
Deterministic Primality Testing in Polynomial
Time

A. Gabriel W. Daleson

December 11, 2006

Abstract

The new Agrawal-Kayal-Saxena (AKS) algorithm determines whether
a given number is prime or composite in polynomial time, but, un-
like the previous algorithms developed by Fermat, Miller, and Rabin,
the AKS test is deterministic. The new test is not without its disad-
vantages, however; the older, error-prone Miller-Rabin test is accurate
enough for nearly all numbers, and both experiment and analysis show
that the AKS algorithm is, at present, still too slow to replace its pre-
decessor.

1 Introduction

Primality 1. A natural number N is prime if and only if there exist no
products of the form ab = N where both a and b are not equal to 1 or N .

The definition of primality is one of the trickiest in mathematics.
Firstly, the definition is a negative one; to prove that N is prime, we must

show not that something happens, but that something does not happen. In
most circumstances, this means exhaustive search; granted, we do get to stop
whenever we find the first nontrivial factorization, but, in the case where N
is indeed prime, we only find this after examining all possibilities, which can
take a very long time.

For our purposes, though, it’s not the negative aspect of the definition
that causes the problem, but the search. Algorithmically speaking, searches
are awful; only in the very rarest cases can we arrange things to make searches

1

quick. What we would prefer is a more functional definition, where we can
apply some computation to N that gives us the answer, but, at least at this
early stage, we lack such things.

This poses a rather serious problem, in that current cryptographic al-
gorithms such as RSA require large primes; currently, software such as the
GNU Privacy Guard can require primes between 22047 and 22048 − 1. We
therefore need a quick, accurate way to test large numbers for primality.

2 Fermat’s Little Theorem & Test

Our effort begins with the following theorem:

Fermat’s Little Theorem 1. For any a ∈ Zp, ap = a.

The proof proceeds via induction on a. In the cases a = 0 and a = 1, the
theorem is plainly true. Supposing it holds for some k ∈ Zp — that is, that
kp = k — we can consider (k + 1)p. Now, the binomial theorem tells us that
this looks like

kp + 1 +

p−1∑
j=1

(
p

j

)
kj

but we know that
(

p
j

)
= p!

(p−j)!j!
will always be a multiple of p, as 0 < j < p,

so p − j < p and j < p; as p is prime, this means that neither (p − j)! nor
j! will ever contain factors of p. Therefore, every term in the summation is
0 in Zp, giving us kp + 1, which, by the induction hypothesis, is k + 1. We
therefore have proven that, given a k ∈ Zp such that kp = k, it follows that
(k + 1)p = k + 1; adding this to our base case, the induction is complete. �

We might hope (albeit in vain) that the converse is true; that is, that if
aN = a for some a ∈ ZN , that N is prime. This is our first primality test.

The Fermat Test 1. If there exists an a, not 0 or 1, such that aN = a in
ZN , then N is prime.

Closely related is the Chinese Hypothesis, which states that N is prime
if and only if N |2N − 2 (or, if you prefer, that N |2N−1 − 1 for N 6= 2).

Both the Fermat Test and the Chinese Hypothesis are, however, false;
the smallest number for which the Chinese Hypothesis fails is 341 = 11× 31.
This is, fortunately for us, rather easy to see, as 341 × 3 = 1023, which is

2

http://www.rsasecurity.com/rsalabs/node.asp?id=2214
http://gnupg.org
http://mathworld.wolfram.com/ChineseHypothesis.html

easily recognized as 210 − 1. From this, it follows that 210 = 1 in Z341, and
so (210)

34
= 2340 = 1 in Z341.

In fact, it can fail for any a; for instance, setting N = 91 and looking at
3N − 3, note that 91× 8 = 728, one less than 729 = 36.

3 Psuedoprimes

Given, then, that the Fermat Test has these holes, the logical way to proceed
is to investigate them.

k-pseudoprimes 1. A composite number N is said to be k-pseudoprime or
a Fermat k-liar if and only if kN = k (mod N).

Now, using this language of k-pseudoprimes, we can at least amend things
a bit and make them correct, if not yet useful. As it stands, the old version of
the Fermat Test only gives correct results when it proves a number composite.

An Amended Fermat Test 2. If there exists an k, not 0 or 1, such that
kN = k in ZN , then N is either prime or k-pseudoprime.

Now, we can outmaneuver things a bit by varying k, but then how many
different ks do we have to use in the Fermat Test to prove a number prime?
In fact, might it not be enough if we test every k? We can at least make the
following definition:

Absolute Pseudoprimes 1. A composite number N is said to be an abso-
lute pseudoprime or Carmichael number if and only if N is k-pseudoprime
for all k, or, more explicitly, if kN = k (mod N) for all k.

The usual way we identify absolute pseudoprimes is via Korselt’s Criterion
[Car10].

Korselt’s Criterion 1. N is an absolute pseudoprime if and only if

i. N is composite.

ii. N is squarefree.

iii. for all prime p, if p|N , then p− 1|N − 1.

