Linear Extensions of LYM Posets

Ewan Kummel

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

- A binary relation ≤ on a set P is defined to be a partial order on P when ≤ is reflexive, transitive, and antisymmetric.
- We will refer to the pair (P, ≤) as the partially ordered set, or poset, P.
- The relation is a **total order** if X and $Y \in P$ implies that $X \preceq Y$ or $Y \preceq X$.
- A map σ from a poset P to a poset Q is **order preserving** if, for each X and $Y \in P$, $X \leq_P Y$ implies that $\sigma(X) \leq_Q \sigma(Y)$.
- An order preserving bijection ε: P → Q is a linear extension of P if Q is totally ordered.
- Two posets are isomorphic if there is an invertible, order preserving, bijection between them.

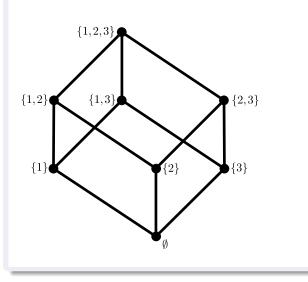
- A binary relation ≤ on a set P is defined to be a partial order on P when ≤ is reflexive, transitive, and antisymmetric.
- We will refer to the pair (P, ≤) as the partially ordered set, or poset, P.
- The relation is a **total order** if X and $Y \in P$ implies that $X \preceq Y$ or $Y \preceq X$.
- A map σ from a poset P to a poset Q is **order preserving** if, for each X and $Y \in P$, $X \leq_P Y$ implies that $\sigma(X) \leq_Q \sigma(Y)$.
- An order preserving bijection ε: P → Q is a linear extension of P if Q is totally ordered.
- Two posets are isomorphic if there is an invertible, order preserving, bijection between them.

- A binary relation ≤ on a set P is defined to be a partial order on P when ≤ is reflexive, transitive, and antisymmetric.
- We will refer to the pair (P, ≤) as the partially ordered set, or poset, P.
- The relation is a **total order** if X and $Y \in P$ implies that $X \preceq Y$ or $Y \preceq X$.
- A map σ from a poset P to a poset Q is **order preserving** if, for each X and $Y \in P$, $X \leq_P Y$ implies that $\sigma(X) \leq_Q \sigma(Y)$.
- An order preserving bijection ε : P → Q is a linear extension of P if Q is totally ordered.
- Two posets are isomorphic if there is an invertible, order preserving, bijection between them.

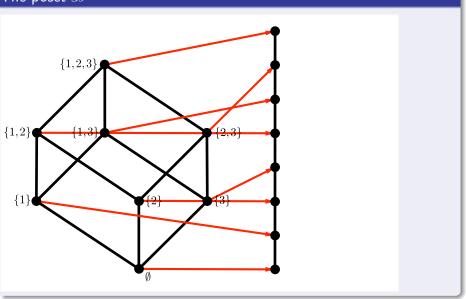
- A binary relation ≤ on a set P is defined to be a partial order on P when ≤ is reflexive, transitive, and antisymmetric.
- We will refer to the pair (P, ≤) as the partially ordered set, or poset, P.
- The relation is a **total order** if X and $Y \in P$ implies that $X \preceq Y$ or $Y \preceq X$.
- A map σ from a poset P to a poset Q is **order preserving** if, for each X and $Y \in P$, $X \leq_P Y$ implies that $\sigma(X) \leq_Q \sigma(Y)$.
- An order preserving bijection *ε* : *P* → *Q* is a linear extension of *P* if *Q* is totally ordered.
- Two posets are isomorphic if there is an invertible, order preserving, bijection between them.

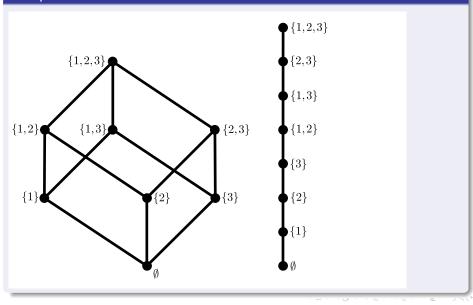
- A binary relation ≤ on a set P is defined to be a partial order on P when ≤ is reflexive, transitive, and antisymmetric.
- We will refer to the pair (P, ≤) as the partially ordered set, or poset, P.
- The relation is a **total order** if X and $Y \in P$ implies that $X \preceq Y$ or $Y \preceq X$.
- A map σ from a poset P to a poset Q is **order preserving** if, for each X and $Y \in P$, $X \leq_P Y$ implies that $\sigma(X) \leq_Q \sigma(Y)$.
- An order preserving bijection ε : P → Q is a linear extension of P if Q is totally ordered.
- Two posets are isomorphic if there is an invertible, order preserving, bijection between them.

