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Abstract

Let P be a finite ranked partially ordered set with whitney numbers N1, N2, ..., Nn and let

e(P) denote the number of linear extensions of P. It is, in general, very di�cult to determine

the size of e(P) for all but the simplest classes of posets. This paper reviews some elementary

probabilistic techniques for establishing an upper bound on e(P). We discuss the LYM inequality

and its generalization to the class of LYM posets. Finally, we prove an upper bound for the number

of linear extensions of an LYM poset:

e(P) Æ
n
Ÿ

i=0
NNii .

This bound was introduced for the boolean lattice by Jichang Sha and D. J. Kleitman in 1987 and

generalized by Graham Brightwell in 2003.
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Chapter 1

Introduction

This paper explores certain combinatorial properties of finite sets. Some of the ideas discussed

can be extended to infinite sets but we will not pursue such generalizations here. Our basic objects

of study will be finite ranked partially ordered sets with the LYM property. The aim of this paper

is to derive an upper bound for the number of linear extensions of any partially ordered set with

these properties. A particularly well known example is the partial order of subsets of a given finite

set S. If the set S contains n elements, then a linear extension of the partial order of subsets is

an ordering of the entire power set 2S , say A1, A2, ..., A2n , so that i Æ j whenever Ai ™ Aj . Even

for this well known partial order, the problem of counting the number of linear extensions for an

arbitrary n is open. A few simple upper bounds were given by Sha and Kleitman in [14]. Of these,

the most appealing said that this number could be no larger than
rn
i=0
!

n
i

"(ni).

My original intention was to carefully reconstruct the argument for this bound given in [14] and

its generalization by Shastri in [16]. I encountered a number of di�culties, due at least in part to a

paucity of details in both papers. Some of these di�culties, I could not resolve. I eventually found

a much cleaner proof of a more general result given by Brightwell in [4] and decided that this would

be preferable to the original.

In the course of working through [14], a few interesting conjectures arose that I felt should
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be included in the final product. Indeed, Brightwell’s argument is similar enough to the Sha and

Kleitman argument that I wanted to compare the two. My aim was to understand how Brightwell’s

argument managed to do so much more with so much less. In fact, Brightwell’s success here reflects

the value in generalizing the study of ranked partial orders to the more general study of weighted

partial orders.1

It has been my intention in writing this paper to build the results from “the ground up” to the

greatest extent possible. The reader is only assumed to be familiar with the usual basic set theory

and algebra terminology, along with a few elementary counting techniques. The terminology of

partially ordered sets and lattices is developed briskly, and the reader is directed to [8] for a more

leisurely presentation.

To make the paper more readable, I have opted for the following conventions. Real numbers

and maps to the real numbers will generally be given in lowercase, sometimes greek, script (e.g.,

m,n, x, µ). Elements of a poset will always be capital letters (e.g., P,Q,X, Y ). Posets and subsets

of posets will always be given the “math calligraphy” font (e.g., P,Q,X ,Y). In addition, we will

use gothic letters and capital greek letters to denote maps between posets. Let us also adopt the

convention that Æ will always refer to the standard ordering of R. Additionally, we will use ™ to

refer to standard set theoretic containment. Finally, the symbol ∞ will, in general, refer to any other

ordering whose identity will be (hopefully) clear from context.

1See, in particular, [9].
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Chapter 2

Partially Ordered Sets and Lattices

2.1 Basic Terminology

In this section, we define our basic object of study and introduce some terminology. The section

closes by deriving a few basic properties.

Recall that a binary relation ∞ on a set P is defined to be a partial order on P when ∞ is

reflexive, transitive, and antisymmetric. Similarly, ∞ is a total order on P when it is a partial

order on P such that if both A and B œ P, then either A ∞ B or B ∞ A. By a partially ordered

set, or poset, we mean an ordered pair (P,∞) so that ∞ is a partial order on P. If the relation ∞
is a total order on P, we call (P,∞) a totally ordered set, or toset.

Let (P,∞) be a poset. An element X œ P is called the maximum of P if Y ∞ X for each Y œ P.

An element X œ P is maximal if it satisfies the weaker condition that for each Y œ P, X ∞ Y
implies X = Y . Similarly, X is called the minimum of P if X ∞ Y for each Y œ P and minimal

if Y ∞ X implies that X = Y . If X ™ P, and ∞Õ is the restriction of ∞ to X ◊ X , then (X ,∞Õ) is

a poset. We will abuse this notation slightly and refer just to P and its subsets as posets when no

confusion is likely to arise. This allows us to naturally extend terminology describing posets to their

subsets.

Example 2.1.1. The set [4] = {1, 2, 3, 4} under the usual ordering of the integers is a poset with
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∞[4]= {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)}. The set X = {1, 3} is a subset

of {1, 2, 3, 4}. The restriction of ∞[4] to {1, 3} is given by ∞X= {1, 1), (1, 3), (3, 3)}. It is easy to

check that X is a poset under this relation. Then, the element 3 is a maximum of X but is not a

maximum of [4]. On the other hand, the element 1 is a minimum of both X and [4].

If n is any positive integer, then we define [n] to be the set {1, 2, 3, ..., n} ordered by Æ.

Let ‡ be any map from a poset P to a poset Q. If, for each X,Y œ P, X ∞P Y implies that

‡(X) ∞Q ‡(Y ), then we call ‡ order preserving. Similarly, we call a map ‡ : P ≠æ Q order

reversing if for each X,Y œ P, X ∞P Y implies that ‡(Y ) ∞Q ‡(X). An injective order preserving

(respectively order reversing) map is said to be invertible if its inverse is also order preserving

(respectively order reversing). Posets P and Q are called order isomorphic, denoted by P ≥= Q,

when there is an invertible order preserving bijection between them. An order preserving injection ‡

from P to Q is called an order embedding of P in Q if ‡(X) ∞Q ‡(Y ) implies that X ∞P Y . Note

that if ‡ is an order embedding of P in Q, then P ≥= ‡[P] ™ Q. The dual of a poset P, denoted

P¿ is the poset (P,∞¿) where X ∞¿ Y if and only if Y ∞ X. Note that there is an invertible order

reversing bijection between P and Q just in case P ≥= Q¿. We call a poset P symmetric if P ≥= P¿

or equivalently if there exists an order reversing bijection from P onto itself.

Given posets P and Q, the disjoint union P + Q is a poset whose order relation is defined by

∞P+Q=∞P + ∞Q. It is important to note that the expression “A + B”, when A and B are sets

will always carry with it the explicit assumption that A and B are disjoint. If this assumption is

not intended, then we will use “A
t

B” instead. The disjointness requirement is important in the

context of ordered sets because it ensures that the resulting relation remains a partial order. If the

sets are not disjoint, then their order relations may not be. This can cause trouble. For example,

if ∞P has at least one pair of distinct elements in it, then ∞PfiP¿ fails to be antisymmetric.1 The

cartesian product P ◊Q is a poset whose order relation is defined by (X,Y ) ∞P◊Q (Z,W ) if and

only if X ∞P Z and Y ∞Q W . The operations + and ◊ are associative and commutative, so that
q

and
r

extend in a straight forward way to disjoint unions and cartesian products.

Let X and Y be distinct elements of P. We say that Y covers X when X ∞ Y and the set
1Of course, it is easy to just tag the elements of P¿ to make them distinct from those of P.
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{Z œ P | X ∞ Z ∞ Y } contains only X and Y . A function r : P ≠æ N is a rank function of P if

(i) there is a minimal element X0 œ P so that r(X0) = 0 and

(ii) r(X) = r(Y ) + 1 whenever X covers Y .

The value r(X) is called the rank of X. A ranked poset is a triple (P,∞, r) where (P,∞) is a poset

and r is a rank function.2 The rank of a ranked poset P is the number r(P) = max {r(X) | X œ P}.
More generally, a function from P to R+ is called a weight function w. The function is extended

to subsets of P by taking w(S) =
q

XœS w(X) for S ™ P. A simple example is the rank function

r itself. Another is the “size” function s whose value on any element of P is 1 and whose value on

any subset S is s(S) =
q

XœS w(X) = |S|.
A ranked poset is called graded if

(i) r(X) = 0 if X is minimal and

(ii) if X and Y are maximal in P, then r(X) = r(Y ).

If X is a set of elements of a ranked poset, then we let Xk denote the set {X œ X | r(X) = k}. The

sets Pk are of particular interest and the number Nk := |Pk| is called the kth whitney number of

P.

One of the best tools for visualizing a poset P is the hasse diagram of P, a directed graph whose

vertex set is the set P and whose edge set consists of those ordered pairs (X,Y ) so that Y covers X

in P. Note that we always draw a ranked poset P by giving each element of rank i along the same

vertical position and arranging each Pi just above Pi≠1 and just below Pi+1. Figures 2.1-2.6 are all

examples of hasse diagrams.

We call a subposet C of P a chain if either X ∞ Y or Y ∞ X for each pair of elements X and

Y œ C. Note that this is equivalent to C being a toset. Proposition 2.1.2 below guarantees that for

each finite chain C, there is an isomorphism ‡ : C ≠æ [k] where k = |C| so that the elements of C
may be represented by a sequence c1, c2, . . . , ck where ci = ‡≠1(i). A chain C is called maximal in

P if for any chain CÕ of P, C ™ CÕ implies that C = CÕ. The length of C is given by |C|≠ 1.

A subset X of P is an antichain if neither X ∞ Y nor Y ∞ X for each X and Y œ X . Any

antichain A is called maximal if for any element X œ P ≠A, the set A fi {X} is not an antichain.
2As above, when appropriate, we will simply speak of a ranked poset P, instead of (P,∞, r)
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An antichain A of a ranked poset is k-saturated if for each X œ P so that r(X) = k, the set

{X} fiA is not an antichain.

The following unary operations on the power set of a given a poset P are useful in characterizing

its subsets. Given a subset X of P, an element X is maximal in X if, for all Y œ X , X ∞ Y implies

that X = Y and minimal in X if, for all Y œ X , Y ∞ X implies that X = Y . We follow the

usual practice of letting maxX denote the set of maximal elements of X and minX denote the set

of minimal elements of X . The shadow of X is the set of elements of P covered by some element of

X . Similarly, the cover of X is the set of elements of P covering some element of X . The shadow

and cover of X are respectively denoted by M (X ) and O(X ). We call X an ideal of P just in case

for each X œ X , if Y ∞ X, then Y œ X . In light of the above definition, X is an ideal just in case

M (X ) = ÿ. Similarly, we call X a filter if, for each X œ X , X ∞ Y implies that Y œ X . Again,

note that this is equivalent to O(X ) = ÿ. For any X , the ideal (respectively filter) generated

by X is the smallest ideal (respectively filter) containing X . Stanley’s notation,3 ÈX Í, for the ideal

generated by X will be useful here. We will follow the general terminology of ideals in abstract

algebra here and refer, if X = {X} for some X œ P , to the ideal (respectively filter) generated by

X as a principal ideal (respectively filter). In such cases, we abbreviate for example M ({X}) by

omitting the brackets and writing M (X).

It is convenient to introduce an additional pair of operators acting on a X . The total shadow

of X , denoted N(X ), is defined to be the ideal generated by M (X ). Similarly, the total cover of

X , denoted H(X ), is defined to be the filter generated by O(X ).

The following propositions recount some useful facts about posets.

Proposition 2.1.2. If Q is a toset and |Q| = n, then Q ≥= [n].

Proof. If Q is a toset of size n, then the map X ≠æ |ÈXÍ| is an invertible order preserving bijection

from Q to [n].

An implication of this proposition is that all chains of a given length i are isomorphic. Following this,
3See [17].
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we sometimes use Ci to designate an arbitrary context appropriate representative of this isomorphism

class.

