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Introduction 
 
 Counting is one of the earliest mathematical endeavors accessible to children.  

Indeed, it is widely held to be one of the most natural, fundamental, and directly 

mathematical processes that we, as humans, employ.  Counting techniques can, however, 

lead to mathematical problems that are surprisingly sophisticated and complex.  

Combinatorics, the branch of mathematics most clearly concerned with the principles of 

counting, is becoming increasingly relevant in our computerized age, and yet as students 

get into high school and college, they tend to experience a great deal of difficulty as they 

encounter increasingly complex counting problems.  This obscurity can be disorienting 

for them, precisely because counting is seen as such a basic procedure.  Facility with 

counting principles is valued as a necessary part of students’ mathematical educational 

experience; in fact the Number and Operations Standards of the National Council of 

Teachers of Mathematics recommends that “in grades 9-12 all students should develop an 

understanding of permutations and combinations as counting techniques.” (NCTM, 

2000).  It is significant, then, to ask whether there are novel mathematical insights or 

pedagogical methods that could better motivate students, facilitate their understanding, 

and allow them to feel more comfortable with combinatorial ideas.   

The topic of rook polynomials, which is the focus of this paper, can be readily 

associated with a wide variety of significant combinatorial principles.  In addition, it 

proves to be quite effective as a didactic tool for the teaching of combinatorics.  This 

paper consists of two major parts:  

 

1. a mathematical investigation of rook polynomials (and the more general    

matchings polynomial),  

2. a curriculum which draws upon some of the mathematical principles found in 

the investigation and explores their pedagogical potential.  

 

Although the mathematics developed in the first part of the paper is fairly sophisticated, 

the curriculum is intended to be accessible to an advanced high school class.   
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Perhaps the most interesting aspect of rook polynomials is that they unite two 

major components of combinatorics: enumeration and graph theory.  Such a perfect 

marriage of these two topics is exciting for any combinatorialist, and, from a pedagogical 

point of view, this connection offers students a clear view of the overarching span of the 

field.  In this sense, rook polynomials are an ideal object of study, providing entry points 

to a dizzying array of combinatorial concepts from a convenient and contextualized 

perspective.    

 A commonly faced challenge in teaching combinatorics is the apparent disparate 

nature of the material, which includes a large number of topics that often appear, to the 

untrained eye, as unrelated and ill-motivated.  Surprisingly, however, in the context of 

rooks, many of these central topics arise naturally – almost magically – in a way that is 

not only inextricably linked to other topics, but also easy to teach, natural to motivate, 

and ripe with potential for the classroom.  The goal of the curriculum, then, is to 

illuminate some of these notorious topics through the use of rooks.  In particular, the 

curriculum developed herein addresses the following three major topics in combinatorics: 

counting principles, generating functions, and matchings.  The effortless unification of 

these topics will convey to the reader the pedagogical effectiveness of employing rooks 

in the classroom, and will convey to the student the strength and beauty of combinatorics 

itself. 
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Part One: 
 

The Mathematics of Matchings Polynomials 
 
 
 

Overview of Matchings and Generating Functions 
 

In this introductory section, we address two concepts that are fundamental to the 

mathematics in this paper:  matchings and generating functions.  Although a deep 

knowledge of these subjects is not required to understand the mathematics that follows, it 

is important that the reader become acquainted with certain ideas and terminology.  We 

include several examples throughout this section to aid the reader and enhance their 

understanding of these basic ideas. 

 

Matchings 

A graph G consists of a set of vertices, a set of edges, and a relation that 

associates each edge with exactly two vertices (which are called the endpoints of the 

edge).  All the graphs discussed in this paper are simple, which means that they have no 

loops (edges whose endpoints are the same vertex) and no multiple edges (distinct edges 

with the same endpoints).  A matching in a graph G is a set of edges such that no two 

edges share an endpoint.  Or, said another way, a matching is a set of edges, no two of 

which have a vertex in common (West, 2001).   

 Since matchings are edge sets, a given graph can have matchings of various sizes; 

an r-matching in a graph G, then, is a set of exactly r edges, no two of which share a  

common vertex.  The following graph H is often called the “house” graph; we will use it 

to exemplify the notion of r-matchings in graphs.   
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H 

 
When 0=r , an r-matching is an edge set containing zero edges.  The figure 

below depicts the empty edge set, the only possible r-matching when 0=r .   

 

 

 

The unique 0-matching in H 

 

 

When 1=r , an r-matching is an edge set containing one edge.  The next figure 

displays all six of the possible 1-matchings in the house graph.   

 

 

 

The 1-matchings in H 
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When 2=r , an r-matching is an edge set containing two vertex-disjoint edges.  

The figure below depicts all six of the possible 2-matchings in the house graph.   

 

 

 

 

The 2-matchings in H 

 

 

Although such diagrams are useful, notice that we could easily describe an r-

matching in terms of its edges without resorting to a figure.  Denoting by uv an edge that 

has endpoints u and v,  we can express the first 2-matching listed above as }34,12{=M .  

This notation is more compact and also emphasizes the fact that matchings are indeed 

edge sets.   

Note that the house graph does not have any matchings of size three or greater.  

This follows from the definition, which stipulates that no two edges in a matching can 

share an endpoint.  Since the graph only has five vertices, it is not possible to form an r-

matching where 3³r .   

By way of illustrating some non-examples, the edge sets indicated below are not 

matchings; in each case, two or more of the edges share a common vertex.   
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Examples of edge sets in H that are not matchings 

 

 

Generating Functions 

 

A generating function of a given number sequence is a polynomial function (or 

power series) whose coefficients are the terms of that sequence.  Associating the terms of 

a sequence with the coefficients of a polynomial is a process that has a number of 

surprising combinatorial benefits, as we will soon discover.  In this paper, we will treat 

generating functions as purely formal objects, viewing the variable x in the function not 

so much as an unidentified element of some number field, but rather as little more than a 

placeholder in our presentation of the coefficients, which are the terms of our given 

number sequence.  As Herbert Wilf, author of the Generatingfunctionology, describes it, 

“A generating function is a clothesline on which we hang up a sequence of numbers for 

display (Wilf, 1994).”   

 We could, for example, easily describe a generating function for the Fibonacci 

sequence, in which 10 =f , 11 =f , and the thn  term is defined by 12 -- += nnn fff .  Recall 

that the first several terms of this sequence are 1, 1, 2, 3, 5, 8, 13, ….  We can form the 

generating function for this sequence in a straightforward way – we simply need a power 

series in which the thr  term in the sequence, rf , is the coefficient of the term rx .  The 

generating function for the Fibonacci sequence, then, is  

 

...1385321 65432 +++++++ xxxxxx    
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Note that in this case the generating function is an infinite series; if our number sequence 

were finite, however, then the generating function would have a finite number of terms as 

well.  In such cases the generating function would simply be a polynomial.   

 Another familiar example of a generating function is found in the binomial 

theorem.  This theorem states that for any real number x and any natural number n, 
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where the binomial coefficient ÷÷
ø

ö
çç
è

æ

r

n
 is given by 

)!(!

!

rnr

n

-
.  These binomial coefficients 

have intrinsic meaning; indeed, the coefficient ÷÷
ø

ö
çç
è

æ

r

n
 equals the number of ways of 

choosing r items from n items.  So the expression nx)1( +  represents, in closed form, the 

generating function for the finite number sequence whose terms are ÷÷
ø

ö
çç
è

æ

r

n
, where r ranges 

from 0 to n. 

 In the above example of the house graph, we can count the number of possible 0, 

1, and 2-matchings in the graph.  There is a single 0-matching, there are six 1-matchings, 

and there are six 2-matchings.  This leaves us with a small sequence of numbers, 1,6,6, 

where the thr  number in the sequence represents the number of r-matchings in a graph.  

One way to form a generating function that would encode the number of different 

matchings in a graph G is to associate the thr  term with the number of r-matchings that G 

has.  Such a generating function for the number of matchings in the house graph H would 

be: 2210 661)(6)(6)(1 xxxxx ++=++ . 

In this paper we will be working extensively with a different, but similarly-

defined, object called the ‘matchings polynomial’ of a graph.  This matchings polynomial 

is, fundamentally, a generating function, and although the precise definition for the 

matchings polynomial that we will introduce below varies slightly from the examples 
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presented here, the concepts behind the generating function remain the same.  This brief 

introduction, then, should prepare the reader for the mathematical discussion ahead.   
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Chapter 1 – The Matchings Polynomial 
 
 
 

Section 1.1 – Matchings and Generating Functions 

 
In this section we introduce and discuss the matchings polynomial of a graph.  Let 

G be a graph with n vertices.  Denote the number of r-matchings in G by ),( rGp .  

Agreeing to set 1)0,( =Gp , we define the matchings polynomial as follows: 

 

å
³

--=
0

2),()1(:),(
r

rnr xrGpxGm . 

 

Thus the matchings polynomial is a polynomial with alternating signs, in which 

the coefficients ),( rGp  represent the number of r-matchings in G.  Unlike the generating 

functions discussed in the introduction, the coefficient ),( rGp  in the matchings 

polynomial corresponds to the term rnx 2- .  There are several technical advantages to this 

convention that we need not dwell upon here.  However, it is worth observing that our 

convention assures that the matchings polynomial will always be monic, meaning that 

the leading term is always 1.  (This is true because when 0=r , 1)0,( =Gp  and 

corresponds to the )0(2-nx  term, or the nx term).  Furthermore, when n is even, the 

matchings polynomial is an even function, containing only even powers of x.  Similarly, 

when n is odd, the polynomial is an odd function.  

In order better to grasp the matchings polynomial, we determine the matchings 

polynomials for some simple classes of graphs: paths, cycles, complete graphs, and 

complete bipartite graphs.  First, however, we note that if nE denotes the empty graph 

with n vertices and no edges, then the matchings polynomial of nE  consists only of the 

term where 0=r , since nE can have at most a 0-matching.  Hence 1)0,( n =Ep , and 

n
n xxE =),(m .   
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Section 1.1 – Matchings in Paths 
 

We now consider the matchings polynomials of the family of graphs known as 

paths.  We begin with a definition.  The path nP  has n vertices, two of which have degree 

one, and 2-n  of which have degree two.  For example, a path on five vertices, 5P , is 

pictured below.  Vertices 1 and 5 have degree one, and vertices 2, 3, and 4 have degree 

two. 

 

The number ),( rPp n  of r-matchings in nP  is determined in the following way.  If 

we view nP as running from left to right, we can contract each edge in a given r-matching 

onto its left-hand endpoint.  What results is a path with rn - vertices, r of which are 

distinguished.  Conversely, given a path on rn - vertices with some subset of r of these 

vertices distinguished, we can reconstruct an r-matching in a path of n vertices.  We do 

this by inserting an edge to the right of each distinguished vertex.  This correspondence 

between r-matchings in nP  and selections of r distinguished vertices rnP -  allows us to 

count ),( rPp n easily.  We simply choose any r of the rn - vertices of rnP -  where we 

will insert an edge that will belong to our r-matching in nP .  Thus we have ÷÷
ø

ö
çç
è

æ -

r

rn
ways 

of determining an r-matching, so ÷÷
ø

ö
çç
è

æ -
=

r

rn
rPp n ),( .  Then, by definition of the matchings 

polynomial, we have the following result.   

 

Proposition 1.1:    For any natural number n, the matchings polynomial of the path nP  is 

given by  

),( xPnm =å
³

-

÷÷
ø

ö
çç
è

æ -
-

0

2)1(
r

rnr x
r

rn
. 

q 
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Example:    Let us work through an example of a path, utilizing the above proposition.  

Consider 5P , the path on 5 vertices, pictured in the text above.  In order to 

compute ),( 5 xPm , we must examine the r-matchings as r ranges from 0 to n.  Clearly 

there is only one matching when 0=r .  Using the above counting argument, we consider 

the case where 1=r .  By examining a path on 415 =- vertices, which is 4P , we note that 

we could insert the one edge of our 1-matching to the right of any of the 4 vertices.  

Similarly for 2=r , looking at a path on 325 =-  vertices, we could insert the edges of 

our 2-matching to the right of any of those 3 vertices.  So we indeed see that 

÷÷
ø

ö
çç
è

æ -
=

r

r
rPp

5
),( 5 , and we use this fact to construct the following table: 

 

r-value ),( 5 xPp  

0 
1

0

05
=÷÷

ø

ö
çç
è

æ -
 

1 
4

1

4

1

15
=÷÷

ø

ö
çç
è

æ
=÷÷

ø

ö
çç
è

æ -
 

2 
3

2

3

2

25
=÷÷

ø

ö
çç
è

æ
=÷÷

ø

ö
çç
è

æ -
 

 

 

Thus there is one r-matching where 0=r , there are four r-matchings where 1=r , and 

there are three r-matchings where 2=r .  So by using Proposition 1.1, we have arrived at 

the following:  

),( 5 xPm = xxx 34 35 +- . 

 

Section 1.2 – Matchings in Cycles 
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 Next we consider the matchings polynomial of the family of cycles.  A cycle nC  

is a graph with n vertices, all of which have degree two and are joined in a circular 

fashion.  For example, the cycle 6C  is shown. 

 

 

 

We can determine the coefficients for the matchings polynomial of nC  as follows.  

Labeling the vertices of the cycle clockwise from 1 to n, we contract each edge in a given 

r-matching onto its endpoint in the clockwise direction.  We look at the vertex labeled 1, 

and our search for r-matchings breaks down into two cases.   

 Let e be the edge that is directly left (counter-clockwise) of vertex 1.  Then e 

either belongs or does not belong to any given r-matching M.  Said another way, 

Me Î or Me Ï .  If Me Î , then by definition of a matching, the two edges adjacent to e 

cannot be included in M.  The remainder of the graph, then, which must containing the 

remaining r – 1 edges of M, is a path on n – 2 vertices.  Therefore, to count r-matchings 

containing e, we seek the number of )1( -r -matchings in 2-nP , which is denoted 

by )1,( 2 -- rPp n .  If Me Ï , then all edges of M are contained in the remainder of the 

graph, which forms a path on n vertices.  We thus want the number of r-matchings in nP , 

which is denoted by ),( rPp n .  In Section 1.1, we found that ),( rPp n = ÷÷
ø

ö
çç
è

æ -

r

rn
.  By the 

addition principle, then, we express the number of r-matchings in the cycle nC  on n 

vertices in the following way: 

 

),( rCp n      =   )1,(),( 2 -+ - rPprPp nn  
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        =  
)!2()!1(

)!1(

)!2(!

)!(
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)!(
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        = ÷÷
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Thus, by the definition of the matchings polynomial, we arrive at the following result 

about the matchings polynomial of cycles.   

 

Proposition 1.2:    For any natural number n, the matchings polynomial of the cycle nC  

is given by 

å
³

-

÷÷
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çç
è

æ -
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r

rnr
n x

r

rn
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Example:    Let us work through an example of the above proposition.  Consider 6C , the 

cycle on 6 vertices pictured below.  To compute ),( 6 xCm directly, we must examine the 

r-matchings as r ranges from 0 to n.  Following the counting argument mentioned above, 

we consider the edge e with endpoints 1 and 6, the edge directly left of vertex 1.  Any r-

matching will either include this edge, or it won’t.   

 

To count the r-matchings that include e, we look for the number of ( 1-r )-matchings in 

the graph without the edge e or either of its endpoints.  But this graph is simply a path on 

4 vertices, 4P . 
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To count the r-matchings that do not include e, we look for the number of r-matchings in 

the graph without the edge e, seen below.  But this graph is simply a path on 6 

vertices, 6P . 

 

 

Thus we see that ),( 6 rCp = )1,(),( 46 -+ rPprPp .  As our computation above indicates, 

this simplifies to ÷÷
ø

ö
çç
è

æ -

- r

r

r

6

6

6
.  Using this fact we can construct the following table: 

 

r-value ),( 6 xCp  

0 
1

0

6

6

6

0

06

06

6
=÷÷

ø

ö
çç
è

æ
=÷÷

ø

ö
çç
è

æ -

-
 

1 
6

1

5

5

6

1

16

16

6
=÷÷

ø

ö
çç
è

æ
=÷÷

ø

ö
çç
è

æ -
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2 
9

2

4

4

6

2

26

26

6
=÷÷

ø

ö
çç
è

æ
=÷÷

ø

ö
çç
è
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-
 

3 
2

3

3

3

6

3

36

36

6
=÷÷

ø

ö
çç
è

æ
=÷÷

ø

ö
çç
è

æ -

-
 

 

Thus there is one r-matching where 0=r , there are six r-matchings where 1=r , there are 

nine r-matchings where 2=r , and there are two r-matchings where 3=r .  So we have 

arrived at the following: 

),( 6 xCm = 296 246 -+- xxx . 
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Section 1.3 – Matchings in Complete Graphs 

 

 The complete graph nK  on n vertices is the graph in which every vertex is 

adjacent to every other vertex; every possible edge is included.  For example, the 

complete graph 5K  is shown below. 

 

 

 

These complete graphs form another family of graphs with easily-computable 

matchings polynomials.  Note that each edge in an r-matching covers exactly two 

vertices.  Thus, to count r-matchings in nK , we could first pick some subset of 2r 

vertices from the n vertices of the graph, and then find the number of r-matchings among 

those 2r vertices.  This second step is the same as counting the number of r-matchings in 

rK 2 , the complete graph on 2r vertices.  So by the multiplication principle, 

 

),( rKp n = ),(
2

2 rKp
r

n
r÷÷

ø

ö
çç
è

æ
. 

 

To find the term ),( 2 rKp r  in this expression, we first select an edge to cover the 

least-numbered of our chosen 2r vertices.  There are )12( -r edges incident with this 

vertex in rK 2 , and once any such edge has been chosen, we seek to complete our 

matching by choosing an (r – 1) matching in the complete graph on the 

remaining )22( -r  uncovered vertices.  Thus  

 

),( 2 rKp r = )1,()12( 22 -- - rKpr r . 

 

Proceeding inductively (noting that 1)1,( 2 =Kp ), we arrive at the following result: 
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),( 2 rKp r  = )1,()12( 22 -- - rKpr r  

  = )2,()32)(12( 42 --- - rKprr r  

  = 135)...52)(12)(12( ××--- rrr  

  =
24)...42)(22)(2(

)!2(

×-- rrr

r
 

  =
!2

)!2(

r

r
r

 

 

But since we determined that ),( rKp n = ),(
2

2 rKp
r

n
r÷÷

ø

ö
çç
è

æ
, we conclude that 

),( rKp n  = ),(
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è
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r

r
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!

rrn
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By the above equation and the definition of the matchings polynomial, we have arrived at 

the following result about the matchings polynomial of complete graphs. 

 

Proposition 1.3:    For any natural number n, the matchings polynomial of the complete 

graph nK  is given by 

å
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!2)!2(
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Example:    Let us work through an example in which we compute the matchings 

polynomial of a complete graph.  Consider 5K , the complete graph on 5 vertices, pictured 
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in the beginning of this section.  In order to compute ),( 5 xKm  we must examine the r-

matchings as r ranges from 0 to n.  Using our result that ),( rKp n =
!2)!2(

!

rrn

n
r-

, we can 

construct the following table: 

 

r-value ),( 5 xKp  

0 
1

11!5

!5

!02)!025(

!5
0

=
××

=
×××-

 

1 
10

12!3

!5

!12)!125(

!5
1

=
××

=
×××-

 

2 
15

24!1

!5

!22)!225(

!5
2

=
××

=
×××-

 

 

Thus we see that there is one r-matching where 0=r , there are ten r-matchings 

where 1=r , and there are fifteen r-matchings where 2=r .  So by using Proposition 1.3, 

we have arrived at the following: 

 

),( 5 xKm = xxx 1510 35 +- . 

 

 

Section 1.4 – Matchings in Complete Bipartite Graphs 

 

Finally, we consider the matchings polynomial of one more family of graphs.  

The complete bipartite graph, mmK , , consists of two sets of m vertices, so it has a total 

of 2m vertices.  Within each set, the vertices are mutually non-adjacent.  However, every 

vertex in one set is adjacent to every vertex in the other set.  The diagram below 

illustrates such a graph, 3,3K .   Note that in this depiction, the vertices 1,3,5 form one set 

of three vertices, while 2,4,6 form the other.  Each vertex in a given set is adjacent to 

every vertex in the other set but to none of the vertices in its own set. 
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To find the number of r-matchings in such a graph, we can first pick any r 

vertices from the first set, done in ÷÷
ø

ö
çç
è

æ

r

m
 ways.  Then we can pick any r vertices from the 

second set, also done in ÷÷
ø

ö
çç
è

æ

r

m
 ways.  Finally, there are r! ways of assigning disjoint edges 

to pair up these two sets of vertices.  Thus, using the multiplication principle, we find that 

),( , rKp mm = !!

2

r
r

m
r

r

m

r

m
÷÷
ø

ö
çç
è

æ
=÷÷

ø

ö
çç
è

æ
÷÷
ø

ö
çç
è

æ
.  By the definition of the matchings polynomial, the 

result below follows. 

 

 

Proposition 1.4:    For any natural number m, the matchings polynomial of the complete 

bipartite graph mmK ,  is given by 

å
³

-

÷÷
ø

ö
çç
è

æ
-=

0

22

2

, !)1(),(
r

rmr
mm xr

r

m
xKm . 

q 

 

 

Example:    Let us work through an example in which we compute the matchings 

polynomial of a complete bipartite graph.  Consider 3,3K , the complete bipartite graph on 

6 vertices (3 in each set) pictured above.  In order to compute ),( 3,3 xKm , we must 

determine the number of r-matchings, as r ranges from 0 to n.  Using the fact given above 

that ),( , rKp mm = !

2

r
r

m
÷÷
ø

ö
çç
è

æ
, we can construct the following table: 
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r-value ),( 3,3 xKp  

0 
1!0

0

3
2

=÷÷
ø

ö
çç
è

æ
 

1 
9!1

1

3
2

=÷÷
ø

ö
çç
è

æ
 

2 
18!2

2

3
2

=÷÷
ø

ö
çç
è

æ
 

3 
6!3

3

3
2

=÷÷
ø

ö
çç
è

æ
 

 

Thus we see that there is one r-matching where 0=r , there are nine r-matchings 

where 1=r , there are eighteen r-matchings where 2=r , and there are six r-matchings 

where 3=r .  So by using Proposition 1.4, we have arrived at the following: 

 

),( 3,3 xKm = 6189 246 -+- xxx . 
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Chapter 2 – Reduction Theorems for Matchings Polynomials 

 

When graphs are large and complex, computing their matchings polynomial from 

the definition can be arduous.  It is almost always more feasible first to compute the 

matchings polynomial of smaller, simpler graphs.  Therefore, we seek ways to simplify 

graphs in order to ease the computation of their matchings polynomials.  In this chapter, 

we describe a number of theorems that ultimately allow for such simplification; for 

clarification, we also provide examples of each theorem.   

 

Section 2.1 – The Matchings Polynomial of a Disjoint Union  

 

This first theorem states that the matchings polynomial of the union of two 

disjoint graphs is equal to the product of the matchings polynomials of the two graphs.   

 

Theorem 2.1:    For two graphs G and H with disjoint vertex sets, 

 

),(),(),( xHxGxHG mmm =È . 

 

Proof:    First consider the coefficient of rnx 2-  in ),( xHG Èm .  Each r-matching in the 

graph HG È consists of an s-matching in G, combined with an ( sr - ) matching in H, for 

some s.  Summing all such combinations (over s from 0 to r) will give us the total 

number of r-matchings in HG È .  Thus å
=

-=È
r

s

srHpsGpHGp
0

),(),()( .  By the 

definition of the matchings polynomial, then, the coefficient of rnx 2- in ),( xHG Èm  

is å
=

--
r

s

r srHpsGp
0

),(),()1( . 

We now determine the coefficient of rnx 2- in ),(),( xHxG mm .  To do so we must 

consider pairs of terms, one each from ),( xGm and ),( xHm , whose product contributes to 

the rnx 2-  term.  Such terms are expressed in the following table.  In this table we have 
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listed the terms starting with the “leading” term rather than starting with the constant 

term.   

Note that nnn HG =+ .   

 

),( xGm  

)0(20 )0,()1( -- GnxGp  

)1(21 )1,()1( -- GnxGp  

)1(22 )2,()1( -- GnxGp  

)3(23 )3,()1( -- GnxGp  

… 

)1(21 )1,()1( --- -- rnr GxrGp  

)(2),()1( rnr GxrGp --  

 

Products that contribute to the rnx 2-  term 

 

 

The terms that contribute to the coefficient of rnx 2- are formed by multiplying two 

terms from the above table (one from each column) in the following way:  we multiply 

the first term in the left column by the last term in the right column, then we multiply the 

second term in the left column by the second-to- last term in the right column.  We 

continue in this way until, ultimately, we multiply the last term in the left column by the 

first term in the right column.  

Based on this table, then, we get the following possible combinations that 

contribute to the coefficient of rnx 2-  in ).,(),( xHxG mm  

                Product         Simplified Form 

rnrn HG xrHpxGp 2)0(20 ),()1()0,()1( -- -´-   rnr xrHpGp 20 ),()0,()1( -+-=  

)1(21)1(21 )1,()1()1,()1( ---- --´- rnrn HG xrHpxGp  rnr xrHpGp 2)1(1 )1,()1,()1( --+ --=  

)2(22)2(22 )2,()1()2,()1( ---- --´- rnrn HG xrHpxGp  rnr xrHpGp 2)2(2 ),()2,()1( --+-=  

),( xHm  

)0(20 )0,()1( -- HnxHp  

)1(21 )1,()1( -- HnxHp  

)2(22 )2,()1( -- HnxHp  

)3(23 )3,()1( -- HnxHp  

… 

)1(21 )1,()1( --- -- rnr HxrHp  

)(2),()1( rnr HxrHp --  
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           M                        M  

)0(20)(2 )0,()1(),()1( -- -´- HG nrnr xHpxrGp   rnr xHprGp 20 )0,(),()1( -+-=  

 

So to find the coefficient of the rnx 2- term, we must sum the coefficients of all 

these terms, as follows: 

 

å å
= =

- ---
r

s

r

s

srs srHpsGp
0 0

),()1(),()1(   =å
=

- ---
r

s

srs srHpsGp
0

),()1)(,()1(    

= å
=

--
r

s

r srHpsGp
0

),(),()1( . 

 

But we showed above that this same expression is the coefficient of rnx 2-  

in ),( xHG Èm , so it follows that ),( xHG Èm = ),(),( xHxG mm .                                   

q 

Example:    Let G be the graph consisting of two components: 3C  and 3P , as shown 

below.   

 

 

We use this graph to exemplify Theorem 2.1.  If we count the number of r-matchings in 

G, this is the same as counting the number of r-matchings in 33 CP È .  Counting this 

directly without Theorem 2.1 gives one 0-matching, five 1-matchings, and six 2-

matchings.  Thus by definition of the matchings polynomial, 

 

)( 33 CP Èm  )2(262)1(261)0(260 6)1(5)1(1)1( --- -+-+-= xxx  

    246 65 xxx +-=  
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Let us now compare this with what Theorem 2.1 tells us.  We can either count directly or 

use the identities defined in Section 1 in order to determine that xxP 2)( 3
3 -=m  and 

xxC 3)( 3
3 -=m .  Thus 

( )( ) 24633
33 6532)()( xxxxxxxCP +-=--=mm . 

