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1. Introduction

1.1. What is a Hat Game? What comes to your mind when you think of a ‘hat game’? There
are several possible definitions for a ‘hat game’, but in this paper, we will view a hat game as a
specific type of strategy puzzle that involves finding the ‘best’ outcome for a given set of parameters.
Now, these particular puzzles are called ‘hat games’ since all of them are placed in a context where
we have a given number of players, and we place hats of varying colors on their heads. These types
of games are sometimes also called ‘gnome hat games’ since often the players are said to be gnomes.

1.2. Variations of These Games. Within these games there are several parameters that can be
varied. There can be variations in the rules pertaining to many aspects of the game, including

• number of players
• number of hat colors
• visual information available to players
• auditory information available to players
• random uniform vs. non-uniform hat distributions
• rule of how hat colors are chosen (ie, based on fair coin flip vs. not fair coin flip)
• sequential vs. simultaneous guessing
• ability to pass or guess vs. being required to guess
• desired results (ie, majority guess correct, no one guess incorrect, highest probability to win

for a specified definition of a win, etc...)
• adversarial vs. non-adversarial settings
• types of strategies allowed, etc.

So, with all of these possible variations in the games, one can imagine how wide an assortment of
games can be defined.

1.3. Overview of This Paper. Throughout this paper I define three types of hat games and give
their solutions with brief justifications. Then a fourth game, which is a hybrid of two of the first,
will be defined, and a given strategy for this new game will be proven to be optimal.

2. Ebert’s Hat Game

2.1. Explanation and History. In 1998 Todd Ebert – a PhD student at the University of Califor-
nia at Santa Barbara – proposed the following problem in his PhD thesis ‘Applications of recursive
operators to randomness and complexity.’

Three people walk into a room and each has a hat placed on their head. The hats can be one of
two possible colors (black or white), based on the outcome of a flip of a fair coin. The rules are as
follows:

• No player can see their own hat color, but each person can see the hat color of every other
person.
• No communication is allowed between players, except for a strategy-planning meeting before

they walk into the room.
• Each player can either guess their hat color or pass.
• All players will guess simultaneously.

The group wins the game if at least one person guesses correctly and no one guesses incorrectly.

The question to answer is, what is the best strategy to give the group the highest possible
probability of winning?
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2.2. A Sample Game. A sample of how this game works is as follows.
Let the three players be Alice, Bob, and Carl. Suppose Alice walks into the room and has a

black hat placed on her head, Bob also receives a black hat, and Carl receives a white hat. They
then must each either guess a color or pass. (See Table 1 in the Appendix for all possible hat
configurations. This sample game is Row 2.) Recall that, to win, at least one person must guess,
and guess correctly.

So, Alice has 3 choices (black, white, or pass), as do Bob and Carl. By a simple counting
argument, this gives a total of 33 = 27 possible guess configurations, as each person’s guess is
independent (see Table 2 for all guess configurations). For the given configuration of hat colors,
which guess configurations correspond to winning outcomes?

As can be verified by the reader, the seven guess configurations below are precisely the winning
configurations out of the 27 possible:

PPW, PBP, BPP, BBP, BPW, PBW, BBW.

So, with no game strategy (in other words, if the players all guess or pass randomly so that
each guess configuration is equally likely), the probability that the group wins is 7

27 ≈ 25.9%. A
simple symmetry argument shows that this probability of winning is independent of the given hat
configuration. So the question is: can we do better? The answer to this is: absolutely!

Consider what would happen if we restrict the strategy so that only one person guesses and the
other two pass. Then there are only 6 possible guess configurations (choose the person who guesses,
3 choices, then they choose a color to guess, 2 choices). Again for the given configuration of hat
colors, now which guesses are winning outcomes? As can be verified by the reader, the three guess
configurations below are precisely the winning configurations out of the 6 possible:

PPW, PBP, BPP.

Notice, we have increased the chance of winning to 3
6 = 50%. Again, a simple symmetry argument

shows that this probability of winning is independent of the given hat configuration. So this strategy
is better than no strategy at all. But can we do better yet? Intuitively we might think not, but in
fact we can!

2.3. An Optimal Strategy. For the solution to this problem, there are a few things to notice.
First, if only one random or designated person guesses, we have a 50% chance of a win, as seen

above. If more people guess, it would seem that this could only decrease the probability that the
group will win. After all, if one person guessed correctly, each additional person to guess must also
guess correctly. Further, if one person guesses incorrectly, it doesn’t matter what the other people
guessed.

Now, since nobody can see their own hat, any strategy we come up with will still have each
player guessing correctly with a probability of 50%. But notice one important fact: multiple wrong
guesses by players are no worse than a single player guessing wrong. So roughly speaking, the
strategies we want to strive for should have any wrong guesses of the players concentrated in the
fewest number of guess configurations.