Proposition 2.1.3. If � : P ≠æ Q is an isomorphism between posets and X ™ P, then

� [M (X )] =M (� [X ]) and � [O(X )] = O(� [X ]).

If � is an invertible order reversing bijection, then

� [M (X )] = O(� [X ]) and � [O(X )] =M (� [X ]).

If we replace M with N and O with H, these statements remain true.

Proof. Let Y œ � [M (X )]. Then �≠1(Y ) œM (X ) so that there is an X œ X such that �≠1(Y )

is covered by X. Since � is order preserving, Y is covered by �(X) and therefore, Y œM (� [X ]).

Alternately, let Y œM (� [X ]). Then there is an X œ �[X ] so that X covers Y . Since �≠1 is also

order preserving, �≠1(X) œ X and covers �≠1(Y ). It follows that �≠1(Y ) œM (X ) and therefore

Y œ � [O(X )].

The arguments for all other cases are nearly identical. Replacing M with N, for example, requires

that we replace “covered by” and “covers” with ∞.

This proposition also provides us with an important property of symmetric posets.

Corollary 2.1.4. If P is symmetric, then for each X œ P, (O(X))¿ =M (X¿).

Of course, this corollary can be similarly extended to M, H, and N.

Proposition 2.1.5. If A is an antichain in P, then we have that N(A), A, and H(A) are disjoint.

The antichain A is maximal if and only if P = N(A) +A+ H(A).
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Proof. Consider, for example AuN(A). If X œ AuN(A), then X œ A and there is a Y œ A≠ {X}
so that X ∞ Y . It follows that A is not an antichain. The argument for AuH(A) is identical. If

X œ N(A)
u

H(A), then there exist Y and Z œ A so that Y ∞ X ∞ Z. If either of AuN(A) or

AuH(A) are non-empty, then we already know that A is not an antichain. If both are empty, then

it follows that X,Y , and Z are all distinct so that, in particular, Y ”= Z. By the transitivity of the

order relation, Y ∞ Z so that A is not an antichain. Any element of P ≠ N(A) +A + H(A) is not

comparable to any element of A. It follows that this set is empty if and only if A is maximal.

2.2 Examples

The toset [n] is a simple, but important poset. In this section we will introduce a few other

important posets and try to make some of the definitions from the previous section more concrete.

First, we develop a simple example to illustrate these definitions.

Example 2.2.1. Consider the set

I2(k) :=
)

(i, j) œ Z2 | 0 Æ i, j Æ k*

with the order relation ∞ defined by (i, j) ∞ (m, l) if and only if i Æ m and j Æ l. This poset has

a maximum element, (k, k) and a minimum element (0, 0). The dual I2(k)¿ has the same elements

but with the rule that (i, j) ∞¿ (m, l) if and only if m Æ i and l Æ j. Note that I2(k) and I2(k)¿

are isomorphic since the map ‡ : I2(k) ≠æ I2(k)¿ defined by

‡(i, j) = (n≠ i, n≠ j)

is an order preserving bijection. With the rank function r : I2(k) ≠æ N defined by

r(i, j) = i+ j

8



I2(k) becomes graded with rank 2n. Note that (i, j) is covered by (m, l) just in case either i = m+1

and j = l or j = l + 1 and i = m. Figure 2.1 shows the Hasse diagram of I2(2). In this poset,

Figure 2.1: The poset I2(k)

consider the sets C = {(1, 0), (2, 0)} and A = {(1, 1), (2, 0)}. Note that C is a chain and A is an

antichain. Finally, we list the di�erent shadow and cover sets of C and A:

M (C) = N(C) = {(0, 0)}, O(C) = {(1, 1), (2, 1)},
and

H(C) = {(1, 1), (1, 2), (2, 1), (2, 2)}

while

N(A) = {(0, 0), (0, 1), (1, 0)}, O(A) = {(1, 2), (2, 1)},
and

H(A) = {(1, 2), (2, 1), (2, 2)}.
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Note that I2(2) ≠ (N(A) +A+ H(A)) = {(0, 2)} and indeed A + {(0, 2)} is an anti chain properly

containing A.

Posets (even finite posets!) are ubiquitous across all areas of mathematics and our arguments

will apply to a large class of these, but we will restrict attention to a few important examples.

Example 2.2.2. The unordered poset with n elements, {n}, is the poset P whose size is n and

whose order relation ∞P is the indentity relation, {(X,X)}XœP , on P. It is easy to check that this

defines a partial order.

Example 2.2.3. This poset is called the boolean lattice,4 denoted BS . Of course, BS is iso-

morphic to BT just in case S and T have the same cardinality. It is therefore typical to denote

this isomorphism class by Bn and take the underlying set to be [n]. Defining the rank function

r(X) = |X| for each X œ Bn turns Bn into a graded poset.

Example 2.2.4. Recall that a multisetM = (S,m) is a finite set S together with a function m,

mapping S to ZØ0. For each X œ S the number m(X) is called the multiplicity of X in M. A

multisetMÕ = (S Õ, l) is a submultiset ofM when S Õ = S and for each X œ SÕ, l(X) Æ m(X).

The set of all submultisets of a multisetM can thus be made into a poset where N Õ ∞ N exactly

when N Õ is a sub multiset of N . This poset is known as the multiset lattice of M. Certainly,

Bn can be viewed as a multiset lattice for which |S| = n and m(X) = 1 for each X œ S. It

should be clear that the multiset lattice of any two multisets M = (S,m) and MÕ = (S Õ, l) with

|S| = |S Õ| = k are isomorphic just in case their underlying sets can be indexed S = {X1, X2,...,Xk}
and S Õ = {Y1, Y2,...,Yk} so that m(Xi) = l(Yi) for each i. We shall therefore denote this poset by

Mn1,n2,...,nk where ni = m(Xi) for each i. This poset is graded by the rank function defined by

r(MÕ) =
q

XœMÕ
l(X) for each submultisetMÕ ofM.

Multisets capture the idea of a set whose members may include multiple copies of the same

object. Similarly, the multiset lattice Mn1,n2,...,nk can be thought of as a sublattice of Bn where
4Note that the term “lattice” will be defined in the next section. For now, it is just a name.
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n =
q

ni. For each submultiset N = (S, l) of M with S = {X1, X2,...,Xk} and ni = m(xi), define

the subset

N i =

Y

]

[

i≠1
ÿ

j=1
nj + 1,

i≠1
ÿ

j=1
nj + 2, ...,

i
ÿ

j=1
nj + li

Z

^

\

of [n] for each i. Then the map � : Mn1,n2,...,nk ≠æ Bn defined by �(N ) =
k
t

i=1
Ni is an order

embedding ofMn1,n2,...,nk into Bn. For example, ifM is the multiset ({A,B,C},m) with m(A) =

m(B) = m(C) = 3, then n = 3 + 3 + 3 = 9. For the submultiset N =({A,B,C},mÕ) with

mÕ(A) = mÕ(B) = mÕ(C) = 2, we have �(N ) = {1, 2} fi {4, 5} fi {7, 8}, a subset of [9]. In this way,

we can think of a multiset and its submultisets as subposets of an appropriate subset lattice.

Example 2.2.5. I2(k) may be generalized. Let k, n1, n2, ..., and nk be positive integers. Then,

there is a poset Ik(n1, n2, ..., nk) =
)

(i1, i2, ..., ik) œ Zk | 0 Æ ij Æ nj
*

with the obvious analogous

order relation and rank function called the integer lattice5.

The next proposition gives us an important and useful way to label the elements of a multiset

lattice.

Proposition 2.2.6. Mn1,n2,...,nk ≥= Ik(n1, n2, ..., nk).

Proof. Consider the map taking the submultiset (S, l) to the ordered k-tuple (l(X1), l(X2), ..., l(Xk)).

This map is certainly order preserving and injective. In fact, given any element (a1, a2, ..., ak) œ
Ik(n1, n2, ..., nk), the multiset (S, l) with l(Xi) = ai for each i is guaranteed to be a submultiset of

M. The map taking (a1, a2, ..., ak) to (S, l) is also order preserving and injective. In fact, the two

maps are obviously inverses of each other and our proposition follows.

It is often convenient to replace (a1, a2, ..., ak) with the concatenation a1a2...ak. This gives us a useful

representation of multiset lattices. Often such a representation makes it easy to see connections with

other poset structures. Here is a well known example.
5We will follow that standard convention of writing Ik(n) whenever ni = nj for each i, j pair. Similarly, we write

I(n) whenever k = 1.
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Example 2.2.7. The lattice of divisors of an integer n, denoted D(n), defined by introducing, to

the set {k œ N|dk = n for some d œ N}, the ordering given by s ∞ t exactly when s divides t. Using

the prime factorization n =
k
r

i=1
pnii , we get an order isomorphism with Mn1,n2,...,nk by mapping

s =
k
r

i=1
paii to the multiset a1a2...ak.

The divisor lattice D(23325) is given below in fig 2.2. Note that, for example, divisor 223 corresponds

to the submultiset ({2, 3, 5}, l) where l(2) = 2 , l(3) = 1, and l(5) = 0. The divisor lattice D(23325)

is isomorphic toM1,2,3.

Figure 2.2: The divisor lattice D(23325)

Proposition 2.2.8. Mn1,n2,...,nk ≥=
k
r

i=1
Cni

Proof. Note that, from the definition, it is obvious that Ik(n1, n2, ..., nk) ≥=
k
r

i=1
I(ni). Since I(n) ≥=

Cn, the proposition follows from Proposition 2.2.1.

Proposition 2.2.9. Mn1,n2,...,nk is symmetric.

12



Proof. The mapMn1,n2,...,nk �≠æ (Mn1,n2,...,nk)¿ that sends a1a2...ak ≠æ (n1≠a1)(n2≠a2)...(nk≠
ak) provides an invertible order preserving bijection fromMn1,n2,...,nk to its dual.

Of course, as a special case of these two propositions, we get that Bn ≥=
k
r

i=1
C1 and also symmetric.

Note that since C1 ≥= [2], some authors denote the boolean lattice with 2n.

A few other important examples follow, although the list is far from complete. 6 Given an

algebraic structure, e.g. a group, we may define a poset of substructures ordered by set inclusion.

This will always result in a subposet of a boolean lattice. In this paper, we will (briefly) discuss

subgroup and vector subspace lattices.

Example 2.2.10. Given a group G, we denote the poset of subgroups of G by sub(G), called the

subgroup lattice of G. Since the poset sub(G) always has {e} as a unique minimal element and

G itself as a unique maximal element, it becomes graded under the rank function r(H) defined to

be the minimum size of any subset of H that generates H as a group. Note that our assumption of

finiteness of sub(G) does not require that G itself be finite, but only that G have a finite number of

subgroups.

Similarly, so long as V is a finite dimensional vector space over a finite field Fq, its subspace

poset will also be finite.

Example 2.2.11. Since vector spaces over the same field, of the same finite dimension, are isomor-

phic, we denote the poset of subspaces of an n dimensional vector space over Fq by L[n, q], called

the subspace lattice of Fnq . Since L[n, q] poset always has {0} as a unique minimal element and V

itself as a unique maximal element, it becomes graded under the rank function r(W ) = dim(W ) .

