own hat color but each person can see the hat color of every other person.
- No communication is allowed between players except for a strategy planning meeting prior to the start of the game.
- Each player must guess their hat color, no passing allowed.
- Players will all guess simultaneously.

All gnomes are pardoned if the majority of the gnomes guesses correctly, otherwise they are all executed. What is the best strategy so the gnomes have the highest probability to survive?

The Strategy

Introduction

Ebert's Hat Game
Majority Hat Game
The Game/Rules
The Strategy
The Strategy
Justification
Justification
Justification
Justification
Example game
Hats-on-a-line Game
New Hats-on-a-Line Game

Example Game
Conclusion
The End

Let the players again be Elandria, Nisse and Mano. Let Elandria pick the opposite color of Nisse's hat, Nisse pick the opposite color of Mano's hat and Mano pick the opposite color of Elandria's hat.

The Strategy

configuration	Elandria	Nisse	Mano	outcome
$B B B$	R	R	R	lose
$B B R$	R	B	R	win
$B R B$	B	R	R	win
$R B B$	R	R	B	win
$B R R$	B	B	R	win
$R B R$	R	B	B	win
$R R B$	B	R	B	win
$R R R$	B	B	B	lose

Let the players again be Elandria, Nisse and Mano. Let Elandria pick the opposite color of Nisse's hat, Nisse pick the opposite color of Mano's hat and Mano pick the opposite color of Elandria's hat.
Then the following table shows all possible configurations of hat colors and the outcome of each game using this strategy.

The Strategy

configuration	Elandria	Nisse	Mano	outcome
$B B B$	R	R	R	lose
$B B R$	R	B	R	win
$B R B$	B	R	R	win
$R B B$	R	R	B	win
$B R R$	B	B	R	win
$R B R$	R	B	B	win
$R R B$	B	R	B	win
$R R R$	B	B	B	lose

Here again we see a high probability of winning, due to a concentration of multiple incorrect guesses into just 2 cases (the top and bottom rows). Indeed, we get a $\frac{3}{4}=75 \%$ chance of winning.

Justification

The strategy above can be generalized to any number of players n, for which a Hamming code exists for the n-dimensional hypercube.

The following justification, due to Elwyn Berlekamp, is based on a clever orientation of the edges of the hypercube $\{0,1\}^{n}$ in the case of $n=2^{m}-1$ players.

Recall from before, that every configuration is associated to a vertex and every player to a unique edge adjacent to the configuration vertex.

Justification

Using the Hamming code in $\{0,1\}^{n}$, we will direct the graph as follows.

Justification

Introduction

Ebert's Hat Game
Majority Hat Game
The Game/Rules
The Strategy
The Strategy
Justification
Justification
Justification
Justification
Example game
Hats-on-a-line Game

Example Game
Conclusion
The End

Using the Hamming code in $\{0,1\}^{n}$, we will direct the graph as follows.Let every edge incident with one of the 2^{n-m} codewords be directed away from the codeword.

Justification

Using the Hamming code in $\{0,1\}^{n}$, we will direct the graph as follows.Let every edge incident with one of the 2^{n-m} codewords be directed away from the codeword.

Justification

Introduction

Ebert's Hat Game
Majority Hat Game
The Game/Rules
The Strategy
The Strategy
Justification
Justification
Justification
Justification
Example game
Hats-on-a-line Game

Example Game
Conclusion
The End

Using the Hamming code in $\{0,1\}^{n}$, we will direct the graph as follows.Let every edge incident with one of the 2^{n-m} codewords be directed away from the codeword.

Originally, each vertex of the hypercube is incident with $n=2^{m}-1$ edges. If we remove all codewords, and edges incident to them, we are left with the non-codeword vertices each having degree $2^{m}-2$.

Justification

Using the Hamming code in $\{0,1\}^{n}$, we will direct the graph as follows.Let every edge incident with one of the 2^{n-m} codewords be directed away from the codeword.

Originally, each vertex of the hypercube is incident with $n=2^{m}-1$ edges. If we remove all codewords, and edges incident to them, we are left with the non-codeword vertices each having degree $2^{m}-2$.

Justification

Introduction

Ebert's Hat Game

Majority Hat Game
The Game/Rules
The Strategy
The Strategy
Justification
Justification
Justification
Justification
Example game
Hats-on-a-line Game
New Hats-on-a-Line Game

Example Game
Conclusion
The End

Since every vertex has even degree, the remainder of the edges can be oriented along an Eulerian circuit. (If it is not connected, direct the connected components to get a disjoint union of Eulerian cycles.)

