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| ntr oduction

Counting is one of the earliest mathematical endeavors accessible to children.
Indeed, it iswidely held to be one of the most natural, fundamental, and directly
mathematical processes that we, as humans, employ. Counting techniques can, however,
lead to mathematical problems that are surprisingly sophisticated and complex.
Combinatorics, the branch of mathematics most clearly concerned with the principles of
counting, is becoming increasingly relevant in our computerized age, and yet as students
get into high school and college, they tend to experience a great deal of difficulty as they
encounter increasingly complex counting problems. This obscurity can be disorienting
for them, precisely because counting is seen as such a basic procedure. Facility with
counting principlesis valued as a hecessary part of students' mathematical educational
experience; in fact the Number and Operations Standards of the National Council of
Teachers of Mathematics recommends that “in grades 9-12 al students should develop an
understanding of permutations and combinations as counting techniques.” (NCTM,
2000). Itissignificant, then, to ask whether there are novel mathematical insights or
pedagogical methods that could better motivate students, facilitate their understanding,
and allow them to feel more comfortable with combinatorial idess.

The topic of rook polynomials, which is the focus of this paper, can be readily
associated with awide variety of significant combinatorial principles. In addition, it
proves to be quite effective as adidactic tool for the teaching of combinatorics. This
paper consists of two major parts:

1. amathematical investigation of rook polynomials (and the more genera
matchings polynomial),

2. acurriculum which draws upon some of the mathematical principles found in
the investigation and explores their pedagogical potential.

Although the mathematics devel oped in the first part of the paper isfairly sophisticated,
the curriculum is intended to be accessible to an advanced high school class.



Perhaps the most interesting aspect of rook polynomialsis that they unite two
major components of combinatorics: enumeration and graph theory. Such a perfect
marriage of these two topicsis exciting for any combinatorialist, and, from a pedagogical
point of view, this connection offers students a clear view of the overarching span of the
field. Inthissense, rook polynomials are an ideal object of study, providing entry points
to adizzying array of combinatorial concepts from a convenient and contextualized
perspective.

A commonly faced challenge in teaching combinatorics is the apparent disparate
nature of the material, which includes a large number of topics that often appear, to the
untrained eye, as unrelated and ill-motivated. Surprisingly, however, in the context of
rooks, many of these central topics arise naturally —almost magically —in away that is
not only inextricably linked to other topics, but also easy to teach, natural to motivate,
and ripe with potential for the classroom. The goal of the curriculum, then, isto
illuminate some of these notorious topics through the use of rooks. In particular, the
curriculum developed herein addresses the following three major topics in combinatorics:
counting principles, generating functions, and matchings. The effortless unification of
these topics will convey to the reader the pedagogical effectiveness of employing rooks
in the classroom, and will convey to the student the strength and beauty of combinatorics
itself.
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Part One:

The Mathematics of Matchings Polynomials

Overview of Matchings and Generating Functions

In this introductory section, we address two concepts that are fundamental to the
mathematicsin this paper: matchings and generating functions. Although a deep
knowledge of these subjectsis not required to understand the mathematics that follows, it
isimportant that the reader become acquainted with certain ideas and terminology. We
include several examples throughout this section to aid the reader and enhance their

understanding of these basic idess.

Matchings
A graph G consists of aset of vertices, aset of edges, and arelation that

associates each edge with exactly two vertices (which are called the endpoints of the
edge). All the graphs discussed in this paper are simple, which means that they have no
loops (edges whose endpoints are the same vertex) and no multiple edges (distinct edges
with the same endpoints). A matching inagraph G is aset of edges such that no two
edges share an endpoint. Or, said another way, a matching is a set of edges, no two of
which have avertex in common (West, 2001).

Since matchings are edge sets, a given graph can have matchings of various sizes,
an r-matching in agraph G, then, isa set of exactly r edges, no two of which share a
common vertex. The following graph H is often called the “house” graph; we will use it

to exemplify the notion of r-matchingsin graphs.
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When r =0, an r-matching is an edge set containing zero edges. Thefigure
below depicts the empty edge set, the only possible r- matching whenr = 0.
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The unique O- matching in H

When r =1, anr-matching is an edge set containing one edge. The next figure
displays al six of the possible 1-matchingsin the house graph.
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The 1-matchingsin H



When r = 2, an r-matching is an edge set containing two vertex-disjoint edges.

The figure below depicts all six of the possible 2-matchings in the house graph.
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The 2-matchingsin H

Although such diagrams are useful, notice that we could easily describe anr-
matching in terms of its edges without resorting to afigure. Denoting by uv an edge that
has endpoints u and v, we can express the first 2-matching listed aboveas M ={12,34} .
This notation is more compact and also emphasizes the fact that matchings are indeed
edge sets.

Note that the house graph does not have any matchings of size three or greater.
This follows from the definition, which stipul ates that no two edges in a matching can
share an endpoint. Since the graph only hasfive vertices, it is not possible to formanr-
matching where r > 3.

By way of illustrating some non-examples, the edge sets indicated below are not

matchings; in each case, two or more of the edges share a common vertex.
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Examples of edge setsin H that are not matchings

Generating Functions

A generating function of a given number sequence is a polynomial function (or
power series) whose coefficients are the terms of that sequence. Associating the terms of
a sequence with the coefficients of a polynomial is a process that has a number of
surprising combinatorial benefits, as we will soon discover. In this paper, we will treat
generating functions as purely formal objects, viewing the variable x in the function not
so much as an unidentified element of some number field, but rather as little more than a
placeholder in our presentation of the coefficients, which are the terms of our given
number sequence. As Herbert Wilf, author of the Generatingfunctionology, describesiit,
“A generating function is a clothesline on which we hang up a sequence of numbers for
display (Wilf, 1994).”