 

Comparing this with the polynomial above, we see that )( 33 CP Èm = )()( 33 CP mm  

 

 

Section 2.2 – Reduction by Deletion of an Edge and its Endpoints 

 

In this section, we obtain a theorem that allows us to reduce a given graph G by 

deleting an edge.  We make use of the following notation: let eG \  denote the graph G 

with the edge e removed, and let }{\ uvG denote the graph G with vertices u and v 

removed.  (Note that the removal of a vertex from a graph results in the removal of all 

edges adjacent to that vertex as well). 

   

Theorem 2.2:     For any edge Ge Î  with endpoints  u and v, 

 

)},{\(),\(),( xuvGxeGxG mmm -= . 

 

Proof:    The r-matchings in G consist of 2 kinds – those that use edge e and those that do 

not.  As these are two disjoint cases, we will use the addition principle to count them 

separately and then add the results.   

Any matching that uses e will determine a unique ( 1-r )-matching in the graph 

not including the endpoints of e.  In other words, such a matching determines an ( 1-r )-

matching in the graph }{\ uvG , as u and v are the endpoints of e.  Thus the number of r-

matchings in G which use e equals )1},{\( -ruvGp . 
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Any matching that does not use e will be an r-matching in the graph G \ e.  Note, 

in this case, an r-matching may still use vertex u and/or vertex v.  Thus the number of r-

matchings not using e equals ),\( reGp .   

So the addition principle gives 

 

)1},{\(),\(),( -+= ruvGpreGprGp , 

 

and this is true for 1³r . 

Now let us consider å
³

--=
0

2),()1(),(
r

rnr xrGpxGm .  In order to incorporate the 

above relation on the coefficients in this expression, we must be careful with our index of 

summation.  We first pull out the 0=r  term, giving 

 

å
³

--+-=
1

20 ),()1()0,()1(),(
r

rnrn xrGpxGpxGm . 

Now, based on what we know ),( rGp to be for 1³r , we substitute to get the following: 

 

å
³

--+-=
1

20 ),()1()0,()1(),(
r

rnrn xrGpxGpxGm  

 å
³

--+-+-=
1

20 )]1},{\(),\([)1()0,()1(
r

rnrn xruvGpreGpxGp  

 

But since nn xeGpxGp )0,\()1(1)0,()1( 00 -==- , we can adjust the first term. 

 

å å
³ ³

-- --+-+-=
1 1

220 )1},{\()1(),\()1()0,\()1(),(
r r

rnrrnrn xruvGpxreGpxeGpxGm  

 å å
³ ³

-- --+-=
0 1

22 )1},{\()1(),\()1(
r r

rnrrnr xruvGpxreGp   

 å
³

---+=
1

2)1},{\()1(),\(
r

rnr xruvGpxeGm  

We desire the summation in right hand side of the equation to begin at 0³r instead of 

1³r , so we momentarily re- index in order to address this problem.  Let tr =-1 , and 

thus 1+= tr .  The equation above then becomes 
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  å
³+

+-+-+=
11

)1(21 )},{\()1(),\(
t

tnt xtuvGpxeGm  

  å
³

----+=
0

22)},{\()1()1(),\(
t

tnt xtuvGpxeGm . 

 

Now since this right-hand expression is in a more familiar form, we will re- index back to 

r’s, so let rt = .  Hence 

 

  å
³

----+=
0

22)},{\()1()1(),\(
r

rnr xruvGpxeGm . 

Notice that the summation on the right is exactly )},{\( xuvGm .  To see this, observe that 

because }{\ uvG has two fewer vertices than G (due to the deletion of vertices u and v), 

its matchings polynomial gives the number of r-matchings in a graph with two fewer 

vertices, and so the powers of x take the form 22 -- rnx  instead of rnx 2- .  Thus, 

 

)},{\(),\(),( xuvGxeGxG mmm -= . 

q 

 

Example:    To illustrate the above result, let G be the following graph, where edge e has 

endpoints 2 and 4.   

 

 

G    

 

We consider two subgraphs, one where we delete e, and one where we delete the 

endpoints of e.  eG \  and }24{\G  are the following respective subgraphs.   

 



 

 

 

24 

 

eG \                           }24{\G  

 

Counting the matching polynomials of each subgraph gives: 

 

),\( xeGm = 13 24 +- xx       and       )},24{\( xGm = 2x . 

So 

)},24{\(),\( xGxeG mm -    =   14 24 +- xx  

Counting ),( xGm directly results in the same polynomial, 14 24 +- xx .  Thus for the 

graph G we see that    

),( xGm = )},24{\(),\( xGxeG mm - . 

 

 

Section 2.3 – Reduction by Deletion of a Vertex and its Neighbors 

 

In this section, we obtain a theorem that allows us to reduce a graph G by the 

deletion of a vertex u and its neighbors, which are defined to be all the vertices directly 

adjacent to vertex u.  Recall that deleting a vertex from a graph results in the deletion of 

all edges adjacent to that vertex. 

 

Theorem 2.3:    For any vertex u of a graph G,  

 

å-=
ui

xuiGxuGxxG
~

)},{\(),\(),( mmm . 

 

Proof:    The r-matchings in G consist of two kinds – those that cover vertex u and those 

that do not.  Again, as these are two disjoint cases, we will employ the addition principle.   



 

 

 

25 

Any matching that does use u will have to include an edge that has u as one of its 

endpoints.  So for each vertex i adjacent to u, we must count ( 1-r )-matchings 

in }{\ uiG .  To determine the total number of r-matchings in G that use u, we must sum 

these counts.  This gives us a total of  å -
ui

ruiGp
~

)1},{\(  for the number of r-matchings 

that use vertex u. 

Any matching that does not use u determines an r-matching in the graph G \ u.  

Thus the number of r-matchings that do not use u is ),\( ruGp . 

By the addition principle, then, 

 

å -+=
ui

ruiGpruGprGp
~

)1},{\(),\(),( , 

and this is true for 1³r . 

Now let’s consider å
³

--=
0

2),()1(),(
r

rnr xrGpxGm .  In order to incorporate the 

above relation on the coefficients in this expression, we must be careful with our index of 

summation. To take care of this we first pull out the 0=r  term, giving 

 

å
³

--+-=
1

20 ),()1()0,()1(),(
r

rnrn xrGpxGpxGm . 

 

Now, based on what we know ),( rGp to be for 1³r , we substitute to get the following: 

 

),( xGm  å å
³

--+-+-=
1

2

~

0 ])1},{\(),\([)1()0,()1(
r

rn

ui

rn xruiGpruGpxGp  

 å å å
³ ³

-- --+-+-=
1 1

2

~

20 )1},{\()1(),\()1()0,()1(
r r

rn

ui

rrnrn xruiGpxruGpxGp  

 

But since nn xuGpxGp )0,\()1(1)0,()1( 00 -==- , we can adjust the first term. 

 

å å å
³ ³

-- --+-+-=
1 1

2

~

20 )1},{\()1(),\()1()0,\()1(),(
r r

rn

ui

rrnrn xruiGpxruGpxuGpxGm  
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 å å å
³ ³

-- --+-=
0 1

2

~

2 )1},{\()1(),\()1(
r r

rn

ui

rrnr xruiGpxruGp  

 

Consider the first sum on the right side.  Since uG \ has one less vertex than G, the 

definition of the matchings polynomial gives   

 

å
³

---=
0

2)1(),\()1(),\(
r

rnr xruGpxuGm .   

This expression differs from our sum only by a single factor of x, so   

 

 å åå
³

-

³

-- --+-=
1

2

~0

2)1( )1},{\()1(),\()1(),(
r

rn

ui

r

r

rnr xruiGpxruGpxxGm  

 

 å å
³

---+=
1

2

~

)1},{\()1(),\(
r

rn

ui

r xruiGpxuGxm  

 åå
³

---+=
1

2

~

)1},{\()1(),\(
r

rn

ui

r xruiGpxuGxm   

 åå -

³

--+=
ui

rn

r

r xruiGpxuGx
~

2

1

)1},{\()1(),\(m  

We desire the summation on the right to begin at 0³r instead of 1³r , so we 

momentarily re- index in order to address this problem.  Let tr =-1 , and thus 1+= tr .  

Therefore, continuing from the equation above we have 

 

  å å +-

³+

+-+=
ui

tn

t

t xtuiGpxuGx
~

)1(2

11

1 )},{\()1(),\(m  

  åå --

³

--+=
ui

tn

t

t xtuiGpxuGx
~

22

0

)},{\()1()1(),\(m . 

Since this right-hand expression is now in a more familiar form, we will re- index back to 

r’s, so let rt = . 

  åå --

³

--+=
ui

rn

r

r xruiGpxuGx
~

22

0

)},{\()1()1(),\(m  

Note again that the sum 22

0

)},{\()1( --

³
å - rn

r

r xruiGp  precisely equals )},{\( xuiGm , since 

}{\ uiG  has two fewer vertices than G.  Hence 
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),( xGm å-=
ui

xuiGxuGx
~

)},{\(),\( mm . 

q 

 

Example:    Using the graph G shown below, we now consider Theorem 2.3.  Let vertex 

2 be the vertex we delete.    

 

               G 

 

We consider two classes of subgraphs.  The first consists of a single subgraph, one in 

which vertex 2 has been deleted.  The second is a group of graphs, in each of which we 

have deleted vertex 2 and one vertex adjacent to it.  The subgraphs are drawn below. 

 

 

2\G  

 

}21{\G                }23{\G                }24{\G  

  

Counting the matchings polynomials of these subgraphs gives us  

 

),2\( xGm = ( ) xxxx -=- 32 1 ,  

by Theorem 2.1, and  
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å
ui

xiG
~

)},2{\(m = ( ) 131 2222 -=++- xxxx .   

Thus, we get  

å-
ui

xiGxGx
~

)},2{\(),2\( mm ( ) ( ) 14133 2423 +-=---= xxxxx . 

We know from above (or by direct counting) that ),( xGm = 14 24 +- xx .  So for the given 

graph G we have 

),( xGm å-=
ui

xiGxGx
~

)},2{\(),2\( mm . 

 

Section 2.4 – The Derivative of the Matchings Polynomial  

 

Since the matchings polynomial is a polynomial function, it is reasonable to 

inquire about its derivative.  The following theorem provides an interesting result about 

the derivative of the matchings polynomial.  We remark that our use of the derivative is 

purely formal.  Since we are not interested in evaluating our expressions at any particular 

value of x, it is clear that we are not using the matchings polynomial as a function.  In 

particular, then, we are not concerned with any particular rate of change when we are 

differentiating.  Indeed, in this section we will employ the derivative merely as a formal 

operation which obeys the familiar ‘power rule’.   

Note here that iG \  is a graph in which a vertex i has been deleted.  Thus each 

graph iG \  for some vertex Gi Î  is called a vertex-deleted subgraph of G.  So in the 

theorem below, the expression on the right represents the sum of the matchings 

polynomials of all the vertex-deleted subgraphs of G. 

 

Theorem 2.4:    For any graph G, 

å
Î

=
)(

),\(),(
GVi

xiGxG
dx

d
mm  

 

Proof:    By the power rule for derivatives, the coefficient of the rnx 2)1( -- term in 

),( xG
dx

d
m is equal to ),()2()1( rGprnr -- .  Note that ),()2( rGprn - represents the 
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number of ways of first picking an r-matching in G (which is ),( rGp ) and then choosing 

one vertex from G that is not covered by the r-matching (there are rn 2- of these, since 

each edge covers 2 vertices).  We could instead, however, arrive at this same number if 

we first pick a vertex and then pick an r-matching that does not cover this vertex.  This 

way of counting yields the expression å
Î )(

),\(
GVi

riGp .   

Setting these equivalent expressions equal to one another, we obtain the equation  

),()2( rGprn - = å
Î )(

),\(
GVi

riGp .   

Note since iG \ has one less vertex than G, its matchings polynomial is 

 

å
³

---=
0

2)1(),\()1(),\(
r

rnr xriGpxiGm . 

 

Therefore we can rewrite the derivative of ),( xGm in the following way.   

),( xG
dx

d
m  =å

³

----
0

2)1(),()2()1(
r

rnr xrGprn  

=å å
³

--

Î

-
0

2)1(

)(

),\()1(
r

rn

GVi

r xriGp  

=å å
³

--

Î

-
0

2)1(

)(

),\()1(
r

rn

GVi

r xriGp  

= å å
Î

--

³

-
)(

2)1(

0

),\()1(
GVi

rn

r

r xriGp  

= å
Î )(

),\(
GVi

xiGm , 

as desired.                    

q 

 

Example:    Using the graph G pictured below, we consider Theorem 2.4.  
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Let us examine å
Î )(

),\(
GVi

riGp .   

 

),1\( xGm       ),2\( xGm         ),3\( xGm           ),4\( xGm  

 

Counting matchings in each of these subgraphs gives us the following results: 

xxxG 3),1\( 3 -=m  

xxxxxG -=-= 32 )1(),2\(m  

xxxG 2),3\( 3 -=m  

xxxG 2),4\( 3 -=m  

Then 

 

å
Î )(

),\(
GVi

riGp = xxxxxxxxxx 84)2()2()()3( 33333 -=-+-+-+- . 

 

We know from the example in the previous section that ),( xGm = 14 24 +- xx .  So 

),( xG
dx

d
m = xx 84 3 - .  Thus, for the graph G we see that 

),( xG
dx

d
m = å

Î )(

),\(
GVi

riGp . 
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Chapter 3 – Three-Term Recurrences 

 

Having now established a number of useful theorems related to the matchings 

polynomial, we turn our attention to recurrences for the matchings polynomials of 

familiar classes of graphs that we discussed above: paths, cycles, complete graphs and 

complete bipartite graphs.  We use the above theorems to obtain three-term recurrence 

relations for these classes of graphs, and again we follow each discussion of a recurrence 

with an example. 

 

Section 3.1 – Recurrences for Paths 

 

Using Theorem 2.3 for any vertex u in a path 1+nP  on 1+n  vertices, we obtain the 

equation  

å +++ -=
ui

nnn xuiPxuPxxP
~

111 )},{\(),\(),( mmm . 

Choosing u to be an endpoint of 1+nP , we find that the graph uPn \1+  in our first term is 

simply a path on n vertices, nP .  In the second term, since u is only adjacent to one other 

vertex i, }{\1 uiPn+  also represents a path 1-nP .   Thus we arrive at the following result: 

 

Proposition 3.1:    For any natural number n, 

 

),(),(),( 11 xPxPxxP nnn -+ -= mmm . 

q 

 

We can use this three-term recurrence to generate the first several matchings polynomials 

of the paths nP . 

 

),( 0 xPm  =1 

),( 1 xPm  = x  
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),( 2 xPm  = 12 -x  

),( 3 xPm  = xxxxx 2)1( 32 -=--  

),( 4 xPm  = 13)1()2( 2423 +-=--- xxxxxx  

),( 5 xPm  = xxxxxxxx 34)2()13( 35324 +-=--+-  

),( 6 xPm  = 165)13()34( 2462435 -+-=+--+- xxxxxxxxx  

 

Example:    In Section 1.1 we developed a counting argument for computing the 

matchings polynomials of nP .  We found that 

å
³

-

÷÷
ø

ö
çç
è

æ -
-=

0

2)1(),(
r

rnr
n x

r

rn
xPm . 

As an example, let us compare ),( 5 xPm using the counting method and the three-term 

recurrences.   

Using the counting method we have 

å
³

-

÷÷
ø

ö
çç
è

æ -
-=

0

25
5

5
)1(),(

r

rr x
r

r
xPm = xxx 34 35 +- . 

Note this agrees with the expression for ),( 5 xPm  that we found above using the three-

term recurrence.   

 

Section 3.2 – Recurrences for Cycles  

 

In this section we derive a recurrence for cycles.  If we apply Theorem 2.2 to the 

cycle nC , we find that, for an edge e with endpoints u and v, 

)},{\(),\(),( xuvCxeCxC nnn mmm -= . 

But the graph eCn \  is just a path on n vertices, and the graph }{\ uvCn  is a path on 

2-n vertices.  So if 2³n ,  

),(),(),( 2 xPxPxC nnn --= mmm . 

Now we use previous identities in order to develop a recurrence for the cycles.  We 

ultimately seek to prove the following recurrence: 



 

 

 

33 

),(),(),( 11 xCxCxxC nnn -+ -= mmm  

We begin by examining the left side of the recurrence.   

It has been established that:  

),(),(),( 11 xPxPxxP nnn -+ -= mmm  and ),(),(),( 321 xPxPxxP nnn --- -= mmm . 

And it has been further found that:  

),(),(),( 311 xPxPxC nnn --- -= mmm . 

By substitution, then, we obtain the following: 

                   ),( 1 xCn+m        ),(),( 11 xPxP nn -+ -= mm  

    ),()],(),([ 11 xPxPxPx nnn -- --= mmm    (1) 

 

Turning now to the right side of the desired recurrence, we use substitution to obtain 

),(),( 1 xCxCx nn -- mm  = ),()],(),([ 12 xCxPxPx nnn -- -- mmm  

    = ),(),(),( 12 xCxPxxPx nnn -- -- mmm  

    = )],(),([),(),( 312 xPxPxPxxPx nnnn --- --- mmmm  

    = )],(),([),(),( 321 xPxPxxPxPx nnnn --- --- mmmm  

    = )],([),(),( 11 xPxPxPx nnn -- -- mmm    (2) 

The expressions (1) and (2) above are equivalent.  Keeping our initial assumption of 

2³n  in mind, we find that for 2³n ,  

),( 1 xCn+m = ),(),( 1 xCxCx nn -- mm . 

Thus we have obtained a three-term sequence for cycles.   

 

Proposition 3.2:    For any natural number 2³n , 

 

),( 1 xCn+m = ),(),( 1 xCxCx nn -- mm . 

q 

 

We can use this three-term recurrence to list out the first several matchings polynomials 

of the cycles nC .  We first note by direct counting that: 
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),( 0 xCm  =1 

),( 1 xCm  = x  

),( 2 xCm  = 22 -x  

By implementing our recurrence relation, we find the following: 

),( 3 xCm  = xxxxx 3)2( 32 -=--  

),( 4 xCm  = 24)2()3( 2423 +-=--- xxxxxx  

),( 5 xCm  = xxxxxxxx 55)3()24( 35324 +-=--+-  

),( 6 xCm  = 296)24()55( 2462435 -+-=+--+- xxxxxxxxx  

 

Example:    In Section 1.2 we developed a counting argument for computing the 

matchings polynomials of nC .  We found that 
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As an example, let us compare ),( 6 xCm using the counting method and the three-term 

recurrences.  Using the counting method we have 

å
³

-

÷÷
ø

ö
çç
è

æ -
-=

0

26
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6
)1(),(

r

rr x
r

r
xCm = 296 246 -+- xxx . 

Note this is agrees with the expression for ),( 6 xCm that we found above using the three-

term recurrence.   

 

 

Section 3.3 – Recurrences for Complete Graphs 

 

To derive a three-term recurrence for the complete graphs, we proceed in a similar 

manner as above.  In particular, we begin by using Theorem 2.3 to obtain the following: 

 

å +++ -=
ui

nnn xuiKxuKxxK
~

111 )},{\(),\(),( mmm , 
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where u denotes any vertex in 1+nK .  Observe that the graph uK n \1+  in our first term is 

simply a complete graph on n vertices, nK .  And in our second term, since a vertex u 

in 1+nK  is adjacent to exactly n other vertices, and because we remove exactly two 

vertices from 1+nK , the term å +
ui

n xuiK
~

1 )},{\(m becomes n times ),( 1 xK n-m .  Thus we 

have the following three-term recurrence for complete graphs. 

 

Proposition 3.3:    For any natural number n,  

 

),(),(),( 11 xKnxKxxK nnn -+ ×-×= mmm . 

q 

 

We can use this three-term recurrence to list out the first several matchings polynomials 

of the complete graphs nK . 

),( 0 xKm  =1 

),( 1 xKm  = x  

),( 2 xKm  = 12 -x  

),( 3 xKm  = xxxxx 32)1( 32 -=--  

),( 4 xKm  = 36)1(3)3( 2423 +-=--- xxxxxx  

),( 5 xKm  = xxxxxxxx 1510)3(4)36( 35324 +-=--+-  

),( 6 xKm  = 154515)36(5)1510( 2462435 -+-=+--+- xxxxxxxxx  

 

Example:    Recall that in Section 1.3, we developed a counting argument for computing 

the matchings polynomials of nK .  We found that 

å
³

-

-
-=

0

2

!2)!2(

!
)1(),(

r

rn

r

r
n x

rrn

n
xKm . 

We now compare the expression for ),( 5 xKm  obtained using the counting method with 

the expression obtained from the three-term recurrence above.  Using the counting 

method from Section 1.3 we have  
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å
³

-

-
-=

0

25
5

!2)!25(

!5
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r

r

r

r x
rr

xKm = xxx 1510 35 +- , 

which agrees with the expression for ),( 5 xKm  that we found above using the three-term 

recurrence.   

 

 

Section 3.4 – Recurrences for Complete Bipartite Graphs 

 

Obtaining a three-term recurrence for the family of complete bipartite graphs 

mmK ,  requires a bit more effort but proceeds along the same general lines.  To begin with, 

we can count the number of r-matchings of mmK , as follows.  Let X and Y be the two cells 

of the bipartite graph, and let us pick two vertices in opposite cells of mmK , , say Xu Î  

and Yv Î .  Then we identify the following cases.  We consider the number of r-

matchings that: 

 

(1) Do not use u and do not use v.  This is done in ),( 1,1 rKp mm -- ways, as we now 

have one fewer vertex in each set with which to form our r-matching.   

(2)  Use u.  If we use u from set X, then we choose a vertex from set Y to be the 

other endpoint of the edge that covers u.  Since the graph is complete bipartite, there are 

m vertices to choose from. No matter which vertex in Y we choose, we will need to 

complete our matching by selecting an (r – 1)-matching in the remainder of the graph, 

which can be done in )1,( 1,1 --- rKp mm  ways.  So the number of r-matchings in mmK ,  that 

use vertex u must equal )1,( 1,1 -× -- rKpm mm . 

(3)  Use v.  By the same argument as in case (2), we can form such an r-matching 

in )1,( 1,1 -× -- rKpm mm ways. 

 

Notice that if we were to sum these three cases, we would double count all of the 

r-matchings that use both u and v.  Thus, from the sum of cases (1), (2), and (3), we must 

subtract the number of r-matchings that use both u and v.  Such r-matchings fall into two 
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disjoint categories, (4) and (5), which we count separately below. We consider the 

number of r-matchings that: 

 

(4)  Match u with v.  One edge of each such r-matching will be the edge uv, so we 

seek to form an (r – 1)-matching in the graph that remains, 1,1 -- mmK .  Hence there 

are )1,( 1,1 --- rKp mm ways of forming an r-matching in mmK ,  that uses the edge uv.   

(5)  Use u and v but do not use edge uv.  If we use u and v but do not use uv, then 

vertex u will have to form an edge with some vertex in Y other than v, and vertex v will 

have to form an edge with some vertex in X other than u.  There are 1-m choices for u 

and 1-m choices for v, resulting in 2)1( -m ways of forming the two edges that use u and 

v.  What remains is to count the number of an (r – 2)-matchings in the graph 2,2 -- mmK .  

Thus the number of r-matchings that use u and v but do not use edge uv is equal to 

)2,()1( 2,2
2 -×- -- rKpm mm . 

 

Putting it all together, we add cases (1), (2), and (3), and subtract cases (4) and (5) 

to learn that for 2³r , 

 

),( , rKp mm  = ),( 1,1 rKp mm -- + )1,( 1,1 -× -- rKpm mm + )1,( 1,1 -× -- rKpm mm  

)2,()1()1,( 2,2
2

1,1 -×---- ---- rKpmrKp mmmm    

  = )2,()1()1,()12(),( 2,2
2

1,11,1 -----+ ------ rKpmrKpmrKp mmmmmm . 

 

Now, by the definition of the matchings polynomial, we have the following: 

 

),( , xK mmm  =å
³

--
0

2
, ),()1(

r

rn
mm

r xrKp  

  = å
³

-- -+-
2

2
,

22 ),()1(
r

rn
mm

rnn xrKpxmx , 

where n = 2m. 

From above, we substitute based on what we know ),( , rKp mm to be.   



 

 

 

38 

),( , xK mmm  +-= -22 nn xmx å
³

---- --+-
2

1,11,1 )1,()12(),([)1(
r

mmmm
r rKpmrKp  

    rn
mm xrKpm 2

2,2
2 )]2,()1( -

-- ---  

So now we have three summations to work with.   

),( , xK mmm   = 22 -- nn xmx +å
³

-
---

2

2
1,1 ),()1(

r

rn
mm

r xrKp  

+ å
³

-
-- ---

2

2
1,1 )1,()1()12(

r

rn
mm

r xrKpm  

å
³

-
-- ----

2

2
2,2

2 )2,()1()1(
r

rn
mm

r xrKpm  

The first summation simplifies as follows:  

 

=- --

³
--å rn

r
mm

r xrKpx 22

2
1,1

2 ),()1( ])1(),([ 422
1,1

2 --
-- -+- nn

mm xmxxKx m  

The second summation simplifies as well.  We first re- index our summation, letting 

1-= rt , so that 1+= tr .  Once we have the form we desire, we re-index back to r’s: 

  

å
³

+-
--

+--
1

)1(2
1,1

1 ),()1()12(
t

tn
mm

t xtKpm  = å
³

--
-----

1

22
1,1 ),()1()12)(1(

t

tn
mm

t xtKpm  

      = å
³

--
-----

1

22
1,1 ),()1()12(

r

rn
mm

r xrKpm  

      = ]),()[12( 2
1,1

-
-- --- n

mm xxKm m  

Finally we address the last summation.  We will re-index again in a similar fashion. Here 

we let 2-= rt , and so 2+= tr . 

       

å
³

-
-- ----

2

2
2,2

2 )2,()1()1(
r

rn
mm

r xrKpm   = å
³

+-
--

+---
0

)2(2
2,2

22 ),()1()1(
t

tn
mm

t xtKpm  

= å
³

--
-----

0

24
2,2

2 ),()1()1(
t

tn
mm

t xtKpm  

      = å
³

--
-----

0

24
2,2

2 ),()1()1(
r

rn
mm

r xrKpm  

= ),()1( 2,2
2 xKm mm ---- m  

Combining all these expressions and simplifying, we obtain  
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),( , xK mmm ),()1(),()12( 2,2
2

1,1
2 xKmxKmx mmmm ---- --+-= mm . 

 

Therefore we have written ),( , xK mmm in terms of its two previous values of m, and so we 

have derived the following three-term recurrence for complete bipartite graphs.  