Example 2.2.12. Given a set S with n elements, a partition of S is a collection, {S1,S2, ...,Sk}, of

nonempty disjoint subsets of S, such that for each X œ S, X œ Si for some i. The sets Si are called

the blocks of the partition. A partition {T1, T2, ..., Tl} of S is a refinement of {S1,S2, ...,Sk} if

k Æ l and for each i, there is a j so that Si ™ Tj . The partition lattice of a set S is the set
6Some nice lists may be found in [3] Section 1.3, [8] Sections 1.4-1.7, and [2] Section I.2.
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of partitions of S ordered so that {S1,S2, ...,Sk} ∞ {T1, T2, ..., Tl} exactly when {S1,S2, ...,Sk} is a

refinement of {T1, T2, ..., Tl}. Since the structure of this poset only depends on the size of S, it is

denoted �n.

Under this ordering, the partition of S into n blocks is a unique minimal element and the set

S itself, the partition into one block, is a unique maximal element. It follows that �n becomes a

graded poset under the rank function r ({S1,S2, ...,Sk}) = n≠ k.

Our final example is the only example considered here that does not happen to be a lattice.

Example 2.2.13. Let D and C be finite sets and consider the set of all functions f mapping some

subset of D into C. If g is another such function, we introduce an ordering of this set by requiring

that f ∞ g just in case dom(f) ™ dom(g) and f(a) = g(a) for all a œ dom(f). This poset is called the

function poset. Since the structure of this poset is determined entirely by n = |D| and k = |C| it is

denoted Fnk . Of course, the function whose domain is the empty set is a unique minimal element of

this set, however, note that so long as |C| > 1, there is no maximal element. Still we may introduce

the rank function r(f) = |dom(f)|. Under this rank function, f is maximal if and only if r(f) = |D|
and it follows that Fnk is graded.

Suppose that D = d1, d2, ..., dn and C = c1, c2, ..., ck. A function f partially defined from D

to C can be uniquely represented as an ordered n-tuple of integers (a1, a2, ..., an) as follows. First,

let ‹ be the map from C to {k} given by ‹(ci) = i. Now set ai =

Y

_

_

_

_

]

_

_

_

_

[

‹(f(di)) if di œ domf

0 otherwise

. This

defines an injective, order preserving map from Fnk to the integer lattice In(k) and allows us to

conveniently restate the order relation on Fnk as (a1, a2, ..., an) ∞ (b1, b2, ..., bn) whenever, for each

i, either ai = bi or ai = 0.

14



Figure 2.3: The function poset Fnk

In Figure 2.3 we have the function poset F3
2 with elements labeled according to this map. It is

worth pointing out that since, for example, (1, 0, 0, ..., 0) and (2, 0, 0, ..., 0) are incomparable in Fnk
but certainly comparable in In(k), this map is not an order embedding whenever k > 1.

2.3 Lattices

Lattice theory is a huge subject that we will only briefly touch here. Although not technically

necessary for our arguments, lattice theory provides a useful lens through which to view our problem.

The goal in this section is to prove an interesting correspondence between posets and a certain class

of lattices. First we introduce the basics of lattice theory. In what follows we continue to assume

that all structures in sight are finite. 7

Given a poset (P,∞), let · and ‚ be associative and commutative binary operations defined on

P. We call (P,∞,·,‚) a lattice if the following statements hold true for each X and Y œ P:

(I) X · (X ‚ Y ) = X ‚ (X · Y ) = X

and
7The main result of this section, and the argument used to prove it, has a natural extension to the so called

finitary posets, that is, infinite posets P with the property that the set {Y œ P |0 ∞ Y ∞ X } is finite for each X œ P.
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(II) X · Y = X ≈∆ X ‚ Y = Y ≈∆ X ∞ Y.
Intuitively, · and ‚ are intended to capture the properties of greatest lower bound and least upper

bound respectively. For example, it follows from (II) that X ∞ Z and Y ∞ Z if and only if

Z ‚ (X ‚ Y ) = (Z ‚X) ‚ Y = Z ‚ Y = Z

or, equivalently, X ‚ Y ∞ Z. A similar argument shows that Z ∞ X and Z ∞ Y if and only if

Z ∞ X · Y . In fact, lattices can be equivalently defined as posets for which each pair of elements

has a unique greatest lower bound and least upper bound. We follow the standard practice of calling

X·Y the meet of X and Y and X‚Y the join of X and Y . Because each operation is commutative

and associative, the abbreviations
n
x

i=1
ai = a1‚a2‚ ...‚an and

n
w

i=1
ai = a1·a2· ...·an are common.

Proposition 2.3.1. In any finite lattice L, there is a maximum element and a minimum element.

Proof. Suppose that X and Y are both minimal in L. In this case, X · Y œ L. since X · Y ∞ X
and X · Y ∞ Y , we have immediately from (II) that X = X · Y = Y . Replacing · with ‚ shows

additionally that if X and Y are both maximal in L then X = Y .

It is standard to denote the minimum and maximum element of a lattice by 0 and 1 respectively.

This makes P into a ring like structure with the join operation ‚ acting as addition and the meet

operation · acting as multiplication. Note that under these operations, an order ideal O is an ideal

in the ring theoretic sense that for each X œ O, X · Y œ O for each Y œ O. However lattices are

not, in general, rings because their elements can fail to have unique inverses.

A lattice (P,∞,·,‚) becomes a distributive lattice if for each X, Y , and Z œ P, we have:

(III) X ‚ (Y · Z) = (X ‚ Y ) · (X ‚ Z) or equivalently X · (Y ‚ Z) = (X · Y ) ‚ (X · Z).

The most important finite distributive lattices are the boolean lattices, whose poset structure we

defined above.

Proposition 2.3.2. (Bn,™,u,t) is a distributive lattice.
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Proof. Note that associativity, commutativity, (II), and (III) are all well known properties of
u

and
t

.8 To see that (I) holds, note that from (II) and (III),

X = X
‹

(X
€

Y ) = (X
‹

X)
€

(X
‹

Y ) = X
€

(X
‹

Y ).

In fact, this last argument is perfectly general so that (II) and (III) always imply (I). The

converse is, however, not true as the following example, usually known as M5, shows. In this lattice,

A ‚ (B · C) = A ‚ 0 = A but (A ‚B) · (A ‚ C) = 1 · 1 = 1.

Figure 2.4: The lattice M5

Proposition 2.3.2 can be generalized to multisets. Here, we define (M, l) ‚ (M, s) = (M, t)
where t(X) = max {l(X), s(X)} for each X œ M and (M, l) · (M, s) = (M, t) where t(X) =

min {l(X), s(X)} for each X œM.

Proposition 2.3.3. Under the min and max operations defined above,Mn1,n2,...,nk is a distributive

lattice.

Proof. It is straightforward to verify associativity, commutativity, and lattice properties (I) and (II)

hold for these operations. To verify (III), note that ifX œM and p, l, and s are multiplicity functions

ofM, then max{p(X),min{l(X), s(X)}} = min {max {p(X), l(X)} ,max {p(X), s(X)}}.
8See e.g. Halmos(CIT) pages 13-15.
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Subgroup and vector subspace lattices also employ
u

as a meet operation. However, because

the union of, for example, two groups is not necessarily a group, we have to modify this operation

so that the join of H and K is defined to be the subgroup generated by H
t

K. The join operation

for Fnq is defined analogously. Although it is straightforward to verify that these operations satisfy

associativity, commutativity, and lattice properties (I) and (II), they are not, in general, distributive.

Although they will not play a role in our paper, non-distributive join and meet operations can be

given to the partition lattice as well.9

If L1 and L2 are lattices, an order preserving map L1
„≠æ L2 is a lattice homomorphism if

it preserves both meets and joins. A bijective lattice homomorphism is a lattice isomorphism. If

L1 and L2 are lattices with the same ordering, the same join and meet operations, and if L1 ™ L2,

then we call L1 a sublattice of L2.

Proposition 2.3.4. A subposet P of a lattice L is a sublattice of L if and only if P is closed under

the join and meet operations of L. A sublattice of a distributive lattice is distributive.

Proof. If it is closed under the join and meet operations, then P certainly satisfies (I), (II), and,

if need be, (III) as all of these properties are inherited from the lattice structure of L. If P is not

closed under either operation, then it is not a lattice under those operations.

Two important order structures related to a poset P will play a central role in our characterization

of linear extensions below. First, we (optimistically) define L (P), the lattice of ideals of P, to

be the set of ideals of P under the subset ordering with the operations of union and intersection.10

Proposition 2.3.5. The lattice of order ideals (L (P) ,™,t,u) of a finite poset P is indeed a

distributive lattice.

Proof. Note that L (P) is contained in the subset lattice BP so that the distributive lattice operations
t

and
u

are inherited. It remains to check that L (P) is closed under these operations. Let O1 and
9See e.g. [2] section I.2.

10In what follows, we are indebted to the excellent account in[3].
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O2 be order ideals of P. If Y œ O1
tO2, then either Y œ O1 or Y œ O2. In either case, we have

that X ∞P Y implies that X œ O1
tO2. Similarly, if Y œ O1

uO2, then Y œ O1 and Y œ O2.

Again, we have X ∞P Y implies that X œ O1 and X œ O2. Therefore O1
tO2 and O1

uO2 are

both order ideals of P. Since both ÿ and P are order ideals of P, the theorem follows.

Our main result for this section, Theorem 2.3.9, can be found in [17] where it is called The

Fundamental Theorem of Finite Distributive Lattices; it is also known as Birkho�’s Representation

Theorem.11 To prove this result, we will need to prove a few lemmas. Let us call an element X of a

distributive lattice L join irreducible if for every Y and Z œ L, X = Y ‚ Z if and only if X = Y

or X = Z. We will write J(L) for the set of join irreducible elements of L. The following lemmas

will be necessary to prove our main result.

Lemma 2.3.6. If L is a distributive lattice, then for each X œ L, there is a unique antichain

A ™ J(L) so that X =
x

YiœA
Yi.

Proof. If X is itself join irreducible, then clearly A = {X} is an antichain in J(L) and X = X.

Otherwise, we may suppose that X = Y ‚ Z for some Y,Z œ L. If either or both of Y and Z fails

to be join irreducible, then they may be likewise replaced. With only a finite number of elements

to work with, this process must end with X =
x

YiœS
Yi for some subset S of J(L). We can then use

lattice property (II) to remove any elements of S that are not join irreducible. This process ends

with an antichain A of join irreducible elements of L so that X =
x

YiœA
Yi.

To see that A is unique, if X =
x

YiœA
Yi =

x

ZjœB
Zj , and both A and B are antichains in J(L), then

for each Yi, we have that Yi ∞
x

ZjœB
Zj so that (II) guarantees that there is a Zj œ B so that Yi ∞ Zj .

This argument can also show that for each Zj , there is a Yi so that Zj ∞ Yi. Recalling that ∞ must

be transitive and that A and B are both antichains we see that the sets A and B must be equal.

The next lemma shows that the join irreducible elements of L(P) are particularly simple.

11See, for example, [2]
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Lemma 2.3.7. If P is a poset, then O œ L(P) is join irreducible if and only if O is a principal

order ideal of P.

Proof. To prove this lemma, first note that from the definition of order ideal, we have O =
t

XœO+
ÈXÍ

where O+ is the set of maximal elements in O. Note that each ÈXÍ is itself an element of L(P).

Supposing that there are k > 1 maximal elements of O, let us index the members of O+ as

X1, X2, ...,Xk. By the associativity of the join operation, we can rewrite the above identity as

O =
3

k≠1
t

i=1
ÈXiÍ
4

t ÈXkÍ thus non-trivially reducing O to the join of two other elements of L(P).

The result is that O has more than one maximal element if and only if O can be written as the join

of two strictly smaller ideals.

This lemma suggests a natural map � from P to J (L (P)) taking each X œ P to ÈXÍ. This

map is clearly a bijection. Noting that ÈXÍ ™ ÈY Í if and only if X ™ Y this map is actually order

preserving and invertible. This leads to the following corollary.