To illustrate, consider the following solution. Let Alice guess ‘white’ if both Bob and Carl are
wearing black, Alice will guess ‘black’ if they are both wearing white, and Alice will ‘pass’ if they
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are wearing opposite colors. Likewise for Bob and Carl. Then a table of our guesses looks as follows:

configuration Alice Bob Carl
BBB W W W
BBW P P W
BWB P W P
WBB W P P
BWW B P P
WBW P B P
WWB P P B
WWW B B B

We can see that, within each column, each player guesses exactly 4 times and 2 of those guesses will
be right. So we are consistent with the fact that each player has a 50% chance of guessing correctly
when they guess. However, from this strategy, we can see that the group wins in every row except
the top and bottom rows! So, by following this strategy, the group wins with probability 6

8 = 75%!
This is much better than the 50% that we had previously! Why does this work?

2.4. Introduction to Hamming codes. The strategy above is inspired by an object in coding
theory known as a Hamming code. There are several definitions we need to proceed here.

For any positive integer n, the n-dimensional hypercube, denoted {0, 1}n, is defined to be a graph
with 2n vertices, each of which is a binary sequence of length n. Two such vertices are joined by
an edge (and are said to be adjacent) whenever they differ in exactly one location.

For example, in the hypercube {0, 1}5, the binary sequence 10010 would be adjacent to each of
the following:

00010, 11010, 10110, 10000, 10011.

Every vertex of {0, 1}n has degree n (there are n vertices adjacent to each vertex). Also note that
the hat configurations correspond naturally to the vertices of the hypercube, while the number
of players will correspond to the dimension of the hypercube. The 3-dimensional hypercube is
depicted below.

(111)

(011)

(010)

(110)

(001)
(100)

(101)

(000)

Another definition we need is that of Hamming codes. To a coding theorist, a Hamming code is a
particular 1-error-correcting code that can be defined using modular arithmetic on a set of binary
sequences. To keep things simple, however, we can view a code simply as a subset of the vertices
of a hypercube. The vertices that are elements of a code are called codewords. For a code to be
1-error-correcting, we simply require that every vertex of the hypercube is either equal to, or is
distance one from, a unique codeword. An example of a 1-error-correcting code in the 3-dimensional
cube above is the set {(000), (111)}.

Hamming codes are a well-known class of codes that exist for hypercubes of certain dimensions,
and we need only remark that they have the following properties:
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• The minimum distance between any two codewords is 3.
• No two codewords are adjacent to each other, and any other vertex of {0, 1}n is adjacent

to exactly one codeword.
• Hamming codes only exist for {0, 1}n where n = 2m − 1 for some integer m ≥ 2.
• Hamming codes in {0, 1}n have 2n−m codewords.

When m = 2, the Hamming code has (000) and (111) as the codewords.
When m = 3 there are 16 codewords:

0000000, 0001111, 0010110, 0100101, 1000011, 1001100, 1010101, 1100110,

0101010, 0110011, 0011001, 1110000, 1101001, 1011010, 0111100, 1111111

Now, lets apply these ideas to our game.

2.5. Justifying the Strategy with Hamming Codes. Suppose we are playing the hat game
with n = 2m − 1 players, so that a Hamming code exists in the corresponding hypercube. The
vertices of the hypercube correspond to the possible hat configurations.

If our given configuration is not a codeword in the Hamming code, then there is a unique
codeword adjacent to it. This implies that there is exactly one person who will see a possible
codeword configuration. (This will be the person corresponding to the location that differs from the
codeword). For our strategy, this person will guess the color that would not make the configuration
be a codeword, and everyone else will pass. This ensures that if we do not have a codeword, only
one person will guess (correctly) and the rest will pass (resulting in a win).

On the other hand, if our configuration is a codeword, then everyone will see a possible codeword
configuration, so everyone will follow the same strategy and guess the color that would not make
the configuration be a codeword (incorrectly). This results in a loss.

So the probability that this strategy results in a loss is only 1/2m.
Notice that the strategy allows us to confine all of our incorrect guesses to the small set of only

2n−m codeword configurations. So every player guesses wrong in the same configurations as every
other player and no other configurations.

Staying with our 3-player game example, if black is called 0 and white 1, then 111 and 000 are
the codewords in the Hamming code. Also, since Alice has 0, Bob has 0 and Carl has 1, we have
received 001 as our given configuration. Thus only Carl sees a possible codeword configuration, so
only Carl will guess, and he will be correct.

As a second example, if we received 111 as our configuration, then each player would guess 0
and everyone would be wrong.

In summary, this strategy wins anytime the configuration is not a codeword and loses any time
it is a codeword. This solution, while ingenious, only works when the number of players is one less
than a power of 2, since it can be shown that Hamming codes only exist for these numbers.

3. Hats On a Line

3.1. Explanation and History. This next game is known as the ‘Hats on a line’ game. This
game has n players standing in a line and, for ease, we denote player i by Pi and we let P1 be the
player at the back of the line, and Pn be the player at the front of the line.