 

Proposition 3.4:    For any natural number 2³m ,  

 

),()1(),()12(),( 2,2
2

1,1
2

, xKmxKmxxK mmmmmm ---- --+-= mmm . 

q 

 

Based upon this recurrence we can list out the matchings polynomials of the first several 

complete bipartite graphs. 

 

),( 0,0 xKm  1=   

),( 1,1 xKm  12 -= x  

),( 2,2 xKm  241)1()3( 2422 +-=--×-= xxxx  

),( 3,3 xKm  6189)1(4)24()5( 2462242 -+-=--+-×-= xxxxxxx  

),( 4,4 xKm  )24(9)6189()7( 242462 +---+-×-= xxxxxx  

  24967216 2468 +-+-= xxxx  

),( 5,5 xKm  )6189(16)24967216()9( 24624682 -+--+-+-×-= xxxxxxxx  

  12060060020025 246810 -+-+-= xxxxx  

),( 6,6 xKm  )12060060020025()11( 2468102 -+-+-×-= xxxxxx    

       )24967216(25 2468 +-+-- xxxx   

72043205400240045036 24681012 +-+-+-= xxxxxx  

 

Example:    Recall that in Section 1.4, we developed a counting argument for the 

complete bipartite graph.  For a graph mmK , , where mn 2= ,  
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å
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÷÷
ø

ö
çç
è

æ
-=

0

2

2

, !)1(),(
r

rnr
mm xr

r

m
xKm . 

In fact, using the above expression, we found the matchings polynomial of 3,3K  to be  

=)( 3,3Km 6189 246 -+- xxx . 

Note this is the same matchings polynomial that we found above using the three-term 

recurrence. 

 

It is perhaps worth remarking that the significance of having a three-term 

recurrence on a family of polynomials is more than just computational.  Indeed, the 

existence of such recurrence relations actually implies that each of these families of 

polynomials forms an orthogonal sequence with respect to an appropriate inner product.  

We will return to this curious fact in a later chapter. 
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Chapter 4 – Complements and Perfect Matchings 

 

Given a graph G, its complement G  denotes a graph that has the same vertex set 

as G.  However, the edge set of G  is the opposite of the edge set of G.  That is to say, if 

there is an edge between two vertices in G, then that edge is not inG ; if there is not an 

edge between two vertices in G, then there is such an edge inG .  The following two 

graphs exemplify this complementary relationship. 

 

 

G                   G  

 

In this chapter, we study some relationships between the matchings polynomials 

of a graph G and its complementG .  We will eventually express such relationships using 

integrals, but this requires the introduction of a particular kind of matching.   

We define a perfect matching of a graph G to be a matching in which every 

vertex of G is an endpoint of an edge in the matching.  Said another way, a matching is 

perfect if it covers every vertex in a graph.  Let us denote the number of perfect 

matchings in a graph G by )(Gpm .   

 

Examples:    Consider first the graph 6C , mentioned in Section 1.2.   

 

 

6C  
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It has two perfect matchings, as shown below.  Note that all of the vertices in the graph 

are included in both of these matchings, making the matchings perfect.   

 

 

 

Contrast this with the house graph, which has 5 vertices.   

 

 

 

Note in this graph, no set of edges will cover every vertex and still fulfill the definition of 

a matching.  In order to include vertex 1 we would need to have {12} or {15} in our 

matching.  But if we include either of these edges, we are left with the following graphs 

respectively.  In neither case are we able to include the remaining three vertices in our 

matching.  Thus the house graph has no perfect matching. 

 

   

 

Indeed, since any matching must cover an even number of vertices, a graph with an odd 

number of vertices can never have a perfect matching. 
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Section 4.1 – Perfect Matchings in the Complement of G 

 

We begin this section by considering )(Gpm , the number of perfect matchings in 

the complement of a graph G.  We must first take note of two important identities.  Let e 

be an edge in G.  Since Ge Î , e is not inG .  Since e is not in eG \ , it must be the case 

that e is in eG \ .  Thus eG \  will be exactly the same asG , except it will also include 

the edge e.  Therefore we have that 

 

eGeG +=\ . 

 

We turn now to the second identity.  Arguing using the notion of set difference, we note 

that }{\ uvG can be written as ( ) }{\\ uvGK n which, in turn, is equivalent to 

( ) ( )}{\\}{\ uvGuvK n .  This last expression is the same as }{\ uvG , and hence 

 

}{\ uvG = }{\ uvG . 

 

We will use these two simple observations to prove the following lemma. 

 

Lemma 4.1:    For any graph G and any edge e in G with endpoints u and v,   

 

)}{\()\()( uvGpmeGpmGpm -= . 

 

Proof:    The edge e is clearly in G + e, so we conclude that e is in eG \  by the first 

identity above.  The perfect matchings in eG \  consist of two kinds – those that use e and 

those that do not.  Any perfect matching that does not use e is a perfect matching 

in eeG \\ , which is just the graphG .  Any perfect matching that does use e determines a 

perfect matching in }{\ uvG . Thus 
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}){\()()\( uvGpmGpmeGpm += . 

 

Rewriting this equation using our second identity above, we obtain the statement of the 

lemma. 

q 

 

Example:    We demonstrate Lemma 4.1 with the following example.  Let G and G  be 

the graphs below.  Let e be the edge with the endpoints {13}.  Listed below each graph is 

the number of perfect matchings in each graph, which can easily be found by direct 

counting.   

 

                                 

   1)\( =eGpm         2)\( =eGpm                                  1)( =Gpm               1)( =Gpm  

 

 

0})13{\( =Gpm     1)}13{\( =Gpm  

 

We see, then, that for this example it is true that  

 

)}13{\()\()( GpmeGpmGpm -= . 
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Section 4.2 – Perfect Matchings in the Complete Graph 

 

In this section, we focus on perfect matchings in complete graphs.  The lemma we 

obtain in this section will prepare us for the primary theorem in this chapter.   

Lemma 3.2:    dxxeKpm nx
n ò

¥

¥-

-= 22

2

1
)(

p
 

Proof:    We define dxexnM xn

ò
¥

¥-

-= 22

2

1
)(

p
, which we evaluate using integration by 

parts.  Letting  22xeu -=  and  dxxdv n= , we find that 22xxedu --=  and 
1

1

+
=

+

n

x
v

n

.  So 

by the parts formula, ò ò-=
b

a

b

a

b

a
vduuvudv , leading us to calculate as follows: 

dxe
n

x

n

x
edxxe x

nn
xnx 2

21
22 222

12

1

12

1

2

1 -
¥

¥-

+¥

¥-

+
-

¥

¥-

-

òò +
+

+
=

ppp
. 

 

To compute the first term on the right hand side, we note that 
12

1
lim

1
22

+

+
-

±¥® n

x
e

n
x

x p
 

equals 0 by repeated applications of L’Hôpital’s Rule.  So we now have that 

dxe
n

x
dxxe x

n
nx 2

2
2 22

12

1
0

2

1 -
¥

¥-

+¥

¥-

-

òò +
+=

pp
, 

and this implies that 

dxex
n

nM xn 22 2

2

1

1

1
)( -

¥

¥-

+

ò+
=

p
 

 

1

)2(

+

+
=

n

nM
. 

 

To exploit this recurrence, we now find values for )1(M and M (0).  We have, by 

definition,  
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=)1(M xdxedxxe xx

òò
¥

¥-

-
¥

¥-

- = 212 22

2

1

2

1

pp
. 

We define the function 22

)( xxexf -= , and observe that 22

)( xxexf --=-  and 

22

)( xxexf --=- .  Since )()( xfxf -=- ,  this is an odd function, so it is symmetric 

about the origin.  Integrating from ¥- to ¥ , then, will result in a net area of 0. Thus 

0)1( =M .  Note since
1

)2(
)(

+

+
=

n

nM
nM ,  this implies that 0)( =nM  whenever n is odd.   

Next we find 1)0( =M , and we use multivariate integration to confirm this. 

Let dxeI x

ò
¥

¥-

-=
2

. Then  

2222222

Idxedyedxdyeedydxe xyyxyx =÷
÷
ø

ö
ç
ç
è

æ
÷
÷
ø

ö
ç
ç
è

æ
== òòò òò ò

¥

¥-

-
¥

¥-

-
¥

¥-

¥

¥-

--
¥

¥-

¥

¥-

-- . 

Switching to polar coordinates, we find that 

ò ò
¥

-=
p

q
2

0 0

2 2

rdrdeI r . 

 

So now, substituting 2ru -= and rdrdu 2-= , we have  

 

ò òò ò =-==
-¥¥

-
pp

qq
2

0 0

2

0 0

2

2

12

duderdrdeI ur pq
p

=-- ò d)1(
2

1
2

0

. 

 

Therefore p=I .  Note that I could not equal p- , as our integral clearly evaluates a 

region with positive area.  Now, with a simple change of variables, we can determine 

M(0).  Letting 
2

x
u =  and 

2

2
=du , we see that  

.1
2

2
2

2

1

2

1 22 2 === òòò
¥

¥-

-
¥

¥-

-
¥

¥-

- dueduedxe uux

ppp
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Hence 1)0( =M .  Since 
1

)2(
)(

+

+
=

n

nM
nM , we have the following relationship: 

 

)2()()1( +=×+ nMnMn  

 

Using this relationship, we use 1)0( =M  and 0)1( =M  to compute as follows: 

 

1)0(1)2( =×= MM  

0)1(2)3( =×= MM  

13)2(3)4( ×=×= MM  

0)3(4)5( =×= MM  

135)4(5)6( ××=×= MM  

0)5(6)7( =×= MM  

1357)6(7)8( ×××=×= MM  

0)7(8)9( =×= MM  

     M  

 

Thus, because 0)1( =M , it follows that 0)( =nM  when n is odd.  And because 1)0( =M , 

it follows that for any even integer rn 2= , 13)...32)(12()2( ×--= rrrM .   

But note that a perfect matching in nK can only exist when there are an even 

number of vertices.  Therefore )(0)( nMKpm n ==  when n is odd, and 

 

)( nKpm  = ),( 2 rKp r   when n = 2r. 

 

And recall from Section 1.3 that  

13)...32)(12(
!2

)!2(
),( 2 ×--== rr

r

r
rKp

rr  = )2( rM . 

Therefore, for any integer n, we have the desired result: 
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dxexnMKpm xn
n ò

¥

¥-

-== 22

2

1
)()(

p
. 

q 

 

Because nx  is actually the matchings polynomial of the complement of nK , 

Lemma 4.2 suggests a possible relationship between graphs, their complements, and 

perfect matchings.  In the next section, we present a theorem that describes such a 

relationship. 

 

Section 4.3 – The Matchings Polynomial of G and Perfect Matchings in 

its Complement 

 

 In the previous section, we established that the number of perfect matchings in the 

complete graph is given by the formula 

dxexKpm xn
n ò

¥

¥-

-= 22

2

1
)(

p
. 

The integrand on the right hand contains a factor of  the polynomial nx .  This polynomial 

is in fact the matchings polynomial of the complement of  nK , a fact which motivates the 

following result. 

 

Theorem 4.3:    For any graph G, 

ò
¥

¥-

-= dxexGGpm x 22

),(
2

1
)( m

p
. 

 

Proof:    Denote ò
¥

¥-

-= dxexGGI x 22

),(
2

1
)( m

p
.  We proceed by induction on the 

number of edges in graph G.  Lemma 3.2 has given our base case, the graph nK with 0 

edges, as 
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dxexKdxexKpm x
n

xn
n òò

¥

¥-

-
¥

¥-

- == 22 22

),(
2

1

2

1
)( m

pp
. 

 

For our induction hypothesis, we assume that G has at least one edge e with 

endpoints u and v, and we assume the theorem is true for any graph with fewer edges than 

G.  The induction step proceeds as follows.  By Theorem 1.6, we have 

 

  )(GI  = ò
¥

¥-

- dxexG x 22

),(
2

1
m

p
 

       = [ ]ò
¥

¥-

-- dxexuvGxeG x 22

)},{\(),\(
2

1
mm

p
 

  = òò
¥

¥-

-
¥

¥-

- - dxexuvGdxexeG xx 22 22

)},{\(
2

1
),\(

2

1
m

p
m

p
 

  =  }){\()\( uvGIeGI -  

 

But both eG \  and }{\ uvG  have fewer edges than G, so the induction hypothesis applies.  

It tells us that 

)\()\( eGpmeGI =  and )}{\(}){\( uvGpmuvGI = . 

 

Hence 

)}{\()\()( uvGpmeGpmGI -= , 

 

which equals )(Gpm  by Lemma 4.1, and so we have the desired equation 

 

)(),(
2

1
)( 22

GpmdxexGGI x == ò
¥

¥-

-m
p

. 

q 
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Chapter 5 – Orthogonality 

 

 In this chapter we discuss the orthogonality of several families of matchings 

polynomials with respect to various inner products.  Let ][xR  denote the vector space of 

all polynomials with real coefficients.  We can then view ),( xGm , the matchings 

polynomial of a graph G, as a vector in this vector space ][xR .  Before we discuss 

orthogonality, let us first review the notion of an inner product.   

If  V is any vector space over the real numbers, then an inner product is any 

function  , : V›  R  that satisfies the following properties: 

(1)   uvvu ,, =   for every Vvu Î, , 

(2) wuvuwvu ,,, +=+   for every Vwvu Î,, , 

(3) vukvuk ,, ×=×  for every Vvu Î,  and Rk Î , 

(4) 0, ³uu  for every Vu Î , and 0, =uu  if and only if 0=u . 

An example of an inner product is the usual dot product encountered in a typical calculus 

course.  Two vectors vu,  are said to be orthogonal with respect to an inner product 

,  whenever 0, =vu .   

In the following sections, we will encounter a number of inner products on the 

vector space ][xR , and we will find that, curiously, each of the families of matchings 

polynomials we have studied is indeed an orthogonal set of vectors in ][xR  with respect 

to an appropriate inner product.  Only the orthogonality of the matchings polynomials for 

complete graphs is immediately relevant for the main development of the results in this 

paper, although the other families have equally interesting results.  Therefore, in the 

sections that follow, we will discuss the family of complete graphs in depth while 

offering a less detailed treatment of the other three families (paths, cycles, and complete 

bipartite graphs). 
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Section 5.1 – Orthogonality and Complete Graphs 

    

In this section we return to our discussion of complements and perfect matchings.  

Observe that the complement of nm KK È is the complete bipartite graph nmK , , since the 

graph nm KK È consists of two independent sets of sizes m and n, with all possible edges 

between them.  (Recall a set of vertices is independent if no two of them are joined by 

an edge.) 

 Since a perfect matching must cover all of the vertices, we can only have a perfect 

matching in nmK ,  if nm = .  On the other hand, if nm = , then a perfect matching does 

indeed exist, because there are m choices for the first vertex to be paired with, 

)1( -m choices for the next vertex to be paired with, and so on.  So when nm = , we in 

fact find that there are a total of m! (which is the same as n!) perfect matchings.  (In other 

words, the existence is guaranteed by the counting argument.)  Thus we arrive at the 

following equation:  

î
í
ì

=
0

!
)( ,

m
Kpm nm   

otherwise

nmif =
. 

Note that by Theorem 2.1, ),(),()( xKxKKK nmnm mmm =È .  Hence, using the 

fact that nm KK È = nmK , , and applying Theorem 4.3, we get 

)( ,mnKpm  = dxexKK x
nmò

¥

¥-

-È 22

),(
2

1
m

p
 

  = dxexKxK x
nmò

¥

¥-

- 22

),(),(
2

1
mm

p
 

 

Thus we have shown the following result. 
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Theorem 5.1:    For any natural numbers m and n, we have  

 

dxexKxK x
nmò

¥

¥-

- 22

),(),(
2

1
mm

p î
í
ì

=
0

!m
  

otherwise

nmif =
 

q 

 

 

Theorem 5.1 indicates that the matchings polynomials of the complete graphs form an 

orthogonal family of polynomials.  They are orthogonal with respect to the inner product  

dxexqxpxqxp x

ò
¥

¥-

-= 22

)()(
2

1
)(),(

p
. 

 

In fact, the matchings polynomials of the complete graphs belong to a well-

studied family of orthogonal polynomials, known as the Hermite polynomials. For more 

about these polynomials, the reader is referred to (Leon, 2006).   

 

Example:    Let us examine two complete graphs, 3K  and 4K .  Their respective 

matchings polynomials are given by xxxK 3),( 3
3 -=m  and 36),( 24

4 +-= xxxKm .  

Substituting into the inner product above, we find that  

 

0)36)(3(
2

1
),(),,( 2243

43

2

=+--= ò
¥

¥-

- dxexxxxxKxK x

p
mm , 

 

as expected.  If we evaluate the inner product of ),( 3 xKm  with itself, we obtain 

 

!3)3(
2

1 223 2

=-ò
¥

¥-

- dxexx x

p
 

 

These are the results we would expect, given the orthogonality of the Hermite 

polynomials.   
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Section 5.2 – Orthogonality and Paths  

 

We can also consider whether the matchings polynomials of paths form a family 

of orthogonal polynomials with respect to some inner product.  Indeed, upon substitution 

of x2  for x in the matchings polynomial of paths, we find a familiar family of 

polynomials.  In fact, 

( , 2 ) ( )n nP x U xm = , 

 

where the ( )nU x  are the so-called Chebyshev polynomials of the second kind (Leon, 

2006).  The Chebyshev polynomials are known to be orthogonal (indeed, orthonormal) 

with respect to the following inner product 

dxxxqxpxqxp ò
-

-=
1

1

21)()(
2

)(),(
p

. 

 

Example:    Let us examine two paths, 3P  and 4P .  Their respective matchings 

polynomials are given by xxxP 2),( 3
3 -=m  and 13),( 24

4 +-= xxxPm .  Using the 

above relationship ( , 2 ) ( )n nP x U xm = , we find that xxxU 48)( 3
3 -=  and 

11216)( 24
4 +-= xxxU .  Substituting )(3 xU  and )(4 xU into the inner product above, we 

find that  

 

01)11216)(48(
2

1

1

2243 =-+--ò
-

dxxxxxx
p

, 

 

as expected.  If we evaluate the inner product of )(3 xU  with itself, we find that 

 

11)48(
2

1

1

223 =--ò
-

dxxxx
p

. 
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These are the results we would expect, given the orthogonality of the Chebyshev 

polynomials of the second kind.   

 

Section 5.3 – Orthogonality and Cycles 

 

We can also consider whether the matchings polynomials of cycles form a family 

of orthogonal polynomials with respect to some inner product.  These polynomials are 

also intimately related to a well known family of orthogonal polynomials.  Indeed, for 

1n ³ ,  

( , 2 ) 2 ( )n nC x T xm = , 

 

 where the ( )nT x  are the Chebyshev polynomials of the first kind (Leon, 2006).  These 

Chebyshev polynomials are known to be orthogonal (indeed, orthonormal) with respect 

to the following inner product 

 

dx
x

xqxpxqxp ò
- -

=
1

1
21

1
)()(

2
)(),(

p
. 

 

 

Example:    Let us examine two cycles, 3C  and 4C .  Their respective matchings 

polynomials are given by xxxC 3),( 3
3 -=m  and 24),( 24

4 +-= xxxCm .   We first note 

that xxxC 68)2,( 3
3 -=m  and 21616)2,( 24

4 +-= xxxCm .  Then, using the above 

relationship ( , 2 ) 2 ( )n nC x T xm = , we find that xxxT 34)( 3
3 -=  and  

188)( 24
4 +-= xxxT .  Substituting )(3 xT  and )(4 xT into the inner product above, we 

find that  

 

0
1

1
)188)(34(

2
1

1
2

243 =
-

+--ò
-

dx
x

xxxx
p

, 
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as expected.  If we evaluate the inner product of )(3 xT  with itself, we find that 

 

11)34(
2

1

1

223 =--ò
-

dxxxx
p

. 

 

These are the results we would expect, given the orthogonality of the Chebyshev 

polynomials of the first kind.   

 

 

Section 5.4 – Orthogonality and Complete Bipartite Graphs 

 

Finally, we can also consider whether the matchings polynomials of complete 

bipartite graphs form a family of orthogonal polynomials with respect to some inner 

product.  These polynomials are also closely related to a well known family of orthogonal 

polynomials.  In this case, 

2
,( , ) ! ( ) ( 1 )m

m m mK x m L xm = - , 

 

where the ( )mL x  are the Laguerre polynomials (Leon, 2006).  These Laguerre 

polynomials are known to be orthogonal (indeed orthonormal) with respect to the 

following inner product 

 

dxexqxpxqxp x-
¥

ò=
0

)()()(),( . 

 

Example:    Let us examine two complete bipartite graphs, 2,2K  and 3,3K .  We have 

24),( 24
2,2 +-= xxxKm  and 6189),( 246

3,3 -+-= xxxxKm .  Using the above 

relationship 2
,( , ) ! ( ) ( 1 )m

m m mK x m L xm = - , we find that 12
2

1 2
2 +-= xxL  and 
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÷
ø

ö
ç
è

æ
-+--= 13

2

3

6

1 23
3 xxxL .  Substituting )(2 xL  and )(3 xL into the inner product above, 

we find that  

 

0)13
2

3

6

1
)(12

2

1
(

0

232 =+-+-+-ò
¥

- dxexxxxx x , 

 

as expected.  If we evaluate the inner product of )(3 xL  with itself, we find 

 

1)13
2

3

6

1
(

0

223 =+-+-ò
¥

- dxexxx x . 

 

These are the results we would expect, given the orthogonality of the Laguerre 

polynomials.   
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Chapter 6 – Rook Polynomials 

 

 We now turn our attention to a special case of the matchings polynomial, one that 

provides useful applications for counting problems and other combinatorial concepts.   

This special matchings polynomial, called the ‘rook polynomial,’ derives its name from 

the familiar game of chess.  In this game, a rook is a piece which can move any number 

of squares horizontally or vertically; it moves exclusively along the rows and columns of 

a chessboard, as indicated below. 

 

 

We can associate chessboard configurations with graphs in the following way.  

We define a board to be any subset of the squares of an mm ´  chessboard.  Any such 

board B determines a bipartite graph BG , a subgraph of mmK ,  as follows.  The m vertices 

in one set of mmK ,  correspond to the rows of the containing mm ´  chessboard, and the m 

vertices of the other set correspond to the columns.  We refer to these as the row-vertices 

and column-vertices, respectively.  Any given row-vertex, together with a column-

vertex, determines a unique square in the containing mm ´  chessboard.  These vertices 

are joined by an edge in BG  if and only if the square they determine is in the board B.   

For example, consider the diagrams that follow.  In the chessboard below, the 

gray squares are restricted positions, or squares on which no rook can be placed.  Thus 

the board B consists only of the white squares.  Note we can see the relationship between 

the board B and the graph BG : an edge exists between a row-vertex and a column-vertex 

in BG  exactly when the square defined by this row and column is in board B.   

    

 R   
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         B         BG  

 

We also must define the complement of a board B, which we denote by B .  The 

complement B  is a board that is made up of squares that were not in B; indeed the 

squares in B are exactly the restricted squares for B, and, conversely, the squares in B are 

exactly the restricted squares for B .  In fact, if B is any sub-board of an mm ´  

chessboard, then B  can be thought of as the board associated with the graph Bmm GK -, .  

The board B and its complement B are given below.    

            

                              B                                                         B  

  

Having now established a correspondence between boards and bipartite graphs, 

and having introduced the notion of the complement of a board, we can also consider the 

graph theoretic version of such board complementation.  Observe that, under our 

definitions, 
B

G  denotes the graph corresponding to the complement of board B.  There is 

an important distinction to note here, however.  The graph
B

G  is not the complement of 

the graph BG .   

In order better to understand this distinction, consider the two graphs that follow.  

On the left below is BG , which is the graph complement of the graph BG .  On the right 

below is 
B

G , which is the graph associated with the board B .  The graph on the left is 

 4 5 6 

1    

2    

3    

 4 5 6 

1    

2    

3    

 4 5 6 

1    

2    

3    
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obtained by first drawing BG  and then taking the graph complement of it.  Note here that 

the vertices within the cells of the bipartition now must be adjacent, by definition of 

graph complementation.  Hence this graph is no longer bipartite and thus no longer 

represents a board.  The graph on the right, however, is clearly still bipartite and therefore 

is still associated with a board, namely B .  The graph
B

G  is often referred to as the 

bipartite complement of the graph BG .   

                

               Complement of BG                     Bipartite Complement of BG  

        

        BG                                                        
B

G  

 

 In other words, in forming the bipartite complement, only the edges and non-

edges between the two cells of the bipartition are interchanged – the non-edges within the 

cells are maintained.  In general, we will use G  to denote the bipartite complement of a 

bipartite graph G.   

We have seen above that there is a natural interpretation relating any possible 

arrangement of rooks on B to a corresponding subset of edges in BG .  If, in an 

arrangement of rooks, there are no two rooks that in lie in the same row or same column, 

then the arrangement is said to be non-attacking.  The edges in BG  corresponding to the 

locations of these rooks, then, will be disjoint.  So in any non-attacking arrangement of r-

rooks, the corresponding subset of edges in BG  is an r-matching.   In particular, the 

number of non-attacking arrangements of r rooks is equal to ),( rGp B .   

 Consider the following two diagrams which illustrate the notion of non-attacking 

arrangements of rooks.  The board 'B  below consists of the white squares and displays 

such an arrangement of rooks; the R’s represent rooks on the board.  The graph 'BG  
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represents the graph associated with this board, and the bold edges represent the r-

matching that corresponds with this particular arrangement of rooks.   

 

                     

                                        'B             'BG  

 

We now introduce a generating function for the number of non-attacking 

arrangements of rooks on a board.  Given any sub-board B of an mm ´  chessboard, the 

rook polynomial of B is defined to be the following: 

 

å
³

--=
0

),()1(:),(
r

rm
B

r xrGpxBr . 

 

So, in particular, the rook polynomial of a board B is almost exactly the same as the 

matchings polynomial of the graph BG  associated with B.  The only difference between 

the two polynomials concerns the exponents of the terms.  Specifically, we have that 

 

),( 2xBr = ),( xGBm . 

  

Example:    Let us study a simple example that compares the rook polynomial of a board 

B to the matchings polynomial of its graph BG .    

     

 4 5 6 

1    

2    

3    

 1 2 3 

5 R   

6   R 

7    

 

 

R 

8  R   
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         B         BG  

 

Notice that the rook polynomial of B,  

 

286),( 23 -+-= xxxxBr , 

 

differs just slightly from the matchings polynomial of BG ,  

 

286),( 246 -+-= xxxxGBm . 

 

The two only differ in the exponents of the terms, exemplifying the equality 

),( 2xBr = ),( xGBm  above. 

The reader may well wonder why we need to introduce such a minor variation of 

the matchings polynomial.  As we mentioned above, the bipartite complement is a 

different graph theoretic operation than the usual complement.  In the following sections, 

we will see that the rook polynomial, unlike the matchings polynomial, behaves well 

under the operation of bipartite complementation.  We will take advantage of this fact as 

we develop some analogous theorems to those in Chapter 4, counting perfect matchings 

in bipartite complements using rook polynomials of boards.  Additionally, we will make 

use of these results to provide elegant solutions to some famous combinatorial problems. 