Corollary 2.3.8. P ≥= J (L (P))

Corollary 2.3.8 provides us with a clue to proving the fundamental theorem.

Theorem 2.3.9. (The fundamental theorem of finite distributive lattices) L is a distributive lattice

if and only if there is a poset P so that L ≥= L(P).

Proof. Given a poset P, Proposition 2.3.5 above ensures that L(P) is always a distributive lattice.

Given a distributive lattice L, we must construct a set P so that L ≥= L(P). Lemma 2.3.7 and

Corollary 2.3.8 suggest that J(L) is a good candidate. We need only show that L ≥= L(J(L)). Let

X œ L and define

I(X) = {Y œ J(L) |Y ∞L X } .

Then, I(X) is an order ideal of J(L), that is, an element of L(J(L)). The map � sending X œ L
to I(X) is order preserving since X ∞L Y implies that I(X) ™ I(Y ). In Lemma 2.3.6, we saw that

each X could be written uniquely as a product of incomparable elements of J(L). Since X =
x

YiœA
Yi

implies, for each Yi œ A, that Yi ∞ X, we have that A ™ I(X). In fact, the proof of Lemma
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2.3.6 shows that A is exactly the set of maximal elements of I(X). It follows that I(X) is an order

preserving bijection from L to L(J(L)). To see that I(X) is also a lattice isomorphism, note that

I(X ‚ Y ) = {Z œ J(L) |Z ∞L X ‚ Y }

= {Z œ J(L) |Z ∞L X or Z ∞ Y }

= I(X)
€

I(Y ).

The argument for · is made dually, replacing ‚ with · and “or” with “and”. See the figure below

for an illustration.12

Figure 2.5: A small poset and its lattice of ideals

The join irreducible elements of L(P), namely A,AB,AC, and ABD, are exactly the principal ideals

of P. It is easy to see that these elements form a subposet of L(P) isomorphic to P.

A consequence of this theorem is that finite distributive lattices are uniquely generated by their

join irreducible elements. A consequence of this is that any order preserving map P „≠æ Q can be
12In this image, we adopt the useful convention of labeling the order ideals of P with a concatenation of its elements.

So, for example, “ABD” refers to the order ideal {A,B,D}.
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extended to a lattice homomorphism L(P) „≠æ L(Q) by letting, for example, „(a· b) = „(a)·„(b).
Similarly, it follows from (II) that any lattice homomorphism must be order preserving and map

join irreducible elements to join irreducible elements so that the map „ ≠æ „ has an obvious inverse

in the restriction of „ to P. In the language of category theory, the fundamental theorem provides

us with covariant functors between the category of finite posets with order preserving maps to the

category of finite distributive lattices with lattice homomorphisms that act as the identity functors

under composition.

For exceptionally simple classes of posets, the lattice of order ideals can sometimes be described

easily.

Proposition 2.3.10. L([n]) ≥= [n + 1]

Proof. Any order ideal of [n] is a chain C. The map C ≠æ |C| + 1 is an invertible order preserving

bijection from L([n]) to [n + 1].

Proposition 2.3.11. Bn ≥= L({n}) and more generally, Mn1,n2,...,nk ≥= L([n1] + [n2] + ...+ [nk]).

Proof. Both Bn andMn1,n2,...,nk are finite distributive lattices. An element of Bn is join irreducible

if and only if it has exactly one element.

An element (S, l) ofMn1,n2,...,nk is join irreducible if and only if S has exactly one element. For

each X œ S, the set of multisets {({X},mi)}1ÆiÆl(X) forms a chain of join irreducible elements of

length l.

The map L provides an interesting example of an injective map from an infinite set to a proper

subset of itself. Note also that it can be iterated. Of particular combinatorial interest is L(Bn) ≥=
L (L({n})).13 In figure 2.6, below, we show L

!

B3". The set J(L(B3)) appears in the lattice as open

circles. The reader may readily verify that this subposet is isomorphic to B3.

In the arguments below, we will refer to the set of antichains of a poset P which can be made

into a poset A(P) by defining A ∞A B if and only if for each X œ A, there is a Y œ B so that
13See for example [2] and [8].
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Figure 2.6: The lattice L(B3)

X ∞P Y or equivalently, ÈAÍ ™ ÈBÍ. As a map from A(P) to L(P), note that È_Í provides a nice

correspondence between order ideals and antichains that we have already made implicit use of in

our proof of Theorem 2.3.8.

Proposition 2.3.12. As posets, L(P) ≥= A(P).

Proof. Consider the map from A(P) to L(P) sending A to ÈAÍ and the map from L(P) to A(P)

sending O to maxO. Both maps are clearly order preserving bijections. If A œ A(P), then for each

X œ P, X œ A if and only if X is maximal in ÈAÍ. It follows that max{ÈAÍ} = A and Èmax{O}Í = O
so that ÈÍ is an order isomorphism.

Of course, the lattice structure of L(P) can now be applied to A(P).

23



Chapter 3

Linear Extensions

3.1 Linear Extensions

Given two partial orders P and Q on the same set, we say that Q is an extension of P if, for

each x, y œ P, x ∞Q y whenever x ∞P y. It is natural, in this context, to view P and Q in terms

of their order relations. In this light, Q is an extension of P whenever ∞P is a subset of ∞Q or,

equivalently, whenever the identity map P ÿ≠æ Q is order preserving. If Q is totally ordered then

it is a linear extension of P. Since, in this case, Q is isomorphic to [n] for n = |Q|, such a Q is

a linear extension of P if and only if there is an order preserving bijection P Á≠æ [n]. In this case,

we often call the map Á a linear extension of P. Both perspectives are useful. On the one hand, it

is helpful to see that we obtain a linear extension by adding appropriate elements of P ◊ P to ∞P
until the result of any further addition would not be a partial order. On the other hand, the map Á

allows us index the elements of the total order Q by their place in the total order by writing XÁ(X).

This allows us to represent the total order explicitly as a chain X1 ∞ X2 ∞ ... ∞ X|P| where the ith

term, Xi, is the unique X œ P so that Á(X) = i. In what follows, we generally prefer this latter

characterization, if for no better reason than that it provides us, by referring to the map Á, with a

compact name for a linear extension.

Let E(P) denote the set of all linear extensions of P. The following propositions can be found
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in [18].

Proposition 3.1.1. If P is a poset, then E(P) is nonempty. If P is finite, then E(P) is finite.

Proof. If P is a toset, then E(P) = {P}. Otherwise, there is pair (X,Y ) œ P ◊ P with X and Y

not comparable in ∞P . Let (X,Y )tr = {(X,Z) |Z œ ÈY Í}, also called the transitive closure of

(X,Y ). Then, we claim that ∞P
t

(X,Y )tr is always a partial order on the set P. To see this, note

that the relation inherits reflexivity from P. Taking the transitive closure of (X,Y ) ensures that the

new relation is transitive. Finally, since X and Y are not comparable, every element of ÈY Í does

not cover X. This ensures that the new relation is also antisymmetric.

Of course, this construction works whenever P is not a total order. This allows us to recursively

define a sequence of order relations on the set P. Let ∞P0=∞P , and ∞Pi=∞Pi≠1

t

(X,Y )tr for some

incomparable pair X,Y œ Pi≠1. Since P is supposed to be finite, ∞P™ P ◊ P must also be finite

so that this construction must terminate for some i. In this case, we have a partial order Pj such

that there is no pair of incomparable elements in ∞Pj . This is equivalent to Pj being a total order.

Since by our construction Pj is clearly an extension of P, we have constructed our desired linear

extension.

Proposition 3.1.2. If X and Y are incomparable in P, then there is an Á œ E(P) so that X ∞Á Y .

Proof. In the proof of Proposition 2.4.1, we presented an algorithm for constructing a linear extension

Á. To ensure that X ∞Á Y , it is su�cient to begin by adding (X,Y )tr to ∞P . The result will be a

poset to which we can further apply the algorithm. The result is a linear extension of P in which

X ∞Á Y .

Proposition 3.1.3. P is the intersection of all of its linear extensions.

Proof. This proposition is equivalent to the claim that X ∞P Y if and only if X ∞Á Y for each

Á œ E(P). Of course by definition, X ∞P Y implies that X ∞Á Y for each Á œ E(P). Alternately, if

X ∞Á Y for each Á œ E(P), then Proposition 2.4.2 guarantees that X ∞P Y .
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Intuitively, we can imagine the following process for building a linear extension of P. Beginning

by choosing a minimal element, X1, of P, we then select a minimal element, X2, of P≠{X1} and so

on. Continuing on in this way, until the elements of P are exhausted, will result in a linear extension

of P. At the ith stage of construction, we have ordered some subset Oi = {X1, X2, ...,Xi} of P. It

is easy to see that the set Oi must be an ideal of P and that the map from Oi to [i] sending Xj to

j is a linear extension of this set. The set of available choices for the next element in our ordering

of P is then the set of minimal elements of P ≠ Oi. If X1 ∞ X2 ∞ ... ∞ X|P| is a linear extension

of P, then setting Oi = {X1, ...,Xi} we obtain a unique sequence of order ideals O1,O2, ...,O|P| so

that Oi ≠ Oi≠1 = Xi for each i. In this way, the linear extensions of a poset P are in one to one

correspondence with the maximal chains of L(P).

As is clear from this argument, if Á and ÁÕ are linear extensions of the same ideal O of P, then

they will have the same set of available choices given by min{P ≠O}. It will be convenient in our

arguments to use the a from the lattice of order ideals in P to the lattice of antichains in P defined

by a (O) = min {P ≠O} . Given this map, we define, for each ideal O of P, the choice antichain

of O to be the set a(O). In the figure below, the open circles form an order ideal of B3 while the

solid diamonds make up its choice antichain.

We can thus associate a linear extension of P with a maximal ascending chain of order ideals

O0,O1, . . . ,O|P| in L(P) and a corresponding sequence of choice antichains a(O1), a(O2), . . . , a(O|P|)
in A(P). Note that |O(O)| in L(P) is equal to |a(O)| in P. Since each element of O(O) is equal to

O + {X} for some X œ P, we can alternately define the choice antichain without reference to the

poset P by a(O) =
A

t

OÕœO(O)
OÕ
B

≠O. It is clear from either definition that a is an injective map.

The following proposition shows that it is also surjective.

Proposition 3.1.4. For each antichain A, there is a unique order ideal O and filter F so that

A = a(O), H(A) = F and P = A+O + F .

Proof. Let A be an antichain in P. Let F = H(A). We claim that the order ideal O = P ≠A≠ F ,

has a(O) = A. To see this, note that P ≠O = A+ F and A = min{A+ F}.

This is a property that the choice antichain map shares with the ideal-antichain map above.
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Figure 3.1: An ideal and its choice antichain in B3

However, the two are also quite di�erent. Indeed, the map a is neither order preserving nor order

reversing. Compare the order ideal, O2, of B3 and its choice antichain given in Figure 3.2 below to

the order ideal, O1, of B3 given in Figure 3.1.

Note that O1 ™ O2 but a(O1) is not contained in Èa(O2)Í and vice versa.

The following proposition shows that the choice antichain map is slightly better behaved when

acting on order ideals with maximal choice antichains.

Proposition 3.1.5. Let A be an antichain and O be an ideal such that A = a(O). Then, O = N(A)

if and only if A is maximal in P.

Proof. If O = N(A), then A = a(O) = a (N(A)) = min (P ≠ N(A)). For any X œ P ≠ A, either
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Figure 3.2: Another ideal and its choice antichain in B3

X œ N(A) or X œ P ≠ N(A). In the latter case, there is some Y œ A so that Y ∞ X, while in the

former, there is some Y œ A so that X ∞ Y . In either case, At{X} is not an antichain.