Each player has a hat (black or white) placed on their head based on the outcome of a flip of a
fair coin. The rules are as follows:

• No player can see their own hat color.
• Player Pi can see the hat color of player Pj for all j > i. Note that P1 can see everyone’s

hat color except his own.
• Players will guess in sequential order (P1, P2, P3 . . ., etc.) and all players can hear the

guesses made before them.
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• Players may have a strategy meeting prior to the game.
• Each player must make a guess (no passing).

Given this setup, we want a strategy that will maximize the number of correct guesses.

With no strategy, or utilization of auditory advantages, each player has a 50% chance of guessing
correctly. Ideally, we would want to develop a strategy that would allow all the players to always
guess correctly. This is not possible, since player P1 – having no extra information – has only a
50% chance of guessing correctly. However, if we can come up with a strategy that allows P1 to
give the rest of the players some useful information when he/she guesses, then perhaps only P1 has
a 50% chance of guessing correctly, while P2, . . . , Pn might fare better.

3.2. Solution. The solution is as follows. The players will first agree that one color, say black, is
denoted as 0 and the other, white, is denoted as 1.

Now, player P1 will look at the colors of the hats of P2, . . . , Pn and count how many white hats
he/she sees and announce a guess of 0 (“black”) if the parity is even or 1 (“white”) if the parity is
odd.

Then, player P2 hears this guess and knows the parity of white hats (including his/her own,
and excluding player P1). So if P2 sees the opposite parity of hats on players P3, . . . , Pn than P1

indicated, then P2 knows (correctly) that he/she is wearing white. Similarly, if P2 sees the same
parity as what P1 indicated, then P2 knows correctly that he/she is wearing black. So player P2

now announces his/her (correct) guess.
Then P3 can likewise deduce his/her hat color from the knowledge given by P1 and the additional

information provided by P2. This can continue in this way, and all players except P1 will have a
100% chance of being correct!

3.3. Justifying Solution with Modular Arithmetic. The solution to this game uses nothing
but a simple notion of modular arithmetic and the auditory advantages allowed by the game. If
any player is not paying attention, this strategy would be useless.

A more formal way to state the solution is as follows.
Let black be denoted as 0 and white be denoted as 1. Also, let ci denote the color of Pi’s hat
implying ci ∈ {0, 1}. Then because player P1 can see c2, . . . , cn, player P1 will make a guess of

g1 =

n∑
i=2

ci (mod 2).

Notice that P1 still has a 50% chance of guessing correctly, but has provided the rest of the players
with the information they need to guess correctly! To see this, we know P2 hears g1 and can see
c3, . . . , cn. Thus P2 can calculate

c2 = g1 −
n∑

i=3

ci (mod 2)

indicating P2 will guess c2 and be correct. Then P3 will calculate

c3 = g1 − c2 −
n∑

i=4

ci (mod 2)

and guess c3 correctly, but he better have heard c2’s correct guess! In general player Pj (for j 6= 1)
hears the correct guesses c2, . . . , cj−1 and can see the values of cj+1, . . . , cn and has the parity of
hats from g1 allowing Pj to compute

cj = g1 −
∑

i∈{2,...,n}\{j}

ci (mod 2).
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3.4. A Sample Game. To see how this works, consider 5 players. Suppose that the configuration
of hats is BBWBW. In this example, P1 would guess black(0). Then, P2 knows there are an even
number of white hats, and as P2 sees an even number of white hats, P2 would guess black(0)
correctly. Similarly, P3 knows there was an even number of white hats, and that P2 is not one of
them. Since P3 sees an odd number of white hats, he knows his hat must be white. So P3 would
guess, correctly, white(1). Now P4 knows there was an even number of white hats by P1’s guess,
and P2’s guess didn’t change that, but P3’s guess forced the number of white hats on P4 and P5 to
be odd. So, since P4 sees an odd number of white hats, P4 knows correctly that his hat is black(0).
Finally, P5 knows that there was an even number to start, and an odd number of players between P2

and P4 guessed white, so P5’s hat must be white. This outcome would yield the pleasant outcome
that everyone guesses correctly!

Note that if the configuration was WBWBW, the same pattern would have been followed and
P2, . . . , P5 would have still guessed correctly, but P1 would have guessed incorrectly. Thus, this
strategy can only have an incorrect guess by P1.

3.5. Generalization to q Colors. The above solution can be generalized to handle a game which
allows any number q of hat colors, by all calculations being taken mod q instead of mod 2. This
still only uses auditory advantages and modular arithmetic (just mod q instead of mod 2).

To understand how this more general game works with our solution, consider the following.
Certainly, player P1 always has a 1

q chance of winning. When P1 guesses, however, they are giving

the other players the sum of the hat colors (mod q) for players P2 . . . Pn. Thus, each player Pj can
sum the hats they see and the hats already guessed. Then, taking this total away from the total
sum of hat colors uniquely determines what color their own hat is.