 

 

Section 6.1 – Rook Analogs for Matchings Theorems 

 

 In this section, we prove the analogs of Theorem 2.1 and Theorem 2.2 for rook 

polynomials.   

 

Theorem 6.1:    For two disjoint boards B1 and B2,  

 

),(),(),( 2121 xBxBxBB rrr =È . 
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Proof:    We know from Theorem 2.1 that for two graphs G and H,  

 

),(),(),( xHxGxHG mmm =È . 

 

Then, by the fact that B1 and B2 correspond to the graphs 
1BG and 

2BG  respectively, and 

by our above observation that ),( 2xBr = ),( xGBm , it follows that  

  

),(),(),( 2
2

2
1

2
21 xBxBxBB rrr =È , 

which implies that 

),(),(),( 2121 xBxBxBB rrr =È . 

q 

 

 

Example:    We examine two boards B1 and B2; their rook polynomials are given below.  

We can use these boards to exemplify Theorem 6.1.   

 

 

                                      B1                                                            B2 

                       13),( 2
1 +-= xxxBr                             xxxxB 45),( 23

2 +-=r  
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                                                                21 BB È  

),( 21 xBB Èr xxxxx 417208 2345 +-+-=  

 

Note that  

),( 21 xBB Èr  xxxxx 417208 2345 +-+-=  

   )45()13( 232 xxxxx +-×+-=  

    ),(),( 21 xBxB rr ×= , 

which illustrates the theorem presented above.   

 

We now obtain a reduction result.   

 

Theorem 6.2:    For any board B, and any square s in B located in row u and column v,  

 

)},{\(),\(),( xuvBxsBxB rrr -= , 

 

where sB \  denotes the board B with the square s forbidden, and where }{\ uvB  denotes 

the board B with row u and column v forbidden. 

 

Proof:    We know from Theorem 2.2 that for any graph G and any edge Ge Î  with 

endpoints u and v,  

)},{\(),\(),( xuvGxeGxG mmm -= . 

 

Note that B corresponds to a graph BG , and square s corresponds to an edge e in BG .  

Since ),( 2xBr = ),( xGBm , it follows that  

 

)},{\(),\(),( 222 xuvBxsBxB rrr -= , 

which implies that 

)},{\(),\(),( xuvBxsBxB rrr -= . 

q 
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Example:    We examine the rook board B below and consider the square marked s to 

illustrate the use of Theorem 6.2.  The rook polynomials of the boards B, sB \  and 

}{\ uvB  are given below.   

 

                                                                  B 

          xxxxxB 12198),( 234 -+-=r  

 

                                       

                              sB \                                                          }{\ uvB                                

416208)},{\( 234 +-+-= xxxxxuvBr               44),\( 2 +-= xxxsBr  

 

Note that  

        ),( xBr    xxxx 12198 234 -+-=  

     )44()416208( 2234 +--+-+-= xxxxxx  

    )},{\(),\( xuvBxsB rr -= , 

 

which illustrates the theorem presented above.   

 Although analogs of Theorem 2.3 and 2.4 could be formulated for rook 

polynomials, they are not directly pertinent to the focus of this paper.  Therefore, we will 

not address them here. 
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Section 6.2 – Perfect Matchings in the Bipartite Complement of G  

 

 

Throughout this section G will denote a bipartite graph.  Recall that if G is a 

spanning subgraph of mmK , , then its bipartite complement G  is the graph with the same 

vertex set as G, whose edge set is precisely those edges of mmK , not in G.  Similar to our 

work in Chapter 4, we investigate an integral formula for )(Gpm , the number of perfect 

matchings in the bipartite complement of G.   

We must first take note of two important identities.  Let e be an edge in G.  

Certainly the graphs eG \  and G  differ by at most the edge e.  Since e is in G, it follows 

that e is not inG .  Since e is also not in eG \ , we know that e is in eG \ , the bipartite 

complement of eG \ .  Therefore, eG \  is exactly the same graph as G , except that it 

includes the edge e.  Thus we find that  

 

eGeG +=\ . 

 

Turning now to our second identity, we argue using the notion of set difference.  Observe 

that }{\ uvG can be written as ( ) }{\\, uvGK mm which, in turn, is equivalent to 

( ) ( )}{\\}{\, uvGuvK mm .  This last expression is the same as }{\ uvG , and hence 

 

}{\ uvG = }{\ uvG . 

 

We will use these two simple observations to prove the following lemma. 
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Lemma 6.4:    For any bipartite graph G and any edge e in G with endpoints u and v, 

 

)}{\()\()( uvGpmeGpmGpm -= . 

 

Proof:    The edge e is clearly in eG + , so we conclude that eGe \Î  by our first 

identity above.  The perfect matchings in eG \  consist of two kinds – those that use edge 

e and those that do not.  Any perfect matching that does not use e is a perfect matching 

in eeG \\ , which is just the graph G .  Any perfect matching that does use e determines a 

unique perfect matching in }{\ uvG .  From the second identity above, observe that 

}{\}{\ uvGuvG = .  Thus 

 

)}{\()()\( uvGpmGpmeGpm += , 

 

which can be written to obtain the statement of the lemma. 

q 

 

Example:    We demonstrate Lemma 6.4 with the following example.  LetG  and G  be 

the graphs below.  Let e  be the edge with endpoints {12}.  Listed below each graph is the 

number of perfect matchings of the graph, which we can count directly. 

 

 

1)( =Gpm              1)( =Gpm  
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0)\( =eGpm                 2)\( =eGpm  

 

 

1})12{\( =Gpm               1)}12{\( =Gpm  

 

We see, then, that for the graph G in this example, )}12{\()\()( GpmeGpmGpm -= .            

  

Section 6.3 – Perfect Matchings in the Complete Bipartite Graph 

 

Lemma 6.5:    For any natural number m, 

=)( ,mmKpm ò
¥

-

0

dxex xm  

Proof:    We define =:)(mM ò
¥

-

0

dxex xm , which we evaluate using integration by parts.   

Letting xeu -=  and dxxdv m= , we find that xedu --= and 
1

1

+
=

+

m

x
v

m

.  So using the parts 

formula ò ò-=
b

a

b

a

vduuvudv , we calculate as follows: 

  

ò
¥

-

0

dxex xm  = ò
¥

-
+¥+-

+
+

+
0

1

0

1

11
dxe

m

x

m

xe x
mmx
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To compute the first term on the right hand side, we note that 
x

m

x em

x

)1(
lim

1

+

+

¥®
must equal 0 

by repeated applications of L’Hôpital’s rule.  Thus we have that  

ò
¥

-

0

dxex xm  = ò
¥

-+

+
+

0

1

1

1
0 dxex

m
xm  

which implies that 

ò
¥

-+

+
=

0

1

1

1
)( dxex

m
mM xm  

 

1

)1(

+

+
=

m

mM
. 

 

This equation leads us to an important recurrence which we will utilize in the rest of this 

proof: 

)()1()1( mMmmM +=+ . 

 

Note it is easy to determine )0(M ; we do so by letting 0=m  in the integral 

)(mM = ò
¥

-

0

dxex xm  we just obtained above.  Thus 

)0(M = ò
¥

-

0

0 dxex x = ò
¥

-

0

dxe x = 1
1

0
=-=-

¥-

x

x

e
e . 

 

Now by exploiting the above recurrence, we find that  

 

!)( mmM = . 

 

But we know that )( ,mmKpm = ),( , mKp mm = m! from Proposition 1.4, and hence 

)( ,mmKpm = ò
¥

-=
0

)( dxexmM xm . 
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q 

 

As in Section 4.3, we note that mx  is the rook polynomial of the bipartite 

complement of the complete bipartite graph mmK , .  Therefore the above lemma suggests 

a possible relationship between bipartite graphs, their bipartite complements, and perfect 

matchings.  In the following section we introduce a theorem that describes just such a 

relationship.   

 

Section 6.4 – The Matchings Polynomial of G and Perfect Matchings in 

  its Bipartite Complement 

 

 We have just shown that the number of perfect matchings in the complete 

bipartite graph is given by the formula 

)( ,mmKpm = ò
¥

-

0

dxex xm . 

Note that mx  is in fact the rook polynomial of the bipartite complement of mmK , .  This 

observation motivates the following theorem.   

 

Theorem 6.6:    Let G be any bipartite graph and assume G is a spanning subgraph of 

mmK , .  Then the following holds: 

ò
¥

-=
0

),()( dxexGGpm xr . 

 

Proof:    We induct on the number of edges in G.  Lemma 6.5 has given us our base case: 

when G has zero edges, then G  is the complete bipartite graph mmK , .  Then  

 

)(Gpm = )( ,mmKpm = òò
¥

-
¥

- =
00

),( dxexGdxex xxm r , 

as desired. 
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For our induction hypothesis, we assume that G has at least one edge e.  Let u and 

v denote the endpoints of e and assume that ò
¥

-=
0

),()( dxexGGpm xr  holds for any 

subgraph of mmK , with fewer edges than G.  By Lemma 6.4 above we have that  

 

          )(Gpm   )}{\()\( uvGpmeGpm -=  

    òò
¥

-
¥

- -=
00

)},{\(),\( dxexuvGdxexeG xx rr  

    ò
¥

--=
0

)]},{\(),\([ dxexuvGxeG xrr , 

and by Theorem 6.2 we conclude  

   )(Gpm ò
¥

-=
0

),( dxexG xr  , 

as desired. 

q 

 

 

Section 6.5 – Classic Counting Problems 

 

 In this section, we will use our results about rook polynomials (Theorem 6.6 in 

particular) to solve two classic problems in enumeration.  Although these problems are 

commonly found among advanced combinatorial textbooks, the methods we have 

developed in this paper are not.  As we shall see, the results we have obtained provide 

novel and elegant solutions to these famous problems. 

 

Section 6.5a – Das Problem der Derangements 

 

The first classic counting problem can be described as follows.  Let B denote an 

mm ´  chessboard with the diagonal squares forbidden.  Then the number of perfect 

matchings in the associated graph BG  equals the number of permutations of },...,1{ m with 
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no fixed points.  Such permutations are often called derangements, and it is precisely the 

number of these derangements that we wish to count.   

Notice that the graph BG  is a subgraph of mmK , , and its bipartite complement is 

the disjoint union of m copies of .2K  We denote this graph by 2mK .  The rook 

polynomial of 2K  is )1( -x , and so by Theorem 2.1 the rook polynomial of 2mKGB =  

must equal mx )1( - .   

Let )(mD denote the number of derangements of },...,1{ m . By construction, 

),()( BGpmmD =  so we can use our results from this chapter to perform computations as 

follows. 

)(mD  =   ò
¥

-

0

2 ),( dxexmK xr  ò
¥

--=
0

)1( dxex xm  

    

    òò
-

¥
- -+-=

1

01

)1()1( dxexdxex xmxm  

Upon substituting 1-= xy , the first integral simplifies to ò
¥

--

1

1 dxeye ym , which evaluates 

to 
e

m!
 by earlier results in this chapter. We denote the value of the second integral – the 

remainder – simply by mR .  Thus we have 

mR
e

m
mD +=

!
)(  

Notice, however, that  

.
1

1

1

1
)1()1(

1

0

11

0

1

0
+

=
+

-
=-<-£

+

-

òò mm

x
dxxdxexR

m

mxm

m  

So mR  must be smaller than
2

1
 for every m.  Therefore )(mD , the number of 

derangements of },...,1{ m , is equal to the integer nearest to 
e

m!
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Based upon this result, the following table provides us with an interesting 

sequence of approximations to the number e.  Since there can be no derangement of a set 

with only one element, we begin our table with .2=m  

 

m 

)(

!

mD

m
 

2 
2

1

!2
=  

3 
3

2

!3
=  

4 
6.2

3

8

9

!4
»=  

5 
72.2

11

30

44

!5
»=  

M  M  

10 
...718281658.2

16481

44800

1334961

!10
»=  

 

We conclude this section with a simple example using derangements. 

 

Example:    Consider the following scenario.  A professor hands back a quiz to his class 

of 23 students, and he would like them to be able to grade each other’s papers.  In how 

many ways can he pass the quizzes back such that no student receives their own paper to 

grade? 

Solving this problem is simply a matter of counting the number of derangements 

of }23,...,1{ .  From above, we know that )23(D  is just the closest integer to 
e

!23
 which 

equals 21105104.9 ´ . 
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Section 6.5b – Le Problèm des Menages  

 

 The second classic counting problem that we consider using rook polynomials is 

called the Ménages  problem.  Here we are asked to find the number of ways of seating n 

married couples at a circular table, where we alternate between men and women, and 

where no one is seated next to their spouse.  We can use our techniques to solve this 

problem as follows. 

 Note that we have n women and n men.  We first seat the women, and since they 

are seated around a circle, we consider there to be exactly )!1( -n  distinct ways to 

accomplish this task.  Next we label the women 1,2,3,..,n  in a clockwise manner, and we 

assign the number of the thi  woman both to her spouse and to the seat directly 

counterclockwise of hers.  Note that each possible seating arrangement for the men is 

determined by a permutation of },...,1{ n , as there are n places left for the men to sit at the 

table.  But there is the specified restriction yet to consider.  In particular, we are 

interested in counting only the permutations in which no number i gets mapped either to 

itself or to the number 1-i .  Said another way, we’re concerned only with the 

permutations f such that },1{)( iiif -Ï .  We note here that subtraction is understood to 

be taken modulo n, as we are considering positions at a circular table.    

 Counting such permutations, however, is equivalent (by an examination of the 

associated rook board) to counting the number of perfect matchings in the bipartite 

complement of the cycle nC2 on 2n vertices.  From Section 2.2 , we have that  

÷÷
ø

ö
çç
è

æ -

-
=

r

rn

rn

n
rCp n

2

2

2
),( 2  

for each integer r.  Therefore, we have 
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Recall from Lemma 6.5 that 
0

!n xx e d x n
¥

- =ò , so by this fact, and Proposition 1.2, we have 

)( 2nCpm å
=

-÷÷
ø

ö
çç
è

æ -

-
-=

n

r

r rn
r

rn
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n

0

)!(
2

2

2
)1(    

 

Hence the number of seatings at the circular table equals 
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which solves our problem. 

 

We conclude this section with an example of the Ménages problem. 

   

Example:    Consider the case when .4=n  Then we simply use the above expression to 

compute the number of ways in which 4 married couples can be seated at a circular table 

so that no one is seated next to their spouse.   We find that there are 
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8

8
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   = 6 [24 – 48 + 40 -16 +2] 

   = 12 

ways, which can be verified by direct enumeration. 
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Part Two: 

 

Teaching Combinatorics Using Rook Polynomials and  

Matchings Polynomials  

 

Overview of the Curriculum 

Having investigated a variety of mathematical aspects of the matchings 

polynomial, the focus of the paper now shifts to the development of curricular materials 

related to these mathematical concepts.  Although some of the mathematical details of the 

above investigation are inaccessible to high school students, the didactical implications 

are not as contrived as one might think.  Indeed, if presented in a pedagogically 

appropriate form, the mathematics studied above has the potential to be both relevant and 

clearly understood, even within a high school classroom.  To prepare the reader for the 

curriculum to come, we draw their attention to two important aspects of the design of the 

curriculum.  First, we discuss the relationship between the mathematics in the previous 

part of the paper and the mathematics in the curriculum.  Second, we discuss the specifics 

of the curriculum design and implementation.   

 

The Mathematics of the Curriculum 

The rook polynomial, which is a special case of the matchings polynomial, plays 

a much larger role in the curriculum than it did in the mathematical section of this paper.  

Indeed, it has proven to be an invaluable focal point of the curriculum that follows.  

Because students tend to be familiar with the game of chess, the problem of counting the 

number of ways of placing rooks on a chessboard is a natural point of entry.  Not only is 
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this type of problem intrinsically compelling for students, but also it is easy to visualize 

and conceptualize.  Another benefit of studying counting problems in the context of rooks 

is that rook problems generalize quite naturally to a wide range of counting problems in a 

variety of contexts, including counting problems with restricted positions.  Thus, the 

principles related to rook problems extend well beyond the original context, making such 

problems even more useful (and motivating) for students, providing a springboard to 

richer and more advanced mathematical concepts.    

One minor technical adjustment that has been made in the transition from the 

mathematical investigation to the curricular implementation concerns a simplification of 

the form of the matchings (and rook) polynomials.  Recall that the definition of the 

matchings polynomial given above is somewhat at odds with the typical definition of a 

generating function.  In particular, the matchings polynomial was defined to be  

 

å
³

--=
0

2),()1(:),(
r

rnr xrGpxGm . 

 

Observe the presence of the alternating sign and the association of ),( rGp , the number 

of r-matchings in a graph G, with the term 2n rx - .  In the curriculum, however, the 

notation ( , )m G r is used to indicate the number of r-matchings in a graph G, and the 

matchings polynomial is defined by the simpler 

 

å
³

=
0

),(:),(
r

rxrGmxGm . 

 

Note that the rook polynomial has undergone the same modification throughout the 

curriculum as well.   

It is worth remarking that this change is notationally convenient but has no 

essential bearing on the associated mathematics.  Indeed, in so defining the matchings 

polynomial, many of the theorems still hold true while assuming a form that is 

substantially more accessible to the students.  Although the development of the 

curriculum required careful attention to this issue, and although several results needed to 
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be re-derived, the concordant elimination of distracting algebraic complexity is very 

satisfactory.    

 

Curriculum Design and Implementation 

Because of the appealing nature of rooks, the ultimate goal in developing the 

curriculum is to investigate the types of combinatorial principles that could effectively be 

taught using the basic rook setup (namely, counting the number of ways of placing non-

attacking rooks on a chessboard).  Combinatorially, the mathematics in this paper 

employs three major concepts which are important but are often difficult to convey in the 

classroom: counting principles, generating functions, and matchings.  (These three 

concepts are rarely taught together, and certainly not from the standpoint of rook 

problems.  In fact, only rarely do textbooks mention a relationship between rooks and 

matchings).  The question emerges, then, whether students might be able to grasp all 

three of these concepts through investigating rooks on a chessboard.  Could rooks be the 

entry point from which to introduce counting principles, generating functions, and even 

matchings?  If so, would this new approach prove to be effective for students?     

It was in this vein, then, that this curriculum was developed.  The curriculum was 

tailored for and taught to an advanced group of high school seniors who were enrolled in 

a discrete math class.  These students were undeniably bright and motivated, and they had 

been introduced to many concepts in discrete math prior to working with this curriculum.  

The reader should thus take note that these activities were specifically geared for a high-

level class.  The actual teaching of the lessons ranged from having the students work 

through and develop answers completely on their own to lecturing about the various 

topics.  When lecturing did take place, every effort was made to have the instruction be as 

interactive as possible.  More specifics related to this are discussed in reflections on the 

activities in the section that follows. 

The curriculum consists of seven activities total, along with three assessments, all 

of which were designed to engage students in the three combinatorial concepts described 

above.  The activities were primarily presented to the class during their math period on 

three consecutive Thursdays; some were given out between visits to the classroom.  The 

schedule of the curriculum is outlined below.  Because of the nature and timing of the 
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classroom visits, the actual writing of the curriculum was somewhat spontaneous in 

nature.  That is, rather than being pre-arranged and strictly implemented, the development 

of many of the activities was based upon how the prior activity had gone. 

The presentation of the activities in this paper proceeds chronologically, 

according to how they were (and are meant to be) implemented in the classroom.  

Included with each activity is a brief description of the activity, a Teacher’s Version 

(which includes comments for the teacher and an answer key), and a reflection on how 

the actual execution of the activity went.   

Finally, it should be noted that despite the fact that this curriculum was presented 

to a high- level class, only minor modifications would be needed to alter the level of 

presentation.  Furthermore, the activities and assessments need not be implemented in the 

particular timeframe outlined above.  The curriculum that follows is not meant to be the 

definitive curriculum regarding rooks.  Rather, the intention here is to provide an 

overarching structure for a unit on rooks and to illuminate the types of combinatorial 

ideas that could be taught using this context.   

 

Schedule of Activities 

Prior to Day 1:   Activity 1 – Rook Boards 101 
Activity 2 – Rooks in the Real World 
 

Day 1:   Activity 3 – Taboo Squares 
 
Prior to Day 2: Assessment 1 – Review Worksheet 1  

Activity 4 –  Bored with Boards Yet? 
 

Day 2:   Activity 5 – Rook Kung Fu 
 
Prior to Day 3: Assessment 2 – Review Worksheet 2 

Activity 6 – All Aboard for Matchings, Captain Rook! 
 

Day 3:   Activity 7 – We’re Gonna Rook Your World 
 
After Day 3:  Assessment 3 – Rook Exam 
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Introduction to Activity 1 

 

This activity begins with an explanation of non-attacking configurations of rooks, 

with the intent of orienting students to the most basic ideas of rooks on a chessboard.  

The primary goal of this activity is to have students come up with a formula for the 

number of ways of placing r rooks on an nn ´  chessboard.  In so doing, the students will 

encounter the addition and multiplication principles of counting.  This activity focuses 

heavily on this particular context; the students can think about applying these principles 

solely to problems about rooks.  At this early stage of investigation, they need not 

concern themselves with extrapolating these ideas to any other applications. 

The use of groups will complement this activity nicely; the students should 

engage with this problem and discuss it with their peers before being given any hints or 

answers.  It is a relatively short activity on its own, but it has the potential to lead to 

further discussion about binomial coefficient notation, representation of equations, and a 

variety of other topics (see Teacher’s Version).   
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Activity 1 – Rook Boards 101 
 
In chess, a rook can move any number of spaces in straight lines along the rows and 
columns of a board.  A configuration of rooks on a board is called “non-attacking” if no 
two rooks occupy the same row or column.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1) With your group, find a formula for the number of ways of placing r non-
attacking rooks on an nn ´  chessboard. 

 
2) Use your formula above to complete the following table. 

 
number of 
non-attacking 
rooks 

0 1 2 3 4 5 

number of 
configurations 
on a 5x5 board 

      

 
 

3) Make a similar table for a 14 x 7 chessboard. 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

  
 R 
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Activity 1 – Rook Boards 101 (Teacher’s Version) 
 
In chess, a rook can move any number of spaces in straight lines along the rows and 
columns of a board.  A configuration of rooks on a board is called “non-attacking” if no 
two rooks occupy the same row or column.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1) With your group, find a formula for the number of ways of placing r non-
attacking rooks on an nn ´  chessboard. 

 
Answer: There are several different ways to approach this problem.  We proceed 
with a particular solution, but any method will do.  First we choose r rows, and there 

are ÷÷
ø

ö
çç
è

æ

r

n
 ways of doing this.  In the first of these rows, we chose a column in which to 

place the first rook.  There are n choices for this.  In the second of the chosen rows, there 
are n – 1 columns available to place the 2nd rook. We continue in this fashion until we are 
left with 1+- rn  columns available to place the rth  rook in the last of the chosen rows. 
Thus, by the multiplication principle, we get the following formula for the number of 
ways of placing r non-attacking rooks on an nn ´  chessboard: 
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Note that this expression could also be written as     !r
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We believe it is very important to make sure that all students see this last, most 
simplified, version of the formula and come to understand how it relates to the counting 
procedure, so suggest it if it doesn’t arise from them.  This formula will generalize nicely 
later.   
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2) Use your formula above to complete the following table. 
number of 
non-attacking 
rooks 

0 1 2 3 4 5 

number of 
configurations 
on a 5x5 board 

 
1 

 
25 

 
200 

 
600 

 
600 

 
120 

 
 

3) Make a similar table for a 14 x 7 chessboard. 
number of non-
attacking rooks 

0 
 

1 2 3 4 5 6 7 

number of 
configurations 
on a 14x7 board 

 
1 

 
98 

 
3822 

 
76440 

 
840840 

 
5045040 

 
15135120 

 
17297280 

 
 
 
n This is a rich problem for discussion, since any of the following issues may arise 

(if they don’t, perhaps the teacher could raise them). 
o How many columns should there be in the table?  7? 14?  Is it WRONG to 

have 14?   
o If we use more columns in our table, we could put zeros where 

appropriate. This relates to the custom of setting “m choose r” to be zero 
when r > m. 

 
n In completing the table, students will (hopefully) come up with a formula similar 

to the one they found in answering #1.  How well are they dealing with the 
variables m, n, and r?   

 
n Get them to discuss different ways of writing a general formula for r rooks on an 

m x n board.  Did they develop any alternative formulas?  We’d like them to 
realize how a well-chosen version of the formula will, in fact, behave properly 
even in the troublesome cases.  In particular, we’d like it to emerge that  
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is a very nice expression that works in very general settings and also reflects a 
nice counting procedure that might, in fact, be different than the one they first 
derived. Goal:  by the end of the day, have all students understand how we 
arrived at the above formula. 
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Reflection on Activity 1 

 

 Activities 1 and 2 had been given to the students prior to our first meeting with 

them.  In Activity 1, they worked in groups of three or four to develop the formula for the 

number of ways of placing r rooks on an nn ´  chessboard.  During our first visit to the 

class, we began by reviewing Activity 1 to see what the students had discovered.  One 

student who had correctly derived the formula came to the board and explained how he 

had gotten it.  The explanation was thorough and clear; it involved choosing columns 

then choosing rows, and it made explicit the constraint forbidding repetition in rows and 

columns.  Furthermore, his explanation allowed for the extra r! as the number of ways of 

shuffling the r rows of a particular placement to get all the other placements.  Using the 

students' counting formula, only a minor adjustment in notation was needed to arrive at 

the desired expression.   

When asked about the maximum number of rooks they could place on an nm ´  

board, one student explained that it wouldn’t make sense to place more than the lesser of 

m and n rooks on a board.  This led to an interesting conversation of the possibility of 

having more than min(m,n) rooks, and we were able to discuss conventions regarding the 

expression ÷÷
ø

ö
çç
è

æ

r

m
 (where mr > ).  In the future, I’d like to talk about this more explicitly, 

possibly having them work through these ideas while they do the activity (particularly as 

they consider making the nm ´  table.)  A potential issue to discuss more in depth (which 

we did mention, but only briefly) is the value of having different forms of equations – 

whether one form is more helpful than another depending upon the situation.  Depending 

upon how they are written, some expressions tend to suggest different counting 

techniques.  This would be a beneficial topic to have the students consider. 

Overall, I was pleased with the activity.  I was impressed with the students’ 

counting abilities and with their capacity to articulate their arguments.  This particular 

class was able to finish this activity without too much trouble in a single class period.  

