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Abstract. Following the article “Combinatorics of Two-Toned Tilings” by Benjamin, Chinn, 
Scott, and Simay [1], this paper introduces a function to count tilings of length r + n that use any 
number of white tiles (of length between 1 and n) and exactly r identical red squares. We explore 

a number of combinatorial identities and generalizations of this concept, along with some 
connections to generalized Fibonacci numbers and applications to compositions of integers.  
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I. Introduction 
 

One of the simpler topics studied in combinatorics is the sequence of Fibonacci numbers, 
introduced by Leonardo de Pisa, an influential Italian mathematician from the Middle Ages who 
is commonly known by the name “Fibonacci”. This sequence of numbers appears frequently in 
nature - for example, in the family trees of honeybees, the number of petals in some flowers, the 
spiral patterns of seed heads and pine cones, the arrangement of leaves on stems, and so on. 
Fibonacci numbers also show up in the meter of Sanskrit poetry and in art, music, and 
architecture. The Fibonacci numbers are defined recursively by setting F1 = F2 = 1 and letting  
Fn = Fn - 1 + Fn - 2 for n 3. One easily proved fact, which we will later establish, is that the≥  
Fibonacci number Fm + 1 counts the number of tilings of an m by 1 rectangle (hereafter called an 
m - strip) using only squares and dominoes.  

 
At the other extreme, one of the more subtle topics studied in combinatorics is how to 

count the number of partitions of an integer (i.e., the number of ways of writing some positive 
integer n as a sum of positive integers). For instance, 7 is the number of integer partitions of 5, 
since 5 may be written as any of the following seven expressions 

 
5,  4 + 1,  3 + 2,  3 + 1 + 1,  2 + 2 + 1,  2 + 1 + 1 + 1,  and  1 + 1 + 1 + 1 + 1.  

 
Note that the order of the summands is disregarded, so 3 + 2 is considered equivalent to 2 + 3 as 
an integer partition of 5. It is very difficult to obtain a closed-form formula for the number of 
integer partitions. Famously, mathematicians Hardy and Ramanujan proved in 1918 that the 

number of partitions of n approaches  exp ( as n .1
4n√3

π )  √ 3
2n → ∞   

 
Various questions concerning integer partitions have been explored over the centuries. 

For example, if we agreed to distinguish sums by the order of their terms, then 5 + 2 and 2 + 5 
would be considered different from each other, and these two “ordered partitions” of 7 would be 
counted separately. Such an ordered partition is called a composition of n. We may want to 
count the compositions of n with exactly p parts (i.e., summands) of size k. For instance, there 
are four compositions of 7 with exactly three parts of size 2: 

 
2 + 2 + 2 + 1,  2 + 2 + 1 + 2,  2 + 1 + 2 + 2,  and  1 + 2 + 2 + 2. 

 
This project explores these ideas further, examining the article “Combinatorics of 

two-toned tilings” by Benjamin, Chinn, Scott, and Simay [1]. Their paper introduces several 
interesting identities involving tilings, including relationships with generalized Fibonacci 
numbers and compositions of integers. 



II. Two-toned Tilings 
 

For nonnegative integers r and n, let the function a(r, n) count the number of “two-toned 
tilings” of a strip of length r + n consisting of exactly r red squares and any number of white tiles 
of any length (from 1 to n). To abbreviate, we will call these (r, n) - tilings. The possible (1, 2) - 
tilings are 

R11, 1R1, 11R,  R2, 2R, 
  

where R signifies a red square and a number signifies a white tile of that length. Visually, these 
tilings may be represented as follows. 
 

   

 

   

 

   

 

  

 

  

 
This enumeration demonstrates that a(1, 2) = 5. On the other hand, a(2, 1) = 3 since  
 

RR1, R1R, and 1RR  
 

are all the possible (2, 1) - tilings. In general, a(r, 1) = r + 1 since there are r + 1 potential 
positions for the white tile (in this case a square) and red squares must fill the other positions.  

 
We begin with initial conditions and a recurrence relation for a(r, n). 

 
Identity 1: For r 0, the number of (r, n) - tilings satisfies≥  

a(r, 0) = 1.  
For n 1,≥   

a(0, n) = 2n - 1.  
For r, n 1,≥   

a(r, n) = a(r 1, n) + 2a(r, n 1) a(r 1, n 1).− − − − −  



Proof : If there are no white tiles, all r tiles must be red squares, so a(r, 0) = 1. If there are no red 
squares, we may tile an n - strip with white tiles by deciding whether or not to end a tile at every 
cell except the final one (which must end a tile). Thus a(0, n) = 2n - 1, and we note that this 
expression also corresponds very naturally to the number of compositions (i.e., ordered 
partitions) of the positive integer n.  

