Linear Extensions of LYM Posets

Ewan Kummel

Preliminaries

- A binary relation \preceq on a set P is defined to be a partial order on P when \preceq is reflexive, transitive, and antisymmetric.
- We will refer to the pair (P, \preceq) as the partially ordered set, or poset, P.
- The relation is a total order if X and $Y \in P$ implies that $X \preceq Y$ or $Y \preceq X$.
- A map σ from a poset P to a poset Q is order preserving if, for each X and $Y \in P, X \preceq_{P} Y$ implies that $\sigma(X) \preceq_{Q} \sigma(Y)$.
- An order preserving bijection $\varepsilon: P \longrightarrow Q$ is a linear extension of P if Q is totally ordered.
- Two posets are isomorphic if there is an invertible, order preserving, bijection between them.

Preliminaries

- A binary relation \preceq on a set P is defined to be a partial order on P when \preceq is reflexive, transitive, and antisymmetric.
- We will refer to the pair (P, \preceq) as the partially ordered set, or poset, P.
- A map σ from a poset P to a poset Q is order preserving if, for each X and $Y \in P, X \preceq_{P} Y$ implies that $\sigma(X) \preceq_{Q} \sigma(Y)$.
- An order preserving bijection $\varepsilon: P \longrightarrow Q$ is a linear extension of P if Q is totally ordered.
- Two posets are isomorphic if there is an invertible, order preserving, bijection between them.

Preliminaries

- A binary relation \preceq on a set P is defined to be a partial order on P when \preceq is reflexive, transitive, and antisymmetric.
- We will refer to the pair (P, \preceq) as the partially ordered set, or poset, P.
- The relation is a total order if X and $Y \in P$ implies that $X \preceq Y$ or $Y \preceq X$.
- A map σ from a poset P to a poset Q is order preserving if, for each X and $Y \in P, X \preceq_{P} Y$ implies that $\sigma(X) \preceq_{Q} \sigma(Y)$.
- An order preserving bijection $\varepsilon: P \longrightarrow Q$ is a linear extension of P if Q is totally ordered.
- Two posets are isomorphic if there is an invertible, order preserving, bijection between them.

Preliminaries

- A binary relation \preceq on a set P is defined to be a partial order on P when \preceq is reflexive, transitive, and antisymmetric.
- We will refer to the pair (P, \preceq) as the partially ordered set, or poset, P.
- The relation is a total order if X and $Y \in P$ implies that $X \preceq Y$ or $Y \preceq X$.
- A map σ from a poset P to a poset Q is order preserving if, for each X and $Y \in P, X \preceq_{P} Y$ implies that $\sigma(X) \preceq_{Q} \sigma(Y)$.
- An order preserving bijection ε Q is totally ordered.
- Two posets are isomorphic if there is an invertible, order preserving, bijection between them

Preliminaries

- A binary relation \preceq on a set P is defined to be a partial order on P when \preceq is reflexive, transitive, and antisymmetric.
- We will refer to the pair (P, \preceq) as the partially ordered set, or poset, P.
- The relation is a total order if X and $Y \in P$ implies that $X \preceq Y$ or $Y \preceq X$.
- A map σ from a poset P to a poset Q is order preserving if, for each X and $Y \in P, X \preceq P Y$ implies that $\sigma(X) \preceq_{Q} \sigma(Y)$.
- An order preserving bijection $\varepsilon: P \longrightarrow Q$ is a linear extension of P if Q is totally ordered.
- Two posets are isomorphic if there is an invertible, order preserving, bijection between them.

Preliminaries

- A binary relation \preceq on a set P is defined to be a partial order on P when \preceq is reflexive, transitive, and antisymmetric.
- We will refer to the pair (P, \preceq) as the partially ordered set, or poset, P.
- The relation is a total order if X and $Y \in P$ implies that $X \preceq Y$ or $Y \preceq X$.
- A map σ from a poset P to a poset Q is order preserving if, for each X and $Y \in P, X \preceq P Y$ implies that $\sigma(X) \preceq_{Q} \sigma(Y)$.
- An order preserving bijection $\varepsilon: P \longrightarrow Q$ is a linear extension of P if Q is totally ordered.
- Two posets are isomorphic if there is an invertible, order preserving, bijection between them.