Then each prisoner will guess the color corresponding to their position on the vertex their edge is directed towards. For example, in

Nisse would guess 1.

Justification

With the orientations described we can see:

Justification

Introduction

Ebert's Hat Game
Majority Hat Game
The Game/Rules
The Strategy
The Strategy
Justification
Justification
Justification
Justification
Example game
Hats-on-a-line Game
New Hats-on-a-Line Game

Example Game
Conclusion
The End

With the orientations described we can see:
Each non-codeword vertex has 2^{m-1} edges directed towards it and $2^{m-1}-1$ edges directed away from it. This is the case since half of the $2^{m}-2$ edges from the Eulerian cycle are directed towards it and half away (that is $2^{m-1}-1$ each direction) and has the 1 edge that connects it to a codeword directed towards it. This implies the majority of the prisoners guess correct.

Justification

With the orientations described we can see:
Each non-codeword vertex has 2^{m-1} edges directed towards it and $2^{m-1}-1$ edges directed away from it. This is the case since half of the $2^{m}-2$ edges from the Eulerian cycle are directed towards it and half away (that is $2^{m-1}-1$ each direction) and has the 1 edge that connects it to a codeword directed towards it. This implies the majority of the prisoners guess correct.

Each codeword has $2^{m}-1$ edges directed away from it and 0 directed towards it. This implies everyone guesses wrong and the gnomes die.

Justification

With the orientations described we can see:
Each non-codeword vertex has 2^{m-1} edges directed towards it and $2^{m-1}-1$ edges directed away from it. This is the case since half of the $2^{m}-2$ edges from the Eulerian cycle are directed towards it and half away (that is $2^{m-1}-1$ each direction) and has the 1 edge that connects it to a codeword directed towards it. This implies the majority of the prisoners guess correct.

Each codeword has $2^{m}-1$ edges directed away from it and 0 directed towards it. This implies everyone guesses wrong and the gnomes die.

Thus as long as our configuration is not one of the 2^{n-m} codewords, the gnomes live!
Side note: They win with probability $\frac{2^{n}-2^{n-m}}{2^{n}}=\frac{2^{m}-1}{2^{m}}$.

Example game

Introduction

Ebert's Hat Game

Majority Hat Game
The Game/Rules
The Strategy
The Strategy
Justification
Justification
Justification
Justification
Example game
Hats-on-a-line Game

For a sample game to illustrate this strategy, let us look at the 3-player game with hat configuration $R R B$. Letting B be denoted by 0 , and R by 1 , we get the 110 vertex of $\{0,1\}^{3}$. Then,

Example game

For a sample game to illustrate this strategy, let us look at the 3-player game with hat configuration $R R B$. Letting B be denoted by 0 , and R by 1 , we get the 110 vertex of $\{0,1\}^{3}$. Then,

and the guess configuration would be $B R B$ for a win.

Hats-on-a-line Game

Example game

The Game/Rules

This next game is known as the 'Hats on a line' game. For this game the jailer lines n gnomes up in a single file line. For ease, we denote gnome i by G_{i} and we let G_{1} be the gnome at the back of the line, and G_{n} be the gnome at the front of the line. Each gnome has a hat placed on their head by the evil jailer. The hats can be one of two possible colors (black or red) and are chosen based on the outcome of a flip of a fair coin. The rules are as follows:

New Hats-on-a-Line Game

Example Game

Conclusion

The Game/Rules

This next game is known as the 'Hats on a line' game. For this game the jailer lines n gnomes up in a single file line. For ease, we denote gnome i by G_{i} and we let G_{1} be the gnome at the back of the line, and G_{n} be the gnome at the front of the line. Each gnome has a hat placed on their head by the evil jailer. The hats can be one of two possible colors (black or red) and are chosen based on the outcome of a flip of a fair coin. The rules are as follows:

- No gnome can see their own hat color.
- Gnome G_{i} can see the hat color of G_{j} for all $j>i$. Note that G_{1} can see everyone's hat color except his own.
- Guesses will be made in sequential order ($G_{1}, G_{2}, G_{3} \ldots$, etc.) and all players can hear the guesses made before them.
- Prisoners may have a strategy meeting prior to the game.
- Each gnome must make a guess (no passing).