 
To count (r, n) - tilings for positive values of r and n, we condition on the way the (r, n) - 

tiling ends. If it ends with a red square, there are a(r 1, n) ways to tile the previous r 1 + n− −  
cells. If it ends with a white square, there are a(r, n 1) ways to tile the previous r + n 1 cells. If− −  
it ends with a white tile of length greater than 1, we may obtain it from an (r, n 1) - tiling that−  
ends in a white tile by lengthening the last tile by 1. There are a(r, n 1) a(r 1, n 1) of these− − − −  
(all (r, n 1) - tilings except those ending in a red square). Since these are the only possibilities,−  
we have a(r, n) = a(r 1, n) + 2a(r, n 1) a(r 1, n 1).     ∎− − − − −  

 
Using Identity 1, we can fill in a table of a(r, n) for values of r and n between 0 and 5, 

inclusive. When n = 0, we have a(r, 0) = 1, which gives us every entry of the first column of the 
table. When r = 0 and n 1, we have a(0, n) = 2n - 1, which gives us the rest of the first row of the≥  
table. We also know a(r, 1) = r + 1, which gives us the rest of the second column. For each 
remaining entry, we use a(r, n) = a(r 1, n) + 2a(r, n 1) a(r 1, n 1), which corresponds to− − − − −  
that entry’s North neighbor, plus twice its West neighbor, minus its Northwest neighbor. From 
above, we know a(1, 2) = 5 and a(2, 1) = 3, so we use the recursion to calculate a(2, 2): 
a(1, 2) + 2a(2, 1) a(1, 1) = 5 + 2(3) 2 = 9. Then a(3, 2) = 9 + 2(4) 3 = 14, and so on.− − −   

 
 

n  
 r 

0 
 

1 2 3 4 5 

0 1 1 2 4 8 16 

1 1 2 5 12 28 64 

2 1 3 9 25 66 168 

3 1 4 14 44 129 360 

4 1 5 20 70 225 681 

5 1 6 27 104 363 1182 

 
Table 1:  Two-toned tilings a(r, n) 



III. Combinatorial Identities 
 

The Fibonacci numbers 1, 1, 2, 3, 5, 8, … appear as sums of the diagonals of Pascal’s 
triangle, indicated in color below. 

                 1   
 

           1         1  
 

                 1         2         1 
 

           1         3         3         1 
 

                  1         4         6         4         1 
 

            1         5        10       10        5         1 
 
In a similar manner, our next identity relates sums of the diagonals of the table for two-toned 
tilings (Table 1) to the odd-indexed Fibonacci numbers. As an example,  
 

 +   +   =  2 + 2 + 1 = 5 =  F5.(0, )a 2 (1, )a 1 (2, )a 0  
 
Identity 2: For n 0,≥   

= F2n + 1.(r, )∑
n

r = 0
a n − r   

 
Proof: The left side enumerates the two-toned tilings of length n with r red squares where r may 
vary from 0 to n.  

 
We wish to define a map  between the set of two-toned tilings of length n and the set ofg︿  

tilings of a strip of length 2n using white squares and dominoes. To do so, we first define a map 
g which is the restriction of  to the individual tiles belonging to a two-toned tiling of length n.g︿  
Specifically, let the function g map each red square to a white domino (i.e., R 2) and each→  
white tile of length k 1 to k 1 white dominoes, preceded and followed by a white square (i.e., k≥ −

122...21 where there are k 1 copies of 2). In particular, g maps each white square to two→ −  
white squares (i.e., 1 11). To construct   apply g to each tile of a two-toned tiling from left to→ g,︿  
right until reaching the end, concatenating the results. For any two-toned tiling y1y2...yh of length 
n where the yi represent individual tiles, we have  (y1y2...yh) = g(y1)g(y2)...g(yh). The functiong︿  



effectively takes any two-toned tiling, doubles its length and changes it all to white, using onlyg︿  
squares and dominoes. We will show that  is a bijection.g︿   

 
To show  is onto, we will begin with a “white tiling” of a 2n - strip using white squaresg︿  

and dominoes and identify the two-toned tiling which is its preimage under  . Given ang︿  
arbitrary white tiling, its leftmost block of tiles must consist of one of the following and have the 
given preimage: 

● some number d of dominos preceded by zero white squares. The preimage is d red 
squares (i.e., RR...R 22...2 where the number of R’s and 2’s are the same).→   

● an even number 2t of consecutive white squares for some t 1. The preimage is t≥  
consecutive white squares.  