3

The proof of Korselt’s Criterion is quite simple. Suppose N satisifes the
criterion; then, as N is squarefree, we know that in order for N to divide
kN − k, all we require is that p|kN − k for all p|N . Fortunately, Fermat’s
Little Theorem tells us that, when k 6= 0, kp−1 = 1 (mod p) for all k, and,
as p− 1|N − 1, we know that kN−1 = 1 (mod p); given that p|kN−1 − 1 for
all p|N , it follows by taking the least common multiple of all such p (again
taking advantage of the fact that N is squarefree) that N |kN−1 − 1, or that
kN−1 = 1 (mod n); multiplying by k to add the trivial case k = 0 tells us
that Korselt’s Criterion implies absolute pseudoprimality.

Conversely, let N be an absolute pseudoprime; we take it as true that
N |kN − k for all k. First, we prove that n must be squarefree; if N is not
squarefree, then we can find some factor of N with the form c2. Note, then,
that, as c2|N and N |cN − c, we have c2|cN − c. Note that, as c2|cN trivially,
this forces c2|c, which is impossible. Thus, it must be that N is squarefree,
as we expected.

Now, it remains to prove that if p|N , then p−1|N−1; for this, we turn to
some simple theory of the finite group Z×

p . We know that this group is cyclic,
and therefore we can chooze a generator a, which will have group order p−1.
We have p|N , and, by hypothesis, N |aN−a, so p|aN−a. We know that p 6 |a,
so therefore, we can derive that p|aN−1−1. It is clear from this that aN−1 = 1
(mod p), and it follows from this that N − 1 must be a multiple of p− 1, as
desired. Combining this with the result of the previous paragraph gives us
the final result, Korselt’s Criterion for absolute pseudoprimality.

Note that, apart from the first condition, prime numbers trivially satisfy
Korselt’s Criterion.

It’s worth talking a bit about the nature of this theorem. Fermat’s Little
Theorem, in and of itself, is, in the context of group theory, a very simple
corollary of Lagrange’s Theorem on the order of finite groups. What Korselt’s
Criterion tells us is that the mathematics of primality is, in some sense, not
quite aligned with this group theory; Fermat’s Little Theorem works in too
many cases, and, when we have N squarefree and every prime divisor p of n
satisfies p−1|N−1, then, when we calculate aN−1, we’re really taking (ap−1)

c
,

and, as ap−1 = 1 (mod p), Lagrange’s and Fermat’s Little Theorem apply,
even though for our current purposes, we’d rather they not.

Also, rather oddly, Korselt’s Criterion came along first; while he proved
this necessary and suficient condition for absolute pseudoprimality, he never
was actually able to get his hands on such a number. Carmichael did this

4

one year later.
The first thing Carmichael proved was that absolute pseudoprimes have

at least three prime factors. Supposing N is an absolute pseudoprime of the
form pq, we get that p− 1|pq− 1, so pq−1

p−1
must be an integer. We can recast

the numerator pq − 1 as (p− 1)q + q − 1, which tells us that pq−1
p−1

= q + q−1
p−1

.

The question now is, do there exist primes p and q so that p − 1|q − 1 and
q−1|p−1? This is clearly not possible; we would have to have p−1 = q−1,
and thus that p = q, making n = pq a perfect square and obviously not
squarefree.

We can, though, get our hands on absolute pseudoprimes with three dis-
tinct prime factors; suppose N is an absolute pseudoprime, and that it is
the product of three distinct primes; N = p1p2p3. By Korselt’s Criterion,
the quantity p1p2p3−1

p1−1
must be an integer. Cleverly rewriting p1p2p3 − 1 as

(p1 − 1)p2p3 + p2p3 − 1 and dividing, we get that p1p2p3−1
p1−1

= p2p3 + p2p3−1
p1−1

; in

order for this to be an integer, we require that p1 − 1|p2p3 − 1. Note, too,
that the analogous conditions apply; we must also have p2 − 1|p1p3 − 1 and
p3 − 1|p1p2 − 1.

We can easily put together a few valid absolute pseudoprimes using these
simple conditions; Carmichael’s early lists included 3 × 11 × 17 = 561 (the
smallest absolute pseudoprime), 5 × 13 × 17 = 1105, 7 × 13 × 31 = 2821,
and 7× 31× 73 = 15841. Simply as demonstration, in the case of 561, note
that we get 3 × 11 = 33, 3 × 17 = 51, and 11 × 17 = 187, and in each
of these cases we get 17 − 1 = 16|32 = 33 − 1, 11 − 1 = 10|50 = 51 − 1,
and 3 − 1 = 2|186 = 187 − 1. Note that nowhere did we require that
absolute pseudoprimes have only three prime factors; one can easily extend
Carmichael’s original calculation to cases with arbitrarily many prime factors,
though of course the arithmetic does get to be a little much.

So, now we find that, at least in the context of our nice, simple idea of
the Fermat Test, we have to amend it a bit to work in what we find is now
less a nice, clear plain and is more of a minefield. While what we have now
is not mathematically perfect, it is still useful, and we should proceed with
discussing its algorithmic aspects.

5

4 Complexity Analysis & Fast Modular Ex-

ponentiation

First, we have to discuss a few things regarding algorithms in general. The
major concern at this point is, were we to try and write a program for the
(Amended) Fermat Test, a bit of cleverness would be required.