However, the activity could be extended to span more than one class period if necessary, 

allowing the students to have more time to investigate these formulas and to consider 

some of the ideas mentioned above.  
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Introduction to Activity 2 

 

This activity is designed to be a short warm-up to Activity 3.  The goal is to have 

students understand and appreciate the applicability of rook problems to a wider variety 

of contexts.  In particular, students are asked to relate rooks to a scenario of a high school 

dance.  The students may answer the questions on their own, but they should discuss their 

answers in small groups at some point.  While these questions are not overly complicated 

in and of themselves, this activity forces the students to articulate their thinking and 

describe the connections they make.  By explicitly answering these questions, and by 

discussing them with their classmates, the students must demonstrate their understanding 

of the concepts introduced in Activity 2.  The rest of the activities in this curriculum rely 

on students’ abilities to generalize rook problems to various situations, and thus this 

solidifying activity is worthwhile. 
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Activity 2 – Rooks in the Real World  
 
In a very small school, there are fifteen boys and ten girls who want to go to the dance.  
These twenty-five people will not go with anyone outside of this group; every girl would 
be perfectly happy going with any of the boys, and vice versa.  Obviously not all of the 
boys will get to go.   
 
Assume that every girl attends the dance - each of them goes with one (and only one) of 
the boys.   Recalling Activity 1, answer the following questions.   
 

1) How does this relate to the problem of non-attacking rooks? 
 
 

2) If a rook is placed on a given square, what does it mean in the context of the 
problem?  In other words, what does the rook stand for? 

 
 

3) Why rooks -- how does the movement of a rook relate to the problem? 
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Activity 2 – Rooks in the Real World (Teacher’s Version) 
 
In a very small school, there are fifteen boys and ten girls who want to go to the dance.  
These twenty-five people will not go with anyone outside of this group; every girl would 
be perfectly happy going with any of the boys, and vice versa.  Obviously not all of the 
boys will get to go.   
 
Assume that every girl attends the dance - each of them goes with one (and only one) of 
the boys.   Recalling Activity 1, answer the following questions.   
 

1) How does this problem relate to the problem of non-attacking rooks?  
· Rows and columns represent boys & girls, and rooks denote a pairing. 

 
2) If a rook is placed on a given square, what does it mean in the context of the 

problem?  In other words, what does the rook stand for? 
· It means the boy and the girl in whose column and row the rook is placed 

are going together to the dance.  The rooks represent a date.   
 

3) Why rooks -- how does the movement of a rook relate to the problem? 
· Once a boy and a girl go together, their ‘rows and columns’ are used up, 

as they can’t then go with anyone else. 
 
 

Note:  The teacher should make sure they eventually model this as a rook problem, 
even if it has to be explicitly stated and demonstrated in front of the class.  It is 
important for the students to understand that the rook boards can model these types of 
counting problems.   
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Reflection on Activity 2 
 
 As mentioned above, Activities 1 and 2 had been given to the students prior to our 

first meeting.  During our first meeting, after we had discussed Activity 1, we briefly 

reviewed their work in Activity 2.  It was immediately evident that they understood the 

relationship between the word problem and the rook board.  One student did a great job 

explaining how a rook represents a date because "once a girl and a guy go together, they 

can’t go with anyone else."  The generalization of rook problems to broader contexts 

seemed to come fairly naturally to the students.   
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Introduction to Activity 3 
 

 In this activity, the students handle a variation of the counting problem of Activity 

2 which involved the high school dance.  They should recognize that this problem is 

indeed equivalent to some rook problem, and thus the high school dance can be thought 

of in terms of rooks.  In the first question of the activity, they are faced with the notion of 

a single restricted position on a chessboard.  Counting configurations of rooks on a board 

with restricted positions brings up an important counting principle: the principle of 

inclusion/exclusion.  This activity can serve as an introduction to, or a reminder of, this 

principle, depending upon how much exposure to counting principles the students have 

had previously.  In either case, visualizing the counting problem in terms of a chessboard 

(regardless of the original context of the problem) potentially allows for a new way of 

thinking about the inclusion/exclusion principle. 

In answering the first question, students should use inclusion/exclusion (or at least 

its most basic form: total-minus-bad) to develop a formula for handling one restricted 

position on a chessboard.  In the second question, the students must utilize more 

complicated applications of this principle.  In fact, they must develop two more formulas, 

each of which handles a special case of a board with exactly two restricted positions.   

 While the principle of inclusion/exclusion is not the crux of this curriculum, it is 

an important counting principle with which students should become familiar.  It is not 

necessary that the students come up with this principle on their own (although some 

might be able to); rather, the goal is for them to gain a better understanding of the 

principle as they go through this activity.  More than anything, this activity serves as a 

means of using rooks to discuss this valuable counting principle.  In addition, because 

inclusion/exclusion increases in complexity with greater numbers of restricted positions, 

this activity can provide motivation for alternative counting techniques for more 

complicated boards.   
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Activity 3 – Taboo Squares 
 
Consider now a case of 25 boys and 25 girls who want to go to a dance.  But now we say 
that one boy, Brian, and one girl, Ashley, are brother and sister, so they can’t go to the 
dance together. 
 
 

1) Develop a counting argument that counts the number of ways in which everyone 
can go to the dance (one boy and one girl in each date), but where Brian and 
Ashley are not a date.   

 
 

2) Let us now consider a pair of restricted positions.  In other words, develop a 
formula for counting the number of ways of placing r rooks on an nm ´  board 
that has 2 restricted positions.   
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Activity 3 – Taboo Squares (Teacher’s Version) 
 
Consider now a case of 25 boys and 25 girls who want to go to a dance.  But now we say 
that one boy, Brian, and one girl, Ashley, are brother and sister, so they can’t go to the 
dance together. 
 

1) Develop a counting argument that counts the number of ways in which everyone 
can go to the dance (one boy and one girl in each date), but where Brian and 
Ashley are not a date.   

 

Answer:  In general, the counting argument is ( )!1
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numerical answer should be !24!25!24
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Notes 
n The students should model this as a board with one restricted square 
n This problem will just barely begin to introduce the inclusion/exclusion principle 

(total minus bad).   
 

2) Let us now consider a pair of restricted positions.  In other words, develop a 
formula for counting the number of ways of placing r rooks on an nm ´  board 
that has 2 restricted positions.   

 
Answer:  This breaks down into two cases:    
 
When the forbidden positions were in distinct rows and columns, the general formula is 
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When they were in the same row (or column), the formula is 
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Notes: 
n This second problem will rely heavily on the principle of inclusion/exclusion.   
n When the students are explaining their formulas on the board, the teacher should 

have the students explain each term in the formula with a diagram.   
n In explaining the differences between the two cases, it’s helpful to note that the 

final term in the formula for the first case is necessary because we had double 
counted cases in which rooks were in both restricted positions.  But in the second 
case, we will never have rooks in both restricted positions, so this isn’t even a 
possibility (and doesn’t need to be accounted for).   
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Reflection on Activity 3 
 
 The students worked on this activity during the first day we visited the class.  We 

had just gotten finished discussing Activities 1 and 2, and we simply handed out Activity 

3 for them to work on.  We gave no mention of the principle of inclusion/exclusion; we 

were curious about what they could come up with on their own.  They first worked in 

groups of two or three on Question 1, and it didn’t take very long for the groups to deal 

with the issue of a single restricted position.  After some time we reconvened as an entire 

class to discuss the results.  One student explained his work to the class, and he had used 

the notion of the “total minus the bad,” which is precisely the idea behind 

inclusion/exclusion.  Indeed, before we returned to the big group, there were at least four 

groups with solutions that were more or less equivalent to this “total minus the bad” 

result.  Admittedly, some students had been explaining their solutions to others, but by 

the time we had the one student share out, most everyone had a grasp of how to count 

this.  I wrote the general formula for this on the board, and students generally seemed to 

understand how we’d obtained it.   

 Next, the students worked in groups of two or three on Question 2.  We had given 

them a concrete example in our original statement of Question 2, (using numbers in an 

effort to make things easier), but this proved to be unnecessary.  Ultimately they arrived 

at the answer in a general form, and one group had even cleverly made the variables a 

little more colorful.  They continued to work for a while, and again they realized the need 

for inclusion/exclusion on their own.   

An interesting issue that arose was that the students only considered the case in 

which the restricted positions are in distinct rows and columns (this was likely due to the 

dance aspect of the problem).  In reality, however, two cases of restricted position must 

be considered: one in which the restricted positions are in distinct rows and columns, and 

another in which they are in a common row or column.   Not surprisingly, with a little bit 

of pushing they came up with the case breakdown themselves.  In fact, when we pushed 

them to consider the other case of 2 restricted positions, a student quickly offered a case 

where Brian has 2 sisters – where the rooks are in the same row or column.  I was pleased 

that this contextualization was suggested, relating the issue to the context of the dance.  

We then had them work on this second case, and it seemed like even the kids who 
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typically got the answers right were not entirely sure how to count this.  Eventually, 

though, they reasoned through it and presented it.  We finished with a brief explanation 

of this which explained why the formulas were different (which was mentioned in 

Activity 3’s Teacher’s Version).   

When two students presented their solution to Question 2, some of their 

classmates were not entirely satisfied with their explanation.  We pushed them to draw 

diagrams to go along with the terms in their formula, and this proved to be helpful.  Other 

students contributed to these diagrams as well, and we ultimately ended up with very 

satisfying diagrams that explained the formula.  We ended the activity with a quick 

comment that they could naturally wonder what happens for three, four, or more 

restricted positions.  

  On the whole I was very happy about how things went.  It should be noted that 

these students had seen the principle of inclusion/exclusion before, although I was 

somewhat surprised that they were so comfortable with using it.  Their ability to think 

through and apply this principle in the context of rooks was impressive.  At the very least, 

this activity served the purpose of reinforcing old principles (like counting principles, 

inclusion/exclusion) and setting the stage for some more exciting math (like generating 

functions and matchings)!    

The activity would have gone quite differently had we presented these problems 

to students who had never encountered inclusion/exclusion before.  It would not be better 

or worse; rather, I anticipate that it would require nothing more than a slight change in 

emphasis.  In such a setting, I do believe that rooks could be used effectively to teach 

these principles to students for whom these ideas would be new.   

 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

93 

Introduction to Review Worksheet 1 
 
 After students have worked through Activity 3, they are ready to handle Review 

Worksheet 1.  The design of this first assessment is to provide fun problems in an effort 

to engage the students with their newly acquired tools, namely the three formulas they 

had developed in Activities 1-3.  Specifically, in Part A of the worksheet, the students 

first revisit the basic formula that they derived for counting the number of ways of 

placing r rooks on an m n´  chessboard; a couple of interesting contexts related to this 

formula are presented.  In Part B, by studying a detailed situation involving a high school 

dance, the students work through problems that involve one restricted position.  And in 

Part C, they consider the case of two restricted positions within this same context.  Again, 

no new concepts are being taught here; this is designed to help students collect and unify 

their thoughts up to this point. 
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Assessment 1– Review Worksheet 
 
Now that you have had some exposure to questions about rooks (and some real- life 
problems they model), let’s review some of what we’ve learned. 

 

 
A.  Recall that the number of ways of placing r rooks on an nm ´  board (with no 
restrictions) is given by the beautiful expression: 
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Use this formula to answer the following questions. 

 
 

1) Suppose there are 12 puppies at the pound, and 8 kids who want to adopt them.  
How many ways could 5 of the puppies get paired up with 5 of the kids?   

 
 
 
 
 
 
 
 
2) Suppose you have 8 rooks and a chessboard with 8 rows.  How many columns 

must your chessboard have, in order for the number of non-attacking 
configurations of your 8 rooks to exceed a trillion? (Note: 1 trillion = 1012.) 

 
 
 
 
 
 

 
 

3) Suppose you have a chessboard with 4 rows and 6 columns.  What number of 
rooks gives the highest number of non-attacking configurations?  Is it always true 
that “more rooks” means “more non-attacking configurations”?  Either explain or 
give a counterexample. 
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B.   Recall, too, that we found a formula for the number of ways of placing r rooks on an 

nm ´  board with one restricted position.  The fabulous formula was: 
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Use this formula to answer the following (very realistic) questions. 

 
 

1) In a (small) senior class of 30 guys and 36 girls, we need to decide on a Prom 
King and Queen. The senior class must choose 5 couples, and then the entire 
school votes from among these final couples.  But Kyle and Bethany refuse to be 
paired up with each other.  How many different ways could the senior class come 
up with 5 “acceptable” final couples for the school to vote on, given this 
constraint?  
 

 
 
 

 
 

 
2) The ever-popular math teacher, “Dr. G,” told his class not to worry so much about 

Kyle and Bethany, because it wasn’t very likely that they’d be paired up anyways.  
To see just how right he was, figure out what percentage of the total # of pairings 
of 5 couples are actually “acceptable,” given the constraint. 

 
 
 
 
 
 
 

3) After Dr. G’s particularly difficult math exam, 1/2 of the guys and 1/2 of the girls 
suffered “severe” drops in their grades, making them ineligible for Prom King and 
Queen.  Now that the eligible pool is down to 15 guys and 18 girls, what 
percentage of the total # of pairings of 5 couples are “acceptable”?  
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C.    Finally, recall that we found 2 different formulas for counting the number of ways of 
placing r rooks on an nm ´  board with two restricted positions.  Which formula to use 
depends on how the restricted positions are arranged. 
 
· When the 2 forbidden positions are in distinct rows and columns, our formula is:  
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· When they are in the same row (or column), our formula is the simpler: 
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Use these formulas to answer the following questions. 

 
 

1) Suppose that a pairing of Jeremy and Laura is impossible, and Kyle and 
Bethany still refuse to be paired up, and there are only 15 guys and 18 girls. 
How many matchings of 5 couples are we down to now?   

 
 

 
 
 
 
 
 
2) If  Kyle and Bethany resolve their issues, but if Jeremy somehow ruins his 

chances with both Laura AND Bethany, then how many matchings of 5 
couples do we have?   
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Assessment 1– Review Worksheet (Teacher’s Version) 
 
Now that you have had some exposure to questions about rooks (and some real- life 
problems they model), let’s review some of what we’ve learned. 

 

 
A.  Recall that the number of ways of placing r rooks on an nm ´  board (with no 
restrictions) is given by the beautiful expression: 
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Use this formula to answer the following questions. 

 
 

1) Suppose there are 12 puppies at the pound, and 8 kids who want to adopt them.  
How many ways could 5 of the puppies get paired up with 5 of the kids?   
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2) Suppose you have 8 rooks and a chessboard with 8 rows.  How many columns 

must your chessboard have, in order for the number of non-attacking 
configurations of your 8 rooks to exceed a trillion? (Note: 1 trillion = 1012.) 
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 is the ‘rows term’ in the formula, we’re looking for n such that 

000,000,000,000,1!8
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.  A little trial and error shows that the number of columns 

must be 36 to exceed a trillion.  (Note: 18 columns would exceed a billion.) 
 
 
3) Suppose you have a chessboard with 4 rows and 6 columns.  What number of 

rooks gives the highest number of non-attacking configurations?  Is it always true 
that “more rooks” means “more non-attacking configurations”?  Either explain or 
give a counterexample. 

 
 

Answer:   This problem shows that placing 4 rooks (the maximum number) doesn’t 
necessarily result in the most possibilities for configurations – in this case 3 rooks 
results in more possibilities (480 total) than 4 rooks (360 total).  
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B. Recall, too, that we found a formula for the number of ways of placing r rooks on 

an nm ´  board with one restricted position.  The fabulous formula was: 
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Use this formula to answer the following (very realistic) questions. 

 
 

1) In a (small) senior class of 30 guys and 36 girls, we need to decide on a Prom King 
and Queen. The senior class must choose 5 couples, and then the entire school votes 
from among these final couples.  But Kyle and Bethany refuse to be paired up with 
each other.  How many different ways could the senior class come up with 5 
“acceptable” final couples for the school to vote on, given this constraint?  
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2) The ever-popular math teacher, “Dr. G,” told his class not to worry so much about 

Kyle and Bethany, because it wasn’t very likely that they’d be paired up anyways.  
To see just how right he was, figure out what percentage of the total # of pairings 
of 5 couples are actually “acceptable,” given the constraint. 
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3) After Dr. G’s particularly difficult math exam, 1/2 of the guys and 1/2 of the girls 
suffered “severe” drops in their grades, making them ineligible for Prom King and 
Queen.  Now that the eligible pool is down to 15 guys and 18 girls, what 
percentage of the total # of pairings of 5 couples are “acceptable” (Kyle-and-
Bethany free)?  
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C.    Finally, recall that we found 2 different formulas for counting the number of ways of 
placing r rooks on an nm ´  board with two restricted positions.  Which formula to use 
depends on how the restricted positions are arranged. 
 
· When the 2 forbidden positions are in distinct rows and columns, our formula is:  
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· When they are in the same row (or column), our formula is the simpler: 
 

( )!1
1

1

1

1
2! -÷÷

ø

ö
çç
è

æ

-

-
÷÷
ø

ö
çç
è

æ

-

-
-÷÷

ø

ö
çç
è

æ
÷÷
ø

ö
çç
è

æ
r

r

n

r

m
r

r

n

r

m
 

 
Use these formulas to answer the following questions. 

 
 

1) Suppose that a pairing of Jeremy and Laura is impossible, and Kyle and Bethany 
still refuse to be paired up, and there are only 15 guys and 18 girls. How many 
matchings of 5 couples are we down to now?   
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2) If  Kyle and Bethany resolve their issues, but if Jeremy somehow ruins his chances 
with both Laura AND Bethany, then how many matchings of 5 couples do we 
have?   
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Introduction to Activity 4 
 
 In this activity, students get more practice applying the formulas they found for 

counting boards with restricted positions; certainly Part A consists solely of such 

computation.  They should be comfortable with using these formulas by now, especially 

having completed Review Worksheet 1.  The primary goal of this activity, however, rests 

in Part B.  The large board they are asked to count really consists of the two sub-boards 

they computed in Part A.  The students are thus given the tools they need to count this 

board, even though it is a larger board than they have previously dealt with and consists 

of many restricted positions.   

 The students should be given this activity without much advice or explanation; it 

is intended to be exploratory in nature.  Again, they should work in small groups and 

discuss their processes and ideas with their classmates.  While it is not particularly long 

or involved, the intent is that their investigation will lead them to discover a general rule 

for counting a large board that consists of two disjoint sub-boards.  Ideally, they will 

recognize that counting the number of ways of placing r rooks on a large board involves 

several cases: taking 0 rooks from one sub-board and r rooks from the other, or 1 rook 

from the first sub-board and r – 1 from the other, etc.  Even if they cannot express these 

concepts in such specific terms, they should begin to formulate thoughts that correspond 

to these ideas.   
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Activity 4 – Bored with Boards Yet?   
 
Part A 
Putting the drama of high school Proms aside, we gladly return to the safe world of 
counting rooks on chessboards.  As nice as our formulas are, we’re still not quite to the 
big picture yet.  So let us begin by considering the following two 55´  boards, where a 
gray box represents a restricted position.  Recall from Activity 3 the formulas we 
developed for computing the number of ways of placing r rooks on an nm ´  board where: 
 

· The two restricted positions are in distinct rows and columns 
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· The two restricted positions share a row or column 
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         B1                B2 
 
For each board B1 and B2, use the above formulas to complete the following tables.   
 
# of non- 
attacking 
rooks on B1 

 
0 

 
1 

 
2 
 

 
3 

 
4 

 
5 

# of ways of 
placing these 
rooks on B1 

      

 
 
 
# of non- 
attacking 
rooks on B2 

 
0 

 
1 

 
2 
 

 
3 

 
4 

 
5 

# of ways of 
placing these 
rooks on B2 
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Activity 4 – How About Now?   
 
Part B 
Now we present you with the following 1010´  board, where again gray boxes represent 
restricted positions.   
 

1) How many ways are there to place 7 rooks on the given 1010´  board?   
 

2) What process did you go through in order to solve this problem?   
 

3) Can you extract any general principles from the way you worked through this 
problem? 
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Activity 4 – Bored with Boards Yet?  (Teacher’s Version) 
 
Part A 
Putting the drama of high school Proms aside, we gladly return to the safe world of 
counting rooks on chessboards.  As nice as our formulas are, we still don’t see the big 
picture yet.  So let us begin by considering the following two 55´  boards, where a gray 
box represents a restricted position.  Recall from Activity 3 the formulas we developed 
for computing the number of ways of placing r rooks on an nm ´  board where: 
 

· The two restricted positions are in distinct rows and columns 
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· The two restricted positions share a row or column 
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         B1                B2 
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For each board B1 and B2, use the above formulas to complete the following tables.   
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Let m,n = 5, and have r range from 0 to 5, and we arrive at the following completed table.   
 
 
# of non- 
attacking 
rooks on B1 

 
0 

 
1 

 
2 
 

 
3 

 
4 

 
5 

# of ways of 
placing these 
rooks on B1 

 
1 

 
23 

 
169 

 
465 

 
426 

 
78 
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Let m,n = 5, and have r range from 0 to 5, and we arrive at the following completed table.   
 
 
# of non- 
attacking 
rooks on B2 

 
0 

 
1 

 
2 
 

 
3 

 
4 

 
5 

# of ways of 
placing these 
rooks on B2 

 
1 

 
23 

 
168 

 
456 

 
408 

 
72 
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Activity 4 – How About Now?  (Teacher’s Version) 
 
Part B 
Now we present you with the following 1010´  board, where again gray boxes represent 
restricted positions.   
 

1) How many ways are there to place 7 rooks on the given 1010´  board?   
 
Answer:  =×+×+×+× 1687845642640846572169  409248.  The reflection on this 
activity gives further insight into methods for solving this problem. 
 

2) What process did you go through in order to solve this problem?   
 
Answer:  They should have recognized that the large 1010´  board is exactly made up of 
the two smaller boards we computed above.  Thus the way of placing 7 rooks on this 
board can be thought of as four distinct cases: putting 5 on the first board and 2 on the 
second, 4 and 3, 3 and 4, and 2 and 5.  Each of these cases uses the multiplication 
principle, and we add the four cases together, which is how we got the result above. 
We hope they’ll use the tables they just computed in order to find the answer. 
 

3) Can you extract any general principles from the way this problem worked for 
you? 

 
Answer:  Hopefully they can begin to see that this sort of case breakdown would 
generalize to other boards with similarly disjoint sub-boards.  Ultimately we’re pushing a 
relationship between this and polynomial multiplication, but we don’t expect them to 
make this connection yet.  We don’t want to push anything yet; it’s good if they can just 
generally reflect upon how they found their result. 
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Reflection on Activity 4 
 
 The students were given Activity 4 to work on between our visits, almost as a pre-

activity to our second visit.  When we arrived for this second visit, we began the day by 

asking them to reflect upon Activity 4.  They had recorded the number of ways of placing 

rooks on each of the two boards in the provided table, and, in turn, had proceeded to use 

these tables to count the number of ways of placing r rooks on the disjoint union of the 

two boards.  One student very succinctly and eloquently explained how he’d approached 

the problem – which was exactly the type of answer I was hoping to hear.  He had done 

what we’d aimed for, namely, used the two smaller boards to count the larger one; in fact 

his explanation included a nice description of the convolution of the two sequences 

associated with each board.  Other students seemed to indicate that this was the approach 

they took as well.  We asked whether anyone had tried counting the large board directly, 

and one student said it had been quite a bit harder than the convolution that the first 

student had described.   

 For the students, this activity might have seemed a bit trivial; many of them 

seemed to understand it fairly naturally.  From our perspective, however, this was a 

hugely important step in the quest toward generating functions.  This activity was a 

success because the students essentially recognized the idea of convolution of sequences, 

even if they weren’t aware of the mathematical implications of what they were saying.  

Although sequence convolution is not yet being introduced explicitly, each subtle 

exposure to this idea is significant in the development of generating functions.   
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Introduction to Activity 5 
 
 This is a fairly long activity, among the most involved of anything the students 

will work on.  Essentially, by the end of this activity, the students will have the tools 

necessary to solve any rook board they will ever encounter (it is remarkable that three 

relatively simple principles allow for this to be the case).  However, in this activity the 

students will also be exposed to generating functions for the first time.  This is one of the 

most important concepts in the entire curriculum, and it will take time and effort to 

convey this idea properly.  Thus, there is an abundance of material for the students to 

engage with in this activity, and all of it contains extremely relevant combinatorial ideas. 

The structure of the activity is as follows.  The students will study the three 

principles (called “Rook Rules”) that allow for any rook board to be reduced and 

counted: the Disjoint Board principle, the Use/Don’t Use principle, and Switcheroo.  In 

Part A, these rules are introduced solely on the basis of counting, while in Part B 

generating functions are introduced.  Although the computations in Part A can be a bit 

unwieldy, the familiar ideas should come relatively naturally.  It is unlikely, however, 

that the students will be able to develop each of these entirely on their own.  A whole-

class discussion of these ideas (an interactive lecture) might be a valuable approach in 

conveying these concepts.  There are some practice problems throughout the activity for 

the students to work on (in the midst of such a whole class discussion) in order to confirm 

the ideas that are being taught.  The students should appreciate the fact that these three 

Rook Rules enable them to reduce and count any rook board they may encounter. 

In Part B, when generating functions are introduced, the analogs of these Rook 

Rules are presented – this time employing the idea of generating functions.  This is a 

topic of enormous weight, and care should be taken in raising it.  Again, an interactive 

lecture is a recommended means of communicating these ideas.  Because of the subtle 

attention given to sequence convolution in Activity 4, the introduction to generating 

functions appears remarkably well-motivated.  The students are primed for such a 

discovery.  After having gone through the more cumbersome counting versions of the 

Rook Rules, the generating function versions should be a welcome relief.   

This entire activity really serves to motivate an understanding of generating 

functions.  There is a lot of material, but it is imperative that students understand it before 
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moving on to subsequent activities.  Because of the power that generating functions hold 

in other mathematical contexts, they are one of the most central topics of the entire 

curriculum, and they should be treated as such.     
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Activity 5 – Rook Kung-Fu   
 
Part A 

Goal:  We want to establish a set of rules that will allow us to count ANY rook board we 
could ever encounter: the Kung-Fu of rook problems. 

 
Notation:  Given a board B, the number of ways of placing r non-attacking rooks on B 
will be denoted by )(Bnr .  From now on, when we refer to rooks, we’ll assume we are 

talking about non-attacking rooks. 

 
Rook Rule #1:  (Disjoint Boards) If a board C consists of two sub-boards A and B that 
do not overlap in any rows or columns, then  
 

)()()()()()()( 0110 BnAnBnAnBnAnCn rrrr +++= - L  

 
 

1) The following tables describe the number of ways of placing r rooks on the 
two disjoint sub-boards (A, B) of the board C below.  We used our restricted 
position formulas to construct these tables.  (Note: let A be the sub-board on 
the ‘upper left’ and B be the sub-board on the ‘lower right.’) 

 
R 0 1 2 3 

)(Anr  1 10 25 14 

 
R 0 1 2 3 

)(Bnr  1 4 3 0 

 
 

 
            C 
                         
Complete the following table using the Disjoint Board principle.   
 

r 0 1 2 3 4 5 6 
 

)(Cnr  
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Rook Rule #2:  (Use / Don’t Use) If the i,j-square S of a board C is not a forbidden 
square, then  

)()()( 211 CnCnCn rrr += - , 

 
where 1C  is the board formed when we use S (and remove the ith row and jth column), 

and 2C is the board formed when we don’t use S (and S becomes a forbidden square).