● an odd number 2t + 1 of consecutive white squares, t 0, followed by d 1 white≥ ≥  
dominoes and another white square. (Note that the tiling of a 2n - strip cannot consist 
solely of an odd number white squares since 2n is even.) The preimage is t consecutive 
white squares, then a white tile of length d + 1. For example, if we have one white square 
followed by d 1 white dominoes and another white square, the preimage is a white tile≥  
of length d + 1 (i.e., d + 1 122...21 with d copies of 2).→  

After finding the preimage of the leftmost block of tiles, move on to the next leftmost block of 
tiles and find its preimage. Each such block will be of even length and its preimage will be a 
two-toned tiling of half its length and will be uniquely determined by the rules above. Since we 
may deconstruct every possible tiling of a 2n - strip into such blocks with the specified 
preimages, we have shown  is onto.g︿   

 
Next, we prove g is one-to-one. Suppose two distinct two-toned tilings Y and Z of length 

n are mapped by  to the same tiling of the 2n - strip; i.e.,  (Y) =  (Z). Let Y = y1y2...yh andg︿ g︿ g︿   
Z = z1z2...zj where y1, …, yh, z1, …, zj {1, 2, …,  R}. By way of contradiction, assumeε ,n − r   
Y ≠ Z. Then there exists some first tile k in which Y and Z differ, so that yk ≠ zk and ym = zm for 
all m such that 1   m < k. But then g(yk) ≠ g(zk), which implies  (Y) ≠  (Z), a contradiction.≤ g︿ g︿  
So  is one-to-one and thus a bijection.g︿   

 
Finally, we want to show that F2n + 1 counts the set of all tilings of a 2n - strip using white 

squares and dominoes, which will complete the proof of the identity. Let tm represent the number 
of tilings of an m - strip using white tiles of length 1 or 2. To count these, we condition on the 
rightmost tile. If it is a white square, there are tm - 1 ways to tile the remaining  
m 1 cells. If it is a white domino, there are tm - 2 ways to tile the remaining m 2 cells. Thus for− −  
m 2, we have proved the recurrence relation tm = tm - 1 + tm - 2. This is identical to the Fibonacci≥  
recurrence Fm = Fm - 1 + Fm - 2. Next, compare the initial conditions. We know F1 = F2 = 1. A strip 
with no length has the “empty tiling” and a 1-strip may be tiled only with a white square, so  



t0 = t1 = 1. A 2-strip may be tiled using two squares or one domino, so t2 = 2. So tm = Fm + 1 for 
any m 0, which shows that the number t2n of tilings of a 2n-strip, is F2n + 1.      ∎≥   

  
The next three identities involve binomial coefficients and arise from constructing our 

two-toned tilings in various manners. First, suppose we want to count two-toned tilings by 
conditioning on the number of white tiles.  

 
Identity 3: For r 0 and n 1,≥ ≥   

a(r, n) =  (  ) (  ).∑
n

j = 1
 n − 1
 j − 1     r

j + r  

 
Proof: The left side counts the number of (r, n) - tilings. We may also count these tilings by 
conditioning on j, the number of white tiles, where 1  j n. For each value of j, we first≤ ≤  
determine the lengths of the white tiles that comprise length n. Since the jth tile must end at the nth 
cell, there are  (  ) ways to choose j 1 other cells of the remaining n 1 cells where a white n − 1

 j − 1 − −  
tile ends. We now have white tiles w1, w2, …, wj. Thus (  ) counts compositions of n with n − 1

 j − 1  
exactly j summands. 

 
Next, we intersperse r red squares among the white tiles in their given order. Altogether, 

there are j + r positions for tiles, so (  ) ways to choose where to put the r red squares. By the    r
j + r  

product property, we have (  ) (  ) two-toned tilings of length r + n with exactly j white n − 1
 j − 1     r

j + r  
tiles. Alternatively, in the second step, we may consider the j + 1 gaps before and after the j 
white tiles as locations to which we may assign r red squares in ((  )) ways. Then    r

j + 1   
 

((  )) = (  ) = (  ),    r
j + 1           r

j + 1 + r − 1     r
j + r   

 
giving the same product as before.       ∎  

 
Now suppose we want to count two-toned tilings by conditioning on the number of 

locations among the red squares where white tiles occur.  
 