This is a simple strategy to guarantee everyone (but player P1) wins, and keeps P1’s chances of
winning at 1

q . The players just better hope that P1 will agree to their strategy and can add mod q,

otherwise they are all in trouble!

4. Majority Hat Game

4.1. Explanation and History. In 1992, prior to Ebert’s paper, Aspenes, Beigel, Furst and
Rudich proposed the following game.

Three people walk into a room and each have a hat of two possible colors (black or white) placed
on their head based on the outcome of a flip of a fair coin. The rules are as follows:

• No player can see their own hat color but each person can see the hat color of every other
person.
• No communication is allowed between players except for a strategy planning meeting before

they walk into the room.
• Each player must guess their hat color, no passing allowed.
• Players will all guess simultaneously.

The group wins the game if the majority of the players guess correct.

The question to answer is: what is the best strategy to maximize the probability of winning?

4.2. The Solution. Let the players again be Alice, Bob and Carl. Let Alice pick the opposite color
of Bob’s hat, Bob pick the opposite color of Carl’s hat and Carl pick the opposite color of Alice’s
hat. Then the following table shows all possible configurations of hat colors and the outcome of
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each game using this strategy.

configuration Alice Bob Carl outcome
BBB W W W lose
BBW W B W win
BWB B W W win
WBB W W B win
BWW B B W win
WBW W B B win
WWB B W B win
WWW B B B lose

Here again we see a high probability of winning, due to a concentration of multiple incorrect
guesses into just 2 cases (the top and bottom rows). Indeed, we get a 3

4 = 75% chance of winning.

4.3. Generalizing the Solution. The strategy above can be generalized to any number of players
for which a Hamming code exists. The following formulation, due to Elwyn Berlekamp, is based
on a clever orientation of the edges of the hypercube {0, 1}n in the case of n = 2m − 1 players.

To describe the strategy in general, notice that each hat configuration corresponds to a vertex
of {0, 1}n. Relative to a given configuration (vertex), each player can be associated with a specific
edge of {0, 1}n that is incident with that vertex. For example, if the configuration is 10110, then
player 1 corresponds to the (10110,0110) edge, player 2 to the (10110, 11110) edge, player 3 to the
(10110, 10010) edge, and so on. In this way, each of the n players corresponds to one of the edges
incident with the configuration vertex.

Using the Hamming code in {0, 1}n, we will direct the graph as follows. Let every edge incident
with one of the 2n−m codewords be directed away from the codeword. Originally, each vertex of
the hypercube is incident with 2m − 1 edges. But without the edges we have just oriented, the set
of non-codeword vertices induce a subgraph in which each vertex is incident with 2m − 2 edges.
As such, the remainder of the edges can be oriented along an Eulerian circuit. (Or, if it is not
connected, at least the remaining edges can be partitioned and oriented into a disjoint union of
directed cycles.) Specifically, we have the following.

Lemma 4.1. Removing the codeword vertices and their incident edges from {0, 1}n leaves an even
Eulerian graph on each connected component.

Proof. Every vertex of {0, 1}n has degree n. Removing the 2n−m codewords and their incident
edges leaves 2n − 2n−m vertices all with degree n− 1 = (2m − 1)− 1 = 2m − 2 = 2(2m−1 − 1). By
Euler’s theorem, since every vertex has even degree, it follows that each connected component of
the remaining graph has an Eulerian circuit. �

Thus, we direct any edge that is not incident with a codeword by orienting the Eulerian circuits
that remain after the removal of the codewords and their incident edges. This completes the
orientation of the edges of the hypercube.

Now the strategy can be described as follows. Given any configuration, recall that each player
corresponds to an edge in the hypercube. The player will then guess their hat color by choosing the
color determined by the endpoint toward which their directed edge points. For example, if player
1’s edge (10110, 00110) was directed towards 10110, then player 1 would guess 1 rather than 0.

Lemma 4.2. The number of correct guesses for a given configuration is equal to the in-degree of
the corresponding vertex.

Proof. The in-degree of any vertex is the number of edges incident with it and that are directed
towards it. Given a configuration, the edges incident with that vertex correspond to the players in
the hat game for that configuration. So by the way we defined the guessing strategy, the number of
correct guesses for a given configuration is the same as the in-degree of its corresponding vertex. �
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Notice that, by the way we have oriented the graph, each codeword has out-degree n and in-
degree 0. So any codeword configuration will lead to 0 correct guesses. Also, each non-codeword
has in-degree 2m−1 = n+1

2 and out-degree of 2m−1 − 1 = n−1
2 . Thus, for any non-codeword, there

are n+1
2 correct guesses and n−1

2 incorrect guesses, and we have majority of the guesses correct.
Since there are 2n−m codewords, this yields a

1− 2n−m

2n
= 1− 1

2m
=

2m − 1

2m
=

n

n + 1

probability of winning the game. So for this strategy, we have a n
n+1 chance of winning the game,

just like in Ebert’s game!