Consider, as stated above, that N is on the order of 22048, and we need to
calculate aN mod N . If we should dare apply our näıve, inductive definition
of powers to this calculation — namely, that a0 = 1 and that ax+1 = a× ax

— we would find ourselves having to perform 22048 − 1 multiplications.
On an abstract level, this is no problem whatsoever; we can certainly

imagine carrying out this many multiplications.
But.
Modern computers, being generous, can perform around 2 billion mul-

tiplications and reductions per second. Relative to a number like 22048 —
which we can estimate as 10692 — we’re in a speed bracket well below Win-
dows 95, rush hour traffic, and glaciers. We’re talking about calculations
that take 10600 years or so. NASA says the universe is only 13.7 billion years
old, just to give you an idea.

So, at this point the computer science fails us. We require a better algo-
rithm.

Fortunately, we can come up with one easily. Noting that 2048 = 211, it
is quite clear that, instead of calculating

a22048

we can instead calculate

a2211

which at least involves smaller numbers.
As written, the right associativity of exponentiation means we can’t really

start by calcuating 211 and take 2 to that power, and so on; that leads us
right back to where we started.

What we can do, though, is deal with 211 as a product of eleven 2s. We
do have a rule for powers where the exponent is a product; that

2211

6

http://map.gsfc.nasa.gov/m_uni/uni_101age.html

then becomes
((((((((((22)2)2)2)2)2)2)2)2)2)2

and we can now see a very clear way to calculate this number by computer;
instead of repeatedly multiplying by a, we repeatedly square. This cuts our
work down from 211 operations (multiplications by a) to just 11 (squarings).

We now can make this algorithm more general; after all, we don’t just
want to calculate 2211

, but

a2211

which is more abstract. Suppose we need to calculate xk using this quicker
idea; as we have just shown, if k is even, we can calculate xk/2 and square. If
k is odd, we can calculate x×xk−1, and, as k−1 is even, we can use squaring
again. Note, too, that we are promised an end to this computation, as k is
a positive integer and repeatedly subtracting 1 and halving must eventually
give 1, and x1 = x by definition.

We now need language to describe this situation. The simplest way to
deal with algorithms in this simple situation (namely, where there is no recur-
sion) is to consider the algorithm to be simply a finite sequence of additions,
subtractions, multiplications, and divisions of integers. (Note: we consider
“integer division” in this sense to involve ignoring any remainder.)

Now, the real world does intrude here a bit. In the building of comput-
ers, circuits that add are very simple to build; in the jargon of electrical
engineering, a one-bit full adder can be built with only two common gates.
Subtraction is also easily accomplished with recourse to two’s complement
notation for negative numbers, which lets the same circuit add and subtract.
The relevant circuit is also nearly trivial to build.

What hurts is multiplication and division. These operations take signif-
icant time, and so we perform rudimentary complexity analysis by counting
how many multiplications and divisions occur in our algorithm. Extracting
a residue is in this same bracket, being somewhat complementary to integer
division.

Thus, consider applying an algorithm beginning with a given input x. In
the case of our more näıve first algorithm to calculate xk mod N , there will
be k−1 multiplications and k−1 reductions modulo N , for a total of 2k−2.

Now, the second algorithm, based on squaring, is more difficult; some-
times we multiply by x, other times we square. One small mercy we can
find is that the binary expansion of k tells us the pattern of squaring and

7

http://en.wikipedia.org/wiki/Adder_(electronics)

multiplying, and we can consider the worst, best, and average cases. If k is
of the form 2j − 1, then the binary expansion of k will be all 1s, and we will
have to perform j multiplications, j squarings, and j reductions modulo N .
If we are more lucky and find that k = 2j for some j, then we never have
to multiply by x at all; we just square j times and reduce by N j times.
On average, then, we might expect that we have to multiply by x j

2
times.

All told, this algorithm would then take between 2j and 3j slow operations;
probably right around 2.5j if we had to make an exact guess.

The key to this — where we see the efficiency — is that j = blog2 kc+ 1.
More easily, j < log2 k + 1, which we may as well call (1 + ε) log2 k. The
squaring based algorithm then takes 2.5(1 + ε) log2 k operations.

Now, this is the rather odd bit that is responsible for a great deal of
confusion between mathematicians and computer scientists. To a computer
scientist, the universe is made up of strings of symbols, not numbers. A
mathematician, particularly dealing with number theory, will normally see
numbers, and so the two disciplines have naturally disagreeing ideas of size.
In mathematics and number theory, the size of a number N is simply N ,
maybe |N | if we’re allowing negatives. To a computer scientist, N must
be represented by a string of symbols; maybe the digits zero through nine,
maybe just the digits zero and one. Either way, the size of N in this light is
the number of symbols required, which we usually estimate as log2 N .

We therefore express that estimate of 2k − 2 as 22log2 k − 2. This is
exponential in log2 k, so we describe the näıve algorithm for modular expo-
nentiation as having exponential running time. Our new algorithm, which
takes approximately 2.5 log2 k operations, is said to have linear running time.
[CLRS01]

The reason this is sticky is that mathematicians see the expression 2k−2
and, for good reason, think that this should represent linear time; 2.5 log2 k
should, similarly, be exponential.

It is, of course, worth making a general definition here, but making it
completely formal is too tall a task for our purposes; the precise definition of
“algorithm” can get thorny fast, unless we’re willing to start talking about
things like Turing machines or the lambda calclus. This definition, then,
must be taken with some salt.