A Linear Extension

The poset \mathscr{B}^{3}

A Linear Extension

The poset \mathscr{B}^{3}

A Linear Extension

The poset \mathscr{B}^{3}

A Linear Extension

The poset \mathscr{B}^{3}

Counting The Linear Extensions of a Finite Poset

- Let $E(P)$ be the set of linear extensions of P. If P is finite then $E(P)$ is finite.
- We define $e(P)$ to the the size of $E(P)$.

A trivial upper bound is

Counting The Linear Extensions of a Finite Poset

- Let $E(P)$ be the set of linear extensions of P. If P is finite then $E(P)$ is finite.
- We define $e(P)$ to the the size of $E(P)$.

A trivial upper bound is

Counting The Linear Extensions of a Finite Poset

- Let $E(P)$ be the set of linear extensions of P. If P is finite then $E(P)$ is finite.
- We define $e(P)$ to the the size of $E(P)$.

A trivial upper bound is

$$
e(P) \leq|P|!
$$

(The right hand side counts the number of total orderings of the set P.)

Subsets of Posets

Let Q be a subset of a partially ordered set P.

- Q is an order ideal if for each $X \in Q, Y \preceq X$ implies $Y \in Q$ for all $Y \in P$.
- Q is a filter if for each $X \in Q, X \preceq Y$ implies $Y \in Q$ for all $Y \in P$.
- Q is a chain if for each X and $Y \in Q$ either $X \preceq Y$ or $Y \preceq X$.
- Q is an antichain if for each X and $Y \in Q$ neither $X \prec Y$ nor Y - X.

Subsets of Posets

Let Q be a subset of a partially ordered set P.

- Q is an order ideal if for each $X \in Q, Y \preceq X$ implies $Y \in Q$ for all $Y \in P$.
- Q is a filter if for each $X \in Q, X \preceq Y$ implies $Y \in Q$ for all $Y \in P$.
- Q is a chain if for each X and $Y \in Q$ either $X \preceq Y$ or $Y \preceq X$.
- Q is an antichain if for each X and $Y \in Q$ neither $X \preceq Y$ nor $Y \preceq X$.

Subsets of Posets

Let Q be a subset of a partially ordered set P.

- Q is an order ideal if for each $X \in Q, Y \preceq X$ implies $Y \in Q$ for all $Y \in P$.
- Q is a filter if for each $X \in Q, X \preceq Y$ implies $Y \in Q$ for all $Y \in P$.
- Q is a chain if for each X and $Y \in Q$ either $X \preceq Y$ or $Y \preceq X$.
- Q is an antichain if for each X and $Y \in Q$ neither $X \preceq Y$ nor $Y \preceq X$.

Subsets of Posets

Let Q be a subset of a partially ordered set P.

- Q is an order ideal if for each $X \in Q, Y \preceq X$ implies $Y \in Q$ for all $Y \in P$.
- Q is a filter if for each $X \in Q, X \preceq Y$ implies $Y \in Q$ for all $Y \in P$.
- Q is a chain if for each X and $Y \in Q$ either $X \preceq Y$ or $Y \preceq X$.
- Q is an antichain if for each X and $Y \in Q$ neither $X \preceq Y$ nor $Y \preceq X$.

The Boolean Lattice \mathscr{B}^{5}

The Boolean Lattice \mathscr{B}^{5}

The Boolean Lattice \mathscr{B}^{5}

Linear Extensions, Order Ideals, and Antichains

- If ε is a linear extension of a poset P then the elements of P can be written $X_{1}, X_{2}, \ldots, X_{|P|}$ so that $X_{i} \preceq_{\varepsilon} X_{j}$ if and only if $i \leq j$. In fact, this sequence uniquely characterizes ε.