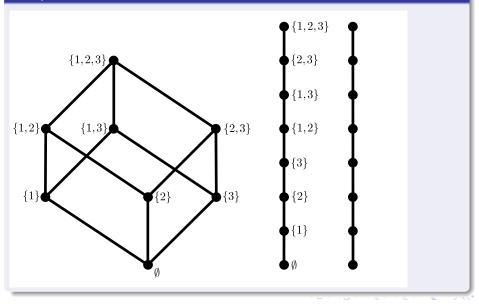
- A binary relation ≤ on a set P is defined to be a partial order on P when ≤ is reflexive, transitive, and antisymmetric.
- We will refer to the pair (P, ≤) as the partially ordered set, or poset, P.
- The relation is a **total order** if X and $Y \in P$ implies that $X \preceq Y$ or $Y \preceq X$.
- A map σ from a poset P to a poset Q is **order preserving** if, for each X and $Y \in P$, $X \leq_P Y$ implies that $\sigma(X) \leq_Q \sigma(Y)$.
- An order preserving bijection ε : P → Q is a linear extension of P if Q is totally ordered.
- Two posets are isomorphic if there is an invertible, order preserving, bijection between them.

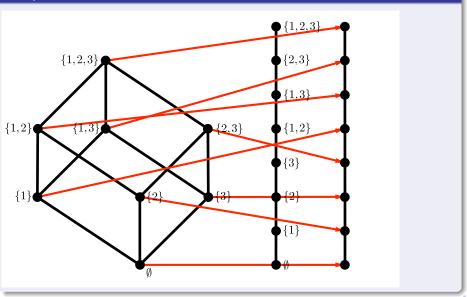


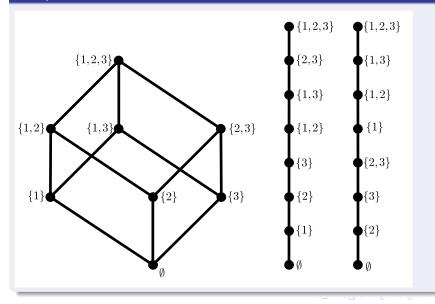
The poset \mathscr{B}^3 $\{1, 2, 3\}$ $\{1, 2\}$ $\{1, 3\}$ $\{2,3\}$ $\{1\}$ {3} 2











Counting The Linear Extensions of a Finite Poset

• Let E(P) be the set of linear extensions of P. If P is finite then E(P) is finite.

• We define e(P) to the the size of E(P).

A trivial upper bound is

 $e(P) \leq |P|!$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

(The right hand side counts the number of total orderings of the set P.)

Counting The Linear Extensions of a Finite Poset

- Let E(P) be the set of linear extensions of P. If P is finite then E(P) is finite.
- We define e(P) to the the size of E(P).

```
A trivial upper bound is
```

 $e(P) \leq |P|!$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

(The right hand side counts the number of total orderings of the set P.)

Counting The Linear Extensions of a Finite Poset

- Let E(P) be the set of linear extensions of P. If P is finite then E(P) is finite.
- We define e(P) to the the size of E(P).

A trivial upper bound is

$$e(P) \leq |P|!$$

(The right hand side counts the number of total orderings of the set P.)

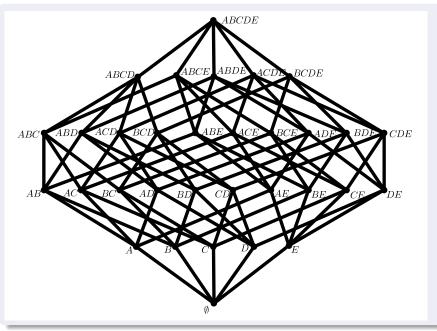
- Q is an order ideal if for each $X \in Q$, $Y \preceq X$ implies $Y \in Q$ for all $Y \in P$.
- Q is a **filter** if for each $X \in Q$, $X \preceq Y$ implies $Y \in Q$ for all $Y \in P$.
- Q is a **chain** if for each X and $Y \in Q$ either $X \preceq Y$ or $Y \preceq X$.
- Q is an **antichain** if for each X and $Y \in Q$ neither $X \preceq Y$ nor $Y \preceq X$.

- Q is an order ideal if for each $X \in Q$, $Y \preceq X$ implies $Y \in Q$ for all $Y \in P$.
- Q is a **filter** if for each $X \in Q$, $X \preceq Y$ implies $Y \in Q$ for all $Y \in P$.
- Q is a **chain** if for each X and $Y \in Q$ either $X \leq Y$ or $Y \leq X$.
- Q is an **antichain** if for each X and $Y \in Q$ neither $X \preceq Y$ nor $Y \preceq X$.