Identity 4: For r 0 and n 1,≥ ≥   

a(r, n) =  (  ) 2n - j.(  )∑
r + 1

j = 1
   j
r + 1  n − 1

 j − 1   

 
Proof: Again, the left side enumerates the number of (r, n) - tilings. Another way to count these 
is to begin with r red squares and choose from the r + 1 gaps before and after these red squares 



exactly j regions in which to place white squares. (Since n 1, there must be at least 1 such≥  
region and at most r + 1 regions, so 1  j r + 1.) We may choose j regions in   ways.≤ ≤   )(    j

r + 1   
Next, select a subset {x1, x2, …, xj - 1} of {1, 2, …, n 1} such that 1  x1 < x2 < … < xj - 1 < n.− ≤  
There are (  ) such subsets. Each element xi of a particular subset gives the partial sum of n − 1

 j − 1  
white squares placed in the first i regions; i.e., put x1 white squares in region 1, xi xi - 1 white−  
squares in region i for 2 i  j - 1, and n xj - 1 white squares in region j. Finally, decide which≤ ≤ −  
white squares to attach or link together with the square on their left. There are n white squares,  
j of which are leftmost in their region, so 2n - j ways to decide whether or not to attach the 
remaining n - j white squares to their left neighbor. By the product principle,  (  ) 2n - j  )(    j

r + 1  n − 1
 j − 1  

is the number of (r, n) - tilings with exactly j regions where white tiles occur, which we sum over 
all possible values of j.      ∎  

 
The final identity concerning two-toned tilings gives a similar expression, but with a 

factor of 2 before the summation.  
 

Identity 5: For r 0 and n 1,≥ ≥   

a(r, n) = 2n - r - 1 ( .∑
r

j = 0
  )(    j
r + 1  )      n

r − j + n  

 
Proof: We make use of three different types of two-toned tilings. First, let T be the total set of all 
(r, n) - tilings. Then |T| = a(r, n). Next, let S represent the set of all (r, n) - tilings that consist 
solely of squares. Since the only question is which of the r + n squares are red, |S| = ( ).    r

r + n  
Finally, let D represent square-only (r, n) - tilings in which we may place red “dividers” on any 
boundaries not adjacent to a white square (i.e., before cell 1 and/or after cell r + n if it is red, 
and/or between two consecutive red squares). Then D is a “decorated” version of S, and we say 
the dividers are “white-averse”. For example, if r = 8 and n = 4, one element of D is the tiling 
|RRwR|R|RRwwRwR| with red dividers before the first, fifth, and sixth cells, and after the 
twelfth cell; another is R|RwRRR|RwwRwR| with red dividers before the second and seventh 
cells, and after the twelfth cell.  

 
To count tilings in D, let’s condition on j, the number of red dividers. If j were allowed to 

be r + 1, none of the gaps before and after the r red squares could have any white squares, since 
the dividers are white-averse. But n 1, so there are at most r red dividers, and 0 j r.  We≥ ≤ ≤  
claim the number of square-only (r, n) - tilings with exactly j red dividers is  ( .  )(    j

r + 1  )      n
r − j + n  

To see this, start with r red squares and place red dividers in j of the r + 1 gaps before and after 
them in   ways. Since no white square may be next to a divider, there remain r + 1 j  )(    j

r + 1 −  



regions where we may distribute n white squares in (( )) = ( ) =       n
r + 1 − j             n

r + 1 − j + n − 1  )(      n
r − j + n  

ways. So  

|D| =   ( .∑
r

j = 0
  )(    j
r + 1  )      n

r − j + n  

 
We still need to show that a(r, n) = 2n - r - 1 |D|. For k 0, let Sk be the set of tilings in S≥  

with exactly k boundaries not adjacent to any white square. For example, if r = 8 and n = 4, the 
tiling RRwRRRRwwRwR has k = 6. Similarly, we may define respective subsets Tk and Dk of T 
and D with k non-white boundaries. Since Dk differs from Sk in that we may choose whether or 
not to place red dividers at any of the non-white boundaries, |Dk| = 2k |Sk|. Note that if r = 0 or all 
red squares are surrounded on both sides by white squares, we have k = 0. Just as j, the number 
of red dividers, is bounded by r, so is k, the number of non-white boundaries where we may put 
red dividers, bounded by r.  

 
Next, let v = the number of boundaries between adjacent white squares. Then v is a 

function of k. Given some fixed k, we may turn a tiling in Sk into a tiling in Tk by deciding at 
each white/white boundary whether or not to join the 2 squares together to make a longer tile. 
For instance, the tiling RRwRRRRwwRwR in S6 has v = 1 so creates 2 tilings in T6: one with all 
squares as shown and the other with a white domino in place of ww. So |Tk| = 2v |Sk|.  