If A is maximal in P then Proposition 3.1.4 implies that P = N(A) + A + H(A). In this

case, a(N(A)) = min (P ≠ N(A)) = min (A+ H(A)) = A. Since a is injective, it follows that

O = N(A).

Corollary 3.1.6. If O is an ideal, then N (a(O)) ™ O. Equality holds if and only if a(O) is maximal.
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Proof. An element X œ N (a(O)) exactly when there is a Y œ a(O) = min{P ≠O} so that X ∞ Y .

This immediately implies that X œ O. The antichain a(O) is not maximal, just in case there is an

X œ P ≠ Èa(O)Í so that a(O) + {X} is an antichain. Supposing, for proof by contradiction, that

X /œ O, we have that X œ H(a(O)) by proposition 3.1.4. Since this contradicts our choice of X it

follows that X œ O ≠ N (a(O)) .

Corollary 3.1.7. When a is restricted to ideals with maximal choice antichains, it is order preserv-

ing.

Proof. If O1 ™ O2 and both ideals have maximal choice antichains, then N (a(O1)) ™ N (a(O2)). If

X œ a(O1)≠N (a(O2)), then since a(O2) is maximal, either X œ a(O2) or X œ H (a(O2)). The latter

case is not possible since {X}tO2 is not an order ideal whenever there is some Y œ P≠ (O2
t{X})

so that Y ∞ X. If such a Y existed, it couldn’t be in a(O1) since it is covered by X and it

couldn’t be in O1 itself since O1 ™ O2 = N (a(O2)). It follows that X œ a(O2) and therefore that

a(O1) ™ Èa(O2)Í.

3.2 Counting Linear Extensions

Proposition 3.1.1 allows us to state our general problem: Given a finite poset P how many

di�erent linear extensions of P are there? This is, in general, a very di�cult question to answer.
1In light of this, we ask a more tractable question: What kinds of upper bounds can we place on

the total number of linear extensions of any finite poset or on some special class of finite posets? To

this end, let us define e(P) = |E(P)|. Since any linear extension of P will correspond to some total

ordering of the elements of P, a trivial upper bound is given by e(P) Æ |P|!.
Sometimes it is possible to determine e(P) exactly by a direct counting argument. For example,

the unordered set on n elements has exactly n! linear extensions corresponding to any possible
1In fact it has been shown in [6] that the general problem is #P -complete. This means that the problem of

constructing a polynomial-time algorithm that, given any poset P, determines the number of linear extensions of P
is equivalent to proving that P = NP .
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ordering of its elements. Less trivial examples may be found in examples 3.5.3 through 3.5.5 of [17]

including the following proposition.

Proposition 3.2.1. If P = P1 + P2 + ... + Pn is the disjoint union of partially ordered sets and,

for each i, |Pi| = mi, then e(P) =
!

m1+m2+...+mn
m1,m2,...,mn

"

e(P1)e(P2)...e (Pn)

Proof. The proof is by induction on n. If n = 1, the claim is trivial. Suppose now that the claim holds

for all k < n. Given P = P1 +P2 + ...+Pn with |Pi| = mi for each i, let P = P1 +P2 + ...+Pn≠1.

Then P = P + Pn and
-

-P-- =
n≠1
q

i=1
mi so that by our inductive hypothesis with k = 2, e(P) =

!

m1+m2+...+mn
mn

"

e(P)e (Pn). By our inductive hypothesis with k = n≠ 1, we also have that

e(P) =
3

m1 +m2 + ...+mn≠1
m1,m2, ...,mn≠1

4

e(P1)e(P2)...e (Pn≠1) .

Recalling that, in general,

3

m1 +m2 + ...+mn
m1,m2, ...,mn

4

=
3

m1
m1

43

m1 +m2
m2

4

...

3

m1 +m2 + ...+mn
mn

4

,

it follows that

e(P) =
3

m1 +m2 + ...+mn
mn

433

m1 +m2 + ...+mn≠1
m1,m2, ...,mn≠1

4

e(P1)e(P2)...e (Pn≠1)
4

e (Pn)

=
3

m1 +m2 + ...+mn
mn

433

m1
m1

43

m1 +m2
m2

4

...

3

m1 +m2 + ...+mn≠1
mn≠1

44

e(P1)e(P2)...e (Pn)

=
3

m1 +m2 + ...+mn
m1,m2, ...,mn

4

e(P1)e(P2)...e (Pn) .

A purely combinatorial proof can also be given: Having independently linearly ordered each

Pi with the linear extension Ái, a linear extension ” of P may be constructed by choosing any

m1 elements of [m1 + m2 + ...+ mn] , say a1,1, a1,2, ..., a1,m1 , and then choosing m2 elements of

[m1 + m2 + ...+ mn]≠{a1, a2, ..., am1}, say a2,1, a2,2, ..., a2,m2 and so forth. Setting ”(X) = ai,Ái(X)
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for eachX œ Pi yields a linear extension ” of P. Since, for each linear extension ” of P, the restriction

of ” to Pi yields a unique linear extension of Pi, for each i, the theorem follows.

Since e(C) = 1 for any chain C, we have the following immediate consequence:

Corollary 3.2.2. Let dk = n. If P =
d
q

i=1
Ck≠1 is the disjoint union of d chains, each with k

elements, then

e(P) =
3

n

k, k, . . . , k

4

= n!
(k!)d
.

It is worth noting that no comparable formula is known for the cartesian product of posets, or

even cartesian products of chains. This is unfortunate as we have seen that both the boolean lattice

and the multiset lattice can be simply described as cartesian products of chains.

In what follows, we will make use of probabilistic arguments. Such arguments, in general, make

use of elementary probability theory. In our case, we will only need the barest of additional definition.

Let us call a function fl from a finite set E to the interval [0, 1] is a probability distribution over

E if
ÿ

xœE
fl(x) = 1.

The following propositions show that we can bound the size of e(P) by defining a suitable probability

distribution over e(P).

Proposition 3.2.3. Let fl be a probability distribution over E(P). If there is a k œ R+ so that for

each Á œ E(P), fl(Á) Ø 1
k , then

e(P) Æ k.

Proof. The theorem immediately follows from the following inequality:

1 =
ÿ

ÁœE(P)
fl(Á) Ø

ÿ

ÁœE(P)

1
k

= e(P)
k
.
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The argument in [14] makes use of Proposition 3.2.3 by exploiting the special correspondence

between linear extensions, sequences of order ideals, and sequences of antichains discussed in the

previous section.

Suppose that we are given, for each O œ L(P), an upper bound on |a(O)| that depends only

on |O|. The following theorem shows that Proposition 3.2.3 allows us to translate this collection of

bounds into an upper bound on the total number of linear extensions of P.

Theorem 3.2.4. Let {ai}0ÆiÆ|P| be a collection of numbers with the property that for each order

ideal O of P, such that |O| = i, we have that |a(O)| Æ ai. Then

e(P) Æ
|P |
Ÿ

i=1
ai≠1.

If |a(Oi)| = ai, for each integer i, then

e(P) =
|P |
Ÿ

i=1
ai≠1.

Proof. Note that the assumption of this theorem guarantees that, for each i, any ideal of P with

i members will have a choice antichain of size at most ai. Now imagine recursively constructing a

linear extension of P as follows. Let O0 = ÿ and for each i Ø 0, let Oi+1 = Oi + {Xi} where Xi is

chosen from a (Oi) with uniform probability. Since P is finite and |Oi+1| = |Oi|+1, this construction

always terminates after |P| steps. The result is a linear extension of P given by X1, X2, ...,X|P|. In

fact, since each distinct linear extension has a unique sequence of order ideals, we have that, given

a linear extension Á with corresponding sequence of order ideals O0,O1, . . . ,O|P|, our procedure

results in Á if and only if we take Xi to be the unique element of Oi+1 ≠Oi for each i > 0.2

At the i+ 1st stage of this procedure, we have so far produced a partial extension of order ideal

Oi of size i. By assumption there are at most ai di�erent candidates for Xi independently of our

choices for the previous entries in the total order. Since we always chose from a (Oi) uniformly, the

probability that any particular order ideal Oi+1 of P results at the ith stage is always exactly 1
|a(Oi)| .

2Note that Oi+1

≠Oi is always contained in a(Oi).
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This allows us to define a function µ over the set E(P) by assigning to Á the product
|P|
r

i=1
1

|a(Oi)| .

Note that µ(Á) is exactly the probability that our construction results in Á. Since the construction

is guaranteed to produce a linear extension of P we have that
q

ÁœE(P)
µ(Á) = 1 so that µ is indeed a

probability distribution. By our assumptions,

µ(Á) =
|P|
Ÿ

i=1

1
|a(Oi)| Ø

|P|
Ÿ

i=1

1
ai

and applying Proposition 3.2.3, the theorem follows.

Let use apply Proposition 3.2.4 to an extended example to clarify these ideas.

Example 3.2.5. Consider B3 the lattice of subsets of {A,B,C}. Two linear extensions of B3 appear

in Figure 2.9 below as dotted lines directed by arrows.

Figure 3.3: Two linear extensions of B3

In the diagram on the left, let us call the given linear extension Á1. The ordering is ÿ ∞ A ∞
B ∞ C ∞ AB ∞ AC ∞ BC ∞ ABC. Following the construction above, we choose at each stage i,

an element from a (Oi) with uniform probability.
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Oi a(Oi) Xi fli(Xi)

ÿ {ÿ} ÿ 1

{ÿ} {A,B,C} A 1/3

{ÿ, A} {B,C} B 1/2

{ÿ, A,B} {C,AB} C 1/2

{ÿ, A,B,C} {AB,AC,BC} AB 1/3

{ÿ, A,B,C,AB} {AC,BC} AC 1/2

{ÿ, A,B,C,AB,AC} {BC} BC 1

{ÿ, A,B,C,AB,AC,BC} {ABC} ABC 1

B3 - - -

Table 3.1: The Linear Extension Á1

From this table we can compute that the probability that our construction results in Á1 to be

the product 1 · 1
3 · 1

2 · 1
2 · 1

3 · 1
2 · 1 · 1 = 1

72 .

In the diagram on the right, let us call extension Á2. The ordering is ÿ ∞ B ∞ A ∞ AB ∞ C ∞
BC ∞ AC ∞ ABC.

Oi a(Oi) Xi fli(Xi)

ÿ {ÿ} ÿ 1

{ÿ} {A,B,C} B 1/3

{ÿ, A} {A,C} A 1/2

{ÿ, A,B} {C,AB} AB 1/2

{ÿ, A,B,C} {C} C 1

{ÿ, A,B,C,AB} {AC,BC} BC 1/2

{ÿ, A,B,C,AB,AC} {AC} AC 1

{ÿ, A,B,C,AB,AC,BC} {ABC} ABC 1

B3 - - -

Table 3.2: The Linear Extension Á2

From this table we can compute that the probability that our construction results in Á2 to be

the product 1 · 1
3 · 1

2 · 1
2 · 1 · 1

2 · 1 · 1 = 1
24 .
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Chapter 4

The LYM Property

As noted in the introduction, our main result is a bound on e(P) that applies to a special class

of posets known as LYM posets. The name “LYM” pays homage to the early use of this property

by Lubell, Yamamoto, and Meshalkin1 in studying antichains in the boolean lattice.

4.1 The Boolean Lattice and the LYM Inequality

Here we follow [11] p.g. 138 which in turn follows Lubell’s classic proof of the result commonly

known as the LYM inequality.2

Theorem 4.1.1. (The LYM Inequality) Let A be an antichain in the Boolean Lattice Bn and let

Ak be the be the set of all rank k nodes in A. Then

n
ÿ

k=0

|Ak|
!

n
k

" Æ 1.