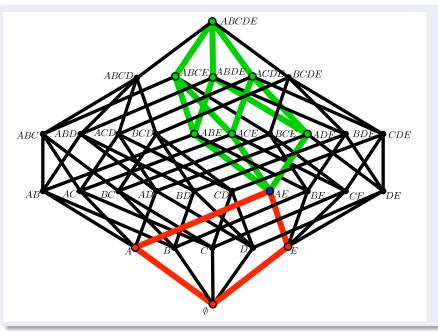
- Q is an order ideal if for each $X \in Q$, $Y \preceq X$ implies $Y \in Q$ for all $Y \in P$.
- Q is a **filter** if for each $X \in Q$, $X \preceq Y$ implies $Y \in Q$ for all $Y \in P$.
- Q is a **chain** if for each X and $Y \in Q$ either $X \preceq Y$ or $Y \preceq X$.
- Q is an **antichain** if for each X and $Y \in Q$ neither $X \preceq Y$ nor $Y \preceq X$.

- Q is an order ideal if for each $X \in Q$, $Y \preceq X$ implies $Y \in Q$ for all $Y \in P$.
- Q is a **filter** if for each $X \in Q$, $X \preceq Y$ implies $Y \in Q$ for all $Y \in P$.
- Q is a **chain** if for each X and $Y \in Q$ either $X \preceq Y$ or $Y \preceq X$.
- Q is an **antichain** if for each X and $Y \in Q$ neither $X \leq Y$ nor $Y \leq X$.

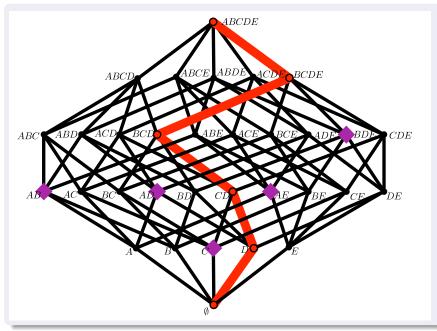
The Boolean Lattice \mathscr{B}^5



The Boolean Lattice \mathscr{B}^5



The Boolean Lattice \mathscr{B}^5



- If ε is a linear extension of a poset P then the elements of P can be written X₁, X₂,..., X_{|P|} so that X_i ≤_ε X_j if and only if i ≤ j. In fact, this sequence uniquely characterizes ε.
- Letting O_i = {X₁, X₂,...,X_i} we can construct a sequence of order ideals O₁, O₂,...,O_{|P|} of P. Again, this sequence uniquely characterizes ε.
- Given an ideal O of P, we define the map \mathfrak{a} by

$$\mathfrak{a}(O) = \min\{P - O\}.$$

 $\alpha(O)$ is always an antichain, called the **choice antichain** of O. This map establishes a bijection between the order ideals of P and the antichains of P.

This allows us to translate the sequence of ideals O₁, O₂,..., O_{|P|} into a sequence of antichains a(O₁), a(O₂),..., a(O_{|P|}). This sequence also uniquely characterizes ε.

- If ε is a linear extension of a poset P then the elements of P can be written X₁, X₂,..., X_{|P|} so that X_i ≤_ε X_j if and only if i ≤ j. In fact, this sequence uniquely characterizes ε.
- Letting $O_i = \{X_1, X_2, ..., X_i\}$ we can construct a sequence of order ideals $O_1, O_2, ..., O_{|P|}$ of P. Again, this sequence uniquely characterizes ε .
- Given an ideal O of P, we define the map \mathfrak{a} by

$$\mathfrak{a}(O)=\min\left\{P-O\right\}.$$

 $\mathfrak{a}(O)$ is always an antichain, called the **choice antichain** of O. This map establishes a bijection between the order ideals of P and the antichains of P.

This allows us to translate the sequence of ideals O₁, O₂,..., O_{|P|} into a sequence of antichains a(O₁), a(O₂),..., a(O_{|P|}). This sequence also uniquely characterizes ε.

- If ε is a linear extension of a poset P then the elements of P can be written X₁, X₂,..., X_{|P|} so that X_i ≤_ε X_j if and only if i ≤ j. In fact, this sequence uniquely characterizes ε.
- Letting $O_i = \{X_1, X_2, ..., X_i\}$ we can construct a sequence of order ideals $O_1, O_2, ..., O_{|P|}$ of P. Again, this sequence uniquely characterizes ε .
- Given an ideal O of P, we define the map a by

$$\mathfrak{a}(O)=\min\left\{P-O\right\}.$$

 $\mathfrak{a}(O)$ is always an antichain, called the **choice antichain** of O. This map establishes a bijection between the order ideals of P and the antichains of P.