Simple Estimates on Running Time of Algorithms 1. Let A be an
iterative computational algorithm; that is, a sequence of basic operations on
natural numbers that may or may not branch or loop.

8

Suppose that there exists a function f with the property that, when A
is applied to the number n, f(log2 n) is greater than the number of multipli-
cations, divisions, and residue extractions that occur in the computation of
A(n).

Conventions
When f is linear, we say A has linear running time. When f is polyno-

mial, we say A has polynomial running time, or, more succinctly, A is in P
or A is feasible. When f is exponential, we say A has exponential running
time.

Now, the real reason we care about running time is that, historically
speaking, the “sweet spot” for computer programs is at polynomial running
time. We think of such algorithms as scaling well, for instance; even if the
input is long, the program will at least stay in the bracket of minutes and
hours instead of centuries and milennia. This is, in part, why we use such a
loaded word as “feasible”.

At this point, then, we have a feasible computation for aN in ZN . This
is a point in favor for the Amended Fermat Test; it might not be perfectly
accurate, but it’s definitely easy. The next step is to see what else this idea
buys us.

5 The Miller-Rabin Test

In some sense, number theory begins with modular squaring; one of the first
big nontrivial theorems of the discipline is Gauss’ Quadratic Reciprocity
Theorem. One would hope that we would be able to use tools of this level
to help us prove numbers prime or composite.

As before, we have our candidate prime N , and we can look at the cal-
cluation of aN mod N in a new light.

Firstly, N will be odd, so we should take our original test, that aN = a
in ZN , and divide out by a so that we have N − 1 for the exponent; this will
be even, thus at least letting us start the algorithm by squaring. This gives
an alternate, slightly less valid form, but for our purposes, much improved.
We now wish to prove that aN−1 = 1 in ZN , and N − 1 is even.

In fact, let’s take all we can get. Let N − 1 = 2rs, where s is odd. We
can then compute as, and square r times to get aN−1.

Right now this is still just the Amended Fermat Test, though; there’s a
lot more here, if we’re willing to look.

9

We can consider the starting point to be as, and then we square t times.
We therefore have t values, the last of which may or may not be 1; if it is,
then we at least have a-pseudoprimality.

However, what happens if we find an anomalous square root of 1 in this
process? 1 and −1 are fine, but what if we should find that a2ks 6= ±1 and
a2k+1s = 1? Letting z = a2ks, we get that z 6= ±1, but z2 = 1. Given that all
this is true in ZN , we have N 6 |z − 1, N 6 |z + 1, but N |z2 − 1. Given that
z2 − 1 = (z + 1)(z − 1), this forces N to be composite; N divides a product
without dividing either factor, which is the ring-theoretic (and more general)
definition of primality. For instance, note that 52 = 1 (mod 24), and this
tells us that 52 − 1 = (5− 1)(5 + 1) divides 24, giving us two divisors, 6 and
4.

This is one of the two steps up we take in the Miller-Rabin algorithm.
Instead of simply calculating aN , we now calculate as, and square t−1 times.
This will prove N to be composite if this process either does not end in 1 or
−1, or if a 1 occurs midsequence (if as is 1, that’s fine) without a preceding
−1.

The other matter is what we do with a in this test. As we earlier showed,
there exist things like pseudoprimes.

It is somewhat regrettable, but the easiest way around this — and the
other step to the Miller-Rabin algorithm — is to randomize the test. This is
unfortunate, because it turns our test from a deterministic one into what is
termed a Monte Carlo algorithm; with some nonzero probability, it gives the
wrong answer.

There are mitigating factors, though; the Miller-Rabin algorithm is reli-
able insofar as proving compositeness. We never can prove a number prime
with this test, though the algorithm gives us a solid proof when it states that
a number is composite.

Practically speaking, the way we use the Miller-Rabin test is simply to re-
peat it several times, looking for some value of a that will prove N composite;
we call such numbers witnesses.

At this point, then, we can give the complete algorithm. [Rab80]

The Miller-Rabin Algorithm 1.
#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <math.h>

10

/*A simple implementation of fast modular exponentiation;

given x, k, and N, this function will return x^k mod N. Note

that this function, speaking properly, should be implemented

via iteration, not recursion. However, a good compiler should

make such a change as part of optimization, so this version

is provided in the interest of simplicity.*/

unsigned int modexp (unsigned int x,

unsigned int k,

unsigned int N)

{

if (1 == k) /*terminating condition*/

return x % N;

if (1 == k % 2) /*k is odd: extract a factor of x*/

return x * modexp(x , k - 1 , N) % N;

else /*k is even: square*/

return (unsigned int)pow(modexp(x , k/2 , N) , 2) % N;

}

int MillerRabin (unsigned int N, /*The number to test for

primality*/

unsigned int k) /*The number of random tests to

run*/

{

int a = 0; /*The random number*/

int r = 0, s = N - 1; /*r and s are used to decompose N;

N = s * 2^r + 1*/

int x1, x2; /*These hold the values we get from squaring.*/

int i, j; /*loop indices*/

srand(time(NULL)); /*We need to seed the random number

generator. At least that’s good form

here.*/

while (0 == s % 2) /*Extract the values of r and s from N.*/

{

r++;

11

s /= 2;

}

for (i = 0; i < k; ++i)

{

a = rand() % N; /*Get a (pseudo)random number.*/

while (0 == a) /*We also need to be certain that a is

nonzero.*/

a = rand() % N;

x1 = modexp(a,s,N);

for (j = 0; j < r; ++j)

{

x2 = (unsigned int)pow(x1 , 2) % N;

if ((1 == x2) && ((1 != x1) && (N - 1 != x1)))

return 0;

x1 = x2;

}

if (1 != x2)

return 0;

}

return 1;

}

5.1 Analysis

Now, there are some questions we should ask about such a lovely piece of
code.