4.4. A Sample Game. For a sample game to illustrate this strategy, let us look at the 3-player
game with hat configuration BBW. Letting B be denoted by 1, and W by 0, we get the 110 vertex
of {0, 1}3. Notice that Berlekamp’s orientation of the hypercube relative to the Hamming code
{(000), (111)} agrees with the simple ‘guess the opposite of your neighbors hat color’ strategy! The
directed graph appears below. Notice that the edges are oriented away from the codewords, and
the remaining edges are oriented along an Eulerian circuit. For the given configuration BBW, the
guess configuration would be WBW, which is a win.

(111)

(011)

(010)

(110)

(001)
(100)

(101)

(000)

A statement must be made that this ‘guess the opposite of your neighbor’ strategy does not always
agree with the optimal Hamming code strategy for different numbers of players. For example,
consider the 7-player game with hat configuration 1001010. In this example, all but one of the
arrows in {0, 1}7 will be facing the 1001010 vertex for the ‘guess the opposite of your neighbors
hat’ color strategy as seen below. Notice however, this will never correspond to a directed {0, 1}7
as defined, since the construction using a Hamming code always results in an equal in-degree and
out-degree for the edges coming from the Eulerian cycles.

(1001000)

(1001110)

(1000010) (1011010)

(1101010)

(0001010)

(1001011)

(1001010)
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5. The New Hats-On-A-Line Game

5.1. Explanation and History. Finally, we come to the topic this paper is based on. This final
game is a combination of Ebert’s hat game and the Hats on a line game. This game has n players
standing in a line, and we again denote player i by Pi, letting P1 be the player at the back of the
line and Pn be the player at the front of the line.

Each player has a hat of any one of q ≥ 2 colors placed on their head, with each color having
even probability of being picked. The rules are as follows:

• No player can see their own hat color.
• Player Pi can see the hat color of player Pj for all j > i. Note that P1 can see everyone’s

hat color (except his own).
• Players will guess in sequential order (P1, P2, P3, . . ., etc.), and all players can hear the

guesses made before them.
• Players may have a strategy meeting prior to the game.
• Each player may either make a guess or pass.

To win this game, no player can guess incorrectly and at least one player must guess correctly.

We are looking for a strategy that will maximize the probability of winning.

5.2. The Solution. We will call the solution to this game ‘The Strategy’ which is defined as
follows:

Let black be one of the q hat colors. For each player Pi for 1 ≤ i ≤ n, if Pi sees a black hat then
they pass, otherwise they guess black. In other words, the first person not to see a black hat guesses
black. After anyone has guessed black, the rest of the players will pass.

First we need the following lemma that will help to show this solution is optimal.

Lemma 5.1. It is sufficient to only consider strategies where exactly one player guesses.

Proof. With any strategy, if one person guesses, they have a 1
q chance of guessing correctly. If this

first person guesses correctly, any additional guesses only decrease the chances of winning, reducing
the probability of winning from 1

q to 1
q × (1q )k, where k is the number of additional guesses. If

the first person guessed incorrectly, the game is already lost, and it does not matter how many
additional people guess. So any optimal strategy can be modified by insisting that nobody guess
after a first guess has been made, and such a modification will not decrease the probability of
winning. �

5.3. Proof of Optimality. To prove ‘The Strategy’ is optimal over all possible strategies, we
must show it has the maximal success probability. To accomplish this, we do three things:

(1) determine the winning probability of ’The Strategy’,
(2) show that any optimal strategy is a what we call a restricted strategy, and
(3) show that no restricted strategy has a success probability greater than ’The Strategy’.

In the context of this game, we are defining a restricted strategy to be any strategy where every
player except possibly player 1 will either pass or guess correctly. So for a restricted strategy, only
player 1 can have a chance of guessing incorrectly.

Following the example of the original hats-on-a-line game, we let (c1, c2, . . . , cn) denote the hat
configuration of the game.

Theorem 5.2. For the New Hats-on-a-Line Game with q colors and n players, ‘The Strategy’ has
a success probability equal to 1− ( q−1q )n.
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Proof. The probability that P1 sees no black hats is ( q−1q )n−1. This is because the probability that

each person, other than P1, is not wearing black is q−1
q , and since each are independent, we just

multiply the n−1 of them together. According to ‘The Strategy’, player P1 would then guess black
and win with probability 1

q . But if P1 passes, then there is a black hat in the row, and each person

will pass until the last person in the row wearing a black hat. This player sees no more black hats
in front of them, and therefore knows that his/her hat is black. Thus if P1 passes they always win
the game. Hence the overall probability to win is:

Pr(P1 guess correct)× Pr(P1 sees no black) + Pr(win if P1 pass)× Pr(P1 pass).

This equals

1

q
×
(
q − 1

q

)n−1
+ 1×

(
1−

(
q − 1

q

)n−1)
=

(
q − 1

q

)n−1(1

q
− 1

)
+ 1

=

(
q − 1

q

)n−1(1− q

q

)
+ 1

=

(
q − 1

q

)n−1(
− q − 1

q

)
+ 1

= 1−
(
q − 1

q

)n

.