The Game/Rules

This next game is known as the 'Hats on a line' game. For this game the jailer lines n gnomes up in a single file line. For ease, we denote gnome i by G_{i} and we let G_{1} be the gnome at the back of the line, and G_{n} be the gnome at the front of the line. Each gnome has a hat placed on their head by the evil jailer. The hats can be one of two possible colors (black or red) and are chosen based on the outcome of a flip of a fair coin. The rules are as follows:

- No gnome can see their own hat color.
- Gnome G_{i} can see the hat color of G_{j} for all $j>i$. Note that G_{1} can see everyone's hat color except his own.
- Guesses will be made in sequential order ($G_{1}, G_{2}, G_{3} \ldots$, etc.) and all players can hear the guesses made before them.
- Prisoners may have a strategy meeting prior to the game.
- Each gnome must make a guess (no passing).

For this game any gnome who guesses wrong will be executed.

The Game/Rules

This next game is known as the 'Hats on a line' game. For this game the jailer lines n gnomes up in a single file line. For ease, we denote gnome i by G_{i} and we let G_{1} be the gnome at the back of the line, and G_{n} be the gnome at the front of the line. Each gnome has a hat placed on their head by the evil jailer. The hats can be one of two possible colors (black or red) and are chosen based on the outcome of a flip of a fair coin. The rules are as follows:

- No gnome can see their own hat color.
- Gnome G_{i} can see the hat color of G_{j} for all $j>i$. Note that G_{1} can see everyone's hat color except his own.
■ Guesses will be made in sequential order ($G_{1}, G_{2}, G_{3} \ldots$, etc.) and all players can hear the guesses made before them.
- Prisoners may have a strategy meeting prior to the game.
- Each gnome must make a guess (no passing).

For this game any gnome who guesses wrong will be executed. What is the best strategy so the highest number of gnomes survive?

The Strategy

The following strategy is optimal:
Prisoner G_{1} will give the others the sum/parity of their hat colors by guessing for his hat color the sum of their hat colors (with black= 0 and red $=1) \bmod 2$. Then each consecutive player will use this total and subtract the sum of the hat colors they see and the sum of the hat colors that have been guessed from this total. The number they are left with taken $\bmod 2$ will be their hat color guess.

The Strategy

The following strategy is optimal:
Prisoner G_{1} will give the others the sum/parity of their hat colors by guessing for his hat color the sum of their hat colors (with black= 0 and red $=1$) $\bmod 2$. Then each consecutive player will use this total and subtract the sum of the hat colors they see and the sum of the hat colors that have been guessed from this total. The number they are left with taken $\bmod 2$ will be their hat color guess.

This strategy can be generalized to q colors by giving each color a value $\{0,1, \ldots, q-1\}$ and doing calculations in $\bmod q$.

The Strategy

The following strategy is optimal:
Prisoner G_{1} will give the others the sum/parity of their hat colors by guessing for his hat color the sum of their hat colors (with black= 0 and red $=1$) $\bmod 2$. Then each consecutive player will use this total and subtract the sum of the hat colors they see and the sum of the hat colors that have been guessed from this total. The number they are left with taken $\bmod 2$ will be their hat color guess.

This strategy can be generalized to q colors by giving each color a value $\{0,1, \ldots, q-1\}$ and doing calculations in $\bmod q$.

This clever strategy uses nothing but modular arithmetic and the auditory advantages allowed by the game to guarantee everyone (but possibly prisoner G_{1}) wins and keeps G_{1} 's chances of winning at $\frac{1}{q}$. The gnomes just better hope that G_{1} will agree to their strategy, everyone is paying attention and everyone can add $\bmod q$, otherwise they are all in trouble!

Justification

Formally this is stated as Letting black be 0 , red be 1 and c_{i} be the color of G_{i} 's hat. Then G_{1} guesses

$$
g_{1}=\sum_{i=2}^{n} c_{i}(\bmod 2)
$$

(which has a 50\% chance of being right). Each additional prisoner will then guess

$$
g_{j}=g_{1}-\sum_{i \in\{2, \ldots, n\} \backslash\{j\}} c_{i}(\bmod 2)
$$

which will always be correct (i.e. $g_{2}=c_{2}$).

Example game

Introduction

Ebert's Hat Game
Majority Hat Game
Hats-on-a-line Game
The Game/Rules
The Strategy
Justification
Example game
New Hats-on-a-Line Game

Example Game
Conclusion
The End

To see how this works, consider 5 prisoners. Suppose that the configuration of hats is $B B R B R$.