 
(Note: it would make sense to define 0)(1 =- Cn  for any board C.) 

 
2) Select a square for S in the board B below which (after applying Rook Rule 

#2) will reduce the given board B to two simple rectangles.  Shade in the 

restricted squares for your new boards 1B and 2B , where 1B  is the board 

obtained after we use S, and 2B  is the board obtained after we don’t use S. 

You do not need to reduce the board further or count the number of 
configurations. 
 

 
                                                                B 

                                 
                    1B  - use S                                                  2B  - don’t use S 

 

If we wanted to place r rooks on board B, how many rooks do we place on 1B and 2B  

respectively? 
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Rook Rule #3:  (Switcheroo) Suppose a board B can be obtained from another board C 
simply by permuting rows and/or columns.  Then for any integer r,  
 

)()( CnBn rr =  

 
In other words, we can swap rows and columns without affecting the outcome. 

 
 

3) For the following boards B and C, perform a series of row and/or column 
switches to transform one into the other.  You may use the empty boards to 
draw the intermediate stages. 
Are you satisfied that we can switch rows and columns without changing the 
counting problem?  Why or why not?  

       
                            

4) Since we know how to count disjoint sub-boards, transform the board below 
into a board containing two disjoint sub-boards. 

 
 

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

B 

C 
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Activity 5 – Rook Kung Fu  
 
Part B 
Notation:  By the rook polynomial of a board B, we mean the polynomial 
 

å
³

=
0

)(),(
r

r
r xBnxBR . 

 
The rook polynomial of a board is a generating function where the coefficient of the 

thr term is )(Bnr , the number of ways of placing r rooks on a chessboard B.   

 
Rook Rule #1: Disjoint Boards (polynomial version)  If a board C consists of two sub-
boards A and B that do not overlap any rows or columns, then  
 

),(),(),( xBRxARxCR = . 

 
 

5) Use rook polynomials Rook Rule #1 to complete the following problem.  The 
rook polynomial of the boards A and B are given below.   

 

 
                                      A                                                            B 
 

                       231),( xxxAR ++=                             2241),( xxxBR ++=  

 

                                                   
                                                                     C 
 
Then board C is simply the disjoint union of boards A and B.   
According to Rook Rule #1, give the rook polynomial for board C: 
 

),( xCR = 

 
If we count the board C by hand, we arrive at the same result! 
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Rook Rule #2:  Use/Don’t Use (polynomial version)  If the i,j-square S of a board C is 
not a forbidden square, then 

),(),(),( 21 xCRxCxRxCR += ,  

 
Where 1C  is the board formed when we use S (and forbid the ith row and jth column), and 

2C is the board formed when we don’t use S (and S becomes a forbidden square). 

 
 

6) Use rook polynomials and Rook Rule #2 to complete the following problem.   
 

 
                                                                     C 
If we use square S, then we forbid the row and columns of S, and we get the following 

board 1C , whose rook polynomial is given below. 

 
                                                                                     1C                                                                                        

                                                                         xxCR 21),( 1 +=  

 

If we don’t use square S, then we get the following board 2C , whose rook polynomial is 

given below. 

 

2C  
2

2 241),( xxxCR ++=  

 
Use Rook Rule #2, to write the rook polynomial of board C.   

=+= ),(),(),( 21 xCRxCxRxCR    

 
Again, counting board C directly yields the same result.  
 
 

   

   

 S  

   

   

   

   

   

   

   

   

 S  



 

 

 

114 

 
Rook Rule #3: Switcheroo (polynomial version)  Suppose a board B can be obtained 
from another board C simply by permuting rows and/or columns.  Then  
 

),(),( xCRxBR =  

 
In other words, we can swap rows and columns without affecting the outcome.

 
 

7) Transform board B into board C by switching rows and columns.  The rook 
polynomial of board B is given.   

 

 
              B                                                                                                         C 

 2451),( xxxBR ++=  

 
According to Rook Rule #3, what is the rook polynomial of C? 
 

=),( xCR  

 
Use counting methods to obtain ),( xCR to confirm that you obtain the expected result.   
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Activity 5 – Rook Kung Fu  (Teacher’s Version) 
 
Part A 
Preliminary Notes:  The teacher could begin the class by saying something like:  

“Recall that we’ve developed formulas for counting the number of ways of 
placing r rooks on boards with 0, 1, and 2 restricted positions.  We used some basic 
counting principles, (including the principle of inclusion/exclusion) to derive these 
formulas.  It turns out, though, that applying the principle of inclusion/exclusion to 
increasingly complex boards gets ridiculously hard pretty quickly.  Fortunately, we can 
continue to use some basic counting principles in order to simplify (and then count) more 
intricate boards.   

In Activity 4 you made tables for two boards (using formulas we had derived), 
and then you figured out a way to place 7 rooks on the disjoint union of these two boards.   
In doing this problem, did you develop a conjecture about the general way to count such 
boards?  What must be true of these boards in order to make your conjecture hold?  How 
do you know?  How do counting principles relate to this?”   
 

Goal:  We want to establish a set of rules that will allow us to count ANY rook board we 
could ever encounter: the Kung-Fu of rook problems. 

 
Notation:  Given a board B, the number of ways of placing r non-attacking rooks on B 
will be denoted by )(Bnr .  From now on, when we refer to rooks, we’ll assume we are 

talking about non-attacking rooks. 

 
Rook Rule #1:  (Disjoint Boards) If a board C consists of two sub-boards A and B that 
do not overlap in any rows or columns, then  
 

)()()()()()()( 0110 BnAnBnAnBnAnCn rrrr +++= - L  

 
 

1) The following tables describe the number of ways of placing r rooks on the 
two disjoint sub-boards (A, B) of the board C below. We used our restricted 
position formulas to construct these tables.  (Note: let A be the sub-board on 
the ‘upper left’ and B be the sub-board on the ‘lower right.’) 

 
r 0 1 2 3 

 

)(Anr  
 
1 

 
10 

 
25 

 
14 

 
r 0 1 2 3 

 

)(Bnr  
 
1 

 
4 

 
3 

 
0 
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                                 C 
                         
Complete the following table using the Disjoint Board principle.   
 
Answer:  By applying Rook Rule #1, the students should arrive at the following table.   
 

R 0 1 2 3 4 5 6 
 

)(Cnr  
 

1 
 

14 
 

68 
 

144 
 

131 
 

42 
 

0 

 
 
Notes:   
n Emphasize what “disjoint” means on the blackboard.  For this Rook Rule #1 to hold, 

the boards must be completely disjoint; they cannot overlap in any row or column.  
For instance, below are two boards A and B.  A consists of two disjoint sub-boards, 
but B does not.  This is an important distinction for your students to recognize. 

 

                                   
                                             A                                                B 
          
n Also, while Rook Rule #1 is stated for two disjoint sub-boards, it holds true for any 

number of disjoint sub-boards.  This knowledge will benefit the students later.  It 
might be worthwhile to ask them if they think the rule generalizes and then have 
them explain their reasoning.   
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Rook Rule #2:  (Use / Don’t Use) If the i,j-square S of a board C is not a forbidden 
square, then  

)()()( 211 CnCnCn rrr += - , 

 
where 1C  is the board formed when we use S (and remove the ith row and jth column), 

and 2C is the board formed when we don’t use S (and S becomes a forbidden square).  

 
(Note: it would make sense to define 0)(1 =- Cn  for any board C.) 

 
2) Select a square for S in the board B below which (after applying Rook Rule 

#2) will reduce the given board B to two simple rectangles.  Shade in the 

restricted squares for your new boards 1B and 2B , where 1B  is the board 

obtained after we use S, and 2B  is the board obtained after we don’t use S. 

You do not need to reduce the board further or count the number of 
configurations. 

 
Answer:  We show the desired square S and the resulting reduced boards below. 

 
                                                                B 

                                 
                    1B  - use S                                                  2B  - don’t use S 

 
If we wanted to place r rooks on board B, how many rooks do we place on 1B and 2B  

respectively? 
 
Answer:  We seek to place 1-r  rooks on 1B  and to place r rooks on 2B . 

 
Notes:  See transparency at the end of this activity for a complete example of this rule.   
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Rook Rule #3:  (Switcheroo) Given any board B, and any board C that can be obtained 
from B merely by permuting rows and/or columns of C, we have 

 

)()( CnBn rr =  

 
In other words, we can swap rows and columns without affecting the outcome. 

 
 
Notes:  In these exercises, hopefully the students will recognize the fact that they can 
switch multiple rows and columns as well.  For instance, they could interchange a set of 
two rows with a single row.  This should make sense to them.   
 

1) For the following boards B and C, perform a series of row and/or column 
switches to transform one into the other.  Are you satisfied that we can switch 
rows and columns without changing the counting problem?  Why or why not?   

 
B                                 C 

 
 
Answer:  This is one option of a scenario for transforming B into C.   
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2) Since we know how to count disjoint boards, deform the board B below into a 
board containing two disjoint sub-boards. 

 
Answer:  They should deform it to something like the board on the right, although there 
are other options as well.  
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Activity 5 – Rook Kung Fu  (Teacher’s Version) 
 
Part B 
Notation:  By the rook polynomial of a board B, we mean the polynomial 
 

å
³

=
0
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r

r
r xBnxBR  

 
The rook polynomial of a board is a generating function where the coefficient of the 

thr term is )(Bnr , the number  of ways of placing r rooks on a chessboard B.   

 
Rook Rule #1: Disjoint Boards (polynomial version)  If a board C consists of two sub-
boards A and B that do not overlap any rows or columns, then  
 

),(),(),( xBRxARxCR =  

 
 

3) Use rook polynomials Rook Rule #1 to complete the following problem.  The 
rook polynomial of the boards A and B are given below.   

 

 
                                      A                                                            B 
 

                       231),( xxxAR ++=                             2241),( xxxBR ++=  

 

                                                   
                                                                     C 
 
Then board C is simply the disjoint union of boards A and B.   
According to Rook Rule #1, give the rook polynomial for board C: 

43222 2101571)241()31(),(),(),( xxxxxxxxxBRxARxCR ++++=++×++==  

 
 
If we count the board C by hand, we arrive at the same result! 
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Rook Rule #2:  Use/Don’t Use (polynomial version)  If the i,j-square S of a board C is 
not a forbidden square, then 

),(),(),( 21 xCRxCxRxCR += ,  

 
where 1C  is the board formed when we use S (and remove the ith row and jth column), 

and 2C is the board formed when we don’t use S (and S becomes a forbidden square). 

 
 

4) Use rook polynomials and Rook Rule #2 to complete the following problem.   
 

 
                                                                     C 
If we use square S, then we get the following board 1C , whose rook polynomial is given 

below. 

  
                                                                                    1C                                                                                        

                                                                        xxCR 21),( 1 +=  

 

If we don’t use square S, then we get the following board 2C , whose rook polynomial is 

given below. 
 

 

2C  
2

2 241),( xxxCR ++=  

 
Use Rook Rule #2, to write the rook polynomial of board C.   

22
21 451)241()21(),(),(),( xxxxxxxRxxRxCR ++=++++=+=  

 
Again, counting board C directly yields the same result.  
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Rook Rule #3: Switcheroo (polynomial version)  Suppose a board B can be obtained 
from another board C simply by permuting rows and/or columns.  Then  
 

),(),( xCRxBR =  

 
In other words, we can swap rows and columns without affecting the outcome.

 
 

5) Transform board B into board C by switching rows and columns.  The rook 
polynomial of board B is given.   

 

 
              B                                                                                                         C 

 2451),( xxxBR ++=  

 
According to Rook Rule #3, what is the rook polynomial of C? 
 

=),( xCR 2451 xx ++  

 
Use counting methods to obtain ),( xCR to confirm that you obtain the expected result.   
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Given the board C below, use Rook Rule #2 to complete the given table for ).(Cnr   

We choose S strategically. 
 

 
                                                                           
                                                                      C 
 
                                                                                                                           
                         Use S                                                                                 Don’t Use S 

                                                                                                
                 1C                                               1C                                                  2C                     

 
 
 
 
 
 
 
              Use S                                                                      Don’t Use S 

                                
       1C                                     1C                                                       2C   

 
 
By our Rook Rule #2, we know that )(Cnr  = )()( 211 CnCn rr +-  

      = )]()([)( 21111 CnCnCn rrr ++ --  
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Student Version  
    
Now 1C , 1C , and 2C  are relatively easy to count.   

 
r 0 1 2 3 4 

)( 1Cnr       

 
 

r 0 1 2 3 4 

)( 1Cnr       

 
 

r 0 1 2 3 4 

)( 2Cnr       

 
 
Recall that by our Rook Rule #2, we know that )(Cnr  = )()( 211 CnCn rr +-  

        = 

)]()([)( 21111 CnCnCn rrr ++ --  

 
So by plugging the above table values into given equation, we can complete the desired 
table for )(Cnr .  Keep in mind we define 0)(1 =- Bn for any board B. 

 
 

r 0 1 2 3 4 

)(Cnr       
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Answer Key 
 
Now 1C , 1C , and 2C  are relatively easy to count.  Some of the counting may require 

formulas from activity one, but most of can be counted by hand. 
 

r 0 1 2 3 4 

)( 1Cnr  1 5 6 2 0 

 
 

r 0 1 2 3 4 

)( 1Cnr  1 5 7 2 0 

 
 

r 0 1 2 3 4 

)( 2Cnr  1 7 14 8 0 

 
 

Recall that by our Rook Rule #2, we know that )(Cnr  = )()( 211 CnCn rr +-  

        = 

)]()([)( 21111 CnCnCn rrr ++ --  

 
So by plugging the above table values into given equation, we can complete the desired 
table for )(Cnr .   

Keep in mind we define 0)(1 =- Bn for any board B. 

 
r 0 1 2 3 4 

)(Cnr  1 9 24 21 4 
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Reflection on Activity 5 
 
 We went through this activity in a single class period.  This involved more lecture 

than we had previously used, but because each key point in the discussion was followed 

immediately by a simple example and a short time of working in pairs, it was quite 

interactive in nature.  Indeed, as we introduced concepts and raised questions, the 

students were very engaged and responsive.  Furthermore, when I would query them as to 

what I should write on the board in various examples, they enthusiastically participated, 

offering valuable insights and suggestions.  To introduce this activity we talked briefly 

about the fact that we needed to move away from inclusion/exclusion, as it can get 

complicated very quickly.  We explained that we were giving them rules that will allow 

them to count any rook board ever.   

 We then had them work on the first problem of Activity 5 (Rook Rule #1), and 

the students seemed to understand the gist of it.  I noticed that some students started to 

work out the formulas for counting the smaller boards, but their classmates pointed out 

that they could use the tables that were already provided.  After some time, one student 

presented his solution on the white board.  We’d written the tables for the smaller boards 

on the white board, and he was able just to point to the various combinations of r rooks 

from each board, which essentially demonstrated this idea of the convolution of 

sequences.  Again, this was the exact connection I had been hoping they would make.  It 

was nice to get a sense of how he reasoned through the problem, and the rest of the class 

seemed to understand his explanation.  We asked them if this reminded them of anything, 

but no one recognized this as polynomial multiplication (we didn’t push it and weren’t 

expecting them to connect these ideas). 

 Next I lectured a bit about Rook Rule #2, doing a small example of the Use/Don’t 

Use principle.  The class was responsive and able to answer questions about how many 

rooks were to be placed on the reduced boards (r or r – 1, depending on the case).  They 

seemed to be pretty convinced about why this rule would be true.  We then had them 

work on Question 2.  Admittedly, this was a little hard, and we have since refined it a bit 

for this activity.  While some students were very careful about what to choose for S, 

others didn’t make a very strategic choice.  It was just a little much, and they got bogged 

down in the computation of it.  Many of them were still able to arrive at the right 
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answers, though, which was good.  In fact, some of the girls said that they were enjoying 

reducing the boards in this way.  If we had a little more time, we really could have 

hammered this home, particularly for some of the possibly weaker students.  As I 

observed the small groups as they worked, not all of the students were clear about what 

was going on, and a couple more examples would have likely clarified this more 

completely.  Ultimately this was a good lesson for me, however, as I learned to tone this 

example down a bit for the future.   

 Due to time, we barely touched on Rook Rule #3, just mentioning the fact that 

they could switch rows and columns if they so desired.  Again, they seemed to 

understand this.  With a little more time, as with the above activity, we could make sure 

that the entire class really understands this.  We were anxious to get past this, though, and 

move on to rook polynomials.  We also had the luxury of knowing that they could have a 

week to absorb the ideas we were introducing before we would return to continue with 

more. 

 Next, I briefly introduced the idea of a generating function.  It was not clear at 

first that they completely followed the definition, but as I wrote the generating functions 

for the tables that were already up on the board, they obviously began to have a much 

better understanding of what I had said.  We talked about the relationship between the 

counting we had done earlier and polynomial multiplication, and, to our surprise, the 

students grasped it immediately.  In fact, I heard at least a couple of “that’s awesome”s 

from the class, which was great.  It was pretty natural for them to see the relationship 

between generating functions and our Rook Rule #1.  Surrounded by vigorous nodding 

and nonverbal clues of encouragement, we proceeded to go through the other rules pretty 

quickly.  In discussing Rook Rule #2, something important happened.  We presented the 

rule, and a student asked what the extra “x” was doing there.  Another student was able 

correctly to answer him in a manner that reflected an understanding of both the 

underlying counting principle as well as the algebraic significance of the generating 

function structure.  So I think that, already, some of the students had a good sense of what 

was going on and were even excited about it.   

 At one point we had a couple of simple boards drawn on the white board, and I 

sort of talked through what the rook polynomials might be.  I would say, “how many 
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ways can we place 0 rooks?” and they would answer.  Then, I would write that answer as 

the coefficient of the x0 term.  As I did this for a couple of boards, this helped the 

students get at the notion of what a rook polynomial was (and hopefully something about 

generating functions as well). 

 On the whole I was pretty pleased, especially because we successfully used rooks 

to introduce generating functions.  The students seemed genuinely excited about the idea 

of generating functions, and I believe they realized the value of them, at least as 

computational time-savers.  Everyone was more relaxed during this second visit, too, 

(including myself) which made the whole experience that much more enjoyable. 
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Introduction to Review Worksheet 2 
 
 Similar to the first review worksheet, this is designed to have students explore the 

new ideas to which the students have just been introduced.  Intended to follow Activity 5 

directly, this assessment specifically allows for more time spent exploring both the 

counting and polynomial versions of the Rook Rules.  The purpose is to have interesting, 

somewhat fun problems to give them practice with these new concepts.  This could easily 

be given as homework or as a group assignment in class.   
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Assessment 2 – Review Worksheet 
 
We have established 3 pretty sweet counting principles related to rook problems, and 
these allow us to count ANY rook board we may encounter.  Recall the three major 
principles we discussed… 

Rook Rule #1:  (Disjoint Boards) If a board C consists of two sub-boards A and B that 
do not overlap in any rows or columns, then  
 

)()()()()()()( 0110 BnAnBnAnBnAnCn rrrr +++= - L  

 
Rook Rule #1: Disjoint Boards (polynomial version)  If a board C consists of two sub-
boards A and B that do not overlap in any rows or columns, then  
 

),(),(),( xBRxARxCR =  

 

 

Rook Rule #2:  (Use / Don’t Use) If the i,j-square S of a board C is not a forbidden 
square, then  

)()()( 211 CnCnCn rrr += - , 

 
where 1C  is the board formed when we use S (and remove the ith row and jth column), 

and 2C is the board formed when we don’t use S (and S becomes a forbidden square). 

 
Rook Rule #2:  Use/Don’t Use (polynomial version)  If the i,j-square S of a board C is 
not a forbidden square, then 

),(),(),( 21 xCRxCxRxCR += ,  

 
where 1C  is the board formed when we use S (and remove the ith row and jth column), 

and 2C is the board formed when we don’t use S (and S becomes a forbidden square). 

 

Rook Rule #3:  (Switcheroo) Suppose a board B can be obtained from another board C 
simply by permuting rows and/or columns.  Then  

 

)()( CnBn rr =  

 
In other words, we can swap rows and columns without affecting the outcome. 

Rook Rule #3: Switcheroo (polynomial version)  Suppose a board B can be obtained 
from another board C simply by permuting rows and/or columns.  Then  

 
),(),( xCRxBR =  

 
In other words, we can swap rows and columns without affecting the outcome. 
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Now that we have these great principles about counting and rook polynomials, let’s put 
them into practice!  Use the principles we discussed in class (and the Rook Rules listed 
above) to answer the following problems.   
 

1) Use rook polynomials to determine the number of ways of placing 4 rooks on 
the RED squares of a checkerboard (which has dimension 88´ ). 

 
2) Five kids are getting ready to buy the last five pets at a pet store.  Their 

options are a hamster, a frog, a goldfish, a cockatiel, and a puppy.  The only 
problem is some of the kids can’t handle some of the pets: 

 
n Carly only wants something with fur (feathers don’t count). 
n Sarah prefers amphibians. 
n Brad would like anything that doesn’t have claws or talons. 
n Joanna only wants a puppy or a hamster. 
n Derek wants a pet that can fly. 

 
How many ways can we distribute the pets to these five kids?  Keeping in 
mind our simplification methods, set up a rook board for this problem and 
solve. 
 

 
3) Since Skating with Celebrities and Dancing with the Stars have been 

relatively big hits, the networks are already looking for some celebrities to 
appear on their newest show: Acting with the Stars.  In this show, we take 
respected, Oscar-winning actors and pair them with B-list action heroes.  They 
perform scenes in front of members of the Academy, and each week, one 
unlucky duo gets voted off.  There are current negotiations attempting to give 
the winning team honorary Academy Awards. 

 
Unbelievably, the networks have gotten 4 good actors and 5 less-good actors 
to agree to this.  The networks have hired you to determine just how many 
ways we could get 4 couples from the given choices.  Let’s face it, though; 
some actors have egos.  So the following restrictions apply: 

 
n Sir Anthony Hopkins absolutely refuses to work with Steven Seagal, Carl 

Weathers and Jean-Claude Van Damme.    
n Even though Al Pacino hasn’t won in a few years, he just can’t respect Carl 

Weathers or Steven Seagal.   
n Meryl Streep loves accents, so she wants to work with Jean-Claude Van Damme 

or Lucy Lawless.   
n Dame Judi Dench hates two things: Australian accents and facial hair, so she 

doesn’t want to work with Lucy Lawless or Chuck Norris.  
 
Use our theorems to count the number of ways of making 4 couples!   
 



 

 

 

132 

Assessment 2 – Review Worksheet (Teacher’s Version) 
 
We have established 3 pretty sweet counting principles related to rook problems, and 
these allow us to count ANY rook board we may encounter.  Recall the three major 
principles we discussed… 

Rook Rule #1:  (Disjoint Boards) If a board C consists of two sub-boards A and B that 
do not overlap in any rows or columns, then  
 

)()()()()()()( 0110 BnAnBnAnBnAnCn rrrr +++= - L  

 
Rook Rule #1: Disjoint Boards (polynomial version)  If a board C consists of two sub-
boards A and B that do not overlap in any rows or columns, then  
 

),(),(),( xBRxARxCR =  

 

 

Rook Rule #2:  (Use / Don’t Use) If the i,j-square S of a board C is not a forbidden 
square, then  

)()()( 211 CnCnCn rrr += - , 

 
where 1C  is the board formed when we use S (and remove the ith row and jth column), 

and 2C is the board formed when we don’t use S (and S becomes a forbidden square). 

 
Rook Rule #2:  Use/Don’t Use (polynomial version)  If the i,j-square S of a board C is 
not a forbidden square, then 

),(),(),( 21 xCRxCxRxCR += ,  

 
where 1C  is the board formed when we use S (and remove the ith row and jth column), 

and 2C is the board formed when we don’t use S (and S becomes a forbidden square). 

 

Rook Rule #3:  (Switcheroo) Suppose a board B can be obtained from another board C 
simply by permuting rows and/or columns.  Then  

 

)()( CnBn rr =  

 
In other words, we can swap rows and columns without affecting the outcome. 

Rook Rule #3: Switcheroo (polynomial version)  Suppose a board B can be obtained 
from another board C simply by permuting rows and/or columns.  Then  

 
),(),( xCRxBR =  

 
In other words, we can swap rows and columns without affecting the outcome. 
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Now that we have these great principles about counting and rook polynomials, let’s put 
them into practice!  Use the principles we discussed in class (and listed above) to answer 
the following problems.   
 
Notes:  The purpose of these problems is to have the students become familiar with the 
principles we used.  The hope is that they will recognize the various counting ideas, and 
that they will become familiar with how to implement them.  They really could approach 
these either with the counting ideas or the rook polynomial versions of those ideas, but 
hopefully at some point they will realize that the rook polynomials (the generating 
functions) aid in computation.   
 

1) How many ways can we place 4 rooks on the RED squares of a checkerboard? 
 
Answer:  This problem is utilizes Rook Rule #1 and #2.  It’s really just a matter of 
swapping rows and columns and then applying Rule #1. 
 

 
 
We can use our previously-derived formulas to find that the rook polynomial for each 
sub-board SB (which also happens to be a 44 ´ square). 

 ),( xSBR = 432 249672161 xxxx ++++  

 
Thus the rook polynomial for the entire board B is 

),( xBR = 2432 )249672161( xxxx ++++  

  = 8765432 5764608126721459283042496400321 xxxxxxxx ++++++++  
 

Thus the coefficient of the 4x term, or the number of ways of placing 4 rooks, is 8304. 
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2) Five kids are getting ready to buy the last five pets at a pet store.  Their 
options are a hamster, a frog, a goldfish, a cockatiel, and a puppy.  The only 
problem is some of the kids can’t handle some of the pets: 

 
n Carly only wants something with fur (feathers don’t count). 
n Sarah prefers amphibians. 
n Brad would like anything that doesn’t have claws or talons. 
n Joanna only wants a puppy or a hamster. 
n Derek wants a pet that can fly. 

 
How many ways can we distribute the pets to these five kids?  Keeping in 
mind our simplification methods, set up a rook board for this problem and 
solve. 
 

Answer:  This answer begins with a given configuration of the board.  Note that students 
may label their rows and columns differently to begin with.  However, the actual rook 
polynomial should come out to be the same no matter what configuration they start with.  
Note the kids are listed as rows in the order they were mentioned, and the pets are listed 
as columns in the order they were mentioned.  In this problem we labeled the rows and 
columns so the instructor can better understand this answer key.  The rook board itself 
consists of the board without the row and column of labels.   
 

 
Note we can transform this into the board on the right above, which consists of three 
disjoint sub-boards that are easily countable.  The rook polynomials for the boards are as 
follows: 
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    2241),( xxxAR ++=                      231),( xxxBR ++=                       xxCR += 1),(  

 
Because they are disjoint, the rook polynomial of the entire board is the product of the 
three,  

)1()31()241(),( 22 xxxxxxDR +×++×++= = 5432 212252281 xxxxx +++++  

So there are only two ways to distribute these pets to these five kids! 
 