Proof. Recall that, from proposition 2.3.11, Bn ≥= L({1, 2..., n}). As observed in the beginning of

section 3.2, since any total ordering of {1, 2..., n} is a linear extension, there are exactly n! linear
1Apparently, Ballobos should also be included in this list, but for some reason he is not.
2Originally published in [15], another nice exposition of this argument can be found in[1].
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extensions of {1, 2..., n}. As discussed in section 2.4, this also counts the number of maximal chains

in Bn.

On the other hand, given an element X œ Bn with rank k, we might construct a maximal chain

in Bn by ordering the k elements of X and independently ordering the n ≠ k remaining elements,

then concatenating the results. This can be done in k!(n≠ k)! ways. Note that a maximal chain so

constructed will always contain X. It follows that we can construct k!(n ≠ k)! maximal chains in

Bn containing the node X.

Consider an antichain A in Bn and let Ak denote the set of elements of A of rank k. For each

X œ Ak, we count, as above, k!(n≠k)! maximal chains in Bn containing X. Note that for any chain

C and any antichain A in Bn, |C flA| Æ 1. This means that no chain intersects an antichain more

than once. It follows that the sum
n
ÿ

k=0
|Ak| k!(n≠ k)!

counts the number of maximal chains in Bn whose intersection with A is non-empty. Since this

number must be smaller than the total the number of maximal chains in Bn, we have established

that
n
ÿ

k=0
|Ak| k!(n≠ k)! Æ n!.

Dividing both sides by n! yields the desired inequality.

We note one nearly immediate consequence.

Corollary 4.1.2. (Sperner’s Theorem): Let A be an antichain in Bn. Then

|A| Æ
3

n
#

n
2
$

4

.

Proof. First, recall that for any k so that 0 Æ k Æ n,

3

n

k

4

Æ
3

n
#

n
2
$

4
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so that
n
ÿ

k=0

|Ak|
!

n
[n2 ]
" Æ

n
ÿ

k=0

|Ak|
!

n
k

" Æ 1.

It follows that
n
ÿ

k=0
|Ak| Æ

3

n
#

n
2
$

4

.

4.2 The LYM property and Linear Extensions

Since, in the Boolean lattice Bn, the kth whitney number Nk is given by the binomial coe�cient
!

n
k

"

, the LYM inequality can be naturally extended to other posets. If P is a rank n poset with

whitney numbers N0, N1, ..., Nn, then P has the LYM property if for each antichain A œ P,

n
ÿ

i=0

|Ai|
Ni
Æ 1.

Such posets are often called LYM posets or are said to be LYM. Proposition 4.1.2 may be easily

extended to any LYM poset in an obvious way.

Proposition 4.2.1. Let P be an LYM poset with rank k and whitney numbers N0, N1, . . . , Nk. If

M = max
0ÆiÆk

Ni, then for any antichain A in P,

|A| ÆM.

Proof. The argument is identical to that for Corollary 4.1.2 with Nk used in place of
!

n
k

"

and M

used in place of
!

n
[n2 ]
"

.

As is clear from the proof, the Sperner property is weaker than the LYM property. The previous

theorem shows us that every LYM poset is Sperner. However, the converse does not in general hold
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as Figure 4.1 below illustrates. In this poset, we think of the rank function as determined by levels

in the hasse diagram.

Figure 4.1: A poset that is not LYM

The antichain A = {C,D,E} then has A0 = ÿ, A1 = {C}, and A2 = {D,E}. Since N0 = 1, N1 = 2,

and N2 = 3 we have
n
ÿ

i=0

|Ai|
Ni

= 0 + 1
2 + 2

3 > 1.

Proposition 4.2.1 gives us an upper bound on the size of any antichain in an LYM poset. In fact,

since each rank of any ranked poset must comprise an antichain, the largest such rank will always

be an antichain that attains this bound. It follows that this is the best possible global restriction

on the size of any antichain in an LYM poset.

Theorem 4.2.2. Let P be any poset with the sperner property and letM be defined as in Proposition

4.2.1. Then

e(P) ÆM |P|.

Proof. The sperner property guarantees that for each order ideal O œ L(P), |a(O)| Æ M . The

theorem follows from Proposition 3.2.4, with ai =M for each i.
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4.3 Kleitman’s Theorem on LYM-Posets

We now prove a theorem of Kleitman’s from [13] that is a standard result in the field.3 We follow

the proof in [3] for which we require a famous combinatorial theorem: Hall’s Marriage Theorem.

This theorem makes use of the idea of a system of distinct representatives or s.d.r. A collection

of elements a1, a2, . . . , an is an s.d.r. for a collection of sets A1, A2, . . . , Ar if and only if ai œ Ai for

each i and ai ”= aj whenever i ”= j. For example, if A1 = {1, 2, a}, A2 = {3, 5, a, b}, A3 = {1, 2, 3, b},
and A4 = {4, 5, a, b} is a collection of sets, then a1 = a, a2 = 3, a3 = b, and a4 = 4 is an s.d.r. for

it. Alternately, if A1 = {1}, A2 = {2}, and A3 = {1, 2} then any choice of a representative for each

of A1, A2, and A3 will fail to be distinct. Therefore, the collection does not possess an s.d.r.

Hall’s theorem provides a condition that is both necessary and su�cient for a collection of sets

to possess an s.d.r that is commonly known as Hall’s condition. Note that we do not require that

each member of a collection be distinct. In this sense a collection is a multiset.

Theorem 4.3.1. (Hall’s Marriage Theorem) The collection of sets A1, A2, . . . , Ar has an s.d.r if

and only if for each m with 0 < m Æ r, the union of any m of the sets Ai contains at least m

elements.

Proof. First note that if any of the sets Ai are empty, then the theorem holds; no s.d.r is possible

and the collection fails to satisfy Hall’s condition. Let us then suppose that Ai is nonempty for each

i. In this case, one implication is obvious. If there were, for some appropriate m, a collection of m of

the sets A1, A2, . . . , Ar whose union had size smaller than m, then any choice of representatives from

each of the m sets would contain less than m distinct elements. Since an s.d.r for A1, A2, . . . , Ar will

include an s.d.r for any subcollection, we conclude that A1, A2, . . . , Ar cannot have an s.d.r. From

this it follows that the existence of an s.d.r implies Hall’s condition.

To establish the other direction, we follow the proof of Halmos and Vaughn in [10] and argue by

induction on r. If r = 1, then any element of A1 is an s.d.r and the collection always satisfies Hall’s

condition so that the theorem holds. Let r be greater than 1 and suppose for inductive hypothesis

that the theorem holds for any collection of sets B1, B2, . . . , Bk with k less than r. Let A1, A2, . . . , Ar
3See, for example, [3] pg. 15 and [11] pg. 145, exercise 3.3.6.
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be a collection of sets satisfying Hall’s condition. Our goal will be to construct an s.d.r a1, a2, ..., ar

for this collection.

We begin with a special case. Suppose that for each m, with 0 < m < r, the union of any m

of the sets Ai contains at least m + 1 elements. Choose any element x of A1, set a1 = x, and let

Ai = Ai ≠ {x} for each i. Then the collection A2, A3, . . . , Ar has r ≠ 1 members and the union of

any subcollection of size m will have at least m members. This new collection will therefore satisfy

Hall’s condition and so, by the inductive hypothesis, have an s.d.r, say x2, x3, ..., xr. Setting xi = ai

for each i we obtain an s.d.r a1, a2, ..., ar for the original collection.

Next, let us suppose that there exists an m < r so that there is at least one subcollection of m

elements Ai of the collection A1, A2, . . . , Ar whose union has size exactly m. If necessary, relabel

the original collection so that this subcollection is given by A1, A2, ..., Am and the remaining mem-

bers are given by Am+1, Am+2, ..., Ar. By our inductive hypothesis the subcollection A1, A2, ..., Am

has an s.d.r a1, a2, ..., am. Let „Ai = Ai ≠ {a1, a2, ..., am} and note that, by Hall’s Condition,
„Ai must be nonempty for each i > m. Suppose for proof by contradiction that the collection

\Am+1,\Am+2, ...,„Ar does not satisfy Hall’s condition. In this case, for some h, there is a collection

of h sets in \Am+1,\Am+2, ...,„Ar whose union has size less than h. If necessary, relabel this collection

so that
h
t

i=1
\Am+i has size less than h. Then

m+h
€

i=1
Ai =

m
€

i=1
Ai +

h
€

i=1

\Am+i = {a1, a2, ..., am}+
h
€

i=1

\Am+i

and it follows that
m+h
t

i=1
Ai has size less than m + h. Since this is a union of m + h members of

A1, A2, . . . , Ar with size smaller thanm+h, we have contradicted our assumption that A1, A2, . . . , Ar

satisfies Hall’s Condition.

It follows that the collection \Am+1,\Am+2, ...,„Ar does satisfy Hall’s condition and therefore, by

our inductive hypothesis, has an s.d.r {am+1, ..., ar}. Clearly, the set {a1, a2, ..., ar} is an s.d.r for

A1, A2, . . . , Ar.

This is a far-reaching theorem, and it is not immediately obvious how this theorem relates to
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our study of ranked posets. Recall that a graph G is bipartite if its vertex set can be partitioned

into two disjoint sets A and B so that for any edge {X,Y } of G, X œ A if and only if Y œ B.

For each X œ A, let N(X) the set of vertices Y in B so that {X,Y } is an edge of G. Then,

indexing the elements of A as X1, X2, ...,Xi we get a collection of sets N(X1), N(X2), ..., N(Xi). An

s.d.r of this collection, Y1, Y2, ..., Yi picks out a collection of non-adjacent edges, called a matching,

{X1, Y1}, {X2, Y2}, ..., {Xi, Yi} that is said to saturate A, that is, pair each element of A with a

unique element of B. Hall’s Theorem then says that there is a matching that saturates A if and only

if Hall’s condition is satisfied on the collection N(X1), N(X2), ..., N(Xi). A matching that saturates

both A and B is a perfect matching. Note that an A saturating matching is a perfect matching

if and only if |A| = |B|.
Let P be any rank n poset and consider the subposet Pi + Pi+1 for some i with 0 Æ i < n. It

is clear from the definition of the rank function that, for any i, no element of Pi covers and other

element of Pi. It follows that, for any i, the hasse diagram of the restriction of P to the set Pi+Pi+1

is a bipartite graph.4In this situation we usually let Pi play the role of A above so that N(X) is

given by O(X) for each X œ Pi. We can now restate Hall’s theorem to say that the collection

{O(X)}XœPi has a Pi saturated matching if and only if for each R ™ P, |R| Æ |O(R)|.
With this in place, we are now able to prove Kleitman’s theorem.

Theorem 4.3.2. Let P be a ranked poset with rank k. Then the following conditions are equivalent:

(i) P is an LYM poset

(ii) If B ™ Pi, for some i, then
|B|
Ni
Æ |O(B)|
Ni+1

.

This condition is called the Normalized Matching Property.

(iii) There is a multiset (C,m) of maximal chains in P and for each pair X,Y œ Pj, if CX =
4This observation actually allows us to show that the hasse diagram of P is itself a bipartite graph. Let X =
t

0ÆiÆk
Pi

i odd

and Y =
t

0ÆiÆk
Pi

i even

. Then P = X + Y and if X
1

and X
2

are both in, say, X , then either r(X
1

) = r(X
2

),

r(X
1

) < r(X
2

) ≠ 1, or r(X
2

) < r(X
1

) ≠ 1 so that X
1

cannot cover X
2

, and vice versa. It follows that X and Y are
disjoint and therefore that the hasse diagram of P is itself bipartite.
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{C œ C |X œ C }, then
ÿ

CœCX
m(C) =

ÿ

CœCY
m(C).