 
In Sk, there are n + r tiles and a total of n + r + 1 boundaries. We have four types of 

boundaries as we read a tiling in Sk from left to right: red/red, red/white, white/red, and 
white/white. The “walls” before cell 1 and after cell n + r are colored red. After the left wall and 
after each of the r red squares, there is either a red/red or a red/white boundary. Since k of these 
are red/red, that leaves r + 1 k red/white boundaries. Similarly, before each of the r red squares−  
and before the right wall, there is either a red/red or a white/red boundary. Since k of these are 
red/red, that leaves r + 1 k white/red boundaries. Summing all four types of boundaries, we−  
have k + 2(r + 1 k) + v = n + r + 1. Solving for v, we get v = n r 1 + k. By substitution,− − −   
|Tk| = 2n - r - 1 + k |Sk| = 2n - r - 1 + k (|Dk| / 2k) = 2n - r - 1 |Dk|. We want |T|, the total number of two-toned 
(r, n) - tilings. This is just the sum over all nonnegative k values of two-toned (r, n) - tilings with 

k red/red boundaries: a(r, n) = |T| =  |Tk| =  2n - r - 1 |Dk| = 2n - r - 1 |Dk| = 2n - r - 1 |D|.       ∎∑
 

k ≥ 0
∑
 

k ≥ 0
∑
 

k ≥ 0
  

 
 

IV. Generalizations 
 
Next, we restrict ourselves to two-toned tilings that end with at least s white tiles. These 

so-called (r, n, s) - tilings of length r + n + s have r red squares and white tiles of total length 



n + s. So s has a dual purpose, contributing both to the total length of white tiles and also 
specifying the minimum number of white tiles with which the tiling ends. For example, consider 
the possible (1, 2, 1) - tilings:  

 
R111, R12, R21, R3, 1R11, 1R2, 2R1, and 11R1.  

 
So a(1, 2, 1) = 8. Note that when s = 0, the number of (r, n, s) - tilings is equivalent to the 
number of (r, n) - tilings; i.e., a(r, n, 0) = a(r, n). 
 
Identity 6: For r, n 0 and s 1,≥ ≥   

a(r, n, s) =  .(r, j, s )∑
n

j = 0
a   − 1  

 
Proof: The left side is the number of (r, n, s) - tilings. Let j be the length of the last tile (white of 
positive length since s 1). Now n + s  is the total length of white tiles. Since our tiling ends with≥  
at least s white tiles, there are at least s 1 cells used in the other “ending” white tiles, so j has−  
maximum length n + s  (s 1) = n + 1. If we remove the final tile of length j, the preceding r +− −  

n + s j cells may be tiled in  ways. So  =− (r, n , s )a  + 1 − j  − 1 (r, n , s )∑
n + 1

j = 1
a  + 1 − j  − 1  

a(r, n, s). Now when j = 1,  = n, and when j = n + 1,  = 0, so we may replace then + 1 − j n + 1 − j  

second argument  with j and index from 0 to n: a(r, n, s) =  .      ∎n + 1 − j (r, j, s )∑
n

j = 0
a   − 1   

 
For example, to calculate a(1, 2, 2), we need to find some initial values. Note that the 

only (1, 0, 1) - tiling is R1, so a(1, 0, 1) = 1; R11, R2 and 1R1 are the only (1, 1, 1) - tilings, so 
a(1, 1, 1) = 3. Using Identity 6 and our previous work, we get a(1, 2, 2) = a(1, 0, 1) + a(1, 1, 1) + 
a(1, 2, 1) = 1 + 3 + 8 = 12. We verify this result by listing all (1, 2, 2) - tilings:  

 
R1111, R112, R121, R211, R22, R13, R31, 1R111, 1R12, 1R21, 2R11, and 11R11.  
 