$\mathfrak{a}(O)$ is always an antichain, called the choice antichain of O. This map establishes a bijection between the order ideals of P and the antichains of P

Linear Extensions, Order Ideals, and Antichains

- If ε is a linear extension of a poset P then the elements of P can be written $X_{1}, X_{2}, \ldots, X_{|P|}$ so that $X_{i} \preceq_{\varepsilon} X_{j}$ if and only if $i \leq j$. In fact, this sequence uniquely characterizes ε.
- Letting $O_{i}=\left\{X_{1}, X_{2}, \ldots, X_{i}\right\}$ we can construct a sequence of order ideals $O_{1}, O_{2}, \ldots, O_{|P|}$ of P. Again, this sequence uniquely characterizes ε.
- Given an ideal O of P, we define the map a by $\mathfrak{a}(O)=\min \{P-O\}$
$a(O)$ is always an antichain, called the choice antichain of O. This map establishes a bijection between the order ideals of P and the antichains of P

This allows us to translate the the sequence of ideals $\mathrm{O}_{1}, \mathrm{O}_{2}$ into a sequence of antichains $\mathfrak{a}\left(O_{1}\right), a\left(O_{2}\right), \ldots, a\left(O_{|P|}\right)$. This sequence also uniquely characterizes ε.

Linear Extensions, Order Ideals, and Antichains

- If ε is a linear extension of a poset P then the elements of P can be written $X_{1}, X_{2}, \ldots, X_{|P|}$ so that $X_{i} \preceq_{\varepsilon} X_{j}$ if and only if $i \leq j$. In fact, this sequence uniquely characterizes ε.
- Letting $O_{i}=\left\{X_{1}, X_{2}, \ldots, X_{i}\right\}$ we can construct a sequence of order ideals $O_{1}, O_{2}, \ldots, O_{|P|}$ of P. Again, this sequence uniquely characterizes ε.
- Given an ideal O of P, we define the map \mathfrak{a} by

$$
\mathfrak{a}(O)=\min \{P-O\}
$$

$\mathfrak{a}(O)$ is always an antichain, called the choice antichain of O. This map establishes a bijection between the order ideals of P and the antichains of P.
also uniquely characterizes ε.

Linear Extensions, Order Ideals, and Antichains

- If ε is a linear extension of a poset P then the elements of P can be written $X_{1}, X_{2}, \ldots, X_{|P|}$ so that $X_{i} \preceq_{\varepsilon} X_{j}$ if and only if $i \leq j$. In fact, this sequence uniquely characterizes ε.
- Letting $O_{i}=\left\{X_{1}, X_{2}, \ldots, X_{i}\right\}$ we can construct a sequence of order ideals $O_{1}, O_{2}, \ldots, O_{|P|}$ of P. Again, this sequence uniquely characterizes ε.
- Given an ideal O of P, we define the map \mathfrak{a} by

$$
\mathfrak{a}(O)=\min \{P-O\}
$$

$\mathfrak{a}(O)$ is always an antichain, called the choice antichain of O. This map establishes a bijection between the order ideals of P and the antichains of P.

- This allows us to translate the the sequence of ideals $O_{1}, O_{2}, \ldots, O_{|P|}$ into a sequence of antichains $\mathfrak{a}\left(O_{1}\right), \mathfrak{a}\left(O_{2}\right), \ldots, \mathfrak{a}\left(O_{|P|}\right)$. This sequence also uniquely characterizes ε.

The Choice Antichain

- Intuitively, the choice antichain of O is the set of every element X of $P-O$ so that the set

$$
O \bigcup\{X\}
$$

is also an ideal of P.