Perhaps the most obvious is “Is the Miller-Rabin test any more accurate
than the Amended Fermat Test?”. On one level, the answer is an exception-
ally easy “yes”; it should be obvious that randomizing a should enable the
Miller-Rabin test to, with enough iterations, detect any composite number
that isn’t absolutely pseudoprime.

In fact, for that matter, how does the Miller-Rabin test perform against
absolute pseudoprimes?

$./MillerRabin 561 12

12

561 is composite

$

Not the result we might have expected. After all, Miller-Rabin has its
roots in the Amended Fermat Test, which is fooled by absolute pseudoprimes.
In fact, 7 serves as a fine witness to the compositeness of 561; 7280 mod 561 =
67, but, as 561 is an absolute pseudoprime, 7560 mod 561 = 1, so we get 67
as a nontrivial square root.

However, note that our condition on nontrivial square roots is new. This
condition is powerful enough to detect even the compositeness of absolute
pseudoprimes, which, on a moment’s thought, is not too surprising; if we
recall the mechanism by which nontrivial square roots prove primality, that
has very little to do with the content of Korselt’s Criterion.

More difficult is the question of error. The Miller-Rabin algorithm is, after
all, a Monte Carlo algorithm; it can be incorrect. We’d like to characterize
those failures as best we can, though, because we’re dealing in probabilities,
it’s not going to be quite as clear as our results on pseudoprimality. What
we find is that, given any N — even an absolute psuedoprime — at least
3
4
(N − 1) of the numbers from 1 to N will be witnesses. [Rab80]

For practical purposes, this is more than enough; we can effectively gen-
erate random primes by applying the Miller-Rabin test to the output of a
random number generator. While this may not be the quickest process ever
seen, it isn’t too bad, and, furthermore, we know we’re free of any concerns
about absolute pseudoprimes. In this context, it’s okay to set k relatively
low, say, as low as 6; the probability of error is about 4−6 = 1

4096
; just under

0.025%. In fact, the probability of a random number failing is probably much
less.

However, one practical concern is that in many modern cryptographic
protocols, the participants, Alice and Bob, are called upon to exchange prime
numbers, and an attacker, Eve, can subvert the protocol by posing as Alice
and submitting a composite number in place of Alice’s prime.

In such a situation, that bound of 4−k is strict, as Eve can choose her
“random” number so that the probability of failure is maximal, nearly 4−k.
In an application like this, in order to prevent compromise, several dozen
rounds of the Miller-Rabin algorithm are more appropriate.

13

6 The AKS Algorithm

So, right now, the state-of-the-art in primality testing is a probabilistic algo-
rithm that requires a measure of subtlety to apply. Granted, this is sufficient
for practical purposes; the Miller-Rabin algorithm is certainly fast enough
for modern computers and cryptosystems.

However, we’d really like some icing for the cake, so to speak; we’d like a
deterministic algorithm that has all of the above properties, too.

Such an algorithm was, in fact, recently discovered by three Indian math-
ematicians. [AKS04]

6.1 Core Mathematics

The problem with primality tests based on Fermat’s Little Theorem, math-
ematically speaking, is that Fermat’s Little Theorem is not a bidirectional
implication; we have only a necessary condition for primality, not a sufficient
one.

What we need, therefore, is a condition equivalent to primality that is
more amenable to calculation (as opposed to searching).

The simplest way to obtain such a condition is to note that part of the
problem may be that our ring ZN is too small. We may therefore move up to
the polynomial ring ZN [x] and consider what primality of N means in this
ring.

Primality in Polynomial Rings 1. The following are equivalent:

1. N is prime.

2. In the polynomial ring ZN [x], (x + a)N = xN + a for all a ∈ ZN .

3. In ZN ,
(

N
k

)
= 0 for 1 ≤ k < N and aN = a.

We first prove that the first condition implies the second and third. In
general, we have

(x + a)N =
N∑

k=0

(
N

k

)
xN−kak

which is a simple application of the Binomial Theorem.

14

We can also very easily extract the terms corresponding to k = 0 and
k = 1, which give xN and aN , and the latter, by Fermat’s Little Theorem, is
equal to a modulo N . We therefore have at this point that

(x + a)N = xN + a +
N−1∑
k=1

(
N

k

)
xN−kak

and we can now prove that N |
(

N
k

)
for all 1 ≤ k < N .