Identity 7: For r 1 and n, s 0,≥ ≥   

a(r, n, s) =  (r , n , s )∑
n

j = 0
a − 1  − j  + j  

 
Proof: The left side is the number of (r, n, s) - tilings. For 0 , suppose s + j  gives the≤ j ≤ n  
exact number of white tiles with which any two-toned tiling of length r + n + s ends. Then those 
s + j white tiles are immediately preceded by a red square which, if removed, leaves a tiling of 



length ( ) + n + s that ends with at least s + j white tiles. We may count the number of suchr − 1  
tilings by  . Summing over all possible values of j yields the identity.     ∎(r , n , s )a − 1  − j  + j   
Identity 8: For r, s 0 and n 1,≥ ≥   

a(r, n, s) =  ( ( ).∑
n

j = 0
)  j + s − 1

n + s − 1     r
r + j  

 
Proof: The left side is the number of (r, n, s) - tilings. We may construct such a tiling by starting 
with exactly j + s white tiles, where j may vary from 0 (since all white tiles may be at the end) to 
n (since n + s is the total length of white tiles, and each could be a square). The total length of 
white tiles is n + s cells, and the last cell must end a tile, so we may choose the j + s   other− 1  
cells where white tiles end in ( ways. Now we place the red squares. Because the tiling)  j + s − 1

n + s − 1  
must end with at least s white tiles, there are j + 1 locations in which we may put the r red 
squares, so (( )) = ( ) = ( ) ways to do this. Applying the product principle and    r

j + 1          r
r + j + 1 − 1     r

r + j  
summing over all values of j yields the identity.       ∎  
 

Consider the case in which r and s are equal.  
 
Identity 9: For r 0 and n 1,≥ ≥   

a(r, n, r) = ( ) 2n - 1.    r
n + r

n + r
n + 2r  

 
Proof: First, we find an equivalent expression for part of the right side using the distributive 
property and the definition of binomial coefficients:  ( ) = ( )1 + ( )    r

n + r
n + r

n + 2r     r
n + r     r

n + r r
n + r  

= ( ) + = ( ) + = ( ) + (  ). So now we will prove the    r
n + r (n + r)!

r! (n + r − r)!
r

n + r     r
n + r

(r − 1)! n!
(n + r − 1)!     r

n + r     r − 1
n + r − 1  

equivalent equation a(r, n, r) = [( ) + (  )] 2n - 1.    r
n + r     r − 1

n + r − 1   
 
The left side counts two-toned tilings of length n + 2r that have exactly r red squares and 

end with at least r white tiles. We transform this type of tiling into another by replacing each of 
the r red squares one by one, from left to right, with the final r white tiles, and then coloring 
these pink. Since all r red squares are replaced, this new tiling is of length n + r and consists of 
white and pink tiles, exactly r of which are pink. Because we may undo these steps to get back 
the original two-toned tiling, these white and pink tilings are also counted by a(r, n, r).  

 
Next, we show another way to count the white and pink tilings just described. Let X, an 

r-subset of {1, 2, …, n + r}, name the r cells in which pink tiles begin. We may choose this 
subset X in ( ) ways. Consider whether the very first tile is pink. Case 1: If the first of r pink    r

n + r  
tiles begins in cell 1, then 1 belongs to X and there are ( ) ways to choose the remaining    r − 1

n + r − 1  
elements of X. We may decide whether each of the remaining n cells begins a white tile in 2n 
ways. Case 2: If the first pink tile does not begin in cell 1, there are ( ) (  ) ways to    r

n + r −     r − 1
n + r − 1  



choose X and so designate the r cells in which pink tiles begin. Cell 1 must begin a white tile, so 
there remain n 1 other cells which may or may not begin a white tile in 2n - 1 ways. Summing−  
these two cases gives us ( ) 2n + [( ) ( )] 2n - 1, from which we factor out 2n - 1:    r − 1

n + r − 1     r
n + r −     r − 1

n + r − 1   
[( ) 2 + ( ) ( )] 2n - 1 = [( ) + ( )] 2n - 1.      ∎    r − 1

n + r − 1     r
n + r −     r − 1

n + r − 1     r
n + r     r − 1

n + r − 1   
 

We now introduce the kth order Fibonacci numbers. Given initial conditions  = 0 forF n
(k)   

n and  = 1, we define the nth term of the kth order Fibonacci sequence recursively for n 2:≤ 0 F 1
(k) ≥  

  
= Fn - 1(k) + Fn - 2(k) + ... + Fn - k(k).F n

(k)   
 
To illustrate,  

=  +  +  = 1 + 0 + 0 = 1;F 2
(3) F 1

(3) F 0
(3) F −1

(3)   
=  +  +  = 1 + 1 + 0 = 2;F 3

(3) F 2
(3) F 1

(3) F 0
(3)   

=  +  +  = 2 + 1 + 1 = 4;F 4
(3) F 3

(3) F 2
(3) F 1

(3)   
        =  +  +  = 4 + 2 + 1 = 7; etc.F 5

(3) F 4
(3) F 3

(3) F 2
(3)   

 
Thus the 3rd order Fibonacci sequence begins 1, 1, 2, 4, 7, …. Note that the 2nd order Fibonacci 
sequence, in which each term is the sum of the previous two, is simply the familiar Fibonacci 
sequence 1, 1, 2, 3, 5, …. The next identity relates kth order Fibonacci numbers and two-toned 
tilings. 
 