Example game

Introduction

Ebert's Hat Game

Majority Hat Game
Hats-on-a-line Game
The Game/Rules
The Strategy
Justification
Example game
New Hats-on-a-Line Game

Example Game
Conclusion
The End

To see how this works, consider 5 prisoners. Suppose that the configuration of hats is $B B R B R$.

Then G_{1} would guess $0+1+0+1=2 \equiv_{2} 0$ or black. Implying:

Example game

To see how this works, consider 5 prisoners. Suppose that the configuration of hats is $B B R B R$.

Then G_{1} would guess $0+1+0+1=2 \equiv{ }_{2} 0$ or black. Implying:
G_{2} guesses $0-(1+0+1)=-2 \equiv{ }_{2} 0=c_{2}$ or black.

Example game

To see how this works, consider 5 prisoners. Suppose that the configuration of hats is $B B R B R$.

Then G_{1} would guess $0+1+0+1=2 \equiv 20$ or black. Implying:
G_{2} guesses $0-(1+0+1)=-2 \equiv{ }_{2} 0=c_{2}$ or black.
G_{3} guesses $0-\left(c_{2}+0+1\right)=-1 \equiv_{2} 1=c_{3}$ or red.

Example game

To see how this works, consider 5 prisoners. Suppose that the configuration of hats is $B B R B R$.

Then G_{1} would guess $0+1+0+1=2 \equiv_{2} 0$ or black. Implying:
G_{2} guesses $0-(1+0+1)=-2 \equiv_{2} 0=c_{2}$ or black.
G_{3} guesses $0-\left(c_{2}+0+1\right)=-1 \equiv_{2} 1=c_{3}$ or red.
G_{4} guesses $0-\left(c_{2}+c_{3}+1\right)=-2 \equiv_{2} 0=c_{4}$ or black.

Example game

To see how this works, consider 5 prisoners. Suppose that the configuration of hats is $B B R B R$.

Then G_{1} would guess $0+1+0+1=2 \equiv 20$ or black. Implying:
G_{2} guesses $0-(1+0+1)=-2 \equiv{ }_{2} 0=c_{2}$ or black.
G_{3} guesses $0-\left(c_{2}+0+1\right)=-1 \equiv_{2} 1=c_{3}$ or red.
G_{4} guesses $0-\left(c_{2}+c_{3}+1\right)=-2 \equiv_{2} 0=c_{4}$ or black.
G_{5} guesses $0-\left(c_{2}+c_{3}+c_{4}\right)=-1 \equiv{ }_{2} 1=c_{5}$ or red.

Example game

To see how this works, consider 5 prisoners. Suppose that the configuration of hats is $B B R B R$.

Then G_{1} would guess $0+1+0+1=2 \equiv 20$ or black. Implying:
G_{2} guesses $0-(1+0+1)=-2 \equiv{ }_{2} 0=c_{2}$ or black.
G_{3} guesses $0-\left(c_{2}+0+1\right)=-1 \equiv_{2} 1=c_{3}$ or red.
G_{4} guesses $0-\left(c_{2}+c_{3}+1\right)=-2 \equiv_{2} 0=c_{4}$ or black.
G_{5} guesses $0-\left(c_{2}+c_{3}+c_{4}\right)=-1 \equiv{ }_{2} 1=c_{5}$ or red.
This configuration has every gnome surviving. Notice that $R B R B R$
would have lead to the same process but G_{1} would have been executed.

The Game/Rules

New Hats-on-a-Line Game

History

Finally, we come to the main game. This final game is a combination of Ebert's hat game and the Hats-on-a-line game and was proposed by Maura Paterson and Douglas Stinson in Yet Another Hat Game published in The Electronic Journal of Combinatorics in 2010.

The Game/Rules

For this game the jailer lines n gnomes up in a single file line. For ease, we denote gnome i by G_{i} and we let G_{1} be the gnome at the back of the line, and G_{n} be the gnome at the front of the line. Each prisoner has a hat of any one of $q \geq 2$ colors placed on their head, with each color having even probability of being picked. The rules are as follows:

- No prisoner can see their own hat color.
- Gnome G_{i} can see the hat color of gnome G_{j} for all $j>i$. Note that G_{1} can see everyone's hat color (except his own).
- Prisoners will guess in sequential order $\left(G_{1}, G_{2}, G_{3}, \ldots\right.$, etc.), and all gnomes can hear the guesses made before them.
- Prisoners may have a strategy meeting prior to the game.
- Each gnome may either make a guess or pass.

