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Preliminaries

A binary relation ! on a set P is defined to be a partial order on P
when ! is reflexive, transitive, and antisymmetric.
We will refer to the pair (P,!) as the partially ordered set, or
poset, P.
The relation is a total order if X and Y ∈ P implies that X ! Y or
Y ! X .
A map σ from a poset P to a poset Q is order preserving if, for
each X and Y ∈ P, X !P Y implies that σ(X )!Q σ(Y ).
An order preserving bijection ε : P −→Q is a linear extension of P if
Q is totally ordered.
Two posets are isomorphic if there is an invertible, order preserving,
bijection between them.
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Counting The Linear Extensions of a Finite Poset

Let E (P) be the set of linear extensions of P. If P is finite then E (P)
is finite.

We define e(P) to the the size of E (P).

A trivial upper bound is
e(P)≤ |P|!

(The right hand side counts the number of total orderings of the set P.)
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Subsets of Posets

Let Q be a subset of a partially ordered set P.
Q is an order ideal if for each X ∈ Q, Y ! X implies Y ∈ Q for all
Y ∈ P.
Q is a filter if for each X ∈ Q, X ! Y implies Y ∈ Q for all Y ∈ P.
Q is a chain if for each X and Y ∈ Q either X ! Y or Y ! X .
Q is an antichain if for each X and Y ∈Q neither X ! Y nor Y ! X .
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Linear Extensions, Order Ideals, and Antichains
If ε is a linear extension of a poset P then the elements of P can be
written X1,X2, ...,X|P| so that Xi !ε Xj if and only if i ≤ j . In fact,
this sequence uniquely characterizes ε.
Letting Oi = {X1,X2, ...,Xi} we can construct a sequence of order
ideals O1,O2, ...,O|P| of P. Again, this sequence uniquely
characterizes ε.
Given an ideal O of P, we define the map a by

a(O) = min{P−O} .

a(O) is always an antichain, called the choice antichain of O. This
map establishes a bijection between the order ideals of P and the
antichains of P.
This allows us to translate the the sequence of ideals O1,O2, ...,O|P|
into a sequence of antichains a(O1),a(O2), ...,a(O|P|). This sequence
also uniquely characterizes ε.
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The Choice Antichain
Intuitively, the choice antichain of O is the set of every element X of
P−O so that the set

O
⋃

{X}
is also an ideal of P.

For the first given linear extension of B3, we have the following sequences:

Xi Oi a(Oi)

/0 { /0} {{1},{2},{3}}
{1} { /0,{1}} {{2},{3}}
{2} { /0,{1},{2}} {{3},{1,2}}
{3} { /0,{1},{2},{3}} {{1,2},{1,3},{2,3}}

{1,2} { /0,{1},{2},{3},{1,2}} {{1,3},{2,3}}
{1,3} { /0,{1},{2},{3},{1,2},{1,3}} {{2,3}}
{2,3} { /0,{1},{2},{3},{1,2},{1,3},{2,3}} {{1,2,3}}

{1,2,3} B3 /0
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Ranked Posets

A rank function on a poset P is a function r : P −→ N such that
1. There is a minimal element X0 ∈P so that r(X0) = 0

and
2. r(X ) = r(Y )+1 whenever X covers Y .

Given any ranked poset P,

the number max{r(X )}X∈P is the rank of P.

For any subset Q of P, the set {X ∈ Q |r(X ) = k } is denoted by Qk .

The numbers Nk = |Pk | are the whitney numbers of P.
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The LYM Property

Let P be a rank n poset, with whitney numbers N0,N1, ...,Nn.
P has the LYM property if for each antichain A ∈ P,

n
∑
k=0

|Ak |
Nk

≤ 1.
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The whitney number Nk of B5 is the binomial coefficient
(5

k
)
.

The antichain A has |A0| = |A4| = |A4| = 0, |A1| = |A3| = 1, and
|A2| = 3.

So,
5
∑
k=0

|Ak |(5
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) =

1
5 +
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The Boolean Lattice

Theorem
(The LYM Inequality) Let A be an antichain in the Boolean Lattice Bn

and let Ak be the be the set of all rank k nodes in A . Then
n
∑
k=0

|Ak |(n
k
) ≤ 1.



The Boolean Lattice

Bn contains exactly n! maximal chains.

If X ∈Bn and r(X ) = k then X generates an ideal of rank k isomorphic to
Bkand a filter of rank n−k isomorphic to Bn−k . It follows that there are
exactly k!(n−k)! maximal chains in Bn containing X .