Thus, the probability to win using ‘The Strategy’ is 1−
(

q−1
q

)n

. �

Theorem 5.3. Any optimal (1-guess) strategy for the New Hats-on-a-line Game is a restricted
strategy.

Proof. For the sake of contradiction, suppose for the New Hats-on-a-line Game there exists a non-
restricted optimal strategy, S. For any configuration (c1, c2, . . . , cn) it is true that P1 will either pass
or guess. If P1 guesses, then everyone else will pass (since by theorem above we are only considering
the strategies where exactly one person guesses) and the group will win with a 1

q chance. If P1

passes, however, then the outcome of the game depends on the (n − 1)-tuple (c2, . . . , cn). Since
P1 knows the strategy being used by all players, P1 knows which of the (n− 1)-tuples (c2, . . . , cn)
will result in an incorrect guess, and cause the group to lose. Let F be the set of configurations
(c2, . . . , cn) in which a player other than P1 will guess incorrectly. We know, since S is not restricted,
that F 6= ∅. Create a new strategy S ′ by modifying S as follows:

(1) If (c2 . . . , cn) ∈ F , then P1 should guess an arbitrary color.
(2) If (c2 . . . , cn) /∈ F , then proceed as in S.

This new strategy, S ′, is a restricted strategy since P1 passes with S ′ if and only if (c2, . . . , cn) is a
configuration in which P2, . . . , Pn all guess correctly. Comparing S and S ′ it should be seen that
they only differ for cases in which (c2 . . . , cn) ∈ F . If (c2 . . . , cn) ∈ F , then S ′ has probability of 1

q

of winning. On the other hand, if (c2 . . . , cn) ∈ F , then S has probability 0 of winning if P1 passes
and 1

q if P1 guesses. Let k = |F|. The probability for any strategy to win is:

(Probability win given (c2 . . . , cn) /∈ F) + (Probability win given (c2 . . . , cn) ∈ F)

Now since S and S ′ differ only when (c2 . . . , cn) ∈ F , only the second term in the above sum
changes. For S we have:

(Probability win given (c2 . . . , cn) ∈ F) = (prob P1 guesses) ×
(

1

q

)
<

1

q
,

10
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noting that since S is not restricted, there must be a configuration in which a player other than P1

guesses (incorrectly); and since exactly 1 player guesses, this means P1 does not always guess. For
S ′ we have

(Probability win given (c2 . . . , cn) ∈ F) =
1

q
.

Therefore, S ′ has a higher probability of winning than S, which contradicts S being optimal. So
there does not exist an optimal strategy that is not restricted. �

Finally we will show that no restricted strategy can beat ‘The Strategy’.

Theorem 5.4. The maximum success probability for any restricted (1-guess) strategy for the New

Hats-on-a-line Game with q hat colors and n players is 1−
(
q−1
q

)n
.

Proof. Let S be an optimal restricted (1-guess) strategy. Define three sets A, B, and C as follows:

A = the set of (n− 1)-tuples (c2, . . . , cn) for which P1 guesses

B = the set of (n− 1)-tuples (c2, . . . , cn) for which P1 passes and P2 guesses correctly

C = the set of (n− 1)-tuples (c2, . . . , cn) for which P1 and P2 pass.

Then, every (n − 1)-tuples is in exactly one of the above sets, and since the total number of
(n− 1)-tuples is qn−1, this implies

|A|+ |B|+ |C| = qn−1. (1)

Now, create new multisets A’, B’, and C’ by removing the first coordinate c2 from each of the
(n − 1)-tuples in A, B and C. For example, if BBWWB was a configuration in A, then BWWB
would be a configuration in A’. Also, if WBWWB was a configuration in A, then BWWB would
occur twice in A’, which is why we need to allow A’, B’, and C’ to be multisets. With these
definitions, the following statements are true.

(i) B′ ∩ C ′ = ∅. This holds, since the (n − 2)-tuples (c3, . . . , cn) where P1 passes that have P2

guess correctly are in B’, and the ones that have P2 pass are in C’. Since an (n − 2)-tuple
cannot have P2 both guess and pass, these multisets cannot share any elements.

(ii) A′ ∩ C ′ = ∅. To see this let (c2, . . . , cn) ∈ A be arbitrary. This implies P1 will guess, and no
other player will guess correctly since S is a 1-guess strategy. Notice though, (c2, . . . , cn) ∈ A
implies by definition (c3, . . . , cn) ∈ A′. If (c3, . . . , cn) ∈ C ′ also then this implies one of the
players P3, . . . , Pn will guess correctly which is a contradiction. Thus (c3, . . . , cn) /∈ C ′ if
(c3, . . . , cn) ∈ A′.