The Choice Antichain

- Intuitively, the choice antichain of O is the set of every element X of $P-O$ so that the set

$$
O \bigcup\{X\}
$$

is also an ideal of P.
For the first given linear extension of \mathscr{B}^{3}, we have the following sequences:

X_{i}	O_{i}	$\mathfrak{a}\left(O_{i}\right)$
\emptyset	$\{\emptyset\}$	$\{\{1\},\{2\},\{3\}\}$
$\{1\}$	$\{\emptyset,\{1\}\}$	$\{\{2\},\{3\}\}$
$\{2\}$	$\{\emptyset,\{1\},\{2\}\}$	$\{\{3\},\{1,2\}\}$
$\{3\}$	$\{\emptyset,\{1\},\{2\},\{3\}\}$	$\{\{1,2\},\{1,3\},\{2,3\}\}$
$\{1,2\}$	$\{\emptyset,\{1\},\{2\},\{3\},\{1,2\}\}$	$\{\{1,3\},\{2,3\}\}$
$\{1,3\}$	$\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\}\}$	$\{\{2,3\}\}$
$\{2,3\}$	$\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}\}$	$\{\{1,2,3\}\}$
$\{1,2,3\}$	\mathscr{B}^{3}	\emptyset

Ranked Posets

- A rank function on a poset P is a function $r: P \longrightarrow \mathbb{N}$ such that 1. There is a minimal element $X_{0} \in \mathscr{P}$ so that $r\left(X_{0}\right)=0$ and

$$
\text { 2. } r(X)=r(Y)+1 \text { whenever } X \text { covers } Y \text {. }
$$

Given any ranked poset P,

- the number $\max \{r(X)\}_{X \in P}$ is the rank of P.
- For any subset Q of P, the set $\{X \in Q \mid r(X)=k\}$ is denoted by Q_{k}.
- The numbers $N_{k}=\left|P_{k}\right|$ are the whitney numbers of P.

Ranked Posets

- A rank function on a poset P is a function $r: P \longrightarrow \mathbb{N}$ such that 1. There is a minimal element $X_{0} \in \mathscr{P}$ so that $r\left(X_{0}\right)=0$ and

$$
\text { 2. } r(X)=r(Y)+1 \text { whenever } X \text { covers } Y \text {. }
$$

Given any ranked poset P,

- the number $\max \{r(X)\}_{X \in P}$ is the rank of P.
- For any subset Q of P, the set $\{X \in Q \mid r(X)=k\}$ is denoted by Q_{k}.
- The numbers $N_{k}=\left|P_{k}\right|$ are the whitney numbers of P.

Ranked Posets

- A rank function on a poset P is a function $r: P \longrightarrow \mathbb{N}$ such that 1. There is a minimal element $X_{0} \in \mathscr{P}$ so that $r\left(X_{0}\right)=0$ and

$$
\text { 2. } r(X)=r(Y)+1 \text { whenever } X \text { covers } Y \text {. }
$$

Given any ranked poset P,

- the number $\max \{r(X)\}_{X \in P}$ is the rank of P.
- For any subset Q of P, the set $\{X \in Q \mid r(X)=k\}$ is denoted by Q_{k}. - The numbers $N_{k}=\left|P_{k}\right|$ are the whitney numbers of P.

Ranked Posets

- A rank function on a poset P is a function $r: P \longrightarrow \mathbb{N}$ such that 1. There is a minimal element $X_{0} \in \mathscr{P}$ so that $r\left(X_{0}\right)=0$ and

$$
\text { 2. } r(X)=r(Y)+1 \text { whenever } X \text { covers } Y \text {. }
$$

Given any ranked poset P,

- the number $\max \{r(X)\}_{X \in P}$ is the rank of P.
- For any subset Q of P, the set $\{X \in Q \mid r(X)=k\}$ is denoted by Q_{k}.
- The numbers $N_{k}=\left|P_{k}\right|$ are the whitney numbers of P.