By definition,
(

N
k

)
= N !

k!(N−k)!
. By hypothesis, N is prime, which means

that, as 1 < k < N , neither k nor N − k can be divisors of N . In fact, k!
and (N − k)!, being products of numbers between 2 and N − 1, must also be
relatively prime to N . This means that, regardless of k, N

k!(N−k)!
will always

have a factor of N in the numerator, and therefore
(

N
k

)
will always be a

multiple of N when N is prime.
This allows us to conclude that, in ZN ,

(
N
k

)
= 0 for all nonzero k, and

therefore that
N−1∑
k=1

(
N

k

)
xN−kak = 0

and, ultimately, (x+a)N = xN +a. Therefore, the first condition implies the
second.

We also need to prove that the second condition implies the first, which
is most easily done by contraposition; we assume N is composite, and use
a proper nontrivial divisor c of N to find a nonzero term in the polynomial
(x + a)N .

Suppose cj||N ; that is, cj|N but cj+1 6 |N . We can quickly see that
cj|| N !

(N−c)!
, as N !

(N−c)!
is a product of exactly c numbers, so only one of them

— N — can be a multiple of c. It follows from this that cj−1||
(

N
c

)
, and thus

that cj 6 |
(

N
c

)
. This forces our hand; it must be that N 6 |

(
N
c

)
, as N |

(
N
c

)
would

imply that cj did divide
(

N
c

)
.

Considering the case a = 1, we then find that the coefficient of degree
c in (x + 1)N will be nonzero, therefore proving that the first and second
conditions are equivalent.

Proving equivalence of the second and third conditions is quite simple; in
fact, we’ve basically done it already, simply by applying the binomial theorem
and considering the case a = 1.

15

This does our job quite nicely; we have two conditions now, one alge-
braic and the other more combinatorial in character, that are equivalent to
primality.

There is, however, a very large problem with both of these new conditions.
For the algebraic condition, we have to handle a polynomial of degree

N . Computationally, this gets represented by a point in ZN (in computer
parlance, an array), which ends up being an awful lot of data when N gets
large; computing arrays of 22096 elements can take a very long time.

The same logic applies to the combinatorial formulation; we have to cal-
culate

(
N
k

)
for N−1 values of k; that’s far too much math to be able to do in

any reasonable timeframe. (However, the nice thing about the combinatorial
formulation, it should be said, is that it very nicely highlights the fact that
this theorem is an extended version of Fermat’s Little Theorem.)

Now, this gives us one half of the big solution; we have a computational,
but inefficient solution. Now we have to come up with the speed.

6.2 Finding The Right Ring

See, part of the problem is that we’ve gone too far. Algorithmically, ZN is
a fantastic ring, by which we mean finite; it’s possible to search in a very
clean fashion. Going up to ZN [x] costs us that finiteness; now we might run
into lots of really big polynomials, which means long arrays, and everything
can go right back to the fire. Our running time needs to be polynomial in
L = log2 N in order to keep this under control.

What we need is a more general idea than polynomial rings. One option
is to think of R[x] as the smallest ring containing R and x; we refer to this
process as adjunction, and refer to R[x] as the ring formed by adjoining the
indeterminate x to the ring R.

The idea behind this is that we can adjoin all sorts of things to R besides
indeterminates. A popular choice — the one we make here — is to adjoin
roots of unity. We can form ZN [ζr], where ζr is a (primitive) rth root of
unity, and r and N are coprime. This ring has N r elements, which, while
quite a lot, is at least finite; we may be able to skate by if we choose r just
right. (Note: if the notation ZN [ζr] makes you skittish, it is equally correct
to think of it as ZN [x]/q(x), where q is an irreducible nonlinear polynomial
dividing xr − 1; the Fundamental Isomorphism Theorem very easily proves
these two identical, as long as r and N are coprime.)

16

This is the key to the entire algorithm; not to do the arithmetic in ZN ,
where we have to search and use Fermat’s Little Theorem and suffer weak-
ness, nor in ZN [x] where we have all the power we need and too many ele-
ments, but in ZN [ζr], where we might be able to pull a Goldilocks and make
things just right. The tricky part will be in choosing the right value of r; in
fact, right now, most of the work on improving the algorithm is in finding
the right definition of r.

In some sense, we need to make sure that r is big enough; say, for instance,
that the cyclic subgroup of ZN generated by r is large.

Choosing R 1. Once N > 4, there exists r < L5 such that N t 6= 1 (mod r)
for all t ≤ L2.

Consider all nondivisors of the product

L2∏
t=1

(
N t − 1

)
and let r be the smallest such. It is clear that r does not divide any factor
N t − 1, which makes it clear that N t 6= 1 for all t ≤ L2.

It remains to prove that r < L5.
Note that

L2∏
t=1

(
N t − 1

)
<

L2∏
t=1

N t

and we can express this second, much simpler product, as a power of N ; it
is NL2(L2+1)/2.

Now, note that once N > 4, we have L > 2, and now L2 < L4, so
L4 + L2 < 2L4 and therefore L2(L2 + 1)/2 < L4.

This then indicates that NL2(L2+1)/2 < NL4
, and, as L = log2 N , NL4

=
2L5

.
At this point we need a lemma, the proof of which is a particularly clever

bit of analytic number theory. [Nai82]

A Cheybyshev-Style Result on Products of Primes 1. The product of
all primes less than or equal to α is at least 2α.