Intuitively, this condition says that whenever X and Y have the same rank, they intersect the

same number of chains in our collection. A poset satisfying this condition is said to have a Regular

Covering by Chains.

Proof. (i)∆(ii) Let B ™ Pi. Then the set B + (Pi+1 ≠ O(B)) is an antichain in P with elements in

Pi and Pi+1. By (i), we have that

|B|
Ni

+ |Pi+1 ≠ O(B)|
N i+1

Æ 1.

Since O(B) ™ Pi+1, it follows that |Pi+1 ≠ O(B)| = Ni+1 ≠ |O(B)| and our inequality becomes

|B|
Ni

+ Ni+1 ≠ |O(B)|
N i+1

Æ 1

which we rewrite as
|B|
Ni
Æ |O(B)|
N i+1

.

(ii)∆(iii) This proof is actually constructive. We are going to build a multiset of chains in P
forming a regular covering. For each rank j of P, let µj =

r

0ÆiÆk
i ”=j

Ni and for each X œ Pj , define the

set

BX = {Xt}1ÆtÆµj .

consisting of µj indexed copies of X. Consider the poset P =
t

xœP
BX where Xl ∞P Ym whenever

X ∞P Y . P then inherits its rank function from P so that Xl œ P has the same rank as X œ P.

Since each of the Nj distinct elements of Pj yields exactly µj distinct elements of Pj , we have that

N j =
-

-Pj
-

- =
Ÿ

0ÆiÆk
Ni.

This value is independent of j so that P has the same whitney number for each of its ranks.
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Consider the order preserving map � sending Xl to X for each Xl œ P let R be any set of r

elements of Pj . Then, �[R] has at least rµj distinct element of Pj in it. By the normalized matching

property,

|O(�[R])| Ø |�[R]| Nj+1
Nj
Ø r
µj
· Nj+1
Nj

= r

µj+1

so that there are at least r
µj+1

elements of Pj+1 covering elements of �[R]. Taking �≠1[O(�[R])]

we find at least r elements of Pj+1 covering R. Therefore, Pj + Pj+1 satisfies Hall’s condition and

by Theorem 4.3.1 we are guaranteed, for each rank j, a perfect matching Mj between Pj + Pj+1 .

Now, consider
k≠1
t

i=0
Mi where Mi is any perfect matching between Pi + Pi+1. For any Xt œ Pj ,

there is a unique pair (Xt, Aj+1) œ Mj and a unique pair (Aj≠1, Xt) œ Mj≠1. This determines a

unique maximal chain, Ct, through Xt in
k≠1
t

i=0
Mi. Note that, for any j,

|C| = --Pj
-

- =
Ÿ

0ÆiÆk
Ni.

Let C be the set of all maximal chains in
k≠1
t

i=0
Mi and consider the multiset (�[C],m) where m(C) =

-

-�≠1[C]
-

- for each C œ �[C]. This is certainly a multiset of maximal chains in P. To see that it is a

regular covering, let X œ Pj and let CX be the set of chains in C containing Xt for some t. Then,

|CX | = µj and it follows that

ÿ

Cœ�[CX ]
m(C) =

ÿ

Cœ�[CX ]

-

-�≠1[C]
-

- = µj .

Since �[CX ] is exactly the set of chains in �[C] containing X, it follows that (�[C],m) constitutes a

regular covering of P by chains.

(iii)∆(i) Let {Ci}ti=1 be a regular covering of t (not necessarily distinct, but each with a distinct

index) maximal chains in P. Then, if X œ Pi, X occurs in exactly t
Ni

of these chains. Let A be an

antichain in P. Then, exactly |Ai| · tNi chains in {Ci}ti=1 intersect A at the ith level. Recall that
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CuA Æ 1 for any chain and any antichain in P. It follows that A intersects a total of

k
ÿ

i=0
|Ai| · t

Ni

distinct chains in {Ci}ti=1. Since this cannot be more than the total number of chains in {Ci}ti=1, we

have that
k
ÿ

i=0
|Ai| · t

Ni
Æ t

or
k
ÿ

i=0

|Ai|
Ni
Æ 1.

Certainly the most di�cult part of this proof is the implication (ii)∆(iii). Figure 4.2, below,

illustrates the construction of P and a possible choice of perfect matching for a small poset.

Theorem 4.3.2 is incredibly useful in determining what the class of LYM posets looks like as the

next proposition from [9] illustrates.

Proposition 4.3.3. If P is an LYM poset with rank n, then it is graded.

Proof. Let X œ P be minimal and suppose that r(X) = i > 0. Then, note that |O(Pi≠1)| < Ni so

that
|O(Pi≠1)|
Ni

< 1,

or equivalently,

1 = |Pi≠1|
Ni≠1

>
|O(Pi≠1)|
Ni

.

It follows that P is not LYM.

Let X œ P be maximal and suppose that r(X) = j < n. In this case, OX = ÿ so that |OX|Nj+1
= 0.

It follows that
1
Nj

= |{X}|
Nj
>
|OX|
Nj+1

.
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Figure 4.2: The construction of P

Again, it follows that P is not LYM.

The arguments in the following chapter do not actually make use of condition (iii), however this

condition is useful in proving that certain posets are LYM as in the following characterization.

Proposition 4.3.4. If P is a poset so that for each X œ P, the sizes of OX and M X are determined

by the rank of X, then P has the LYM property.

Proof. Suppose that P has rank n and that for each X œ P with rank i, |OX| = ai and |M X| = bi.
Then if X has rank k, there are exactly

k
r

i=1
an≠ibi maximal chains passing through X. Therefore,

the set of all maximal chains in P is a regular covering by chains. It follows that P has the LYM

property.
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Corollary 4.3.5. The lattice L[n, q] of subspaces of the n-dimensional vector space Fnq over the

finite field Fq with q elements is LYM.

Proof. Recall that if X is a subspace of dimension i of Fnq with basis {b1, b2, ..., bi}, then |X| = qi,
corresponding to the q choices for each coe�cient in the sum a1b1 + a2b2 + ...+ aibi. It follows that

there are qn≠qi di�erent elements in Fnq≠X.5 Let bi+1 œ Fnq≠X, note that span{b1, b2, ..., bi, bi+1} =

span{b1, b2, ..., bi, a+ µ · bi+1} for each a œ X and µ œ Fq ≠ {0}. In fact, if c œ X, ⁄ œ Fq ≠ {0} and

a+ µ · bi+1 = c+ ⁄ · bi+1, then (a≠ c) = (⁄≠ µ) · bi+1. Since bi+1 /œ span {b1, b2, ..., bi}, it must be

that a = c and µ = ⁄. Therefore, given bi+1, each choice of a œ X and µ œ Fq≠ {0} yields a distinct

element a+ µ · bi+1 œ Fnq ≠X. Since there are q≠ 1 elements in Fq ≠ {0} we have (q≠ 1)qi di�erent

choices from Fnq ≠X that result in the same subspace containing X. It follows that there are

qn ≠ qi
(q ≠ 1)qi = q

n≠i ≠ 1
(q ≠ 1) = 1 + q + ...+ qn≠i≠1

distinct subspaces of dimension i+ 1 containing X. Equivalently,

|O(X)| = 1 + q + ...+ qn≠i≠1

in L[n, q] whenever X has rank i.

To see that M X is similarly determined, we will show that L[n, q] is symmetric and invoke

Corollary 2.1.4. Let Fnúq be the vector space of linear maps from Fnq to F and let Lú[n, q] be the

lattice of subspaces of
!

Fnq
"ú. Note that L[n, q] and Lú[n, q] are isomorphic as lattices via the dual

map taking X to Xú = {uú |u œ U }. Consider the bijective map „ from L[n, q] to Lú[n, q] taking

X to X0 =
Ó

f œ !Fnq
"ú |f [U ] = 0

Ô

. If X ™ Y ™ V , then f [X] ™ f [Y ] for each f œ !Fnq
"ú so that

Y 0 ™ X0. This map then provides us with an order reversing bijection from L[n, q] to Lú[n, q].

Since these lattices are already order isomorphic, we have shown that L[n, q] is symmetric. Since
5In the argument that follows, we make use of the well known fact that if X is a subspace of Y , then any basis B

for X can be extended to a basis for Y containing B.
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dim(X0) = n≠ dim (X), it follows that

|M (X)| = qn ≠ qn≠i
(q ≠ 1)qn≠i = 1 + q + ...+ qi≠1.

Corollary 4.3.6. The function poset Fnk is LYM.

Proof. Employing the representation of Fnk discussed in Example 2.2.13, it is obvious that a function

has rank i just in case it has exactly i non-zero entries. If (a1, a2, ..., an) has rank i, then we construct

a rank i + 1 function covering (a1, a2, ..., an) by choosing an ai so that ai = 0 and assigning any

element of C to it. This can be done in exactly kn≠i ways. It follows that |Of | = kn≠i. Similarly,

we construct a rank i ≠ 1 function covered by (a1, a2, ..., an) by replacing any non-zero ai with a 0

entry. This can be done in exactly i ways so that |M f | = i.
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Chapter 5

The Sha/Kleitman Bound

5.1 The Original Proof

The basic strategy of [14] is to find a bound on the size of a(O) that depends only on the size of

O and then employ Theorem 3.2.4.

Let P be an LYM poset. For each order ideal O of P, let

u(O) = max{r œ Z |Or ”= ÿ}

and let

m(O) = min{r œ Z |Pr ≠Or ”= ÿ}.

Let us call O flat if u(O) = m(O) + 1. In this case,

O =
m(O)
ÿ

i=0
Pi +Ou(O)

so that, in particular,

|O| =
m(O)
ÿ

i=0
Ni +

-

-Ou(O)
-

- .
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Note that if O is flat then a(O) ™ Pu(O) + Pu(O)+1 and (P ≠O)u(O) = a(O)u(O).

Theorem 5.1.1. Let P be an LYM poset. If O is any flat ideal of P and x =
-

-Ou(O)
-

-, then

|a(O)| Æ Ni + x
3

Ni+1
Ni
≠ 1
4

Proof. Let O be a flat ideal of P, let A = a(O), and let u(O) = i. Then, A is an antichain in P
contained entirely in Pi + Pi+1. First, we write A = Ai + Ai+1. Since A is an antichain, we have

that O(Ai) ™ Pi+1 ≠Ai+1. It follows that

|O(Ai)|
Ni+1

Æ |P ≠Ai+1|
Ni+1

= 1≠ |Ai+1|
Ni+1

= 1≠ |A|≠ |Ai|
Ni+1

.

The normalized matching property, applied to Ai, tells us that |Ai|Ni Æ
|O(Ai)|
Ni+1

so that, from the above

inequality, we have,
|Ai|
Ni
Æ 1≠ |A|≠ |Ai|

Ni+1

which can be rewritten in the form

|A| Æ Ni+1 ≠ |Ai|
3

Ni+1
Ni
≠ 1
4

.

Since (P ≠O)i = Ai, it follows that |Ai| = Ni ≠ x. Using this last identity to eliminate |Ai| from

the above inequality yields our theorem.

Since O is presumed to be flat, Theorem 5.1.1 tells us that

|a(O)| Æ Ni + x
3

Ni+1
Ni
≠ 1
4

whenever

|O| =
m(O)
ÿ

i=0
Ni + x.