Ranked Posets

- A rank function on a poset P is a function $r: P \longrightarrow \mathbb{N}$ such that 1. There is a minimal element $X_{0} \in \mathscr{P}$ so that $r\left(X_{0}\right)=0$ and

$$
\text { 2. } r(X)=r(Y)+1 \text { whenever } X \text { covers } Y \text {. }
$$

Given any ranked poset P,

- the number $\max \{r(X)\}_{X \in P}$ is the rank of P.
- For any subset Q of P, the set $\{X \in Q \mid r(X)=k\}$ is denoted by Q_{k}.
- The numbers $N_{k}=\left|P_{k}\right|$ are the whitney numbers of P.

The LYM Property

Let P be a rank n poset, with whitney numbers $N_{0}, N_{1}, \ldots, N_{n}$. P has the LYM property if for each antichain $A \in P$,

$$
\sum_{k=0}^{n} \frac{\left|A_{k}\right|}{N_{k}} \leq 1
$$

The LYM Property

- The whitney number N_{k} of \mathscr{B}^{5} is the binomial coefficient $\binom{5}{k}$
- The antichain A has $\left|A_{0}\right|=\left|A_{4}\right|=\left|A_{4}\right|=0,\left|A_{1}\right|=\left|A_{3}\right|=1$, and $\left|A_{2}\right|=3$.
- So,

The LYM Property

- The whitney number N_{k} of \mathscr{B}^{5} is the binomial coefficient $\binom{5}{k}$.
- The antichain A has $\left|A_{0}\right|=\left|A_{4}\right|=\left|A_{4}\right|=0,\left|A_{1}\right|=\left|A_{3}\right|=1$, and $\left|A_{2}\right|=3$.
-So,

The LYM Property

- The whitney number N_{k} of \mathscr{B}^{5} is the binomial coefficient $\binom{5}{k}$.
- The antichain A has $\left|A_{0}\right|=\left|A_{4}\right|=\left|A_{4}\right|=0,\left|A_{1}\right|=\left|A_{3}\right|=1$, and $\left|A_{2}\right|=3$.

The LYM Property

- The whitney number N_{k} of \mathscr{B}^{5} is the binomial coefficient $\binom{5}{k}$.
- The antichain A has $\left|A_{0}\right|=\left|A_{4}\right|=\left|A_{4}\right|=0,\left|A_{1}\right|=\left|A_{3}\right|=1$, and $\left|A_{2}\right|=3$.
- So,

$$
\sum_{k=0}^{5} \frac{\left|A_{k}\right|}{\binom{5}{k}}=\frac{1}{5}+\frac{3}{10}+\frac{1}{10}=\frac{3}{5}<1
$$

The Boolean Lattice

Theorem

(The LYM Inequality) Let \mathscr{A} be an antichain in the Boolean Lattice \mathscr{B}^{n} and let \mathscr{A}_{k} be the be the set of all rank k nodes in \mathscr{A}. Then

$$
\sum_{k=0}^{n} \frac{\left|\mathscr{A}_{k}\right|}{\binom{n}{k}} \leq 1
$$

The Boolean Lattice

\mathscr{B}^{n} contains exactly $n!$ maximal chains.

The Boolean Lattice

\mathscr{B}^{n} contains exactly $n!$ maximal chains.

If $X \in \mathscr{B}^{n}$ and $r(X)=k$ then X generates an ideal of rank k isomorphic to \mathscr{B}^{k} and a filter of rank $n-k$ isomorphic to \mathscr{B}^{n-k}. It follows that there are exactly $k!(n-k)$! maximal chains in \mathscr{B}^{n} containing X.

The Boolean Lattice

\mathscr{B}^{n} contains exactly $n!$ maximal chains.

If $X \in \mathscr{B}^{n}$ and $r(X)=k$ then X generates an ideal of rank k isomorphic to \mathscr{B}^{k} and a filter of rank $n-k$ isomorphic to \mathscr{B}^{n-k}. It follows that there are exactly k ! $(n-k)$! maximal chains in \mathscr{B}^{n} containing X.