Given m < n, consider the integral

Im,n =

∫ 1

0

xm−1(1− x)n−m dx

17

which, on application of the Binomial Theorem, is

n−m∑
j=0

(−1)j

(
n−m

j

)
1

m + j

and, letting Pα be the product of all primes less than or equal to α, the
distributive property makes it quite clear that Im,nPn is a natural number,
as the fraction in the sum goes from 1

m
to 1

n
.

However, note too that calcluating Im,n via integration by parts with
u = xm−1 and dv = (1 − x)n−m dx gives the recurrence relation Im,n =

m−1
n−m+1

Im−1,n. Applying this along with the base case I1,n = 1
n
, indicate that

Im,n = 1

m(n
m)

.

In order for Im,nPn to be an integer, then, it must be that m
(

n
m

)
divides

Pn, regardless of m. We can conclude from this that n
(
2n
n

)
|P2n, and, as

(2n+1)
(
2n
n

)
= (n+1)

(
2n+1
n+1

)
, we also get that (2n+1)

(
2n
n

)
must divide P2n+1.

So, as P2n|P2n+1, it follows that both n
(
2n
n

)
and (2n+1)

(
2n
n

)
divide P2n+1.

As n and 2n + 1 are coprime, we must have n(2n + 1)
(
2n
n

)
dividing P2n+1.

This then means that P2n+1 must be at least n(2n + 1)
(
2n
n

)
, and, if we’re

clever enough to see that
(
2n
n

)
is the largest of the 2n + 1 coefficients in

(1 + 1)2n, we can note that n(2n + 1)
(
2n
n

)
> n4n.

At this point we have that P2n+1 > n4n. When n > 2, it is quite clear
from this that P2n+1 > 22n+1. Similarly, when n > 4, we know that P2n+2 >
P2n+1 > 22n+2. Thus, for all α, both even and odd, we have Pα > 2α, as
desired.

At this point, we know that our product

L2∏
t=1

(
nt − 1

)
is less than 2L5

. Our lemma then tells us that a nondivisor must exist among
the numbers less than L5, and therefore the existence of our necessary r < L5

is guaranteed.
We can now use r to perform a first check on N ; all we do is compute

(t, N) where 2 ≤ t ≤ r. Should this ever be greater than 1, we have a divisor
and N is composite.

There is also the question of what to do when r ≥ N ; granted, as r <
L5, this is a rare condition that only can occur for smaller N , where N <

18

(log2 N)5 — past five million or so, this no longer is a concern. Furthermore,
by dealing with this small case directly, it actually is faster than applying
the AKS algorithm proper.

At this point, then, we know that we have r < L5 coprime to N , and the
useful property of r is that for all t < L2, N t 6= 1 (mod r).

Now, one of the things this means is that there is a prime number p that
divides N for which pt 6= 1 for all t < L2, as can be seen by expressing N as a
(possibly trivial) product of primes. It is also true that p > r; otherwise, we
would detect the divisibility when we checked (p, N) earlier. Put simply, we
now have two avenues on which we are starting to pin down a prime divisor
of N .

As regards p, note that we cannot actually get our hands on it at this
point. However, we can identify ZN/p as an ideal of ZN , and thus Zp[ζr] as
an ideal of ZN [ζr]. Again, we can’t actually compute in this ring, as we have
no algorithm yet to find p, but we can talk about results in this ring, as the
fact that p is prime makes things go much smoother.

6.3 Introspective Numbers

For one, note that, while we know that (x + a)N = xN + a in ZN [ζr] by
hypothesis, we also know that (x + a)p = xp + a in Zp[ζr]. In fact, because
p divides N , we know that (x + a)N = xN + a must also be true in Zp[ζr].
From this we can deduce that, where c = N

p
, (x + a)c = xc + a in Zp[ζr].

Abstracting away from this a bit, we have a polynomial P ∈ Zp[ζr] and
several natural numbers k (N , p, and c) for which P (xk) = (P (x))k. In such
a situation as this (and, it should be noted, this extremely limited scope),
we will call such numbers P -introspective.

What makes this property important is the following theorem

Properties of Introspective Polynomials 1. For any fixed polynomials
P and Q in Zp[ζr], the following hold:

• Products of P introspective numbers are P -introspective.

• Numbers that are both P - and Q-introspective are PQ-introspective.

Let k and j be P -introspective; we have P (xk) = (P (x))k and P (xj) =
(P (x))j. Taking powers on this last equation gives (P (xj))k = (P (x))jk;
thus, if we can prove P (xjk) = ((P (xj))k, we will be done.

19

Treating ZN [ζr] as ZN modulo the ideal generated by the irreducible poly-
nomial q dividing xr − 1 and replacing x with xk in the definition of k’s P -
introspectivity, we find that we do have P (xjk) = (P (xj))k, but in the ring
ZN [ζkr].

The final step is then realizing that ZN [ζr] is a subring of ZN [ζkr], so we
at last have P -introspectivity of jk.

Finally, let k be both P - and Q-introspective. Straightforward calculation
gives us P (xk)Q(xk) = (P (x))k(Q(x))k = (P (x)Q(x))k, so k is also PQ-
introspective.

The reason this is important is that we have p- and c-introspectivity for
every monic linear polynomial in ZN [ζr]; thanks to this theorem, we now have
a lot more. We now know that any polynomial in ZN [ζr] that is a product of
monic linear polynomials is cipj-introspective for any natural numbers i and
j.