Sha and Kleitman make their arguments entirely in the context of the boolean lattice where
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Ni =
!

n
i

"

. Shastri restated these arguments in [16] in the more general setting. Sha and Kleitman’s

strategy is to extend this bound on the choice antichains of flat ideals to any ideal in the boolean

lattice. They accomplish this by arguing that if O1 and O2 are order ideals of Bn such that

|O1| = |O2|, O1 is flat and O2 is not, then |a(O1)| Ø |a(O2)|. The argument is complex, sketchily

presented, and makes use of an advanced result known in the literature as the Kruskal-Katona

Theorem.1 A full account of this argument is, unfortunately, out of our reach. Assuming that this

argument succeeds, Corollary 3.2.4 produces the following rather unwieldy bound:

e(Bn) Æ
n
Ÿ

i=0

Q

c

a

(ni)≠1
Ÿ

j=0

A

3

n

i

4

+ j
A

!

n
i+1
"

!

n
i

" ≠ 1
BB

R

d

b

.

Sha and Kleitman then argue that the following inequality is easily obtained.

n
Ÿ

i=0

Q

c

a

(ni)≠1
Ÿ

j=0

A

3

n

i

4

+ j
A

!

n
i+1
"

!

n
i

" ≠ 1
BB

R

d

b

Æ
n
Ÿ

k=0

3

n

k

4(nk)
.

(They o�er no insight into how to do this. The word “easily” might be a misnomer here. See for

example the so called “standard” derivation worked out by Cooper in [7].) Putting these last two

inequalities together, we arrive at what we shall call the Sha/Kleitman bound:

e(Bn) Æ
n
Ÿ

k=0

3

n

k

4(nk)
.

In his paper [16], Shastri presents a generalization of this result. Shastri’s generalization attempts

to extend the argument of Sha and Kleitman to any symmetric log concave unimodal LYM poset.

Recall that a finite sequence of numbers a0, a1, ..., an is log concave if ai+1ai≠1 Æ a2
i for each i and

unimodal if, for some j, a0 Æ a1 Æ ... Æ aj and an Æ an≠1 Æ ... Æ aj . The terms log concave and

unimodal as applied to ranked posets refer to the sequence of whitney numbers N0, N1, ..., Nn. One

can easily verify that Bn satisfies this condition. We will not comment on this paper, beyond noting
1See for example chapter 7 in [3]or section 2.3 in [9].

50



that it is odd that Shastri adopts the argument to the more general setting wholesale while ignoring

the use made by Sha and Kleitman of the Kruskal-Katona theorem, which applies specially to the

Boolean Lattice. The general version of the above inequality given in [16] reads

n
Ÿ

i=0

Q

a

Ni≠1
Ÿ

j=0

3

Ni + j
3

Ni+1
Ni
≠ 1
44

R

b Æ
n
Ÿ

k=0
NNii

where N0, N1, ..., Nn are the rank numbers of any symmetric log concave unimodal LYM poset.

Note that for any finite sequence of numbers a1, a2, ..., an, a poset with whitney numbers Ni = ai

for each rank i can easily be constructed. Let

Pi = {(i, j) |j œ Z and 1 Æ j Æ ai } .

Then, let P =
n
tPi
i=1

and define ∞P by (i, j) ∞P (l,m) if and only if i Æ l. Under this ordering, P is

a graded LYM poset of rank n with Whitney numbers Ni = ai. It follows that if Shastri’s claim

is true, the the above inequality holds for any finite symmetric, log concave sequence of numbers.

This assertion seems incredible, but the author has not found a counterexample.

Presenting a complete account of these arguments is well beyond the scope of this thesis and so

I will content myself with stating an interesting question that is left open. If a poset P satisfies the

property that for all order ideals O1 and O2 of P, if O1 is flat, O2 is not flat, and |O1| = |O2| then

|a(O1)| Ø |a(O2)|, let us call it nice. The natural question is then:

Problem 5.1.2. Which posets are nice?

The article [14] argues that Bn is nice and [16] argues that this can be extended to any symmetric,

log concave, unimodal, LYM poset. We will have to leave this problem unanswered.
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5.2 Brightwell’s Generalization

The right hand side of Sha/Kleitman bound may translated to any ranked poset P in a natural

way as
n
Ÿ

k=0
NNii

where N0, N1, ..., Nn are the whitney numbers of P. In this section we establish the surpising

generalization that this number is an upper bound for e(P) whenever P is LYM. We shall call this

result, stated formally as Corollary 5.2.2, the generalized Sha/Kleitman bound.

The argument presented here appears in [4] and is discussed briefly in [5]. In some ways the proof

comes from generalizing the construction used in the proof of proposition 3.2.4. There, we made

use of a collection of uniform probability distributions over the antichains of P. Brightwell alters

this construction slightly and in doing so opens to door to a much simpler proof of the generalized

Sha/Kleitman bound.

Theorem 5.2.1. Let P be a ranked poset and let w be a weight function on P. If w(A) Æ 1 for

each antichain A of P then

e(P) Æ 1
r

XœP
w(X) .

Proof. For each antichain A of P, let flA be the map from A to R defined by flA(X) = w(X)
w(A) . Recall

that the choice antichain operation provided a one to one correspondence between antichains and

order ideals so that for each antichain A in P, we have some O so that a(O) = A. In what follows

we will be interested the choice antichains of a sequence of order ideals corresponding to a linear

extension. In this context, we will let fli abbreviate fla(Oi).

Consider the following slight variation on our recursive construction of a linear extension of P
from Theorem 3.2.4. Let O0 = ÿ and for each i Ø 0, let Oi+1 = Oi + {Xi} where Xi is chosen

from a (Oi) with probability fli(Xi) as defined above. Following the argument in Theorem 3.2.4, this

procedure allows us to define a function µ over the set E(P) by assigning, to each linear extension

Á, the product
|P|
r

i=1
fli (Xi) where Xi is the unique element of Oi ≠Oi≠1. Note that fli (Xi) is exactly

the probability that Xi is chosen at the ith stage of our construction given that O0,O1, . . . ,Oi≠1
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have already been constructed. It follows that µ(Á) is exactly the probability that our construction

results in Á. Since the construction is guaranteed to produce a linear extension of P we have that
q

ÁœE(P)
µ(Á) = 1.

Since for any linear extension Á, each X œ P appears in the corresponding sequence X1 ∞ X2 ∞
... ∞ X|P| exactly once, it follows from our assumptions that

µ(Á) =
|P|
Ÿ

i=0
fli(Xi) =

|P|
Ÿ

i=0

w(Xi)
w(a(Oi)) Ø

Ÿ

XœP
w(X).

Our theorem now follows from Proposition 3.2.3.

To see how this relates to the LYM property, note that the condition

n
ÿ

i=0

|Ai|
Ni
Æ 1

can be rewritten as
ÿ

XœA

1
Nr(X)

Æ 1.

Brightwell’s argument makes use of Theorem 5.2.1 by defining a special weight function

w(X) = 1
Nr(X)

.

If P is an LYM Poset, then we have w(A) Æ 1 for every antichain A in P. In this way, Kleitman’s

bound can be easily derived.

Corollary 5.2.2. (The generalized Sha/Kleitman bound) If P is an LYM poset with whitney num-

bers N0, N1, N2, ..., Nn then

e(P) Æ
n
Ÿ

i=0
NNii

Proof. Let w be defined as above. For any order ideal O of P, let flO be the map a(O) ≠æ R+

defined by fl(X) = w(X)
w(a(O)) , for each X œ a(O). Since w(a(O)) =

q

Xœa(O)
w(X), it follows that
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w(X)
w(a(O)) Æ 1 for each X œ a(O) and that

q

Xœa(O)

w(X)
w(a(O)) = 1. Therefore, flO defines a probability

distribution over a(O).

If P is LYM, we have that w(a(O)) Æ 1 and therefore, fl(X) = w(X)
w(a(O)) Ø w(X) for eachX œ a(O).

By Theorem 5.2.1,

e(P) Æ 1
r

XœP
w(X) = 1

r

XœP
1

Nr(X)

=
Ÿ

XœP
Nr(X)

where r is the rank function of P. Since for each i, there are exactly Ni elements of P with rank i,

the theorem follows.

This proof is a substantial improvement on the original. It is always welcome when a generaliza-

tion of a result admits a cleaner and simpler proof.

Recall the sum of disjoint chains, P =
d
q

i=1
Ck≠1, discussed in Corollary 3.2.2. There we deduced

that the exact number of linear extensions of the poset P is

e(P) = n!
(k!)d

where n = kd. Since each of the k ranks of P has exactly d elements, the generalized Sha/Kleitman

bound yields

e(P) Æ !dd"k = dn.

At the very end of [5], Brightwell and Tetali point out that, by using standard asymptotic arguments,

one can show,
n!

(k!)d = (d(1≠ o(1)))n .

Recall that a function f is equivalent to o(1) exactly when lim
xæŒf(x) = 0. Therefore, as either d or

k approaches to infinity, the Sha/Kleitman bound approaches the correct value.

This example can actually be greatly simplified. Note that a chain of size n is a rank n poset in

which Ni = 1 for each i. Since a chain has exactly one linear extension, the Sha/Kleitman bound

actually gives the correct number of linear extensions in this case. Since any chain is obviously LYM,

the Sha/Kleitman bound must be the best possible general bound on the number of linear extension
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of an LYM poset.

This observation can also be turned around as the following proposition shows.

Proposition 5.2.3. If P is not a chain, then Kleitman’s bound is strict.

Proof. In the argument above equality is attained just in case w(X)
w(a(O)) = w(X) for each X œ P.

This is equivalent to w(A) = 1 for each antichain A of P. If |Pi| > 1 for some i, then let X

and Y be distinct elements of Pi. Since {X}, {Y }, and {X,Y } are all antichains, it follows that

w({X,Y }) = w({X}) + w({Y }) .
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Chapter 6

Conclusion

We have assembled a number of di�erent bounds for LYM posets generally. It might be worth-

while, in closing, to look at the important example of the boolean lattice and see, first-hand, how

these bounds compare.

The numbers e(Bn) for n = 1, 2, 3, 4, 5 and 6 may be found in the OEIS under article A046873.

They are given in Table 6.1 below, where they are contrasted with the corresponding Sha/Kleitman

bound, the bound derived from Sperner’s theorem in Section 4.2, the trivial bound discussed in the

beginning of Section 3.2, and a well-known elementary lower bound. Brightwell and Tetali published

improvements on the Sha/Kleitman bound for the boolean lattice in [5]. In this paper, they use the

sophisticated “entropy” method attributed to Kahn and Kim1 to derive the bound

e(Bn) Æ e6·2n· lnnn
n
Ÿ

i=0

3

n

i

4

!.

This bound is farther o� for small values of n. For example, for n = 3,

n
Ÿ

i=0

3

n

i

4(ni)
= 739

1See [12]
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while

e6·2
n· lnnn

n
Ÿ

i=0

3

n

i

4

! ¥ 1.55◊ 109.

For n = 8,

n
Ÿ

i=0

3

n

i

4(ni)
¥ 2.78◊ 10420

while

e6·2
n· lnnn

n
Ÿ

i=0

3

n

i

4

! ¥ 2.26◊ 10491.

(Note that Brightwell and Tetali’s bound first surpasses the trivial bound here.) On the other hand

it does eventually converge to the correct value. The first value of n for which this bound does better

than the Sha/Kleitman bound is n = 18. In this case,

n
Ÿ

i=0

3

n

i

4(ni)
¥ 2.10◊ 101173310

and

e6·2
n· lnnn

n
Ÿ

i=0

3

n

i

4

! ¥ 1.58◊ 101169187.

It is also closely related to the lower bound for e(Bn) given by

n
Ÿ

i=0

3

n

i

4

! Æ e (Bn) .

The quantity on the left counts exactly the linear extensions Á of Bn so that r(X) Æ r(Y ) implies

that X ∞Á Y .
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