If \mathscr{A} is an antichain in \mathscr{B}^{n} and then for each $X \in \mathscr{A}_{k}$ there are exactly $k!(n-k)$! maximal chains in \mathscr{B}^{n} containing X.

The Boolean Lattice

Given any antichain A and any chain C of any poset $P, A \cap C$ contains at most 1 element.

The Boolean Lattice

Given any antichain A and any chain C of any poset $P, A \bigcap C$ contains at most 1 element.

Therefore, there are exactly

$$
\sum_{k=0}^{n}\left|\mathscr{A}_{k}\right| k!(n-k)!
$$

maximal chains in \mathscr{B}^{n} containing some member of \mathscr{A}.

The Boolean Lattice

Since there are at most n ! maximal chains in \mathscr{B}^{n} containing some member of \mathscr{A},

$$
\sum_{k=0}^{n}\left|\mathscr{A}_{k}\right| k!(n-k)!\leq n!.
$$

The Boolean Lattice

Since there are at most n ! maximal chains in \mathscr{B}^{n} containing some member of \mathscr{A},

$$
\sum_{k=0}^{n}\left|\mathscr{A}_{k}\right| k!(n-k)!\leq n!.
$$

Dividing through by n ! gives

$$
\sum_{k=0}^{n} \frac{\left|\mathscr{A}_{k}\right|}{\binom{n}{k}} \leq 1
$$

Probabilistic Arguments

We will be using a discrete probability distribution over $E(P)$ to get an upper bound on its size, e(P).

- A function ρ from a finite set E to the interval $[0,1]$ is a probability distribution over E if

$$
\sum_{x \in E} \rho(x)=1
$$

- A weight function on P is a function $w: \mathscr{P}[P] \longrightarrow \mathbb{R}^{+}$so that for every subset Q of P,

Probabilistic Arguments

We will be using a discrete probability distribution over $E(P)$ to get an upper bound on its size, e(P).

- A function ρ from a finite set E to the interval $[0,1]$ is a probability distribution over E if

$$
\sum_{x \in E} \rho(x)=1
$$

- A weight function on P is a function $w: \mathscr{P}[P] \longrightarrow \mathbb{R}^{+}$so that for every subset Q of P,

$$
w(Q)=\sum_{X \in Q} w(X)
$$

Probabilistic Arguments

We will be using a discrete probability distribution over $E(P)$ to get an upper bound on its size, e(P).

- A function ρ from a finite set E to the interval $[0,1]$ is a probability distribution over E if

$$
\sum_{x \in E} \rho(x)=1
$$

- A weight function on P is a function $w: \mathscr{P}[P] \longrightarrow \mathbb{R}^{+}$so that for every subset Q of P,

$$
w(Q)=\sum_{X \in Q} w(X)
$$

For each antichain A of P, the function $\rho_{A}: A \longrightarrow \mathbb{R}$ defined by

$$
\rho_{A}(X)=\frac{w(X)}{w(A)}
$$

is a probability distribution over A.

The Generalized Sha/Kleitman Bound

Theorem

Let P be a ranked poset and let w be a weight function on P. If $w(A) \leq 1$ for each antichain A of P then

$$
e(P) \leq \frac{1}{\prod_{X \in P} w(X)} .
$$

Brightwell's Proof

Define a procedure for generating linear extensions of P as follows:

$$
\begin{aligned}
O_{0} & =\emptyset \\
O_{i+1} & =O_{i}+\left\{X_{i}\right\}
\end{aligned}
$$

where X_{i} is chosen from $\mathfrak{a}\left(O_{i}\right)$ with probability $\rho_{O_{i}}\left(X_{i}\right)$.

Brightwell's Proof

Define a procedure for generating linear extensions of P as follows:

$$
\begin{aligned}
O_{0} & =\emptyset \\
O_{i+1} & =O_{i}+\left\{X_{i}\right\}
\end{aligned}
$$

where X_{i} is chosen from $\mathfrak{a}\left(O_{i}\right)$ with probability $\rho_{O_{i}}\left(X_{i}\right)$.