(iii) For each element (c3, . . . , cn) ∈ B′ there are exactly q − 1 occurrences of (c3, . . . , cn) ∈ A′

since only one of the q possible c2’s yields a correct guess by P2.

Define another restricted strategy S ′ on only players P2, . . . Pn by modifying S as follows:

(1) If (c3, . . . , cn) ∈ A′ ∪B′ let P2 guess arbitrarily. If (c3, . . . , cn) ∈ C ′ let P2 pass.
(2) Let P3, . . . , Pn follow S.

Now, as the location of the (n − 2)-tuples are not affected by this modification it implies that P2

passes for the same (n−2)-tuples in S ′ as they did in S. Which, if we recall, were the (n−2)-tuples
such that one of P3, . . . , Pn will guess correct. Thus by definition S ′ is indeed restricted.

Let ωn be the maximum number of winning (n− 1)-tuples, in an optimal restricted strategy, for
which P1 passes. We want to show:

ωn ≤ qn−1 − (q − 1)n−1. (2)

To show this we use induction on n. For n = 2 this is clearly true, since the maximum number
of (n− 1)-tuples for which P1 passes is 1. This is the case since P1 will only pass if P2 is wearing a

11
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specific color hat. Hence ωn ≤ 1. Assume equation (2) for values less than n. Then we have a few
facts from the information known. First, from (iii) above, we get

|A| ≥ (q − 1)|B|. (3)

Second, since S ′ is restricted for n− 1 players, the inductive hypothesis yields

|C| ≤ qωn−1. (4)

Finally, since S is optimal, it is the case that

|B|+ |C| = ωn. (5)

Thus using (1), (3), (4), and (5), we can conclude that

ωn = |B|+ |C| by (5)

= qn−1 − |A| by (1)

≤ qn−1 − (q − 1)|B| by (3)

= qn−1 − (q − 1)(ωn − |C|) by (5)

≤ qn−1 − (q − 1)ωn + q(q − 1)ωn−1 by (4)

Solving for ωn in the above inequality we get,

ωn ≤ qn−2 + (q − 1)ωn−1

≤ qn−2 + (q − 1)(qn−2 − (q − 1)n−2) (Inductive Hypothesis)

= qn−1 − (q − 1)n−1.

Therefore, (2) is true.
12
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Lastly, use (2) to calculate the success probability of S.

Prob S wins = [Prob P1 passes] + (Prob P1 guesses × Prob P1 guesses correctly)

= [Prob P1 passes] + [(1− (Prob P1 passes))× Prob P1 guesses correctly]

= [Prob P1 passes] + [(1− (Prob P1 passes))× 1

q
]

= [Prob P1 passes] +
1

q
− 1

q
(Prob P1 passes)

=
1

q
+ [Prob P1 passes] (1− 1

q
)

≤ 1

q
+

ωn

qn−1
×
(

1− 1

q

)
≤ 1

q
+

(
qn−1 − (q − 1)n−1

qn−1

)
×
(

1− 1

q

)
=

1

q
+

qn−1

qn−1
− (q − 1)n−1

qn−1
− qn−1

qn
+

(q − 1)n−1

qn

= 1− (q − 1)n−1

qn−1
+

(q − 1)n−1

qn

= 1−
(
q(q − 1)n−1

qn
− (q − 1)n−1

qn

)
= 1− (q − 1)n

qn

= 1−
(
q − 1

q

)n

Hence,

Prob S wins ≤ 1−
(
q − 1

q

)n

.

�

Thus, we have shown that ‘The Strategy’ is an optimal strategy, since it is restricted and has
the same probability of winning as the maximum probability.

5.4. A Sample Game. In this section we will consider 3 ‘sample’ games. One will have a fixed
number of hat colors (q), one will have a fixed number of people (n) and the third will have a fixed
number of both hat colors and people. Within each sample game we will show that the game has
the same probability as ‘The Strategy’ and then give a specific example.

5.4.1. Game 1: Let us arbitrarily fix the number of hat colors q to be 2 and let the number of
people be an arbitrary n.

Claim 5.5. The maximum success probability for any strategy for the New Hats-on-a-line Game
with 2 hat colors and n players is 1− (12)n.

Proof. By induction on n:
For our base case, let n = 1. Then any guess by P1 is correct with probability 1

2 = 1− 1
2 . Assume

the claim is true for all number of players up to n. Suppose there are c configurations of n− 1 hats
for which P1 guesses.
case 1: c ≥ 1

13
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There are c cases where P1’s guess is correct with probability 1
2 . Thus the probability P1 guesses

wrong is

(Prob P1 guesses)× (Prob P1 guesses wrong) =
c

2n−1
× 1

2
=

c

2n
≥ 1

2n
.