If A is an antichain in Bn and then for each X ∈Ak there are exactly
k!(n−k)! maximal chains in Bn containing X .
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The Boolean Lattice

Given any antichain A and any chain C of any poset P, A⋂C contains at
most 1 element.

Therefore, there are exactly
n
∑
k=0

|Ak |k!(n−k)!

maximal chains in Bn containing some member of A .
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The Boolean Lattice

Since there are at most n! maximal chains in Bn containing some member
of A ,
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Dividing through by n! gives
n
∑
k=0

|Ak |(n
k
) ≤ 1.
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Probabilistic Arguments
We will be using a discrete probability distribution over E (P) to get an
upper bound on its size, e(P).

A function ρ from a finite set E to the interval [0,1] is a probability
distribution over E if

∑
x∈E

ρ(x) = 1.

A weight function on P is a function w : P[P]−→ R+ so that for
every subset Q of P,

w(Q) = ∑
X∈Q

w(X ).

For each antichain A of P, the function ρA : A−→ R defined by

ρA(X ) =
w(X )

w(A)

is a probability distribution over A.
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The Generalized Sha/Kleitman Bound

Theorem
Let P be a ranked poset and let w be a weight function on P. If w(A)≤ 1
for each antichain A of P then

e(P)≤ 1
∏

X∈P
w(X )

.



Brightwell’s Proof

Define a procedure for generating linear extensions of P as follows:

O0 = /0
Oi+1 = Oi +{Xi}

where Xi is chosen from a(Oi) with probability ρOi (Xi).

The process terminates after the |P|th step when O|P| = P and
a(O|P|) = /0. The generated sequence O1,O2, ...,O|P| determines a unique
linear extension of P.

Alternately, given any sequence O1,O2, ...,O|P|, characterizing a linear
extension, the construction results in O1,O2, ...,O|P| only if the choice of
Xi at the ith stage is exactly the single element of Oi+1−Oi .
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Brightwell’s Proof

For each partial sequence O1,O2, . . . ,Oi−1, the value ρOi (Xi) is exactly the
probability that Xi is chosen at the ith stage of our construction given that
O1,O2, . . . ,Oi−1 have already been constructed.

It follows that, for any linear extension ε of P, the probability that our
construction produces ε is exactly

µ(ε) =
|P|

∏
i=1

ρOi (Xi) .

where the sequences X1, ...,X|P| and O1,O2, . . . ,O|P| are defined as above.
Therefore, µ is a probability distribution over the set E (P) assigning
non-zero probability to each element ε ∈ E (P).
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Brightwell’s Proof

By our assumptions, for any order ideal O and any X ∈ O, we have

ρO (X ) =
w(X )

w(a(O))
≥ w(X ).

Since every element of P appears exactly once in the sequence X1, ...,X|P|,

∏
X∈P

w(X )≤
|P|

∏
i=1

ρOi (Xi) = µ(ε).
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Brightwell’s Proof

Finally, since
∑

ε∈E(P)

µ(ε) = 1

it follows that

e(P) ·
(

∏
X∈P

w(X )

)
= ∑

ε∈E(P)

(

∏
X∈P

w(X )

)
≤ ∑

ε∈E(P)

µ(ε) = 1.

!



Brightwell’s Proof

Corollary
If P is an LYM poset with whitney numbers N0,N1,N2, ...,Nn then

e(P)≤
n

∏
i=0

NNi
i .



Brightwell’s Proof

Let w(X ) = 1
Nr(X)

, where r is the rank function on P. Note that w is a
weight function on P.

If P is LYM, we have w(A)≤ 1 for every antichain A in P.

Therefore, by the previous theorem,

e(P)≤ 1
∏

X∈P
w(X )

=
1

∏
X∈P

1
Nr(X)

= ∏
X∈P

Nr(X).

Since for each i , there are exactly Ni elements of P with rank i , the corollary
follows.
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Conclusion

This bound is achieved by chains, but it is easy to see that it is not
attained by any other poset.
It is not asymptotic but for small values of n it is the best upper
bound we have for Bn.



Conclusion

Using a very sophisticated probabilistic approach Brightwell and Tetali
have published an asymptotic bound on e(Bn) given by

e(Bn)≤ e6·2n· lnn
n

n
∏
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i

)
!

It first outdoes the Sha/Kleitman bound at n = 18 where
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∏
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i
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i)
≈ 2.10×101173310
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n
n

∏
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i

)
!≈ 1.58×101169187.
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