The process terminates after the $|P|$ th step when $O_{|P|}=P$ and $\mathfrak{a}\left(O_{|P|}\right)=\emptyset$. The generated sequence $O_{1}, O_{2}, \ldots, O_{|P|}$ determines a unique linear extension of P.

Brightwell's Proof

Define a procedure for generating linear extensions of P as follows:

$$
\begin{aligned}
O_{0} & =\emptyset \\
O_{i+1} & =O_{i}+\left\{X_{i}\right\}
\end{aligned}
$$

where X_{i} is chosen from $\mathfrak{a}\left(O_{i}\right)$ with probability $\rho_{O_{i}}\left(X_{i}\right)$.

The process terminates after the $|P|$ th step when $O_{|P|}=P$ and $\mathfrak{a}\left(O_{|P|}\right)=\emptyset$. The generated sequence $O_{1}, O_{2}, \ldots, O_{|P|}$ determines a unique linear extension of P.

Alternately, given any sequence $O_{1}, O_{2}, \ldots, O_{|P|}$, characterizing a linear extension, the construction results in $O_{1}, O_{2}, \ldots, O_{|P|}$ only if the choice of X_{i} at the i th stage is exactly the single element of $O_{i+1}-O_{i}$.

Brightwell's Proof

For each partial sequence $O_{1}, O_{2}, \ldots, O_{i-1}$, the value $\rho_{O_{i}}\left(X_{i}\right)$ is exactly the probability that X_{i} is chosen at the i th stage of our construction given that $O_{1}, O_{2}, \ldots, O_{i-1}$ have already been constructed.

Brightwell's Proof

For each partial sequence $O_{1}, O_{2}, \ldots, O_{i-1}$, the value $\rho_{O_{i}}\left(X_{i}\right)$ is exactly the probability that X_{i} is chosen at the i th stage of our construction given that $O_{1}, O_{2}, \ldots, O_{i-1}$ have already been constructed.

It follows that, for any linear extension ε of P, the probability that our construction produces ε is exactly

$$
\mu(\varepsilon)=\prod_{i=1}^{|P|} \rho_{O_{i}}\left(X_{i}\right)
$$

where the sequences $X_{1}, \ldots, X_{|P|}$ and $O_{1}, O_{2}, \ldots, O_{|P|}$ are defined as above. Therefore, μ is a probability distribution over the set $E(P)$ assigning non-zero probability to each element $\varepsilon \in E(P)$.

Brightwell's Proof

By our assumptions, for any order ideal O and any $X \in O$, we have

$$
\rho_{O}(X)=\frac{w(X)}{w(\mathfrak{a}(O))} \geq w(X)
$$

Brightwell's Proof

By our assumptions, for any order ideal O and any $X \in O$, we have

$$
\rho_{O}(X)=\frac{w(X)}{w(\mathfrak{a}(O))} \geq w(X)
$$

Since every element of P appears exactly once in the sequence $X_{1}, \ldots, X_{|P|}$,

$$
\prod_{X \in P} w(X) \leq \prod_{i=1}^{|P|} \rho_{O_{i}}\left(X_{i}\right)=\mu(\varepsilon)
$$

Brightwell's Proof

Finally, since

$$
\sum_{\varepsilon \in E(P)} \mu(\varepsilon)=1
$$

it follows that

$$
e(P) \cdot\left(\prod_{X \in P} w(X)\right)=\sum_{\varepsilon \in E(P)}\left(\prod_{X \in P} w(X)\right) \leq \sum_{\varepsilon \in E(P)} \mu(\varepsilon)=1 .
$$

Brightwell's Proof

Corollary
If P is an LYM poset with whitney numbers $N_{0}, N_{1}, N_{2}, \ldots, N_{n}$ then

$$
e(P) \leq \prod_{i=0}^{n} N_{i}^{N_{i}}
$$

Brightwell's Proof

Let $w(X)=\frac{1}{N_{r(X)}}$, where r is the rank function on P. Note that w is a weight function on P.