This allows us to translate the the sequence of ideals O₁, O₂,..., O_{|P|} into a sequence of antichains a(O₁), a(O₂),..., a(O_{|P|}). This sequence also uniquely characterizes ε.

- If ε is a linear extension of a poset P then the elements of P can be written X₁, X₂,..., X_{|P|} so that X_i ≤_ε X_j if and only if i ≤ j. In fact, this sequence uniquely characterizes ε.
- Letting $O_i = \{X_1, X_2, ..., X_i\}$ we can construct a sequence of order ideals $O_1, O_2, ..., O_{|P|}$ of P. Again, this sequence uniquely characterizes ε .
- Given an ideal O of P, we define the map a by

$$\mathfrak{a}(O)=\min\left\{P-O\right\}.$$

 $\mathfrak{a}(O)$ is always an antichain, called the **choice antichain** of O. This map establishes a bijection between the order ideals of P and the antichains of P.

• This allows us to translate the the sequence of ideals $O_1, O_2, ..., O_{|P|}$ into a sequence of antichains $\mathfrak{a}(O_1), \mathfrak{a}(O_2), ..., \mathfrak{a}(O_{|P|})$. This sequence also uniquely characterizes ε .

The Choice Antichain

• Intuitively, the choice antichain of O is the set of every element X of P-O so that the set

 $O[]{X}$

is also an ideal of *P*.

For the first given linear extension of \mathscr{B}^3 , we have the following sequences:

The Choice Antichain

• Intuitively, the choice antichain of O is the set of every element X of P-O so that the set

 $O[]{X}$

is also an ideal of P.

For the first given linear extension of \mathscr{B}^3 , we have the following sequences:

Xi	O_i	$\mathfrak{a}(O_i)$
Ø	{Ø}	$\{\{1\},\{2\},\{3\}\}$
{1}	$\{ \emptyset, \{1\} \}$	$\{\{2\},\{3\}\}$
{2}	$\{ \emptyset, \{1\}, \{2\} \}$	$\{\{3\},\{1,2\}\}$
{3}	$\{\emptyset, \{1\}, \{2\}, \{3\}\}$	$\{\{1,2\},\{1,3\},\{2,3\}\}$
{1,2}	$\{ \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\} \}$	$\{\{1,3\},\{2,3\}\}$
{1,3}	$\{ \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\} \}$	{{2,3}}
{2,3}	$\{ \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\} \}$	$\{\{1,2,3\}\}$
$\{1,2,3\}$	\mathscr{B}^3	Ø

A rank function on a poset P is a function r : P → N such that
1. There is a minimal element X₀ ∈ P so that r(X₀) = 0 and
2. r(X) = r(Y) + 1 whenever X covers Y.

Given any ranked poset P,

- the number $\max\{r(X)\}_{X \in P}$ is the **rank** of *P*.
- For any subset Q of P, the set $\{X \in Q | r(X) = k\}$ is denoted by Q_k .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- A rank function on a poset P is a function r : P → N such that
 1. There is a minimal element X₀ ∈ P so that r(X₀) = 0 and
 2. r(X) = r(Y) + 1 whenever X covers Y.
- Given any ranked poset P,
 - the number $\max\{r(X)\}_{X \in P}$ is the **rank** of *P*.
 - For any subset Q of P, the set $\{X \in Q | r(X) = k\}$ is denoted by Q_k .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A rank function on a poset P is a function r : P → N such that
 1. There is a minimal element X₀ ∈ P so that r(X₀) = 0 and

2.
$$r(X) = r(Y) + 1$$
 whenever X covers Y.

Given any ranked poset P,

- the number $\max\{r(X)\}_{X \in P}$ is the **rank** of *P*.
- For any subset Q of P, the set $\{X \in Q | r(X) = k\}$ is denoted by Q_k .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• A rank function on a poset P is a function $r : P \longrightarrow \mathbb{N}$ such that 1. There is a minimal element $X_0 \in \mathscr{P}$ so that $r(X_0) = 0$ and

2.
$$r(X) = r(Y) + 1$$
 whenever X covers Y.

Given any ranked poset P,

- the number $\max\{r(X)\}_{X \in P}$ is the **rank** of *P*.
- For any subset Q of P, the set $\{X \in Q | r(X) = k\}$ is denoted by Q_k .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A rank function on a poset P is a function r : P → N such that
 1. There is a minimal element X₀ ∈ P so that r(X₀) = 0 and

2.
$$r(X) = r(Y) + 1$$
 whenever X covers Y.