We could, for example, easily describe a generating function for the Fibonacci
sequence, inwhich f, =1, f, =1, and the n" termisdefined by f, = f,_, + f_,. Recall
that the first several terms of thissequenceare 1, 1, 2, 3,5, 8, 13, .... We can form the
generating function for this sequence in a straightforward way —we simply need a power
seriesinwhich ther™ termin the sequence, f, , isthe coefficient of thetermx”. The

generating function for the Fibonacci sequence, then, is

1+ X+ 2x% +3x® +5x* +8x° +13x° + ...



Note that in this case the generating function is an infinite series; if our number sequence
were finite, however, then the generating function would have afinite number of terms as
well. In such cases the generating function would simply be a polynomial.

Another familiar example of a generating function is found in the binomial

theorem. Thistheorem states that for any real number x and any natural number n,

n n ny , ny , <&(n,
(1+x)”=[oj+(1]x+(2]x +...+(njx =2 [Jx

|
where the binomial coefficient (?J isgiven by ﬁ These binomial coefficients
ri(n—r)!

n
have intrinsic meaning; indeed, the coefficient (r J equals the number of ways of
choosing r items from n items. So the expression (1+ x)" represents, in closed form, the

. . . n
generating function for the finite number sequence whose terms are (J , Where r ranges

fromOton.

In the above example of the house graph, we can count the number of possible O,
1, and 2-matchingsin the graph. Thereisasingle O- matching, there are six 1- matchings,
and there are six 2-matchings. Thisleaves us with a small sequence of numbers, 1,6,6,
where the r™ number in the sequence represents the number of r-matchingsin a graph.
One way to form a generating function that would encode the number of different
matchingsin agraph G isto associate the r™ term with the number of r-matchingsthat G
has. Such agenerating function for the number of matchingsin the house graph H would
be: 1(x%) + 6(x") + 6(x*) =1+ 6x+ 6x°.

In this paper we will be working extensively with a different, but similarly-
defined, object called the * matchings polynomial’ of agraph. This matchings polynomial
is, fundamentally, a generating function, and although the precise definition for the

matchings polynomial that we will introduce below varies slightly from the examples



presented here, the concepts behind the generating function remain the same. This brief

introduction, then, should prepare the reader for the mathematical discussion ahead.



Chapter 1 — The Matchings Polynomial

Section 1.1 — M atchingsand Gener ating Functions

In this section we introduce and discuss the matchings polynomial of agraph. Let

G be agraph with n vertices. Denote the number of r-matchingsin G by p(G,r) .

Agreeing to set p(G,0) =1, we define the matchings polynomial as follows:

1(G,X) = X (-1 PG, Nx"* .

r>0

Thus the matchings polynomial is a polynomial with alternating signs, in which
the coefficients p(G,r) represent the number of r-matchingsin G. Unlike the generating

functions discussed in the introduction, the coefficient p(G,r) in the matchings

polynomial corresponds to theterm x"?". There are several technical advantagesto this
convention that we need not dwell upon here. However, it isworth observing that our
convention assures that the matchings polynomial will always be monic, meaning that

the leading termisaways 1. (Thisistrue because whenr =0, p(G,0) =1 and

corresponds to thex"2® term, or thex" term). Furthermore, when n is even, the
matchings polynomial is an even function, containing only even powers of x. Similarly,
when nis odd, the polynomial is an odd function.

In order better to grasp the matchings polynomial, we determine the matchings

polynomials for some simple classes of graphs: paths, cycles, complete graphs, and

complete bipartite graphs. First, however, we note that if E, denotes the empty graph
with n vertices and no edges, then the matchings polynomial of E, consistsonly of the
term wherer =0, since E, can have at most a 0-matching. Hence p(E,,0) =1, and

u(E,,x)=x".



Section 1.1 — Matchingsin Paths

We now consider the matchings polynomials of the family of graphs known as
paths. We begin with adefinition. The path P, has n vertices, two of which have degree
one, and n—2 of which have degree two. For example, a path on five vertices, P;, is

pictured below. Vertices 1 and 5 have degree one, and vertices 2, 3, and 4 have degree

two.

The number p(P,,r) of r-matchingsinP, is determined in the following way. If
we view P, as running from | eft to right, we can contract each edge in a given r-matching

onto itsleft-hand endpoint. What results is a path with n—r vertices, r of which are
distinguished. Conversely, given apath onn—r vertices with some subset of r of these
vertices distinguished, we can reconstruct an r- matching in a path of n vertices. We do

this by inserting an edge to the right of each distinguished vertex. This correspondence

between r-matchingsin P, and selections of r distinguished vertices P, , alowsusto

count p(P,,r) easily. Wesimply choose any r of the n—r vertices of P, . wherewe

n
will insert an edge that will belong to our r-matching inP,. Thuswe have ( ]ways
r

of determining an r-matching, so p(P,,r) = U‘ - rj. Then, by definition of the matchings

polynomial, we have the following result.

Proposition 1.1:  For any natural number n, the matchings polynomial of the path P, is

given by

u(Pn,x)=Z(—1)f(:“r]x“-2' .

r>0



Example: Let uswork through an example of a path, utilizing the above proposition.
Consider P, the path on 5 vertices, pictured in the text above. In order to
computep (P, X) , we must examine the r- matchingsasr rangesfrom O to n. Clearly

there is only one matching whenr = 0. Using the above counting argument, we consider
the case where r =1. By examining a path on5—-1= 4 vertices, which isP,, we note that
we could insert the one edge of our 1- matching to the right of any of the 4 vertices.

Similarly for r = 2, looking at a path on 5— 2 = 3 vertices, we could insert the edges of

our 2- matching to the right of any of those 3 vertices. So we indeed see that
5-r
p(R;,r) = (r ] , and we use this fact to construct the following table:
r-vaue p(PR,,x)

0 5—0}
=1
0

Thus there is one r-matching wherer = 0, there are four r-matchings wherer =1, and
there are three r-matchingswherer = 2. So by using Proposition 1.1, we have arrived at

the following:

w(Py,x) =x° - 4x% + 3x.

Section 1.2 —Matchingsin Cycles




Next we consider the matchings polynomial of the family of cycles. A cycle C,
isagraph with n vertices, all of which have degree two and are joined in acircular

fashion. For example, the cycle C, isshown.