Implying that the probability that P1 guesses correct is at most 1− 2−n

case 2: c = 0
If P1 always passes then the probability of winning is that of the n−1 player case which by induction
is 1− 2−n+1.
In either case we get that the probability of winning is max{1− 2−n, 1− 2−n+1} = 1− 2−n �

For an example of this case, let the configuration be BBBWBBWWWB . . . Then the first
player would pass, as another player Pi for i > 1 is wearing black, and by our strategy we would
win. This can be seen to be a maximum probability, as the probability that any configuration loses
is the probability that our configuration is of the form XWWW . . ., where X ∈ {B,W}, multiplied
by the probability that P1 guesses wrong;(

1

2

)n−1
×
(

1

2

)
=

(
1

2

)n

.

So the probability of winning is 1−
(

1
2

)n

= 2n−1
2n , which is the same as ‘The Strategy’ with q = 2.

5.4.2. Game 2: For this game we fix the number of players n to be 2 and let the number of hat
colors q be arbitrary.

Claim 5.6. The maximum success probability for any strategy for the New Hats-on-a-line Game
with q hat colors and 2 players is 1− ( q−1q )2 = 2q−1

q2
.

Proof. Suppose P1 makes a guess of their hat color if P2 is wearing {c1, . . . , cr} for a specified r of
the q possible colors. When P1 makes a guess, they guess correctly with probability 1

q . Consider
two cases,

case 1: r = q
If r = q then we get an overall success probability of 1

q by how this is defined.
case2: r < q

If this is the case, then P1 passes with probability of q−r
q . Now, given that P1 passes, then P2

guesses correctly with probability of 1
q−r since P1 passing tells P2 they are not wearing one of the

specified r colors, indicating they are wearing one of the other q − r colors. This gives an overall
success probability of

(probability P1 guesses)× (probability P1 guesses correctly)+

(probability P1 passes)× (probability P2 guesses correctly).

This is equivalent to

r

q
× 1

q
+

q − r

q
× 1

q − r
=

r

q2
+

1

q
.

Now, r
q2

+ 1
q = r+q

q2
is maximized when r = q − 1 since 1 ≤ r ≤ q − 1. Thus, since 2q−1

q2
> 1

q , this

case is the optimal strategy. �

Hence, for an example, suppose the configuration is BW where B,W are in the set of possible
hat colors. Then by ‘The Strategy’, if W (white) is the predetermined color then P1 will pass and

14
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P2 will guess white, indicating a win. If W (white) was not the agreed-on color, then P1 will guess,
and guess correctly with probability 1

q . Thus

(probability P1 guesses)× (probability P1 guesses correctly)+

(probability P1 passes)× (probability P2 guesses correctly).

=

(
q − 1

q

)
×
(

1

q

)
+

1

q
× 1

=
q − 1

q2
+

q

q2
=

2q − 1

q2

=
q2 − q2 + 2q − 1

q2
=

q2 − (q2 − 2q + 1)

q2

= 1− (q − 1)2

q2
= 1−

(
q − 1

q

)2

.

Thus this has the same probability as ‘The Strategy’ with n = 2.

5.4.3. Game 3: Suppose q = 2 and n = 4. Then we have 16 possible configurations.

Configuration player who guesses player’s guess
BBBB 4 B
BBBW 3 B
BBWB 4 B
BWBB 4 B
WBBB 4 B
BBWW 2 B
BWBW 3 B
BWWB 4 B
WBBW 3 B
WBWB 4 B
WWBB 4 B
WWWB 4 B
WWBW 3 B
WBWW 2 B
BWWW 1 B
WWWW 1 B

Notice that the only wrong guess here is the WWWW configuration. So this game wins with
this strategy with probability 15

16 . Is this equivalent to ‘The Strategy’ probability? ‘The Strategy’

probability is 1−
(

2−1
2

)4

= 1− 1
24

= 1− 1 1
16 = 15

16 . Hence they are the same probabilities, and our

strategy is in fact optimal.

6. Conclusion

Due to all the possible variations, as stated in the introduction, it should be obvious that there is
not one specific solution method for all hat games. We saw several different games within this paper
and some had solutions based on different topics. As we saw in this paper, there are connections
between Hamming codes in the hypercube and strategies for some hat games. In these results,
the coding theory supports the study of the hat games. But, as often happens in mathematics,
a connection between topics can be exploited in both directions. It is reasonable to hope that in
some future work, strategies for hat games might give us some crucial insight into the world of
error-correcting codes or other branches of mathematics. Some of these hat games do not seem to
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have practical applications. However, that does not mean they don’t! Even if their only application
is to let people enjoy a good puzzle and use their brains! Hat games are a fun and entertaining
math puzzle!

7. Appendix

Alice Bob Carl
B B B
B B W
B W B
W B B
W W B
W B W
B W W
W W W

Table 1. configurations for Ebert’s Hat game

Alice Bob Carl Alice Bob Carl
B B B B B B
B B W B B B
B W B B B B
W B B B B B
W W B B B B
W B W B B B
B W W B B B
W W W B B B
B W W B B B
B W W B B B
B W W B B B
B W W B B B
B W W B B B
B W W

Table 2. guess configurations for Ebert’s Hat game
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