Given any ranked poset P,

- the number $\max\{r(X)\}_{X \in P}$ is the **rank** of *P*.
- For any subset Q of P, the set $\{X \in Q | r(X) = k\}$ is denoted by Q_k .

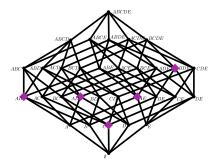
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The LYM Property

Let *P* be a rank *n* poset, with whitney numbers $N_0, N_1, ..., N_n$. *P* has the **LYM property** if for each antichain $A \in P$,

$$\sum_{k=0}^{n} \frac{|A_k|}{N_k} \le 1.$$

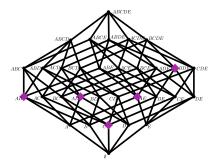
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●



- The whitney number N_k of \mathscr{B}^5 is the binomial coefficient $\binom{5}{k}$.
- The antichain A has $|A_0| = |A_4| = |A_4| = 0$, $|A_1| = |A_3| = 1$, and $|A_2| = 3$.

So

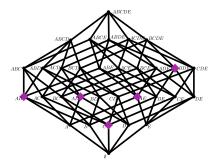
$$\sum_{k=0}^{5} \frac{|A_k|}{{5 \choose k}} = \frac{1}{5} + \frac{3}{10} + \frac{1}{10} = \frac{3}{5} < 1$$



- The whitney number N_k of \mathscr{B}^5 is the binomial coefficient $\binom{5}{k}$.
- The antichain A has $|A_0| = |A_4| = |A_4| = 0$, $|A_1| = |A_3| = 1$, and $|A_2| = 3$.

So

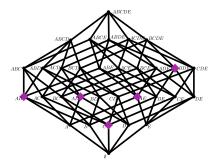
$$\sum_{k=0}^{5} \frac{|A_k|}{{5 \choose k}} = \frac{1}{5} + \frac{3}{10} + \frac{1}{10} = \frac{3}{5} < 1$$



- The whitney number N_k of \mathscr{B}^5 is the binomial coefficient $\binom{5}{k}$.
- The antichain A has $|A_0| = |A_4| = |A_4| = 0$, $|A_1| = |A_3| = 1$, and $|A_2| = 3$.

So

$$\sum_{k=0}^{5} \frac{|A_k|}{\binom{5}{k}} = \frac{1}{5} + \frac{3}{10} + \frac{1}{10} = \frac{3}{5} < 1$$



- The whitney number N_k of \mathscr{B}^5 is the binomial coefficient $\binom{5}{k}$.
- The antichain A has $|A_0| = |A_4| = |A_4| = 0$, $|A_1| = |A_3| = 1$, and $|A_2| = 3$.

• So,

$$\sum_{k=0}^{5} \frac{|A_k|}{\binom{5}{k}} = \frac{1}{5} + \frac{3}{10} + \frac{1}{10} = \frac{3}{5} < 1$$

Theorem

(The LYM Inequality) Let \mathscr{A} be an antichain in the Boolean Lattice \mathscr{B}^n and let \mathscr{A}_k be the be the set of all rank k nodes in \mathscr{A} . Then

$$\sum_{k=0}^{n} \frac{|\mathscr{A}_{k}|}{\binom{n}{k}} \leq 1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

\mathscr{B}^n contains exactly n! maximal chains.

If $X \in \mathscr{B}^n$ and r(X) = k then X generates an ideal of rank k isomorphic to \mathscr{B}^{k} and a filter of rank n-k isomorphic to \mathscr{B}^{n-k} . It follows that there are exactly k!(n-k)! maximal chains in \mathscr{B}^n containing X.

人口 医水黄 医水黄 医水黄 化口

If \mathscr{A} is an antichain in \mathscr{B}^n and then for each $X \in \mathscr{A}_k$ there are exactly k!(n-k)! maximal chains in \mathscr{B}^n containing X.

 \mathscr{B}^n contains exactly n! maximal chains.

If $X \in \mathscr{B}^n$ and r(X) = k then X generates an ideal of rank k isomorphic to \mathscr{B}^k and a filter of rank n-k isomorphic to \mathscr{B}^{n-k} . It follows that there are exactly k!(n-k)! maximal chains in \mathscr{B}^n containing X.

(日) (四) (日) (日) (日)

If \mathscr{A} is an antichain in \mathscr{B}^n and then for each $X \in \mathscr{A}_k$ there are exactly k!(n-k)! maximal chains in \mathscr{B}^n containing X.

 \mathscr{B}^n contains exactly n! maximal chains.