Identity 10: For n, k 1,≥   

=  (-1)r a(r, n r(k + 1), r).F  (k)
n + 1 ∑

⌊ ⌋n
k + 1

r = 0
−  

 
Proof: Fix k 1 and let  be the number of tilings of an n-strip using only white tiles of length k≥ tn

(k)  
or less. Condition on the length of the last tile. We see that  =  +  + … +  . Thistn

(k) t (k)
n − 1 t (k)

n − 2 t (k)
n − k  

recurrence matches that of the kth order Fibonacci numbers. Considering the initial conditions, if 
k 1 there is one way to tile a strip of zero length and one way to tile a 1-strip, i.e.,≥   

= 1 =  and = 1 =  . Thus  =  .t0
(k) F 1

(k) t1
(k) F 2

(k) tn
(k) F  (k)

n + 1  
 
Now we interpret the right side of the identity. We begin with all two-toned tilings of 

length n rk + r that have exactly r red squares and end with at least r white tiles. These are−  
counted by a(r, n r(k + 1), r). Given such a tiling, if we lengthen each of its last r tiles by k,−  
then replace its r red squares with the elongated white tiles one by one from left to right, the 
tiling is longer by r copies of k and shorter by r, so its length is now n rk + r + rk r = n. This− −  
white tiling of length n is guaranteed to have tiles longer than k in the r positions that originally 



had red squares. To count white tilings of length n with tiles of maximum length k, we apply the 
inclusion/exclusion principle. The greatest allowable number of “too long” tiles (length k + 1 or 
more) is ⌊ ⌋  since this would give us a total length of (k + 1) ⌊ ⌋ n. So r varies from 0n

k + 1
n

k + 1 ≤  
to ⌊ ⌋. When r = 0, (-1)0 a(0, n 0(k + 1), 0) =  a(0, n, 0) = a(0, n), which counts tilings of ann

k + 1 −  
n-strip using white tiles of any length up to n. By Identity 1, a(0, n) = 2n - 1. From this total 
number of white tilings using tiles of lengths up to n, we subtract the white tilings where  
r = 1, meaning those with at least one tile longer than k. Then we add back all white tilings where 
r = 2, meaning those with at least two tiles longer than k. We continue to alternately subtract and 
add in this manner, giving the sum on the right side of the identity.      ∎  
 
Corollary: For n, k 1,≥  

  = (-1)r ( ) 2n - rk - r - 1.F  (k)
n + 1 ∑

⌊ ⌋n
k + 1

r = 0
     r
n − rk

n − rk
n − rk + r  

 
Proof: Start with Identity 10 and use Identity 9 to transform the right side:  

=  (-1)r a(r, n r(k + 1), r) =  (-1)r ( ) 2n - r(k + 1) - 1F  (k)
n + 1 ∑

⌊ ⌋n
k + 1

r = 0
− ∑

⌊ ⌋n
k + 1

r = 0
            r
n − r(k + 1) + r

n − r(k + 1) + r
n − r(k + 1) + 2r   

            =  (-1)r ( ) 2n - rk - r - 1.      ∎∑
⌊ ⌋n

k + 1

r = 0
     r
n − rk

n − rk
n − rk + r   

 
 

V. Applications to Compositions 
 

A composition of n is an ordered list of positive integers that sum to n. For example, the 
compositions of 4 are  

1111, 112, 121, 211, 22, 13, 31, and 4;  
 
there are eight of them. A composition of n corresponds to an uncolored tiling of an n-strip with 
tiles of length 1 to n, where each summand is represented as a tile of positive integer length. 
Let L(k, n) be defined as the number of compositions of n in which at least 1 copy of the 
summand k appears. Similarly, define Lp(k, n) as the number of compositions of n in which at 
least p copies of the summand k appear. For example, from the list above, we see that L(2, 4) = 4 
and L2(2, 4) = 1.  
 