Brightwell's Proof

Let $w(X)=\frac{1}{N_{r(X)}}$, where r is the rank function on P. Note that w is a weight function on P.

If P is LYM, we have $w(A) \leq 1$ for every antichain A in P.

Brightwell's Proof

Let $w(X)=\frac{1}{N_{r(X)}}$, where r is the rank function on P. Note that w is a weight function on P.

If P is LYM, we have $w(A) \leq 1$ for every antichain A in P.

Therefore, by the previous theorem,

$$
e(P) \leq \frac{1}{\prod_{X \in P} w(X)}=\frac{1}{\prod_{X \in P} \frac{1}{N_{r(X)}}}=\prod_{X \in P} N_{r(X)}
$$

Since for each i, there are exactly N_{i} elements of P with rank i, the corollary follows.

Conclusion

- This bound is achieved by chains, but it is easy to see that it is not attained by any other poset.
- It is not asymptotic but for small values of n it is the best upper bound we have for \mathscr{B}^{n}.

n	$\prod_{i=0}^{n}\binom{n}{i}!$	$e\left(\mathcal{B}^{n}\right)$	$\prod_{i=0}^{n}\binom{n}{i}$	$\binom{n}{i}$
1	1	1	$2^{n!}$	
2	2	2	1	2
3	36	48	4	24
4	4.15×10^{5}	1.680384×10^{6}	729	40320
5	1.9×10^{17}	$1.480780403565735936 \times 10^{19}$	9.06×10^{9}	2.09×10^{13}
6	2.16×10^{48}	$1.41377911697227887117195970316200795630205476957716480 \times 10^{26}$	2.63×10^{35}	
7	7.08×10^{126}	$?$	4.38×10^{70}	1.72×10^{89}
8	9.15×10^{317}	$?$	2.81×10^{175}	3.86×10^{215}

Conclusion

- Using a very sophisticated probabilistic approach Brightwell and Tetali have published an asymptotic bound on $e\left(\mathscr{B}^{n}\right)$ given by

$$
e\left(\mathscr{B}^{n}\right) \leq e^{6 \cdot 2^{n} \cdot \frac{\ln n}{n}} \prod_{i=0}^{n}\binom{n}{i}!
$$

- It first outdoes the Sha/Kleitman bound at $n=18$ where

Conclusion

- Using a very sophisticated probabilistic approach Brightwell and Tetali have published an asymptotic bound on $e\left(\mathscr{B}^{n}\right)$ given by

$$
e\left(\mathscr{B}^{n}\right) \leq e^{6 \cdot 2^{n} \cdot \frac{\ln n}{n}} \prod_{i=0}^{n}\binom{n}{i}!
$$

- It first outdoes the Sha/Kleitman bound at $n=18$ where

$$
\prod_{i=0}^{n}\binom{n}{i}^{\binom{n}{i}} \approx 2.10 \times 10^{1173310}
$$

and

$$
e^{6 \cdot 2^{n} \cdot \frac{\ln n}{n}} \prod_{i=0}^{n}\binom{n}{i}!\approx 1.58 \times 10^{1169187}
$$

References

囯 M Aigner and G．Ziegler．
Proof＇s from The Book．
Springer， 2004.
國 G Brightwell．
The number of linear extensions of ranked posets．
Cdam research report Ise－cdam－2003－18，The London School of Economics， 2003.

围 G．Brightwell and P Tetali．
The number of linear extensions of the boolean lattice．
Order，20（4）：333－345， 2003.
國 G Brightwell and P．Winkler．
Counting linear extensions．
Order，8（3）：225－242， 1991.
圊 D．J．Kleitman and J．Sha．
The number of linear extensions of subset ordering． Discrete Mathematics，63：279－295， 1987.