If $X \in \mathscr{B}^n$ and r(X) = k then X generates an ideal of rank k isomorphic to \mathscr{B}^k and a filter of rank n - k isomorphic to \mathscr{B}^{n-k} . It follows that there are exactly k!(n-k)! maximal chains in \mathscr{B}^n containing X.

If \mathscr{A} is an antichain in \mathscr{B}^n and then for each $X \in \mathscr{A}_k$ there are exactly k!(n-k)! maximal chains in \mathscr{B}^n containing X.

Given any antichain A and any chain C of any poset P, $A \cap C$ contains at most 1 element.

Therefore, there are exactly

$$\sum_{k=0}^{n} |\mathscr{A}_{k}| k! (n-k)!$$

人口 医水黄 医水黄 医水黄素 化甘油

maximal chains in \mathscr{B}^n containing some member of \mathscr{A} .

Given any antichain A and any chain C of any poset P, $A \cap C$ contains at most 1 element.

Therefore, there are exactly

$$\sum_{k=0}^{n} |\mathscr{A}_{k}| k! (n-k)!$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

maximal chains in \mathscr{B}^n containing some member of \mathscr{A} .

Since there are at most n! maximal chains in \mathscr{B}^n containing some member of \mathscr{A} ,

$$\sum_{k=0}^{n} |\mathscr{A}_{k}| \, k! (n-k)! \leq n!.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Dividing through by *n*! gives

Since there are at most n! maximal chains in \mathscr{B}^n containing some member of \mathscr{A} ,

$$\sum_{k=0}^{n} |\mathscr{A}_{k}| \, k! (n-k)! \leq n!.$$

Dividing through by n! gives

$$\sum_{k=0}^{n} \frac{|\mathscr{A}_{k}|}{\binom{n}{k}} \leq 1.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Probabilistic Arguments

We will be using a discrete probability distribution over E(P) to get an upper bound on its size, e(P).

A function ρ from a finite set E to the interval [0,1] is a probability distribution over E if

$$\sum_{x\in E}\rho(x)=1.$$

 A weight function on P is a function w : 𝒫[P] → ℝ⁺ so that for every subset Q of P,

$$w(Q) = \sum_{X \in Q} w(X).$$

For each antichain A of P, the function $\rho_A : A \longrightarrow \mathbb{R}$ defined by

$$\rho_A(X) = \frac{w(X)}{w(A)}$$

is a probability distribution over A.

Probabilistic Arguments

We will be using a discrete probability distribution over E(P) to get an upper bound on its size, e(P).

A function ρ from a finite set E to the interval [0,1] is a probability distribution over E if

$$\sum_{x\in E}\rho(x)=1.$$

 A weight function on P is a function w : 𝒫[P] → ℝ⁺ so that for every subset Q of P,

$$w(Q) = \sum_{X \in Q} w(X).$$

For each antichain A of P, the function $\rho_A : A \longrightarrow \mathbb{R}$ defined by

$$\rho_A(X) = \frac{w(X)}{w(A)}$$

is a probability distribution over A.

Probabilistic Arguments

We will be using a discrete probability distribution over E(P) to get an upper bound on its size, e(P).

A function ρ from a finite set E to the interval [0,1] is a probability distribution over E if

$$\sum_{x\in E}\rho(x)=1.$$

 A weight function on P is a function w : 𝒫[P] → ℝ⁺ so that for every subset Q of P,

$$w(Q) = \sum_{X \in Q} w(X).$$

For each antichain A of P, the function $\rho_A: A \longrightarrow \mathbb{R}$ defined by

$$\rho_A(X) = \frac{w(X)}{w(A)}$$

is a probability distribution over A.

The Generalized Sha/Kleitman Bound

Theorem

Let P be a ranked poset and let w be a weight function on P. If $w(A) \le 1$ for each antichain A of P then

$$e(P) \leq \frac{1}{\prod_{X \in P} w(X)}.$$

(日) (四) (日) (日) (日)

Define a procedure for generating linear extensions of P as follows:

$$O_0 = \emptyset$$

$$O_{i+1} = O_i + \{X_i\}$$

where X_i is chosen from $\mathfrak{a}(O_i)$ with probability $\rho_{O_i}(X_i)$.

The process terminates after the |P|th step when $O_{|P|} = P$ and $\mathfrak{a}(O_{|P|}) = \emptyset$. The generated sequence $O_1, O_2, ..., O_{|P|}$ determines a unique linear extension of P.

Alternately, given any sequence $O_1, O_2, ..., O_{|P|}$, characterizing a linear extension, the construction results in $O_1, O_2, ..., O_{|P|}$ only if the choice of X_i at the *i*th stage is exactly the single element of $O_{i+1} - O_i$.