Identity 11: For n, k 1, L(k, n) =  (-1) j - 1 a(j, n jk).≥ ∑
 

j ≥ 1
−  

 



Proof: Now a(j, n jk) counts two-toned tilings of length j + n jk with exactly j red squares. If− −  
we replace each red square with a pink tile of length k, the tiling shrinks by j and grows by jk so 
is of length n. This corresponds to a composition of n with j or more instances of the summand k, 
j of which are written in pink. For example, a(1, n k) stands for all compositions of n where k is−  
the first summand (and possibly others), or k is the second summand (and possible others), and 
so on. However, this is an overcount since a composition with more than one summand k will be 
counted in each of the positions at which k occurs. To correct this, we use the 
inclusion-exclusion principle. Since j denotes the minimum number of occurrences of the 
summand k, j has a value of at least 1. Note that once j > ⌊ ⌋ then n jk < 0 and a(j, n jk) = 0,k

n − −  
so the sum is finite.    ∎ 
 

Identity 12: For p, n, k 1, Lp(k, n) =  (-1) j - p ( ) a(j, n jk).≥ ∑
 

j ≥ p
 j − 1
p − 1 −  

 
Proof: By modifying the inclusion-exclusion principle somewhat, as shown in Proofs that really 
count [2], we may count the number of ways a property occurs at least p times. Indexing over 
values of j p, we multiply each unsigned summand of Identity 11 by (-1) j - p ( ) to get the≥  j − 1

p − 1  

more generalized formula in Identity 12. Notice that when p = 1, this reduces to Identity 11.    ∎ 
  

Let Ep(k, n) be defined as the number of compositions of n with exactly p copies of the 
summand k. For example, the compositions of 4 with exactly 2 copies of the summand 1 are 112, 
121, and 211, so E2(1, 4) = 3.  

 

Identity 13:  For p, n, k 1, Ep(k, n) =  (-1) j - p ( ) a(j, n jk).≥ ∑
 

j ≥ p
 jp −  

 
Proof: If we want the compositions of n in which the summand k appears exactly p times, we 
may start with the compositions of n in which the summand k appears at least p times and 
subtract the compositions of n in which the summand k appears at least p + 1 times. That is,  
Ep(k, n) = Lp(k, n) Lp + 1(k, n)−  

 = (-1) j - p ( ) a(j, n jk)  (-1) j - p - 1 ( ) a(j, n jk)∑
 

j ≥ p
 j − 1
p − 1 − − ∑

 

j ≥ p + 1
   p
j − 1 −    by Identity 12 

 = (-1) j - p ( ) a(j, n jk) + (-1) j - p ( ) a(j, n jk)∑
 

j ≥ p
 j − 1
p − 1 − ∑

 

j ≥ p + 1
   p
j − 1 −     by exponent rules 

 = (-1) j - p ( ) a(j, n jk) + (-1) j - p ( ) a(j, n jk)∑
 

j ≥ p
 j − 1
p − 1 − ∑

 

j ≥ p
   p
j − 1 −     since ( ) = 0    p

p − 1  



 = (-1) j - p [( ) + ( )] a(j, n jk)∑
 

j ≥ p
 j − 1
p − 1    p

j − 1 −    by the distributive property 

But ( ) + ( ) =  + = + = = ( ), j − 1
p − 1    p

j − 1 (j − 1)!
(p − 1)! (j − p)!

(j − 1)!
p! (j − p − 1)!

p (j − 1)!
p (p − 1)! (j − p)!

(j − p) (j − 1)!
(j − p) p! (j − p − 1)!

j (j − 1)!
p! (j − p)!  jp  

which is known as Pascal’s identity [4]. This yields Ep(k, n) = (-1) j - p ( ) a(j, n jk).       ∎∑
 

j ≥ p
 jp −   

 
 

VI. Conclusion 
 

In this paper, we used a recurrence relation to build a table for the number of (r, n) - 
tilings and showed how diagonal rows of this table summed to odd Fibonacci numbers. We 
explored combinatorial identities based on how the two-toned tilings were constructed ‒ for 
example, conditioning on the number of white tiles, the number of locations of white tiles, and 
the number of white tiles at the end of a tiling. We related two-toned tilings to generalized 
Fibonacci numbers and, finally, to integer compositions. We noted that compositions of n 
correspond to (0, n) - tilings, and we explored formulas for counting the number of compositions 
of n with at least or exactly a certain number of copies of the summand k. 

  
Compositions of integers may be used in other fields besides mathematics for modeling 

sequences that are subject to certain constraints. For instance, a geneticist might use integer 
compositions to model DNA sequences with a particular mutation. A computer programmer may 
seek the number of binary sequences of a certain length with ones in some minimum number of 
places. A scheduler in production may want to determine the number of ways to split up the 
hours of the workweek into shifts of certain lengths, and how to distribute workers’ breaks so 
production progresses smoothly. Thus we may begin to imagine how the final three identities 
might have practical application, beyond stimulating our intellect.  
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