 

3) Since Skating with Celebrities and Dancing with the Stars have been 
relatively big hits, the networks are already looking for some celebrities to 
appear on their newest show: Acting with the Stars.  In this show, we take 
respected, Oscar-winning actors and pair them with B-list action heroes.  They 
perform scenes in front of members of the Academy, and each week, one 
unlucky duo gets voted off.  There are current negotiations attempting to give 
the winning team honorary Academy Awards. 

 
Unbelievably, the networks have gotten 4 good actors and 5 less-good actors 
to agree to this.  The networks have hired you to determine just how many 
ways we could get 4 couples from the given choices.  Let’s face it, though; 
some actors have egos.  So the following restrictions apply: 

 
n Sir Anthony Hopkins absolutely refuses to work with Steven Seagal, Carl 

Weathers and Jean-Claude Van Damme.    
n Even though Al Pacino hasn’t won in a few years, he just can’t respect Carl 

Weathers or Steven Seagal.   
n Meryl Streep loves accents, so she wants to work with Jean-Claude Van Damme 

or Lucy Lawless.   
n Dame Judi Dench hates two things: Australian accents and facial hair, so she 

doesn’t want to work with Lucy Lawless or Chuck Norris.  
 
Use our theorems to count the number of ways of making 4 couples!   

 
Answer:  This problem really utilizes Rook Rule #2, and it could potentially be tricky.   
As above, this answer begins with a given configuration of the board.  Note that students 
may label their rows and columns differently to begin with.  However, the actual rook 
polynomial should come out to be the same no matter what configuration they start with.  
Note the “good actors” are listed as rows in the order they were mentioned; the “bad 
actors” are listed as columns in the order they were mentioned.  The letters correspond to 
their last names.  In this problem I labeled the rows and columns so the instructor can 
better understand this answer key.  The rook board itself consists of the board without the 
row and column of labels.  I eliminate them after the initial set-up of the board is clear.   
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                       D 
 
If we use S we get the following board, call it 1C .  Then we use Rook Rule #3 to get the 

board below on the right.   

 
                                                                                                                            1C  

The rook polynomial of this board 1C  is the easily computable 
322

1 2751)31()21(),( xxxxxxxCR +++=++×+= . 

 
If we don’t use S we get the following board, call it 2C .  

 

 
2C  

 
This board 2C , however, is still a little complicated to count, so we apply Use/Don’t Use 

again to the 2C .  We select square S. 
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If we use S, then we get the following board. 

 
                                                                                               1C            

The rook polynomial of this board 1C is the easily computable 

2
1 651)21()31(),( xxxxxCR ++=+×+= . 

 
If we don’t use S, then we get the following board. 
 
 

 

2C  

The rook polynomial of this board 2C is also easy to compute: 

43222
2 4162081)241()241(),( xxxxxxxxxCR ++++=++×++=  

 
So now we recall Rook Rule #2, and we realize that before we add all of these together 
we need to multiply the rook polynomials of 1C  and 1C  by x first.   

So, in total, we use Rook Rule #2 to find the rook polynomial of our original board D.   
Since we applied Use/Don’t use again to 2C  and found 1C  and 2C , we get 

)],(),([),(),(),(),( 21121 xCRxCxRxCxRxCRxCxRxDR ++=+= . 

 
Just to recap, note that 

322
1 2751)31()21(),( xxxxxxxCR +++=++×+=  

2
1 651)21()31(),( xxxxxCR ++=+×+=  

43222
2 4162081)241()241(),( xxxxxxxxxCR ++++=++×++=  

 
Plugging in, we get 

)4162081()651()2751(),( 432232 xxxxxxxxxxxxDR +++++++++++=  

              = 432 62930101 xxxx ++++  
So there are 6 ways that we could make couples for the new TV show! 
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Introduction to Activity 6 
 
 This activity relates matchings, a topic from graph theory, to students’ developing 

knowledge of rook boards.  It asks specific questions that force them to consider the 

relationship between configurations of rooks and matchings in complete bipartite graphs.  

The activity, as it is written, assumes that the students have some prior exposure to 

matchings.  If they have been introduced to matchings before they start this activity, it is 

reasonable to expect them to be able to work through it on their own or in small groups.  

If not, however, more time might be needed in order to explore the notion of matchings 

further.  It is not necessary that students know any of the powerful theorems concerning 

matchings that are out there; rather, they need only a familiarity with the basic concepts 

and definitions involved.   

 This activity should be treated more as a pre-activity, just to get students to think 

about these ideas.  The open-ended nature of the questions should force them to articulate 

their ideas clearly, ultimately making their learning more meaningful.  Discussion of 

these problems among students is greatly encouraged.     
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Activity 6 – All Aboard For Matchings, Captain Rook! 
 
Even though you guys are probably pros at matchings by now, take a moment to remind 
yourselves of the definition of a matching. 
 
Matchings 

Here we deal with simple graphs consisting of vertices and edges.  A matching in 
a graph G is a set of edges such that no two edges share an endpoint.  Or, said another 
way, a matching is a set of edges, no two of which have a vertex in common.  
 Since matchings are edge sets, we can find matchings of various sizes for a given 
graph; an r-matching in a graph G, then, is a set of r edges, no two of which share a 
common vertex.   
 
Rooks and Matchings 
 Rook boards correspond to bipartite graphs in a natural way.  Each row and each 
column is represented by a vertex, where the row vertices and the column vertices make 
up the two cells of the bipartition.  An edge is drawn between a row vertex and a column 
vertex if the square in that row and column is not forbidden.  For example, in an nm ´  
board with no forbidden squares, the corresponding graph is the complete bipartite graph, 

nmK , . 

 
1) Draw a graph that corresponds to a 54´  chessboard with no restricted positions. 

 
2) Relate the rules of placing non-attacking rooks to the rules governing matchings.   

 
3) Explain why rook boards always give rise to bipartite graphs with this 

construction.  Can every bipartite graph be modeled by a rook board? 
 
4) What does a restricted position in the rook setting correspond to in the setting of 

graphs?  In other words, how might we describe a restricted position in a graph?   
 

5) Using a formula we have about rooks, find the number of r-matchings in the 

complete bipartite graph nmK , .  Look at this formula and discuss how you would 

describe the counting process it reveals in terms of matchings. 
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Activity 6 – All Aboard For Matchings, Captain Rook! (Teacher’s Version) 
 
Even though you guys are probably pros at matchings by now, take a moment to remind 
yourselves of the definition of a matching. 
 
Matchings 

Here we deal with simple graphs consisting of vertices and edges.  A matching in 
a graph G is a set of edges such that no two edges share an endpoint.  Or, said another 
way, a matching is a set of edges, no two of which have a vertex in common.  
 Since matchings are edge sets, we can find matchings of various sizes for a given 
graph; an r-matching in a graph G, then, is a set of r edges, no two of which share a 
common vertex.   
 
Rooks and Matchings 
 Rook boards correspond to bipartite graphs in a natural way.  Each row and each 
column is represented by a vertex, where the row vertices and the column vertices make 
up the two cells of the bipartition.  An edge is drawn between a row vertex and a column 
vertex if the square in that row and column is not forbidden.  For example, in an nm ´  
board with no forbidden squares, the corresponding graph is the complete bipartite graph, 

nmK , . 

 
1) Draw a graph that corresponds to a 54´  chessboard with no restricted positions. 
 

 
2) Relate the rules of placing non-attacking rooks to the rules governing matchings.   

 
Answer:  In the rook board setting, once we place a non-attacking rook we cannot place 
any other rook in the same row or column as our given rook.  Similarly, because of how 
matchings are defined, once we select an edge to be in a given matching, we cannot re-
use either endpoint of that edge in that matching.  Since the rows and columns each 
correspond to vertices in a cell of the bipartition, we see that just as a row or column is 
“used up” once a rook is placed there, so a vertex is “used up” once its edge is included in 
a matching.  Said another way, a given row or column can contribute to at most one rook 
being placed on the board, and a given vertex can contribute to at most one edge in a 
matching. 
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3) Explain why rook boards always give rise to bipartite graphs with this 
construction.  Can every bipartite graph be modeled by a rook board? 

 
Answer:  Because of the fact that the rows and columns of the rook board correspond to 
vertices in the two cells of the bipartition, these rook boards and bipartite graphs are 
inextricably linked.  It works out ideally that matchings and non-attacking rooks have 
exactly the same restrictions, so the problems of rooks and matchings are perfectly 
analogous to one another.  Note, however, that rook boards do not model other types of 
non-bipartite graphs.   
 

4) What does a restricted position in the rook setting correspond to in the setting of 
graphs?  In other words, how might we describe a restricted position in a graph?   

 
Answer:  A restricted position in the graph is a missing edge.  Two vertices cannot be 
paired up (and an edge between them cannot be included in a matching) unless an edge 
exists between them.  A missing edge essentially disallows a pairing of vertices, much 
like a restricted position in the rook setting.   
 

5) Recalling a formula we have about rooks, find the number of r-matchings in the 

complete bipartite graph nmK , .  Look at this formula and discuss how you would 

describe the counting process it reveals in terms of matchings. 
 

Answer:  We realize that in our complete bipartite graph nmK , , m and n are the number of 

vertices in each cell of the bipartition.  In counting the r-matchings in such a graph, we 
are essentially looking for edge sets of size r.  In order to do this, we must first pick r left 
endpoints from one cell (of size m) and then r right endpoints from the other cell (of size 
n).  Once we’ve selected our endpoints, there are r! ways to arrange edges among them.  

Therefore the number of r-matchings in the complete bipartite graph nmK ,  is given by the 

formula !r
r
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.  Note this is really the same thing as picking rows and columns on a 

rook board.   
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Reflection on Activity 6 
 
 The students worked on this activity directly prior to our third visit with them.  

They had previously been exposed to matchings earlier in their coursework, and so the 

point of this activity was mainly to jog their memories.  We began the third day by 

exploring rook polynomials and their relationship to bipartite graphs.  The students were 

able to describe how a bipartite graph might model a rook board, and this was fairly 

natural for them.  We then discussed briefly the fact that we can use graphs to model 

more general counting problems, and we explained the distinction between counting 

matchings in bipartite graphs versus counting matchings in any general graph.  In the 

general, non-bipartite case, it is not necessary to match up members of two distinct sets – 

we can match up any vertices, provided they are joined by an edge.  This, then, provided 

some motivation for learning about the matchings polynomial (which applies to graphs in 

general) instead of just the rook polynomial (which applies to bipartite graphs).  We just 

briefly introduced the real- life wrestling problem as an example of this.  Since this 

activity was just a warm-up for Activity 7, more reflections on how the students handled 

this material is included in the reflections for Activity 7. 
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Introduction to Activity 7 
 
 This final activity is fairly ambitious.  It explores the matchings polynomial, 

which is the more general case of the rook polynomial.  This matchings polynomial 

provides a nice bridge between generating functions and matchings, allowing students to 

make connections between two previous concepts.  This activity motivates counting 

problems related to matchings, informing students that they might encounter problems in 

which a matchings polynomial would be more useful than the rook polynomial.  

Additionally, this activity investigates various properties of matchings, including four 

interesting theorems.  Finally, the notion of perfect matchings is introduced, and a 

fascinating integral formula for computing the number of perfect matchings is discussed.   

 There are two primary goals for this activity.  The first is to get students 

thoroughly comfortable with the idea of matchings.  They should feel confident in 

identifying matchings in graphs, counting them, computing matchings polynomials, etc.  

Such familiarity with matchings will aid them in further mathematical studies.  The 

second goal is for them to appreciate the breadth and variety of interesting results about 

matchings; the intent is to give students some insight into how remarkable these concepts 

are.  The fact that there are interesting results when differentiating and integrating these 

polynomials is – let’s face it – just plain cool, and this activity seeks to convey this.   

 This activity will likely be most effective in an interactive lecture setting, in 

which topics are explicitly explained, but where students feel free to ask questions and 

engage with the material.  There are some questions throughout the activity where the 

students can take some time alone or in small groups in order to work through them.  The 

Teacher’s Version includes an additional example that could be used during the class as 

well.  Because of the depth of the subject matter covered in this activity, the material 

included here could be spread over more than one class period.  
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Activity 7 – We’re Gonna Rook Your World 
 

We’ve talked some about the rook polynomial, which we defined to be a 
polynomial function whose coefficients represent the number of configurations of rooks 

on a chessboard.  Specifically, the coefficient of the term rx  is the number of ways of 
placing r rooks on a board. 

You have also recognized the very natural (and undeniably cool) relationship 
between rook boards and bipartite graphs, which includes the fact that a configuration of 
non-attacking rooks on a board represents a matching in a bipartite graph. 
 
A Real-Life Example of Matchings 
So why do we even care about matchings in graphs?  Glad you asked!   
Consider a counting problem like this one: 
 
There are 10 kids in gym class who have to get matched up into 5 pairs of wrestling 
partners.  Somehow, you (the cool-but-small math nerd) always seem to get matched up 
with Buzz (the guy with no neck).   Suppose there are 4 kids who refuse to wrestle Buzz 
and 3 (different) kids who don’t want to wrestle you.  If a 5-matching is chosen at 
random, what is the probability that you’ll have to wrestle Buzz?  (Note: In this case, the 
10 kids represent vertices in a graph, and a pairing represents an edge between them, but 
this graph doesn’t have to be bipartite!) 
 

 
Since you’re now well-versed in all of this, and since you’re familiar with the notion of a 
generating function, we feel we’re ready to unleash the big dog: the matchings 
polynomial. 
 
The Matchings Polynomial 
This is really just what it sounds like: it’s a generating function where the coefficient of 

rx represents the number of r-matchings in the graph.  (Recall that an r-matching in a 
graph G is a set of r edges, no two of which have a vertex in common.)  So if we denote 
the number of r-matchings by ),( rGm , then the matchings polynomial is defined as 

 

å
³

=
0

),(:),(
r
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For example, in a triangle graph (call it G), there is one 0-matching, there are three 1-
matchings, and there are no 2-matchings.  Thus the matchings polynomial of the triangle 
graph is xxG 31),( +=m  
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The following graph is often called the “house” graph (for obvious reasons); we will use 
it to familiarize ourselves with the matchings polynomial.   We’ll call the house graph H.    
  

 
H 

 
In order to find the matchings polynomial of the house graph, we must first determine the 
number of r-matchings in the graph, denoted ),( rHm .  We find these by direct counting 

in this case; the table should make it easier to keep track of everything. 
 

r 0 1 2 3 
),( rHm      

 
According to this table we have values for ),( rHm , and we can plug these into our 

definition of the matchings polynomial.  Write the matchings polynomial for the house 
graph H below. 
 

=),( xHm    

 

 
Cool Theorems about the Matchings Polynomial 
Alright, so now that you have the matchings polynomial for the house graph, we’re going 
to discuss some relevant theorems about this polynomial.  Rather than proving these, 
we’ll have you work these out with the house graph (and the triangle graph), whose 
matchings polynomials we already know.   
 
Theorem 1:  For any two disjoint graphs G and H, ),(),(),( xHxGxHG mmm =È  

 
Example 1:  Show that this is true for our two disjoint graphs: our triangle graph G and 
our house graph H. 
 
 
 
 
Theorem 2:  If e is an edge in G with endpoints u and v, and }{\ uvG is the graph where 

we remove vertices u and v, then ),\()},{\(),( xeGxuvGxxG mmm +=  

 
Example 2:  Pick any edge in our house graph H and verify that this works. 
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Theorem 3:  If u is a vertex of a graph G, then ),\()},{\(),(
~

xuGxuvGxxG
uv

mmm += å  

Example 3:  Pick any vertex in our house graph H and verify that this works. 
 
 
 
 
 
 
 
 
 
 
Theorem 4:  For some edge e with endpoints u and v, }{\ uvG  is the graph where we 

remove vertices u and v, as well as any edge incident to either vertex.  Then  
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GEuv

xuvGxG
dx

d
mm  

 
Example 4:  Show that this holds true for the house graph H. 
 
 
 
 
 
 
 
 
 

 
Now we switch gears a little bit and return to some good old-fashioned counting. 
 
A Little Review 

Recall that a complete graph on n vertices, nK , contains edges between every pair 

of vertices; the vertices in nK are all mutually adjacent.  The complement of a graph on n 

vertices G, denoted G , has the same vertex set as G, but it contains all edges in nK not in 

G.  Said another way, the edges in G, together with all edges inG , make up the edges in 

nK .  The following two graphs exemplify this complementary relationship. 

                                  

G                   G                                                    4K  
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Also, a perfect matching of a graph is a matching that includes every vertex.  Note 
that a graph can only have a perfect matching if it has an even number of vertices.  If the 
number of vertices is even, say kn 2= , then the number of perfect matchings will be the 

coefficient of the kx  term.     
 
1) Develop a formula that counts ),( rKm n , the number of r-matchings in the 

complete graph on n vertices.   
 
 
 
 
 
 
 

2) Draw the complete graph on 4 vertices, 4K .  Use the above formula you just 

found to write the matchings polynomials for this graph.   
 

=),( 4 xKm  

 
 
 
 
 
 
 
Now we introduce a random (but not as random as you’d think) formula that gives the 

number of perfect matchings in the complement of a graph G .  It’s an integral, how cool 
is that?! 
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3) In order to convince yourselves of the verity of the above equation, find the 
matchings polynomial of the complement of nK , and plug it in for ( , )G xm  in the 

formula above.  Try it for a couple of values of n on your calculator.  It turns out 
(check it sometime!) that if n is even, say kn 2= , then the integral equals 

k
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, which of course is the number of perfect matchings in nK .  (If n is odd, 

then this integral equals 0.)   
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4) Consider now the graph 44 KK È , the disjoint union of two copies of 4K .  Since 

we have the matchings polynomial for 4K , we can use Rook Rule #1 (remember 

that?) about disjoint boards to compute ),( 44 xKK Èm .  Try it! 

 

),( 44 xKK Èm =   

 
 
 

5) Plug ),( 44 xKK Èm  in to the integral formula above to give us the number of 

perfect matchings in the complement 44 KK È .   

 
 
 
 
 
 
 

6) Now, draw the graph for 44 KK È , the complement of the disjoint union.  Does 

this remind you of anything?  (Hint: it should!!) 
 
 
 
 
 
 
 
 

7) Just to hit our point home, use the very first formula we derived to find the 
number of ways of placing r non-attacking rooks on a 44 ´  board with no 
restrictions.  Now, compare this to the number of perfect matchings in the graph 

44 KK È .  Is that sweet or what?! 

 
 
 
 
 
 
8) Remember our problem about pairing up the wrestlers?  Given what you know 

now about polynomials, perfect matchings, integrals, life, can you come up with a 
solution?!  
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Activity 7 – We’re Gonna Rook Your World (Teacher’s Version) 
 

We’ve talked some about the rook polynomial, which we defined to be a 
polynomial function whose coefficients represent the number of configurations of rooks 

on a chessboard.  Specifically, the coefficient of the term rx  is the number of ways of 
placing r rooks on a board. 

You have also recognized the very natural (and undeniably cool) relationship 
between rook boards and bipartite graphs, which includes the fact that a configuration of 
non-attacking rooks on a board represents a matching in a bipartite graph. 
 
A Real-Life Example of Matchings 
So why do we even care about matchings in graphs?  Glad you asked!   
Consider a counting problem like this one: 
 
There are 10 kids in gym class who have to get matched up into 5 pairs of wrestling 
partners.  Somehow, you (the cool-but-small math nerd) always seem to get matched up 
with Buzz (the guy with no neck).   Suppose there are 4 kids who refuse to wrestle Buzz 
and 3 (different) kids who don’t want to wrestle you.  If a 5-matching is chosen at 
random, what is the probability that you’ll have to wrestle Buzz?  (Note: In this case, the 
10 kids represent vertices in a graph, and a pairing represents an edge between them, but 
this graph doesn’t have to be bipartite!) 
 

 
Since you’re now well-versed in all of this, and since you’re familiar with the notion of a 
generating function, we feel we’re ready to unleash the big dog: the matchings 
polynomial. 
 
The Matchings Polynomial 
This is really just what it sounds like: it’s a generating function where the coefficient of 

rx represents the number of r-matchings in the graph.  (Recall that an r-matching in a 
graph G is a set of r edges, no two of which have a vertex in common.)  So if we denote 
the number of r-matchings by ),( rGm , then the matchings polynomial is defined as 
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For example, in a triangle graph (call it G), there is one 0-matching, there are three 1-
matchings, and there are no 2-matchings.  Thus the matchings polynomial of the triangle 
graph is xxG 31),( +=m  

 
G 
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The following graph is often called the “house” graph (for obvious reasons); we will use 
it to familiarize ourselves with the matchings polynomial.   We’ll call the house graph H.    
  

 
H 

 
In order to find the matchings polynomial of the house graph, we must first determine the 
number of r-matchings in the graph, denoted ),( rHm .  We find these by direct counting 

in this case; the table should make it easier to keep track of everything. 
 

r 0 1 2 3 
),( rHm  1 6 6 0 

 
According to this table we have values for ),( rHm , and we can plug these into our 

definition of the matchings polynomial.  Write the matchings polynomial for the house 
graph H below. 
 

=),( xHm   2661 xx ++  

 
Notes:  The students’ ability to compute this matchings polynomial of H will rely on their 
understanding of matchings.  It’s important to emphasize that a given r-matching can 
only include a vertex at most once.  
 
 

 
Cool Theorems about the Matchings Polynomial 
Alright, so now that you have the matchings polynomial for the house graph, we’re going 
to discuss some relevant theorems about this polynomial.  Rather than proving these, 
we’ll have you work these out with the house graph and the triangle graph, whose 
matchings polynomials we already know.   
 
Theorem 1:  For any two disjoint graphs G and H, ),(),(),( xHxGxHG mmm =È  

 
Note:  In this section that follows, the teacher ought to run through the following example 
provided in class.  Then, the students can work through the same process with the house 
graph.  
 

Example in class:  Let G be the graph consisting of two components: a 3C  and a 3P , as 

shown below.   
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Counting the number of r-matchings in 33 CP È  gives us ),( 33 xCP Èm  2651 xx ++= .   

We note that xxP 21),( 3 +=m  and xxC 31),( 3 +=m , 

so ( )( ) 2
33 6513121),(),( xxxxxCxP ++=++=mm .    

Thus, comparing the above results, we see that ),( 33 xCP Èm = ),(),( 33 xCxP mm . 

 
Example 1:  Show that this is true for our two disjoint graphs: our triangle graph G and 
our house graph H. 
 
Answer:  We found above that, for triangle graph G and house graph H,  

xxG 31),( +=m  and =),( xHm   2661 xx ++ .   

We count directly and find that 32 182491),( xxxxHG +++=Èm . 

Comparing this with 322 182491)661)(31(),(),( xxxxxxxHxG +++=+++=mm , and 

we see that the theorem holds true.   
 
 
Theorem 2:  If e is an edge in G with endpoints u and v, and }{\ uvG  is the graph without 

the vertices u and v, then ),\()},{\(),( xeGxuvGxxG mmm +=  

 
Example in class:  Let G be the following graph, where edge e has endpoints 2 and 4.  
Note, this theorem would still work regardless of the edge chosen.  {12} would be 
another interesting choice for edge e. 

Counting ),( xGm directly gives us the polynomial 241 xx ++ . 

 
We consider two sub-graphs, one where we delete e, and one where we delete the 
endpoints of e.  eG \  and }24{\G  are the following respective sub-graphs.   

 

 
eG \                           }24{\G  
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Counting the matching polynomials of each sub-graph gives us ),\( xeGm = )31( 2xx ++  

and )},24{\( xGm = )1( .   

So ),\()},24{\( xeGxGx mm + = )31( 2xxx +++ = 241 xx ++  

Thus for the graph G we see that ),( xGm = ),\()},24{\( xeGxGx mm + . 

 
Example 2:  Pick any edge in our house graph H and verify that this works. 
 
Answer:  For our house graph H shown above, pick the edge e with endpoints 2 and 5. 
 

              
eH \                         }25{\H  

 
2551),\( xxxeH ++=m  and xxH += 1)},25{\(m . 

 

From the theorem above we find that 22 661)551()1(),( xxxxxxxH ++=++++=m . 

This checks out with what we know ),( xHm  to be.  

 
 

Theorem 3:  If u is a vertex of a graph G, then ),\()},{\(),(
~

xuGxuvGxxG
uv

mmm += å  

 
Example in class:  We use the same graph G, shown below.  Let vertex 2 be the vertex u 
we delete.    

 
 
We consider two classes of sub-graphs.  The first is a single sub-graph, one where we 
delete vertex 2.  The second is a group of graphs, where in each graph we delete vertex 2 
and one vertex adjacent to it.  The sub-graphs are drawn below. 

 
2\G  
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}21{\G                }23{\G                }24{\G  

 
Counting the matchings polynomials of these subgraphs gives us ),2\( xGm = x+1 , and 

å
2~

)},2{\(
i

xiGm = xx +=+++ 3]11)1[( .  Thus, we get  

),2\()},2{\(),(
2~

xGxvGxxG
v

mmm += å 241)1()3( xxxxx ++=+++= .   

We know from above (or by direct counting) that ),( xGm = 14 24 ++ xx .   

So for the given graph G and 2=u  we have ),\()},{\(),(
~

xuGxuvGxxG
uv

mmm += å  

 
Example 3:  Pick any vertex in our house graph H and verify that this works. 
 
Answer:  We pick vertex 1=u  to be the vertex we remove.   

 
1\H  

 
2241),1\( xxxH ++=m  

 
We must also consider the graphs that remove the edges of which 1 is an endpoint, 
namely }12{\H  and }15{\H . 

              
}12{\H                     }15{\H  

 
xxH 21)},12{\( +=m  and xxH 21)},15{\( +=m . 

So xxxxuvH
uv

42)21()21()},{\(
~

+=+++=åm , and thus  

2

~

42)42()},{\( xxxxxuvHx
uv

+=+=åm  



 

 

 

154 

Then 222 661)241()42(),( xxxxxxxH ++=++++=m , which we know is the 

matchings polynomial for the house graph. 
 
 
Theorem 4:  For some edge e with endpoints u and v, }{\ uvG  is the graph where we 

remove vertices u and v, as well as any edge incident to either vertex.  Then  
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mm . 

 
 
Example in class:  We consider the same graph G, pictured below.  

 
 

Let us examine å
Î )(

)},{\(
GEuv

xuvGm .  Since there are four edges, there will be four 

subgraphs to consider.   

      
}12{\G                }23{\G                }24{\G              }34{\G  

 
 
We can compute the matchings polynomials for each of these subgraphs.  Summing these 
polynomials will give the right hand side of the equation in the theorem.   
 

xG += 1}12{\(m  

1}23{\( =Gm  

1}24{\( =Gm  

xG += 1}34{\(m  

 

Thus, å
Î )(

)},{\(
GEuv

xuvGm = xxx 24)1(11)1( +=+++++  

We know from above that 241),( xxxG ++=m , and so xxG
dx

d
24),( +=m .   

Therefore the theorem holds for this graph.   
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Example 4:  Show that this holds true for the house graph H.   
 