09
@

We can determine the coefficients for the matchings polynomial of C_ asfollows.
Labeling the vertices of the cycle clockwise from 1 to n, we contract each edge in a given
r-matching onto its endpoint in the clockwise direction. We look at the vertex labeled 1,
and our search for r- matchings breaks down into two cases.

Let e be the edge that is directly left (counter-clockwise) of vertex 1. Thene
either belongs or does not belong to any given r-matching M. Said another way,
eesMoreg M. If ee M, then by definition of a matching, the two edges adjacent to e
cannot be included in M. The remainder of the graph, then, which must containing the

remaining r — 1 edges of M, isapath on n—2 vertices. Therefore, to count r-matchings

containing e, we seek the number of (r —1)-matchingsinP, ,, which is denoted
by p(P, ,,r -1). If e¢ M, then al edges of M are contained in the remainder of the
graph, which forms a path on n vertices. We thus want the number of r-matchingsinP,,

n—r
whichisdenoted by p(P,,r). In Section 1.1, we found that p(P,,r) = (r

J. By the

addition principle, then, we express the number of r-matchingsin the cycle C, onn

verticesin the following way:

p(Cn1r) p(Pn’r)+ p(Pn—2’r_1)

RIS

10



(n=r)! N (n=-r-=1!
ri(in=-2r)!  (r-!(n—2r)!

n(n—r)!
ri(n—2r)I(n-r)

_ n n-r
n—-ri\r

Thus, by the definition of the matchings polynomial, we arrive at the following result

about the matchings polynomial of cycles.

Proposition 1.2:  For any natural number n, the matchings polynomial of the cycle C,

isgiven by

lJ.(Cn,X) — Z(_l)r n—:(n_ ranZF .

>0 r

Q

Example: Let uswork through an example of the above proposition. ConsiderC,, the
cycleon 6 vertices pictured below. To compute p(Cg, X) directly, we must examine the

r-matchingsasr ranges from 0 to n. Following the counting argument mentioned above,
we consider the edge e with endpoints 1 and 6, the edge directly left of vertex 1. Any r-

matching will either include this edge, or it won't.

09

1

To count the r- matchingsthat include e, we look for the number of (r —1)-matchingsin
the graph without the edge e or either of its endpoints. But this graph is simply a path on

4 vertices, P, .

11
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To count the r- matchings that do not include e, we look for the number of r-matchingsin

the graph without the edge e, seen below. But thisgraph is simply a path on 6

vertices, P; .

99
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Thuswe seethat p(Cq,r) = p(P;,r) + p(P,,r —1). Asour computation above indicates,
Y 6 (6-r . , .
this simplifiesto el . Using thisfact we can construct the following table:
—r

r-value p(Cs.X)

AEHE

0

o
I | o
o

=
(@)
| | O
=
= o
|
N

N
»
I O
N

w
E

»
|
w

Thus there is one r-matching wherer = 0, there are six r-matchings wherer =1, there are
nine r-matchingswherer = 2, and there are two r-matchingswherer = 3. So we have
arrived at the following:

1(Cq,X) =x°* —6x* +9x* - 2.

12



Section 1.3—Matchingsin Complete Graphs

The complete graph K, on n verticesis the graph in which every vertex is

adjacent to every other vertex; every possible edge isincluded. For example, the

complete graph K is shown below.

These complete graphs form another family of graphs with easily-computable

matchings polynomials. Note that each edge in an r- matching covers exactly two
vertices. Thus, to count r-matchingsin K, we could first pick some subset of 2r

verticesfrom the n vertices of the graph, and then find the number of r- matchings among
those 2r vertices. This second step is the same as counting the number of r-matchingsin

K., , the complete graph on 2r vertices. So by the multiplication principle,

p(Kn,r>=[grjp(K2r,r).

Tofind theterm p(K,,,r) inthisexpression, we first select an edge to cover the
least- numbered of our chosen 2r vertices. There are (2r —1) edgesincident with this
vertex in K., , and once any such edge has been chosen, we seek to compl ete our
matching by choosing an (r — 1) matching in the complete graph on the

remaining (2r — 2) uncovered vertices. Thus

p(Ky 1) =(2r =) p(Ky 5,7 =1).

Proceeding inductively (noting that p(K,,1) =1), we arrive at the following result:

13



p(KZr’r) =(2r_1) p(KZr—Z’r_l)
=(2r -D(2r -3)p(Ky_4,r —2)
=2r-D(2r -1(2r -5)...5-3-1

_ (2r)!
(2r)(2r-2)(2r —4)..4-2

_(2r)!

S o

n
But since we determined that p(K,,r) :[er p(K,, ,r), weconclude that

n
p(K,,r) —(Zer(KZr,r)

lor) 2
n!

“(n-2r)i2'r!

By the above equation and the definition of the matchings polynomial, we have arrived at
the following result about the matchings polynomial of complete graphs.

Proposition 1.3:  For any natural number n, the matchings polynomial of the complete

graph K, isgiven by

n-2r

n(K,X) = 3 (D)

n!
— X
= (n—2r)12"r!

Example: Let uswork through an example in which we compute the matchings

polynomial of acomplete graph. Consider K, the complete graph on 5 vertices, pictured

14



in the beginning of this section. In order to compute (K, X) we must examinether-

n!

= wecan
(n—2r)12"r!

matchings as r ranges from O to n. Using our result that p(K,,r)
construct the following table:

r-vaue p(Kg,Xx)

0 5 _8
(5-2.0)12°.0 511

1 5 5
(5-2-)12" 1 32.1

10

2
S _ 3 _15
(5-2-2)12°.2 1.4.2

Thus we see that there is one r-matching wherer = 0, there are ten r-matchings
wherer =1, and there are fifteen r-matchingswherer = 2. So by using Proposition 1.3,

we have arrived at the following:

n(Kg, X) =x° —10x° +15x.