The Game/Rules

For this game the jailer lines n gnomes up in a single file line. For ease, we denote gnome i by G_{i} and we let G_{1} be the gnome at the back of the line, and G_{n} be the gnome at the front of the line. Each prisoner has a hat of any one of $q \geq 2$ colors placed on their head, with each color having even probability of being picked. The rules are as follows:

- No prisoner can see their own hat color.
- Gnome G_{i} can see the hat color of gnome G_{j} for all $j>i$. Note that G_{1} can see everyone's hat color (except his own).
- Prisoners will guess in sequential order $\left(G_{1}, G_{2}, G_{3}, \ldots\right.$, etc.), and all gnomes can hear the guesses made before them.
- Prisoners may have a strategy meeting prior to the game.
- Each gnome may either make a guess or pass.

All gnomes are pardoned if at least one gnome guesses correctly and no gnome guesses incorrectly, otherwise they are all executed. What is the best strategy so the gnomes have the highest probability to survive?

The Solution

We will call the solution to this game 'The Strategy' which is defined as follows:

Let black be one of the q hat colors. For each gnome G_{i} for $1 \leq i \leq n$, if G_{i} sees a black hat then they pass, otherwise they guess black. In other words, the first gnome not to see a black hat guesses black. After anyone has guessed black, the rest of the prisoners will pass.

Optimality

Introduction

Ebert's Hat Game
Majority Hat Game
Hats-on-a-line Game

History
The Game/Rules
The Solution
Optimality
Optimality
Example Game
Conclusion
The End

Jaime Bushi

To prove 'The Strategy' is optimal over all possible strategies, we must show it has the maximal success probability. To accomplish this, do the following:

Optimality

To prove 'The Strategy' is optimal over all possible strategies, we must show it has the maximal success probability. To accomplish this, do the following:

- Show it is sufficient to only consider strategies where exactly one player guesses.

Optimality

To prove 'The Strategy' is optimal over all possible strategies, we must show it has the maximal success probability. To accomplish this, do the following:

- Show it is sufficient to only consider strategies where exactly one player guesses.
- Prove the winning probability of 'The Strategy' is $1-\left(\frac{q-1}{q}\right)^{n}$,

Optimality

To prove 'The Strategy' is optimal over all possible strategies, we must show it has the maximal success probability. To accomplish this, do the following:

- Show it is sufficient to only consider strategies where exactly one player guesses.
- Prove the winning probability of 'The Strategy' is $1-\left(\frac{q-1}{q}\right)^{n}$, -do this by using counting and probability methods to calculate

$$
\begin{aligned}
& \operatorname{Pr}\left(G_{1} \text { guesses correct }\right) \times \operatorname{Pr}\left(G_{1} \text { sees no black hats }\right) \\
& \quad+\operatorname{Pr}\left(\text { group wins if } G_{1} \text { pass }\right) \times \operatorname{Pr}\left(G_{1} \text { pass }\right) .
\end{aligned}
$$

Optimality

To prove 'The Strategy' is optimal over all possible strategies, we must show it has the maximal success probability. To accomplish this, do the following:

- Show it is sufficient to only consider strategies where exactly one player guesses.
- Prove the winning probability of 'The Strategy' is $1-\left(\frac{q-1}{q}\right)^{n}$, -do this by using counting and probability methods to calculate

$$
\begin{aligned}
& \operatorname{Pr}\left(G_{1} \text { guesses correct }\right) \times \operatorname{Pr}\left(G_{1} \text { sees no black hats }\right) \\
& \quad+\operatorname{Pr}\left(\text { group wins if } G_{1} \text { pass }\right) \times \operatorname{Pr}\left(G_{1} \text { pass }\right) .
\end{aligned}
$$

- Show that any optimal strategy is a what we call a restricted strategy (any strategy where every prisoner G_{2}, \ldots, G_{n} will either pass or guess correctly),

Optimality

To prove 'The Strategy' is optimal over all possible strategies, we must show it has the maximal success probability. To accomplish this, do the following:

- Show it is sufficient to only consider strategies where exactly one player guesses.
- Prove the winning probability of 'The Strategy' is $1-\left(\frac{q-1}{q}\right)^{n}$, -do this by using counting and probability methods to calculate

$$
\begin{aligned}
& \operatorname{Pr}\left(G_{1} \text { guesses correct }\right) \times \operatorname{Pr}\left(G_{1} \text { sees no black hats }\right) \\
& \quad+\operatorname{Pr}\left(\text { group wins if } G_{1} \text { pass }\right) \times \operatorname{Pr}\left(G_{1} \text { pass }\right) .
\end{aligned}
$$