Let’s look a little more closely at these numbers cipj. As c = N
p
, and N is

coprime to r, note that cipj is therefore also coprime to r. We can therefore
talk about the subgroup H of Z×

r generated by c and p.
Now, recall that we chose r particularly so that we had N t 6= 1 for all

t < L2, and, in fact, it is equally true that pt 6= 1 for all t < L2, as previously
discussed. The punchline to this joke is that this now forces it to be the case
that, as pt is always in H, that the order of H is at least L2. Letting h = |H|,
we have h > L2.

The other group G is that generated by all the monic linear polynomials
in ZN [ζr]. We need to know that all the polynomials of degree less than h
are distinct, and this follows very simply by noting that h < r,

At this point we also introduce the final bound we need, ` =
√

ϕ(r)L;
this will be the values of a for which we confirm (x + a)N = xN + a. Noting
that ` < N , we can deduce that the family of ` + 1 nonzero monic linear
polynomials x + a, where 0 ≤ a ≤ `, are all distinct and can be used to
generate G. If we restrict ourselves to polynomials of degree less than h,
then we have

h∑
i=0

(
` + i

i

)
and a little combinatorics and Pascal’s Triangle will show that this is

(
h+`
h−1

)
.

At last, then, we know that the order of G is at least
(

h+`
h−1

)
.

On the other hand, if N is not a prime power, we can bound |G| from the
other direction. Consider the subset of H made up of numbers of the form

20

cipj where i and j are both less than or equal to
√

h. If N is not a prime
power, then this set must contain at least (

√
h + 1)2 elements. Noting that

this is strictly greater than t, this set must contain two elements that are
congruent modulo r. Calling these k and k′, with k > k′, we find that, in
ZN [ζr], xk = xk′

.
This immediately implies that, for any polynomial P ∈ G, (P (x))k =

(P (x))k′
. In other words, any polynomial in G divides the polynomial xk−xk′

.
In other words, the distinct roots of xk − xk′

, which number at least k, and
k ≤ (cp)

√
h = N

√
h. Therefore, when N is not a prime power, |G| ≤ N

√
h.

We can now complete the proof of correctness of the algorithm. We have(
h+`
h−1

)
≤ |G| ≤ N

√
h. As h >

√
hL, we get

(
h+`
h−1

)
≥

(
`+1+

√
hL√

hL

)
. As ` >

√
hL,

too, we actually get |G| ≥
(
2
√

hL+1√
hL

)
. This is greater than 2

√
hL+1, once we

take the floor of the involved numbers, we’ll get at least
√

hL + 1 factors of
2. And, finally, as L = log2 N , we get |G| > N

√
h.

This contradiction thus forces it to be the case that N is a prime power,
which we can easily check for.

For clarity, then, the entire algorithm goes as follows.
Given: N , run simple checks to see if N is a prime power. If not, take

r < (log2 N)5 so that N t 6= 1 mod r for all t < (log2 N)2. Compute (t, N) for
all t < r, and if this is ever greater than 1, N is composite. (For small N ,
it may be the case that N ≤ r; if this happens, N is prime.) At last, verify
that (x + a)N = xN + a in ZN [ζr] for 1 ≤ a ≤ √

ϕr log2 N ; this is true if and
only if N is prime.

We therefore have proven the soundness of the AKS algorithm. Note,
though, that it is simply too slow. We have to work with

√
ϕ(r)L polynomi-

als, each of which have degree r and, on average, coefficients of size L. Given
that r < L5, Each computation will require L multiplications, so, at last, we
have r

√
ϕrL3 < L10.5 as our bound on the running time. This is far too slow

to completely supplant Miller-Rabin.
However, the AKS algorithm is as yet being improved, and contains a

great deal of insight that may yet yield improvements in the field of numerical
algorithms.

21

References

[AKS04] MR2123939 (2006a:11170) Agrawal, Manindra ; Kayal, Neeraj ;
Saxena, Nitin . PRIMES is in P. Ann. of Math. (2) 160 (2004), no. 2,
781–793.

[CLRS01] MR1848805 (2002e:68001) Cormen, Thomas H. ; Leiserson,
Charles E. ; Rivest, Ronald L. ; Stein, Clifford . Introduction to algo-
rithms. Second edition. MIT Press, Cambridge, MA; McGraw-Hill Book
Co., Boston, MA, 2001. xxii+1180 pp. ISBN: 0-262-03293-7

[Nai82] MR0643279 (83f:10043) Nair, M. On Chebyshev-type inequalities for
primes. Amer. Math. Monthly 89 (1982), no. 2, 126–129.

[Rab80] MR0566880 (81f:10003) Rabin, Michael O. Probabilisic algorithm
for testing primality. J. Number Theory 12 (1980), no. 1, 128–138.

[Car10] Carmichael, R.D. Note on a new number theory function. Bull.
Amer. Math. Soc. 16 (1910), 232–238

22

	Introduction
	Fermat's Little Theorem & Test
	Psuedoprimes
	Complexity Analysis & Fast Modular Exponentiation
	The Miller-Rabin Test
	Analysis

	The AKS Algorithm
	Core Mathematics
	Finding The Right Ring
	Introspective Numbers