Define a procedure for generating linear extensions of P as follows:

$$O_0 = \emptyset$$

$$O_{i+1} = O_i + \{X_i\}$$

where X_i is chosen from $\mathfrak{a}(O_i)$ with probability $\rho_{O_i}(X_i)$.

The process terminates after the |P|th step when $O_{|P|} = P$ and $\mathfrak{a}(O_{|P|}) = \emptyset$. The generated sequence $O_1, O_2, ..., O_{|P|}$ determines a unique linear extension of P.

Alternately, given any sequence $O_1, O_2, ..., O_{|P|}$, characterizing a linear extension, the construction results in $O_1, O_2, ..., O_{|P|}$ only if the choice of X_i at the *i*th stage is exactly the single element of $O_{i+1} - O_i$.

Define a procedure for generating linear extensions of P as follows:

$$O_0 = \emptyset$$

$$O_{i+1} = O_i + \{X_i\}$$

where X_i is chosen from $\mathfrak{a}(O_i)$ with probability $\rho_{O_i}(X_i)$.

The process terminates after the |P|th step when $O_{|P|} = P$ and $\mathfrak{a}(O_{|P|}) = \emptyset$. The generated sequence $O_1, O_2, ..., O_{|P|}$ determines a unique linear extension of P.

Alternately, given any sequence $O_1, O_2, ..., O_{|P|}$, characterizing a linear extension, the construction results in $O_1, O_2, ..., O_{|P|}$ only if the choice of X_i at the *i*th stage is exactly the single element of $O_{i+1} - O_i$.

For each partial sequence $O_1, O_2, \ldots, O_{i-1}$, the value $\rho_{O_i}(X_i)$ is exactly the probability that X_i is chosen at the *i*th stage of our construction given that $O_1, O_2, \ldots, O_{i-1}$ have already been constructed.

It follows that, for any linear extension ε of P, the probability that our construction produces ε is exactly

 $\mu(\varepsilon) = \prod_{i=1}^{|P|} \rho_{O_i}(X_i).$

where the sequences $X_1, ..., X_{|P|}$ and $O_1, O_2, ..., O_{|P|}$ are defined as above. Therefore, μ is a probability distribution over the set E(P) assigning non-zero probability to each element $\varepsilon \in E(P)$.

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

For each partial sequence $O_1, O_2, \ldots, O_{i-1}$, the value $\rho_{O_i}(X_i)$ is exactly the probability that X_i is chosen at the *i*th stage of our construction given that $O_1, O_2, \ldots, O_{i-1}$ have already been constructed.

It follows that, for any linear extension ε of P, the probability that our construction produces ε is exactly

$$\mu(\varepsilon) = \prod_{i=1}^{|P|} \rho_{O_i}(X_i).$$

where the sequences $X_1, ..., X_{|P|}$ and $O_1, O_2, ..., O_{|P|}$ are defined as above. Therefore, μ is a probability distribution over the set E(P) assigning non-zero probability to each element $\varepsilon \in E(P)$.

By our assumptions, for any order ideal O and any $X \in O$, we have

$$\rho_O(X) = \frac{w(X)}{w(\mathfrak{a}(O))} \ge w(X).$$

Since every element of P appears exactly once in the sequence $X_1, ..., X_{|P|}$

$$\prod_{X\in P} w(X) \leq \prod_{i=1}^{|P|} \rho_{O_i}(X_i) = \mu(\varepsilon).$$

(日)

э

By our assumptions, for any order ideal O and any $X \in O$, we have

$$\rho_O(X) = \frac{w(X)}{w(\mathfrak{a}(O))} \ge w(X).$$

Since every element of P appears exactly once in the sequence $X_1, ..., X_{|P|}$,

$$\prod_{X\in P} w(X) \leq \prod_{i=1}^{|P|} \rho_{O_i}(X_i) = \mu(\varepsilon).$$

Finally, since

$$\sum_{e \in E(P)} \mu(\varepsilon) = 1$$

ε

it follows that

$$e(P)\cdot\left(\prod_{X\in P}w(X)\right)=\sum_{\varepsilon\in E(P)}\left(\prod_{X\in P}w(X)\right)\leq \sum_{\varepsilon\in E(P)}\mu(\varepsilon)=1.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● のへ⊙

Corollary

If P is an LYM poset with whitney numbers $N_0, N_1, N_2, ..., N_n$ then

$$e(P) \leq \prod_{i=0}^n N_i^{N_i}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $w(X) = \frac{1}{N_{r(X)}}$, where r is the rank function on P. Note that w is a weight function on P.

If P is LYM, we have $w(A) \leq 1$ for every antichain A in P.