- Show that any optimal strategy is a what we call a restricted strategy (any strategy where every prisoner G_{2}, \ldots, G_{n} will either pass or guess correctly),
-This is a contradiction proof. Assume a non-restricted strategy \mathcal{S} is optimal. Modify \mathcal{S} into a restricted strategy \mathcal{S}^{\prime} (based on G_{1} 's knowledge of \mathcal{S}). Show \mathcal{S}^{\prime} has a higher probability of winning. Contradicts \mathcal{S} was optimal.

Optimality

and

- Show that every restricted strategy has a maximum success probability of $1-\left(\frac{q-1}{q}\right)^{n}$, which equals the success probability of 'The Strategy'.

Optimality

and

- Show that every restricted strategy has a maximum success probability of $1-\left(\frac{q-1}{q}\right)^{n}$, which equals the success probability of 'The Strategy'.
- This involves a very clever partitioning of the configuration n-tuples, $\left(c_{1}, \ldots, c_{n}\right)$, based on whether or not G_{1} and G_{2} guess and

Optimality

and

- Show that every restricted strategy has a maximum success probability of $1-\left(\frac{q-1}{q}\right)^{n}$, which equals the success probability of 'The Strategy'.
- This involves a very clever partitioning of the configuration n-tuples, $\left(c_{1}, \ldots, c_{n}\right)$, based on whether or not G_{1} and G_{2} guess and INDUCTION!

Optimality

and

- Show that every restricted strategy has a maximum success probability of $1-\left(\frac{q-1}{q}\right)^{n}$, which equals the success probability of 'The Strategy'.
- This involves a very clever partitioning of the configuration n-tuples, $\left(c_{1}, \ldots, c_{n}\right)$, based on whether or not G_{1} and G_{2} guess and INDUCTION!

Thus, 'The Strategy' is an optimal strategy, since it is restricted (implying it can be optimal) and has the same probability of winning as the maximum probability for any restricted strategy.

Example Game

4 gnome, 2 hat color example

Introduction	Configuration	gnome who guesses	gnome's guess
Ebert's Hat Game	$B B B B$	4	B
Majority Hat Game	$B B B R$	3	B
Hats-on-a-line Game	$B B R B$	4	B
New Hats-on-a-Line	$B R B B$	4	B
Game	$R B B B$	4	B
Example Game	$B B R R$	2	B
$\begin{aligned} & 4 \text { gnome } \\ & \text { example } \end{aligned}$	$B R B R$	3	B
Example continued	$B R R B$	4	B
Conclusion	$R B B R$	3	B
The End	$R B R B$	4	B
	$R R B B$	4	B
	$R R R B$	4	B
	$R R B R$	3	B
	$R B R R$	2	B
	$B R R R$	1	B
	$R R R R$	1	B
Jaime Bushi		Save the Gnomes- Op	Strategy Hat Games

Example continued

Ebert's Hat Game
Majority Hat Game
Hats-on-a-line Game
New Hats-on-a-Line Game

Example Game
4 gnome, 2 hat color
example
Example continued
Conclusion
The End

Notice that the only wrong guess here is the $R R R R$ configuration. So this game wins with this strategy with probability $\frac{15}{16}=93.75 \%$.

Example continued

Notice that the only wrong guess here is the $R R R R$ configuration. So this game wins with this strategy with probability $\frac{15}{16}=93.75 \%$.

Is this equivalent to 'The Strategy' probability?

Example continued

Notice that the only wrong guess here is the $R R R R$ configuration. So this game wins with this strategy with probability $\frac{15}{16}=93.75 \%$.

Is this equivalent to 'The Strategy' probability?
'The Strategy' probability for $q=2$ colors is

$$
1-\left(\frac{2-1}{2}\right)^{4}=1-\frac{1}{2^{4}}=1-1 \frac{1}{16}=\frac{15}{16}
$$

Conclusion

Summary

- There is not one approach to every type of hat game due to all the possible variations. We saw several different strategy/solution types.
- Theses games could help develop theory for many different branches of mathematics.
- Some of these games may not seem to have relevant applications however, that does not mean they don't! Even if their only application is to let people enjoy a good puzzle and use their brains!
- We can leave today knowing we saved as many gnomes as possible within each game!

The End