Section 1.4 — M atchingsin Complete Bipartite Graphs

Finally, we consider the matchings polynomial of one more family of graphs.

The complete bipartite graph, K consists of two sets of m vertices, so it has a total

m,m?
of 2m vertices. Within each set, the vertices are mutually non-adjacent. However, every
vertex in one set is adjacent to every vertex in the other set. The diagram below

illustrates such agraph, K,,. Note that in this depiction, the vertices 1,3,5 form one set

of three vertices, while 2,4,6 form the other. Each vertex in agiven set is adjacent to

every vertex in the other set but to none of the verticesin its own set.

15



To find the number of r-matchingsin such a graph, we can first pick any r

m
vertices from the first set, donein (r J ways. Then we can pick any r vertices from the

second set, also donein (;nj ways. Finaly, therearer! ways of assigning disjoint edges

to pair up these two sets of vertices. Thus, using the multiplication principle, we find that

2
P(KpmsT) :[:n](:njr':(:n] r!. By the definition of the matchings polynomial, the

result below follows.

Proposition 1.4:  For any natural number m, the matchings polynomial of the complete

bipartite graph K, . isgiven by

M (K s X) =z(—1)'(mj X2

r>0 r

Example: Let uswork through an example in which we compute the matchings

polynomial of acomplete bipartite graph. Consider K , , , the complete bipartite graph on

6 vertices (3 in each set) pictured above. In order to compute p(K;;, X) , we must

determine the number of r-matchings, asr ranges from 0 to n. Using the fact given above

2
m
that p(Kmm,r):( J r!, we can construct the following table:
’ r

16



r-value P(K, 3, X)

0 3)?
o=1
0
1 3)\?
1=9
1
2 3)?
2=18
2
3 32
3=06
3

Thus we see that there is one r-matching wherer = 0, there are nine r-matchings
wherer =1, there are eighteen r- matchings wherer = 2, and there are six r-matchings

wherer = 3. So by using Proposition 1.4, we have arrived at the following:

n(K,z,X) =x° —9x* +18x° - 6.

17



Chapter 2 — Reduction Theorems for Matchings Polynomials

When graphs are large and complex, computing their matchings polynomial from
the definition can be arduous. It isamost aways more feasible first to compute the
matchings polynomial of smaller, simpler graphs. Therefore, we seek waysto simplify
graphsin order to ease the computation of their matchings polynomials. In this chapter,
we describe a number of theorems that ultimately allow for such ssimplification; for

clarification, we also provide examples of each theorem.

Section 2.1 — The M atchings Polynomial of a Digoint Union

Thisfirst theorem states that the matchings polynomial of the union of two

digoint graphsis equal to the product of the matchings polynomials of the two graphs.
Theorem 2.1:  For two graphs G and H with digoint vertex sets,
HGUH,X)=p(G,x)u(H,x).

n-2r

Proof: First consider the coefficient of X" inu(Gu H,x). Eachr-matching in the

graphG U H consists of an s-matching in G, combined with an (r —s) matching in H, for

somes. Summing all such combinations (over s from O to r) will give usthe total

number of r-matchingsinGuUH . Thusp(GUH) = z p(G,s)p(H,r —s). By the

s=0

definition of the matchings polynomial, then, the coefficient of X" inu(Gu H, x)

is(—l)rZi: p(G,s)p(H,r—s).

n-2r ;

We now determine the coefficient of x" " inu(G,x)u(H,x). To do so we must

consider pairs of terms, one each fromp (G, x) and u(H, x) , whose product contributes to

the X" term. Such terms are expressed in the following table. In this table we have

18



listed the terms starting with the “leading” term rather than starting with the constant
term.

Notethat n; +n, =n.

1(G,x) w(H,x)

RGO 1 p(H oy

(—1)1 p(G,l)XnG_Z(l) (_1)1 p(H ,1)XnH -2(1)

(-1)? p(G,Z)XnG*Z(l) (=1)2 p(H,2)x™ ~2(2)

(_1)3 p(G,B)XnGiz(a) (_1)3 p(H ,3)XnH -2(3)

(_1)r—1 p(G, r _1)Xne—2(f—1) (_1)r—1 p(H T —1)XnH -2(r-1)

Y pEx V' pH e

Products that contribute to the x"2" term

The terms that contribute to the coefficient of x"* are formed by multiplying two
terms from the above table (one from each column) in the following way: we multiply
the first term in the left column by the last term in the right column, then we multiply the
second term in the left column by the second-to- last term in the right column. We
continue in thisway until, ultimately, we multiply the last term in the left column by the
first term in the right column.

Based on this table, then, we get the following possible combinations that

contribute to the coefficient of X" in u(G,x)u(H, ).

Product Simplified Form
(-D° p(G,0)x" ™ x (=1)" p(H, r)x™~* = (=D p(G,0)p(H,r)x" ™
(-D*p(GOX P x (=) p(H,r =)x* P = (-D* P p(GYp(H,r -Hx"*

(-2)?p(G,2x™* x (=) p(H,r = 2)x™ 2 = (-1)* p(G,2) p(H,r)x"*
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(-2 p(G, )X x (=1)° p(H,0)x™ = (=2)"° p(G,r) p(H ,0)x"*

So to find the coefficient of the x" 2" term, we must sum the coefficients of all

these terms, as follows:

> (17 PG, 9 (1" p(H,r -9 =Y (-* PG I p(H.r - )

=Y PG YPH.I-9).

But we showed above that this same expression is the coefficient of x"*
inu(GuUH,x),soitfollowsthat n(GuUH,x)=u(G,x)u(H,Xx).

Example: Let G bethe graph consisting of two components: C, and P;, as shown

below.
€
—= & @

We use this graph to exemplify Theorem 2.1. If we count the number of r-matchingsin
G, thisis the same as counting the number of r-matchingsinP, U C,. Counting this

directly without Theorem 2.1 gives one O-matching, five 1- matchings, and six 2-

matchings. Thus by definition of the matchings polynomial,

R(RUGC,) = (-D°Lx 20 4 (-1'5x" 20 4 (-1)26x° 2

= x® —5x* + 6x?
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Let us now compare this with what Theorem 2.1 tellsus. We can either count directly or

use the identities defined in Section 1 in order to determine that p(P,) = x* — 2x and
u(C;) = x* =3x. Thus

nw(P)u(C,) = (x3 - 2x)(x3 —3x): x® —5x* + 6x°.