Therefore, by the previous theorem,

$$e(P) \leq \frac{1}{\prod\limits_{X \in P} w(X)} = \frac{1}{\prod\limits_{X \in P} \frac{1}{N_{r(X)}}} = \prod\limits_{X \in P} N_{r(X)}.$$

Since for each i, there are exactly N_i elements of P with rank i, the corollary follows.

人口 医水黄 医水黄 医水黄 化口 医小

Let $w(X) = \frac{1}{N_{r(X)}}$, where r is the rank function on P. Note that w is a weight function on P.

If P is LYM, we have $w(A) \leq 1$ for every antichain A in P.

Therefore, by the previous theorem,

$$e(P) \leq \frac{1}{\prod\limits_{X \in P} w(X)} = \frac{1}{\prod\limits_{X \in P} \frac{1}{N_{r(X)}}} = \prod\limits_{X \in P} N_{r(X)}.$$

Since for each *i*, there are exactly N_i elements of *P* with rank *i*, the corollary follows.

Let $w(X) = \frac{1}{N_{r(X)}}$, where r is the rank function on P. Note that w is a weight function on P.

If P is LYM, we have $w(A) \leq 1$ for every antichain A in P.

Therefore, by the previous theorem,

$$e(P) \leq \frac{1}{\prod_{X \in P} w(X)} = \frac{1}{\prod_{X \in P} \overline{N_{r(X)}}} = \prod_{X \in P} N_{r(X)}.$$

Since for each *i*, there are exactly N_i elements of *P* with rank *i*, the corollary follows.

Conclusion

- This bound is achieved by chains, but it is easy to see that it is not attained by any other poset.
- It is not asymptotic but for small values of n it is the best upper bound we have for Bⁿ.

n	$\prod_{i=0}^{n} \binom{n}{i}!$	$e({\cal B}^n)$	$\prod_{i=0}^{n} {n \choose i}^{\binom{n}{i}}$	$2^{n}!$
1	1	1	1	2
2	2	2	4	24
3	36	48	729	40320
4	4.15×10^{5}	1.680384×10^{6}	3.06×10^{9}	2.09×10^{13}
5	1.9×10^{17}	$1.480780403565735936 \times 10^{19}$	9.77×10^{26}	2.63×10^{35}
6	2.16×10^{48}	$1.41377911697227887117195970316200795630205476957716480 \times 10^{53}$	4.38×10^{70}	1.72×10^{89}
7	7.08×10^{126}	?	2.81×10^{175}	3.86×10^{215}
8	9.15×10^{317}	?	2.78×10^{420}	8.58×10^{506}

Conclusion

 Using a very sophisticated probabilistic approach Brightwell and Tetali have published an asymptotic bound on e(*B*ⁿ) given by

$$e(\mathscr{B}^n) \leq e^{6 \cdot 2^n \cdot \frac{\ln n}{n}} \prod_{i=0}^n \binom{n}{i}!$$

It first outdoes the Sha/Kleitman bound at n = 18 where

$$\prod_{i=0}^{n} \binom{n}{i}^{\binom{n}{i}} \approx 2.10 \times 10^{1173310}$$

and

$$e^{6 \cdot 2^n \cdot \frac{\ln n}{n}} \prod_{i=0}^n {n \choose i} ! \approx 1.58 \times 10^{1169187}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Conclusion

 Using a very sophisticated probabilistic approach Brightwell and Tetali have published an asymptotic bound on e(*B*ⁿ) given by

$$e(\mathscr{B}^n) \leq e^{6 \cdot 2^n \cdot \frac{\ln n}{n}} \prod_{i=0}^n \binom{n}{i!}$$

• It first outdoes the Sha/Kleitman bound at n = 18 where

$$\prod_{i=0}^{n} \binom{n}{i}^{\binom{n}{i}} \approx 2.10 \times 10^{1173310}$$

and

$$e^{6 \cdot 2^n \cdot \frac{\ln n}{n}} \prod_{i=0}^n \binom{n}{i}! \approx 1.58 \times 10^{1169187}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

References

M Aigner and G. Ziegler. *Proof's from The Book.* Springer, 2004.

G Brightwell.

The number of linear extensions of ranked posets.

Cdam research report lse-cdam-2003-18, The London School of Economics, 2003.

G. Brightwell and P Tetali.

The number of linear extensions of the boolean lattice. Order, 20(4):333–345, 2003.

- G Brightwell and P. Winkler. Counting linear extensions. *Order*, 8(3):225–242, 1991.
- D. J. Kleitman and J. Sha.

The number of linear extensions of subset ordering.

Discrete Mathematics, 63:279–295, 1987.