Answer:  On the right hand side, we must consider å
Î )(

)},{\(
GEuv

xuvGm , which is the 

matchings polynomials of all subgraphs of H where an edge (and its endpoints and their 
incident edges) is removed, 1\H , 2\H , 3\H , 4\H , and 5\H .   

       
12\H                  15\H                  23\H  

 

           
25\H                    34\H                  45\H  

 
 
We compute the matchings polynomials for the above subgraphs and sum them.   
 

xxH 21)},12{\( +=m  

xxH 21)},15{\( +=m  

xxH 21)},23{\( +=m  

xxH += 1)},25{\(m  

xxH 31)},34{\( +=m , 

xxH 21)},45{\( +=m  

 

Then å
Î )(

)},{\(
GEuv

xuvGm = xxxx 126)31()1()21(4 +=+++++  

 

We compare this with ),( xG
dx

d
m .   

We know that ),( xHm = 2661 xx ++ , so xxG
dx

d
126),( +=m .  

Therefore, for the graph H it is true that ),( xG
dx

d
m = å

Î )(

)},{\(
GEuv

xuvGm . 
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Now we switch gears a little bit and return to some good old-fashioned counting. 
 
A Little Review 
 

Recall that a complete graph on n vertices, nK , contains edges between every pair 

of vertices; the vertices in nK are all mutually adjacent.  The complement of a graph on n 

vertices G, denoted G , has the same vertex set as G, but it contains all edges in nK not in 

G.  Said another way, the edges in G, together with all edges inG , make up the edges in 

nK .  The following two graphs exemplify this complementary relationship. 

 

                                  

G                   G                                                   4K  

 
 

Also, a perfect matching of a graph is a matching that includes every vertex.  Note 
that a graph can only have a perfect matching if it has an even number of vertices.  If the 
number of vertices is even, say kn 2= , then the number of perfect matchings will be the 

coefficient of the kx  term.     
 
Note:  Perfect matching is an important notion for the students to grasp.  It would be 
worth running through a few examples of perfect matchings to hit this concept home. 

 
1) Develop a formula that counts ),( rKm n , the number of r-matchings in the 

complete graph on n vertices.   
 

Answer:  
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.  We get this in the following way.  First we pick 

some 2r vertices from n, which represents picking a set of vertices for our r-matching (as 
every edge has two vertices).  From those 2r vertices, we pick r of them as left endpoints, 
and we assign r right endpoints to these left endpoints in r! ways.  But since there are no 
left and right endpoints, we must divide by r2 .  Simplification gives us the second 
equation.   
 
There are other ways to think of counting this as well, but they should result in this same 
formula. 
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2) Draw the complete graph on 4 vertices, 4K .  Use the above formula you just 

found to write the matchings polynomials for this graph.   
 

 
Answer: 

 

4K  

 
2

4 361),( xxxK ++=m  

 
 
Now we introduce a random (but not as random as you’d think) formula that gives the 

number of perfect matchings in the complement of a graph G .  It’s an integral, how cool 
is that?! 
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3) In order to convince yourselves of the verity of the above equation, find the 

matchings polynomial of the complement of nK , and plug it in for ( , )G xm  in the 

formula above.  Try it for a couple of values of n on your calculator.  It turns out 
(check it sometime!) that if n is even, say kn 2= , then the integral equals 
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, which of course is the number of perfect matchings in nK .  (If n is odd, 

then this integral equals 0.)   
 

Answer:  The complement of nK  is just the empty graph on n vertices.  The matchings 

polynomial of an empty graph will always just be 1 (as there is just one 0-matching in 

any empty graph).  So we end up integrating ò
¥

¥-

-

×= dxxeKpm n
x

n )1(
2

1
)( 2

2

p
,  

and testing this for some values of n confirms this.  Perhaps students could try different 
values for n on their calculators and then share their results with the class.  Or, 
alternatively, the teacher could do this in Maple or some such program.   
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4) Consider now the graph 44 KK È , the disjoint union of two copies of 4K .  Since 

we have the matchings polynomial for 4K , we can use Rook Rule #1 (remember 

that?) about disjoint boards to compute ),( 44 xKK Èm .  Try it! 

 

),( 44 xKK Èm =   

 

Answer:  Because 2
4 361),( xxxK ++=m  and 2

4 361),( xxxK ++=m ,  

),( 44 xKK Èm  )361)(361( 22 xxxx ++++=  

   432 93642121 xxxx ++++=  
 
 

5) Plug ),( 44 xKK Èm  in to the formula above to give us the number of perfect 

matchings in the complement 44 KK È .   

 
Answer:      

We know that )
1

,(
244

x
KK -Èm =

8642

9364212
1

xxxx
+-+- , and we note that n = 8.   

Then 9364212)
1

,( 2468

244
8 +-+-=-È xxxx

x
KKx m . 

 

Therefore, ò
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+-+-=È dxxxxxeKKpm
x

)9364212(
2

1
)( 24682

44

2

p
 = 24 

 
 
 

6) Now, draw the graph for 44 KK È , the complement of the disjoint union.  Does 

this remind you of anything?  (Hint: it should!!) 
 
Answer:  It should!  This is really a graph that models a 44 ´ rook board with no 
restricted positions!! 
 

 
 

7) Just to hit our point home, use the very first formula we derived to find the 
number of ways of placing r non-attacking rooks on a 44 ´  board with no 
restrictions.  Now, compare this to the number of perfect matchings in the graph 

44 KK È .  Is that sweet or what?! 
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Answer:  24!4
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 is the same as the number of perfect matchings in 

44 KK È  that we just found above! 

 
8) Remember our problem about pairing up the wrestlers?  Given what you know 

now about polynomials, perfect matchings, integrals, life, can you come up with a 
solution?!  

 
Answer:  In our wrestling scenario, we’re looking for a perfect matching (since we want a 
5-matching in a 10-vertex graph).  Let 3S  be a star with 3 leaves and 4S  be a star with 4 

leaves, as seen below.  These represent the restrictions related to you (the 3S ) and to 

Buzz (the 4S ).  The wrestling graph is 4310 SSKG --=  (as the 3S  and 4S  are disjoint 

from each other).                    
The numerator we need is the number of 5-matchings that do pair you and Buzz up, 

so we look for a 4-matching in the graph not including you and Buzz.  (Since the 
restrictions only affect you and Buzz, once you and Buzz are paired up, anyone else can 
be paired up together.)  Deleting you and Buzz gives the graph 8KG =¢ .  This has 
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 matchings of size 4.  Note, this numerator could also be found by plugging 

the matchings polynomial of the graph 8K  (which happens to be 1) into the integral 

formula above.  This would give the same result. 
The denominator is the total number of 5-matchings in the graph G, which we count 

as the number of perfect matchings of the graph that is the complement of [ ÈÈ 43 SS  (3 

isolated vertices)].  Since xxS 31),( 3 +=m  and xxS 41),( 4 +=m  (and the isolated 

vertices have a matchings polynomial = 1), the graph that does consist of [ ÈÈ 43 SS  (3 

isolated vertices)] has matchings polynomial 21271)31)(41( xxxx ++=++  by the 

disjoint union formula.   

We replace x with 
2

1

x
- and multiply by 10x  in our integral formula as above to give 

us the polynomial 6810 127 xxx +- .  Then using this in our integral formula, we need to 

integrate ò
¥

¥-

-

+- dxxxxe
x

)127(
2

1 68102

2

p
.  This gives us 390 matchings for our 

denominator.  Therefore 105/390 is the probability that you and Buzz are going to get 
paired up. 
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Reflection on Activity 7 
 
 The students worked on this activity during our third and final visit to the 

classroom.  After discussing Activity 6, we introduced the matchings polynomial as being 

analogous to the rook polynomial.  I gave a quick example of a matchings polynomial but 

then realized that they hadn’t had a prior introduction to matchings in non-bipartite 

graphs (which I had unwittingly assumed).  Had I known this sooner, I might have been 

more explicit in describing matchings to them.  However, despite this, they seemed to 

catch on pretty quickly to the idea of matchings, and, throughout the rest of the time, 

counting matchings came easily for them.  When asked to compute the matchings 

polynomial in the house graph, they did it correctly and very quickly; I was impressed 

and even a little surprised.   

We then delved into the four theorems about the matchings polynomial.  I ran 

through a pretty simple example on the board, and even as I did so they were able to 

recognize what the various subgraphs and matchings polynomials should be.  So, it 

became clear that counting matchings and finding matchings polynomials was a very 

natural thing for them to do.  The first three theorems went pretty well.  We explained 

how the first two theorems were analogous to our first two counting principles.  And, 

although we did not explicitly connect Theorem 3 for them, one student volunteered the 

observation that this theorem represents the Use/Don’t Use principle applied to a vertex.   

Theorem 4 provides a startling connection to derivatives, which we included for 

its coolness factor.  There was a technical difficulty surrounding the incorporation of this 

theorem in the curriculum.  In particular, the change in form of the matchings polynomial 

that we employed in the curriculum – although it simplified every other result – actually 

complicated this one substantially.  Specifically, the formula below appeared in the 

original version of the activity given to students 
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Notice the algebraic complexity of this expression.  Although the students had previously 

dealt with sigma notation, set theoretic notation, and derivatives, the substitution of 
2

1

x
 

for x in the generating function was disorienting for them.  Having to perform this 

substitution seemed arbitrary and unmotivated, and as a result the theorem appeared less 

impressive to them.  In reflecting upon this activity, we discovered a substantial 

simplification of this theorem that retains all of the mathematical content while avoiding 

the substitution.  We have incorporated the newer, cleaner version in the curriculum 

presented here. 

In retrospect, I would have liked to have been able to take a little more time to hit 

home the idea of matchings and the matchings polynomial.  In doing this, I would have 

emphasized some applications of these four theorems.  I wonder if, without this 

motivation, working through these theorems (and finding matchings polynomials) felt too 

computational to them.  I think that with a little more time I might have better made this 

connection. 

We just barely got to discussing complements and complete graphs.  While I think 

they understood this discussion, I don’t think that they’d had much exposure to either of 

these terms.  This makes me think that the rook problem (and the matchings polynomial) 

has the potential to introduce and allow students to learn about complements and 

complete graphs as well.  Because of the powerful results that the matchings polynomial 

has about complete graphs and complements (which we didn’t get to because of time), I 

think this exercise would provide an effective means for discussing these two important 

graph theory concepts.  

We had to rush pretty quickly to count the number of matchings in the complete 

graph.  But again, because these kids were good counters, they ultimately followed the 

formula that we, in the interest of time, presented to them.  They might have even been 

able to come up with this formula on their own.  We just started to have them draw the 

complete graphs when the class period abruptly ended prematurely, and we had to leave. 

I think it went okay overall.  We were purposefully ambitious about what we 

could get through given that this was our last day with them, and I wonder if a little more 

motivation wouldn’t have been beneficial for them, just to give a little more purpose 
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behind what we were doing.  Even without this motivation, though, they did get a solid 

introduction to matchings and matchings polynomials, which is important, I think.  I’m 

not sure that I had a good idea of what the purpose of the activity was going to be, but I 

see now that at the very least it was useful to discuss matchings and the matchings 

polynomial.   In fact, by the end they exhibited a good understanding of both of these 

concepts.  In that sense, then, as our ultimate goal involves trying to give them exposure 

to combinatorial principles, this activity was successful.   
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Introduction to Rook Exam 
 
 This exam is a final assessment tool, designed to gauge what the students came 

away with from this time.  The hope is to have students unify their thoughts related to all 

of this material.  This ‘exam’ does not necessarily need to be taken as an in-class exam; it 

could even be a group worksheet that they work through.  The intent is simply to provide 

teachers with a means of comprehensively testing the student’s knowledge of the entirety 

of the rook materials.  At the very least, this exam gives teachers some more problems 

and question types which they can pass along to their students.   
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Assessment 3 – Here’s Rookin’ at You, Kid 
 

1. Given a 4910´  chessboard with no restricted positions, what is the maximum 
number of rooks you could place on the board?  Explain your answer.   

 
2. In class we found that the number of configurations of r non-attacking rooks 

on an nm ´  board is given by the formula !r
r

n

r

n
÷÷
ø

ö
çç
è

æ
÷÷
ø

ö
çç
è

æ
.  Considering the above 

question (1), use the language of rooks to relate this formula to the convention 

of letting 0=÷÷
ø

ö
çç
è

æ

r

n
 if rn < . 

 
3. Consider the following scenario.  Four college students want to go on an 

exchange program, and their school can send one student each to Spain, New 
Zealand, and China, and Honduras.  There are, of course, some restrictions: 
 
Ander and Becky don’t want to go to a Spanish-speaking country, but John 
only wants to go to one.  Nick, on the other hand, will only be happy if he gets 
to go to Europe. 
  
Use rook rule #1 and rook rule #3 to count the number of ways that these 
students could be sent to the countries of their choice.   

 
 

4. For the given board B, apply the use/don’t use principle (rook rule #2) exactly 
twice in order to simplify the board.  In other words, use this principle to 
obtain simpler boards (with disjoint sub-boards) that you can easily count 
using the disjoint board principle (rook rule #1).  Then find the board B’s rook 
polynomial.  Try to pick a strategic square for S. 

 

 
B 

 
5. Could the following polynomials be rook polynomials for some board?  If so, 

draw a board that represents it.  If not, then why not? 

a. 221 x+  

b. 2442 xx ++  

c. 2561 xx ++  

d. 32 2331 xxx +++  
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6. Come up with a story problem that could model the following board.   

 
 
 

7. Find the matchings polynomial for the following graphs. 
a. A star with n vertices 
b. A path with n vertices   
c. Use these facts to compute the matchings polynomial of the graph given 

below (yes, those are supposed to be snowflakes). 
 

 
       

           G 
 
 

8. Recall that we had a theorem (Theorem 3 from Activity 7) that states  

“If u is a vertex of a graph G, then å +=
uv

xuGxuvGxxG
~

),\()},{\(),( mmm ”.  

Note uv ~  indicates that we sum across all neighbors of u; }{\ uvG  means 

we delete both vertices u and v from the graph G, and uG \  means that we 
delete vertex u from G.  
Explain how this given theorem equation is an example of the Use/Don’t Use 
Principle (i.e. indicate what it is that we use or don’t use).    
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Assessment 3 – Here’s Rookin’ at You, Kid (Teacher’s Version) 
 

1. Given a 4910´  chessboard with no restricted positions, what is the maximum 
number of rooks you could place on the board?  Explain your answer.   

 
Answer:  There can be at most 10 rooks on such a board, because there are only 10 rows 
(or columns).  Any more than 10 rooks would require an 11th row in order to avoid the 
other rooks, but there is no such row.  If we tried to put an 11th rook on the board, even if 
it was on one of the 49 columns, it would hit one of the other rooks already in the 10 
rows.  Thought of another way, we must always choose a number of rows and columns 
on which to place our non-attacking rooks.  There are at most 10 rows to choose from, so 
we can’t place any more than that.   
 
 

2. In class we found that the number of configurations of r non-attacking rooks 

on an nm ´  board is given by the formula !r
r

n

r

n
÷÷
ø

ö
çç
è

æ
÷÷
ø

ö
çç
è

æ
.  Considering the above 

question (1), use the language of rooks to relate this formula to the convention 

of letting 0=÷÷
ø

ö
çç
è

æ

r

n
 if rn < . 

 
Answer:  WLOG say n is the number of rows.  Then having rn <  it would be like 
placing more rooks than we have columns.  Since there are no ways of doing this (no 
such configurations), it makes sense that this value should be zero. 
 
 

3. Consider the following scenario.  Four college students want to go on an 
exchange program, and their school can send one student each to Spain, New 
Zealand, and China, and Honduras.  There are, of course, some restrictions: 
 
Ander and Becky don’t want to go to a Spanish-speaking country, but John 
only wants to go to one, while Nick will only be happy if he gets to go to 
Europe. 
  
Use rook rule #1 and rook rule #3 to count the number of ways that these 
students could be sent to the countries of their choice.   

 
 
Answer:  The board should be able to be drawn, ultimately, like the one on the right 
below, using rook rule #3. 
 
After this we use rook rule #1 and see that we have disjoint boards.   Therefore, we can 
take the product of the rook polynomials of the disjoint boards, which gives us 

43222 2101571)241)(31(),( xxxxxxxxxG ++++=++++=m  
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4. For the given board B, apply the use/don’t use principle (rook rule #2) exactly 
twice in order to simplify the board.  In other words, use this principle to 
obtain simpler boards (with disjoint sub-boards) that you can easily count 
using the disjoint board principle (rook rule #1).  Then find the board B’s rook 
polynomial.  Try to pick a strategic square for S. 

 

 
B 

 
Answer:   

 

             
        Use S       Don’t Use S 
                                                                                    
Denote B* as the board  B\(rows and columns of S), shown below, that we get if we do 
use S.  Then this graph has the rook polynomial 

322 441)31)(1()*,( xxxxxxxBR +++=+++= .  We get this by using rook rule #3 to 

shift rows and columns, and then applying rook rule #1 since we then have disjoint 
boards.   

    

    

  S  

    

    

    

    

    

    

    

  S  
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B* 
 
Denote B\S as the board below, which we obtain if we don’t use S.  It’s a good exercise 
now further to simplify this board.  We choose S as the next square to utilize. 

 

     
                 Use S       Don’t Use S 
                                                                      
We note that B**, the board that does use S is the board below.   

 
B** 

 
We can easily compute its rook polynomial by using rook rule #1.  So 

2231)21)(1()*,*( xxxxxBR ++=++=  

 
And the board B\S is the one below, where we do not use S.   
 

    

    

    

    

    

 S   

    

    

    

 S   

    

    

    

 S   
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B\S 

 
Again, since there are disjoint sub-boards, this rook polynomial is fairly easy to compute.  

We get 43222 61161)31(),\( xxxxxxxSBR ++++=++= . 

 
So what’s the rook polynomial for the whole board B, ),( xBR ? 

We recall, from rook rule #2, that 

),\()*,(),( xSBRxBxRxBR += .  But ),\()*,*(),\( xSBRxBxRxSBR += . 

Substituting in, then we get 

)],/()*,*([)*,(),( xSBRxBxRxBxRxBR ++=  

)61161()331()441(),( 43222 xxxxxxxxxxxBR ++++++++++=  
4323232 611613344),( xxxxxxxxxxxBR ++++++++++=  

432 2121881),( xxxxxBR ++++=  

 

Thus, since the coefficient of the 4x  term is 2, the answer is 2.   
 

5. Could the following polynomials be rook polynomials for some board?  If so, 
draw a board that represents it.  If not, then why not? 

a. 221 x+  

b. 2442 xx ++  

c. 2561 xx ++  

d. 32 2331 xxx +++  
 
Answer:   

a. Nope – we can’t skip a power of x like that.  This would imply that we have 
no one-matchings (so no edges), but we still have two-matchings, which isn’t 
possible. 

b. Nope – we must have 1 as our constant term. 
c. Sure! – Here’s a board that models it 

 
d. Nope – the coefficient of the x term shows that there are 3 allowable squares, 

and so we couldn’t possibly have 2 ways of arranging 3 rooks on these 
squares. 
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6. Come up with a story problem that could model the following board.   

 
 
Answer:  Any story problem involving the specified restricted positions would do.  We 
present one such problem.  There are six dessert items at a cafeteria (chocolate pudding, 
cheesecake, carrot cake, apple pie, twinkies, and brownies), and four students (Ander, 
Brad, Carly, and Derek) must choose exactly one dessert to eat.  Some of the students 
have allergies, however, restricting some of the choices.  If we listed them in the order we 
just described, where the students represent the rows and the desserts represent the 
columns, then the board models the following restrictions:   
Ander refuses to eat twinkies. 
Brad is allergic to cream cheese. 
Carly doesn’t like the consistency of pudding and can’t eat apples. 
Derek can’t have chocolate.    
 

7. Find the matchings polynomial for the following graphs. 
a. A star with n vertices 
b. A path with n vertices   
c. Use these facts to compute the matchings polynomial of the graph given 

below (yes, those are supposed to be snowflakes). 
 

 
 

           G 
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Answer:  The matchings polynomial for the components are as follows.  Let the stars be 
denoted S1…S4 from left to right, and let the path be P6.  Then 

xxS 61),( 1 +=m  

xxS 41),( 2 +=m  

xxS 51),( 3 +=m  

xxS 61),( 4 +=m  
32

6 651),( xxxxP +++=m  

 
So by the disjoint board principle, we can just multiply all of these to get  

)651)(61)(51)(41)(61(),( 32 xxxxxxxxG +++++++=m  

              = 765432 7204884714845451511275261 xxxxxxx +++++++  
 
 

8. Recall that we had a theorem (Theorem 3 from Activity 7) that states  

“If u is a vertex of a graph G, then å +=
uv

xuGxuvGxxG
~

),\()},{\(),( mmm ”.  

Note uv ~  indicates that we sum across all neighbors of u; }{\ uvG  means 

we delete both vertices u and v from the graph G, and uG \  means that we 
delete vertex u from G.  
Explain how this given theorem equation is an example of the Use/Don’t Use 
Principle (i.e. indicate what it is that we use or don’t use).    

 
Answer:  This is the Use/Don’t Use for a vertex in the graph.  If we do use a vertex u, 
then by the definition of a matching we can’t also include any of its neighboring vertices.  
So we must consider all of the sub-graphs that don’t include u and one of its neighbors, 
and we look for an r – 1-matching in that remaining graph.  We multiply by x since these 
r-1-matchings contribute to the total number of r-matchings in G.  So the reason for 

multiplying by x is to shift the coefficients in the polynomial from the 1-rx  terms to the 
rx  term.  If we don’t use vertex u, then we’re looking for the number of matchings in the 

graph G minus the vertex u.  This is how we arrive at the above expression. 
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Final Reflection 
 
 As I reflect back upon this whole process, several salient points come to mind.  

First, I was utterly amazed at the mathematical connections that came through as I 

studied this topic.  I initially chose to study rook polynomials because I thought they 

might have an interesting application to counting principles, but I was not prepared for 

the wide variety of mathematical topics to which these polynomials relate.  Indeed, the 

fact that most textbooks fail to mention such connections would have led me to believe 

that rooks were a mathematical concept almost entirely independent of the rest of a 

traditional combinatorics curriculum.  It was genuinely exciting, then, to witness all of 

the inter-connectedness that this particular mathematical topic exhibits. 

Enthused by the fascinating mathematics that I investigated, I was eager to see 

how much of it could be taught to students in a high school class.  Although I had little 

expectation of how much of the mathematics we might actually be able to integrate into 

curriculum, it has been interesting to see just where points of entry can be made.   

Because I initially did not know what to expect of the high school students, I was 

extremely pleased to have been afforded the luxury of time.  In particular, I had an entire 

week between each meeting with the students.  As a result, I could carefully tailor a 

highly targeted set of activities as we went along; as mentioned above, many of the seven 

activities (and three assessments) were informed by how the prior activity had gone.  

Thanks to the flexibility of this time schedule, I was able to be intentional and thoughtful 

as I planned each exercise, and I believe that this came across to the students.  Ultimately 

I developed a curriculum that spanned all three of the major mathematical topics in the 

paper: counting principles, generating functions, and matchings.   

So how did this grand experiment turn out? I was honestly surprised by how much 

of the mathematics that I had studied was able to be incorporated into a high school 

classroom.  As I reflect now and evaluate how the entire curriculum process unfolded, I 

realize that I am very pleased with the overall outcome.  Why is this so?  Why do I 

consider it a success?   

Superficially, all along the project seemed to be progressing quite smoothly.  

Many students expressed enthusiasm for our visits; they nodded, smiled, and were 

attentive in the classroom, and even more explicitly, they took occasions to tell us how 
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much they were learning and enjoying the material.  As nice as this was to hear, I was 

inclined to reserve judgment concerning the success or failure of the curriculum as a 

whole.  In particular, I wanted to wait until I knew more exactly the extent to which these 

students were able to process the mathematics itself.  Specifically, I felt the success of the 

curriculum should be judged primarily by some measure of how well the students 

understood the three mathematical aims of counting principles, generating functions, and 

matchings.  Continuing to reflect upon the curriculum, let us focus on each of these 

mathematical concepts and discuss the didactical successes or drawbacks related to each.   

We first consider the question of how well-suited rooks are for teaching counting 

principles.  While, in theory, the answer is unquestionably affirmative, the particulars of 

our situation somewhat obviated the entire issue. That is to say, the students we taught 

were simply already quite good at counting before we even walked in the door.  

Therefore, I do not think that too much can be said regarding the ability of the curriculum 

to introduce counting principles.  However, the rooks did provide a helpful context for 

discussing such counting principles.  Indeed, as the reflections above indicate, the rook 

problems gave way naturally to discussions ranging from inclusion/exclusion to the 

multiplication principle, etc.   

Turning now to the question of generating functions and matchings, however, it is 

clear that students gained a sophisticated understanding of these topics.  This fact is 

evidenced by the speed and skill with which they computed rook and matchings 

polynomials for small boards.  It just recently struck me that this fact, in and of itself, is a 

great accomplishment – providing evidence that the curriculum was indeed effective in a 

surprising way.  Their ability to handle rook and matchings polynomials is so remarkable 

because generating functions are notoriously difficult to teach.  Indeed, combinatorics 

professors often struggle with clear and convenient means of explicating this topic.  In 

observing the students and talking with them, it was absolutely apparent that computing 

and manipulating generating functions was extremely natural for them – so natural, in 

fact, that I think they took for granted the degree of difficulty of the topic they were 

studying.   

In fact, during a subsequent visit with them, the students presented solutions on 

the board from the Rook Exam that had been given.  This was quite encouraging to see, 
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as nine different students presented correct, clearly-explained solutions to the problems.  I 

was once again struck by the deftness with which they manipulated generating functions.  

Also in this Rook Exam, they were asked to make connections among concepts they had 

encountered in several prior activities, and they made these connections effortlessly. 

Finally, pedagogically, this experience was beneficial for me personally in 

another way.  I have had little chance in my own teaching experience to experiment with 

or implement the ideas I have learned in my ‘math ed’ classes.  For instance, I have long 

wanted to see whether or not students could, in practice, truly come up with sophisticated 

mathematical ideas.  Prior to this project, I had not taken advantage of any occasion to do 

so.  This particular teaching environment, however, provided me with the perfect 

opportunity to try this out.  Indeed, I had the luxury of having almost no time constraints 

and virtual free rein to see if the students could come up with ideas about rook 

polynomials and matchings on their own.  And in fact, on several notable occasions, they 

did, indeed, come up with some amazing results on their own, as the reflections above 

have indicated.  Thus, through the vehicle of this project, I feel that I was able to gain 

first-hand experience with the potential that students have to develop new ideas on their 

own.  

On the whole, then, this entire project – both the mathematics and the curriculum 

– have provided me with a wealth of new perspectives and insights.  By revealing novel 

vistas of the higher mathematical terrain, and by offering breathtaking glimpses of an 

ideal pedagogy, this incredibly formative experience will undoubtedly shape, nourish, 

and empower the mathematician and educator I am to become. 
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