Comparing this with the polynomial above, we seethat pu(P, wC;) =u(R)un(C,)

Section 2.2 — Reduction by Deletion of an Edge and its Endpoints

In this section, we obtain atheorem that allows us to reduce a given graph G by
deleting an edge. We make use of the following notation: let G \ e denote the graph G
with the edge e removed, and let G \{uv} denote the graph G with verticesu and v
removed. (Note that the removal of avertex from a graph resultsin the removal of all

edges adjacent to that vertex aswell).

Theorem 2.2:  For any edge e G with endpoints uand v,

n(G,x) =u(G\e x)— u(G\{uv},x).

Proof: Ther-matchingsin G consist of 2 kinds — those that use edge e and those that do
not. Asthese aretwo digoint cases, we will use the addition principle to count them
separately and then add the results.

Any matching that uses e will determine a unique (r —1)-matching in the graph
not including the endpoints of e. In other words, such a matching determinesan (r —1)-

matching in the graph G \{uv} , asu and v are the endpoints of e. Thus the number of r-

matchingsin G which use e equals p(G \{uv},r —-1).
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Any matching that does not use e will be an r-matching inthegraph G\ e. Note,
in this case, an r-matching may still use vertex u and/or vertex v. Thusthe number of r-
matchings not using e equals p(G\e,r).

So the addition principle gives
p(G,r) = p(G\er)+ p(G\{uv},r -1,

and thisistruefor r >1.

Now let us consider u(G, x) = Z (-1)" p(G,r)x"* . Inorder to incorporate the

r>0

aboverelation on the coefficients in this expression, we must be careful with our index of

summation. Wefirst pull out the r =0 term, giving

1(GX) = (-1° p(G,0)x" + > (=)' p(G,r)x" ™ .

r>1

Now, based on what we know p(G, r) to befor r > 1, we substitute to get the following:

1(G,x) = (-1)° p(G,0)x" + Z(—l)r p(G,r)x" %

r>1

= (-1° p(G,0)x" + Z:(—l)r [p(G\er)+ p(G\{u},r —1]x™*

r>1

But since (-1)° p(G,0)x" =1= (-1)° p(G \ e,0)x", we can adjust the first term.

1(G,X) =(-)°p(G\e0)x" + > (1) p(G\er)x"* + > (-1 p(G\{w},r —)x"*

r>1 r>1

= (D" pG\enx™ +> (D' p(G\{wj,r x>

r>0 r>1

=pn(G\ex) + > (=)' p(G\{u},r—Hx"*

r>1
We desire the summation in right hand side of the equation to begin at r > Oinstead of
r >1, so we momentarily re-index in order to address thisproblem. Let r —1=t, and

thus r =t +1. The equation above then becomes
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= “(G \eg X) + Z (_1)t+1 p(G \{UV} ,t)Xn_z(t+l)

t+1>1

—1(G\ex) + ()Y (-] p(G \{w}, hx 2.

t>0

Now since this right-hand expression isin amore familiar form, we will re-index back to

r's, solett =r . Hence

=pn(G\ex)+ (=D (-1)" p(G\{uj,r)x" 2.

r>0

Notice that the summation on the right is exactly u(G \{uv}, x) . To seethis, observe that
because G \{uv} hastwo fewer verticesthan G (dueto the deletion of vertices u and v),
its matchings polynomial gives the number of r-matchingsin a graph with two fewer

vertices, and so the powers of x take the formx"* 2 instead of x"* . Thus,

u(G,x)=u(G\e x)— u(G\{u},x).
a

Example: Toillustrate the above result, let G be the following graph, where edge e has
endpoints 2 and 4.

Jo

G

We consider two subgraphs, one where we delete e, and one where we del ete the
endpointsof e. G\e and G\{24} arethe following respective subgraphs.

23



Jo ®

©

G\e G\{24}
Counting the matching polynomials of each subgraph gives:
n(G\ex)=x*-3x*+1 and  p(G\{24},x) =x°.

n(G\ex)—pn(G\{24},x) = x*-4x*+1
Counting 11 (G, x) directly resultsin the same polynomial, x* — 4x? + 1. Thusfor the

graph G we see that
w(G,X)=pu(G\e x)— u(G\{24},x).

Section 2.3 — Reduction by Deletion of a Vertex and its Neighbor s

In this section, we obtain atheorem that allows us to reduce a graph G by the
deletion of avertex u and its neighbors, which are defined to be all the vertices directly
adjacent to vertex u. Recall that deleting a vertex from a graph results in the deletion of

all edges adjacent to that vertex.

Theorem 2.3:  For any vertex uof agraph G,

1(G,x) = xu(G\u, ) — > (G \{ui},x).

i~u

Proof: Ther-matchingsin G consist of two kinds — those that cover vertex u and those

that do not. Again, asthese are two digoint cases, we will employ the addition principle.
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Any matching that does use u will have to include an edge that has u as one of its
endpoints. So for each vertex i adjacent to u, we must count (r —1)-matchings

inG \{ui} . To determine the total number of r-matchingsin G that use u, we must sum

these counts. This gives us atotal of Z p(G\{ui},r —1) for the number of r-matchings

that use vertex u.
Any matching that does not use u determines an r-matching in the graph G\ u.
Thus the number of r-matchingsthat do not useu isp(G\u,r).

By the addition principle, then,

p(G,r) = p(G\u,r)+> p(G\{ui},r-1),

i~u
and thisistruefor r >1.

Now let's consider u (G, x) = Z(—l)r p(G,r)x"* . In order to incorporate the

r>0
aboverelation on the coefficients in this expression, we must be careful with our index of

summation. To take care of thiswefirst pull out the r =0 term, giving

1(G,x) = (-D° p(GO)X" + > (-1)" p(G,r)x" ™ .

r>1

Now, based on what we know p(G,r) to befor r > 1, we substitute to get the following:

1(G,x) =(D°p(GO)X" + D (D' [p(G\u,r)+ > p(G\{ui},r —]x™*

=(-1)° p(G,0)x" + Z(—l)r P(G\u,r)x"? + z (-D" Z p(G\{ui},r —x"*

But since (-1)° p(G,0)x" =1=(-1)° p(G \ u,0)x", we can adjust the first term.

1(G,X) = (-)°p(G\U0)X" + D (D" p(G\u,r)X"* + > (-1)" > p(G \{ui},r —Dx"*

r>1 r>1 i~u
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=2 D" pG\UNX"F + > (-D" Y p(G\{ui},r —)x"*

r>0 r>1 i~u

Consider thefirst sum on theright side. Since G\ u has one less vertex than G, the
definition of the matchings polynomial gives

R(G\U,X) =D (D" p(G\u,r)x"o-2r,

r=0

This expression differs from our sum only by asingle factor of x, so

1(G, %) =xD (=D p(G\u, X" + > (=)' p(G\{ui},r —)x"*

r>0 r>1 i~u

=xu(G\u,X) + > (-1)" > p(G \{ui},r —Dx"*

r>1 i~u

=xu(G\U,X) + > (=)' p(G \{ui},r —Dx"*

r>1 i~u

=xu(G\U,X) + D > (1) p(G\{ui},r —Dx"*

i~u r>1
We desire the summation on the right to begin at r > Oinstead of r > 1, sowe
momentarily re-index in order to addressthisproblem. Let r —1=t,andthusr =t +1.

Therefore, continuing from the equation above we have

= Xu (G \u, X) + Z z (—1)”1 p(G \{UI} ’t)xn—Z(Hl)

i~u t+1>1

=xu(G\U,X) + (DD > (1) p(G \{ui}, t)x" 2.

i~u t=0
Since thisright-hand expression is now in a more familiar form, we will re-index back to

I's, solett=r.

= XH(G \u, X) + (—1)22 (_1)r p(G \{UI} ' r)Xn—2r72

i~u r>0

Note again that the sum > (-1)" p(G \{ui},r)x"** precisely equalsu (G \{ui}, x), since

r>0

G \{ui} hastwo fewer verticesthan G. Hence
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(G X) =Xt (G\U,X) = D (G Mui}, ).

Q

Example: Using the graph G shown below, we now consider Theorem 2.3. Let vertex

2 bethe vertex we delete.

Jo

We consider two classes of subgraphs. Thefirst consists of a single subgraph, onein
which vertex 2 has been deleted. The second is agroup of graphs, in each of which we

have deleted vertex 2 and one vertex adjacent to it. The subgraphs are drawn below.

6
G\2
© 6
& ©®
G\{21 G\{23 G\{24)

Counting the matchings polynomials of these subgraphs gives us

1n(G\2,x) =x(x2 —1): x® - X,
by Theorem 2.1, and
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Zu(G\{Zi},x)=(x2 —1)+ X%+ x% =3x* -1.

Thus, we get
xw(G\2,X) -3 n(G\{2i},X) = x(x¢ - 3)- (3x® —1) = x* - 4x? +1.

We know from above (or by direct counting) that (G, x) =x* —4x* +1. So for the given
graph G we have

1(G,x) = xu(G\ 2,%) —Zu(G \{2i},X).

Section 2.4 —TheDerivative of the M atchings Polynomial

Since the matchings polynomial is a polynomial function, it is reasonable to
inquire about its derivative. The following theorem provides an interesting result about
the derivative of the matchings polynomial. We remark that our use of the derivativeis
purely formal. Since we are not interested in evaluating our expressions at any particular
value of x, it is clear that we are not using the matchings polynomial asafunction. In
particular, then, we are not concerned with any particular rate of change when we are
differentiating. Indeed, in this section we will employ the derivative merely as aformal
operation which obeys the familiar ‘ power rule’.

Note herethat G\i isagraph in which avertex i has been deleted. Thus each
graph G\i for some vertex i € G iscalled avertex-deleted subgraph of G. Sointhe
theorem below, the expression on the right represents the sum of the matchings

polynomials of al the vertex-deleted subgraphs of G.
Theorem 2.4: For any graph G,

SR = TG\

ieV(G)

Proof: By the power rule for derivatives, the coefficient of the x> termin

%H(G,x) isequa to (-1)" (n—2r)p(G,r). Notethat (n—2r) p(G,r) representsthe

28



number of ways of first picking an r-matchingin G (which is p(G,r) ) and then choosing

onevertex from G that is not covered by the r- matching (there are n— 2r of these, since
each edge covers 2 vertices). We could instead, however, arrive at this same number if

we first pick avertex and then pick an r-matching that does not cover thisvertex. This

way of counting yieldsthe expression ' p(G\i,r).

ieV(G)

Setting these equivalent expressions equal to one another, we obtain the equation

(n-2r)p(G,r)= > p(G\i,r).

eV (G)

Note since G\ i has one less vertex than G, its matchings polynomial is

R(G\i,x) =D (-1)" p(G\i,r)x"2-2

r>0

Therefore we can rewrite the derivative of (G, x) in the following way.

r>0

=D D pG i rx

r=0 iV (G)

= D" pG N, rx U

r>0ieV(G)

= > D (=D p(G\i,r)xtm

iV (G) r=0

= Y u(G\i,9,

ieV(G)

asdesired.

Example: Using the graph G pictured below, we consider Theorem 2.4.

©
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Let usexamine > p(G\i,r).

iV (G)

a ° SO

—o G—© o ®

w(G\Lx) W(G\2,%x)  u(G\3x%) w(G\4,x)

Counting matchings in each of these subgraphs gives us the following results:
1n(G\1,x) = x*> —3x
n(G\2,x)=x(x*-1) =x>-x
n(G\3,x) = x> -2x
n(G\4,x) = x> -2x
Then

D p(G\i,r) =(x* =3x) + (x> = X) + (x> = 2%) + (x* — 2x) = 4x° - 8X.

ieV(G)

We know from the example in the previous section that j1(G, x) =x* - 4x* +1. So

di (G, x) =4x® —8x. Thus, for the graph G we see that
X

%H(G,x): D> p(G\ir).

ieV(G)
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Chapter 3— Three-Term Recurrences

Having now established a number of useful theorems related to the matchings
polynomial, we turn our attention to recurrences for the matchings polynomials of
familiar classes of graphs that we discussed above: paths, cycles, complete graphs and
complete bipartite graphs. We use the above theorems to obtain three-term recurrence
relations for these classes of graphs, and again we follow each discussion of arecurrence

with an example.

Section 3.1 — Recurrencesfor Paths

Using Theorem 2.3 for any vertex uin apath P, , on n+1 vertices, we obtain the

n+l

equation
M(Pmlix) = X“(Pml \U, X) _Zu(PnH \{UI} , X) :

Choosing u to be an endpoint of P

n+l?

we find that the graph P,., \u inour first termis

simply a path on n vertices, P,. Inthe second term, since u is only adjacent to one other

vertex i, P, \{ui} asorepresentsapath P, ;. Thuswe arrive at the following result:

Proposition 3.1:  For any natural number n,

H(Pmlix) = X”(Pnix) - M(Pn—l' X) .
a

We can use this three-term recurrence to generate the first several matchings polynomials

of the pathsP, .
1(Rp. %) =1
n(P,x) =X
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n(P;,X) =x*-1

u(P,,X) =x(x* —1) - x = x® - 2x

u(P,,X) =x(x*-2x)-(x* =D =x*-3x*+1

w(Ps,x) =x(x* =3x% +1) - (x* —2x) = x*> —4x® + 3x

w(P,,X) =X(X° = 4x3 +3x) - (x* =3x* +1) = x® —-5x* +6x* -1

Example: In Section 1.1 we devel oped a counting argument for computing the
matchings polynomials of P,. We found that
r n - r n-2r
M(Pn,X):Z(—l) (r JX 2 .
r>0
As an example, let us compare (P, X) using the counting method and the three-term

recurrences.

Using the counting method we have

5—r
w(P,,X) = Z(—l)“[r ]XS‘Z’ =x° —4x% + 3x.

r>0
Note this agrees with the expression for p(P;, x) that we found above using the three-

term recurrence.

Section 3.2 — Recurrencesfor Cycles

In this section we derive arecurrence for cycles. If we apply Theorem 2.2 to the
cycle C,, wefind that, for an edge e with endpointsu and v,
1(C, %) = 1(C, V&%)~ 1(C, \{}, X).
But the graph C, \ e isjust apath on n vertices, and the graph C, \{uv} isapath on
n—2vertices. Soif n> 2,
r(C,. %) = (R, X) - (R, 2. %) .
Now we use previous identities in order to develop arecurrence for the cycles. We

ultimately seek to prove the following recurrence:
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M(Cm—l’ X) = XM (Cn ' X) - M(Cn—li X)
We begin by examining the |eft side of the recurrence.
It has been established that:

M(Pm—l’X) = XM(Pn'X)_ M(Pn—lix) and M(Pn—lix) = XM(Pn—Z’X) - M(Pn—31x) .
And it has been further found that:
M(Cn—ll X) = M(Pn—ll X) - “(Pn—3! X) .

By substitution, then, we obtain the following:
M(Cn+l1x) = M(Pm—l’x)_“(Pn—l’X)

=[xu(P,, %) — (P 1, ¥)] — (P, 1, X) 1)

Turning now to the right side of the desired recurrence, we use substitution to obtain
x4 (C,, %) - u(C, 1, X) =Xu(R, X) — (R 2, X)] - n(C, 1, %)
=xu (P, %) = xu(R 5, %) - u(C, 4, %)
=xu (P, %) = xR, X) —[1(F 1, X) — n(R 5. X)]
=X (R X) = (R, 1, X) =[x (P2, X) — u(R, 5, X)]
=xu(Ry, X) — u(R, 1, X) — (P, X)] )

The expressions (1) and (2) above are equivalent. Keeping our initial assumption of

n>2 inmind, wefind that for n> 2,
M(Cm—l' X) = XM(Cn ' X) - M(Cn—li X) .

Thus we have obtained a three-term sequence for cycles.

Proposition 3.2:  For any natural number n> 2,

M(Cm—l' X) =Xu (Cn ) X) - M(Cn—li X) :

Q

We can use this three-term recurrence to list out the first several matchings polynomials

of thecyclesC,,. Wefirst note by direct counting that:
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1(Co, %) =1

n(C, %) =X

1(C,,x) =x*-2

By implementing our recurrence relation, we find the following:

1(Cs, x) =x(x*-2)—x=x>-3x

1(C,,x) =x(x*-3x) - (x*-2)=x"—4x* +2

1(Cs,X) =x(x* —4x* + 2) - (x* = 3x) = x> - 5x® + 5x

1(Cq,X) =X(X°> =5x> +5xX) — (X* —4x* +2) = x° —6x" + 9x* -2

Example: In Section 1.2 we developed a counting argument for computing the
matchings polynomialsof C,. Wefound that

lJ,(Cn ’ X) — Z(_l)r n_Tr(n— ranZF .

>0 r
Asan example, let us compare . (Cy, X) using the counting method and the three-term

recurrences. Using the counting method we have

r>0

6-r
1(Cq, X) :Z(—l)r(r ]xﬁ‘zr =x°® —6x* +9x* - 2.

Note thisis agrees with the expression for n(Cg, X) that we found above using the three-

term recurrence.

Section 3.3 — Recurrencesfor Complete Graphs

To derive athree-term recurrence for the compl ete graphs, we proceed in asimilar

manner as above. In particular, we begin by using Theorem 2.3 to obtain the following:

“(Kn+l’ X) = XH(Kn+l \ U, X) _ZH(Km—l \{UI} ’ X) ’
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where u denotes any vertex inK ;. Observethat the graph K, \u inour first termis

n+l
simply a complete graph on n vertices, K,,. And in our second term, since avertex u
inK,,, isadjacent to exactly n other vertices, and because we remove exactly two

verticesfromK, ,, , the term Z p(K,.; \{ui}, x) becomesn timesu (K, ;,X). Thuswe

i~u

have the following three-term recurrence for complete graphs.

Proposition 3.3:  For any natural number n,

M(Km—l’x) = X- H(Knix) -n- “(Kn—li X) .
a

We can use this three-term recurrence to list out the first several matchings polynomials

of the complete graphsK ..

r(Kg, %) =1

n(Ky,X) =X

n(K,,x) =x*-1

n(Ks, x) =x(x*-1) - 2x = x> - 3x

n(K,,x) =x(x* =3x) - 3(x* 1) = x* —-6x* +3

u(Kg,X) =x(x* - 6x* +3) — 4(x® — 3x) = x> —10x® +15x

1(Kg,X) =Xx(x> —10x® +15x) — 5(x* — 6x* + 3) = x* —15x* + 45x* —15

Example: Recall that in Section 1.3, we devel oped a counting argument for computing
the matchings polynomials of K. We found that

n-2r

n(Kyx) =2 (-1’

n!
—X

= (n—2r)12"r!
We now compare the expression for pu (K, x) obtained using the counting method with

the expression obtained from the three-term recurrence above. Using the counting
method from Section 1.3 we have
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x> =x° —10x> + 15X,

.5
h(Ks %) =§(‘1’ 5-2n12'r!

which agrees with the expression for (K, x) that we found above using the three-term

recurrence.

Section 3.4 — Recurrencesfor CompleteBipartite Graphs

Obtaining athree-term recurrence for the family of complete bipartite graphs

K nm requires abit more effort but proceeds along the same general lines. To begin with,
we can count the number of r-matchingsof K asfollows. Let X:and Y be the two cells
of the bipartite graph, and let us pick two verticesin opposite cellsof K ., say ue X

and veY . Then weidentify the following cases. We consider the number of r-
matchings that:

(1) Do not use u and do not usev. Thisisdonein p(K r) ways, as we now

meLm1s
have one fewer vertex in each set with which to form our r- matching.

(2) Useu. If weuseu from set X, then we choose a vertex from set Y to be the
other endpoint of the edge that coversu. Since the graph is complete bipartite, there are
m vertices to choose from. No matter which vertex in Y we choose, we will need to
complete our matching by selecting an (r — 1)-matching in the remainder of the graph,

which can be donein p(K r —1) ways. So the number of r-matchingsin K, . that

m-1,m-17

usevertex u must equal m- p(K r-1).

m-1,m-1?

(3) Usev. By the same argument asin case (2), we can form such an r-matching

in m-p(K, ;=1 ways.

Noticethat if we were to sum these three cases, we would double count all of the
r-matchingsthat use both u and v. Thus, from the sum of cases (1), (2), and (3), we must

subtract the number of r-matchings that use both u and v. Such r-matchingsfall into two
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digoint categories, (4) and (5), which we count separately below. We consider the

number of r-matchings that:

(4) Match uwithv. One edge of each such r-matching will be the edge uv, so we
seek to form an (r — 1)-matching in the graph that remains, K, .., . Hencethere
are p(K,,_, .1, F —Dwaysof forming an r-matching in K, = that usesthe edge uv.

(5) Useuand v but do not use edge uv. If weuse u and v but do not use uv, then
vertex u will have to form an edge with some vertex in Y other than v, and vertex v will
have to form an edge with some vertex in X other than u. There arem—21choicesfor u
and m-1choicesfor v, resulting in(m—1)*ways of forming the two edges that use u and
v. What remainsisto count the number of an (r — 2)-matchingsin the graphK, , ..

Thus the number of r-matchingsthat use u and v but do not use edge uv is equal to
(M=% p(Kom2" =2).

Putting it all together, we add cases (1), (2), and (3), and subtract cases (4) and (5)

tolearnthat for r > 2,

p(Km,m’r) = p(Km—l,m—lir)+ m- p(Km—l,m—l’r _1) + m- p(Km—l,m—l’r _1)
- p(Km—l,m—11r _1) - (m_1)2 : p(Km—Z,m—Z’r - 2)

= p(Km—l,m—li r) + (Zm_]—) p(Km—l,m—l'r _1) - (m_1)2 p(Kmfz,mfz’r - 2) :
Now, by the definition of the matchings polynomial, we have the following:

B(Kpm¥) = (D) P(K e DX

r>0

=X" = m?X"2 4+ (<D p(K py 1IX

r>2

wheren = 2m.

From above, we substitute based on what we know p(K  ..,r) to be.
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“(Km,m!x) =Xx"- mZXn—2 + Z(_l)r[ p(Km—l,m—l’ r) + (Zm_l) p(Km—l,m—11 r _l)

r>2

—(M=D?p(K oz F =X
So now we have three summations to work with.

M(Km,m ’ X) = Xn - mZanZ + Z (_1)f p(Km—l,m—li r)xn_2r

r>2

+ (Zm_l)Z(_l)r p(Km—l,m—l’r _1)Xn72r

r>2

—(m- 1)22 (=D p(Kpy2marf — 2)x"

r>2

Thefirst summation simplifies as follows:

x2S (D) P(K g1 D)X = XK gy X) = X7+ (M= 2)2 X7

r>2
The second summation simplifiesaswell. Wefirst re-index our summation, letting

t=r-1,s0that r =t+1. Oncewe havetheform we desire, we re-index back tor’s:;

2m=-D ()" p(K 1y 400, DX = (-D(2M =D (-1 P(K g0, )X

1 t>1

==(2m=-1) (-D" p(K 11, 1)X"

r>1
:—(Zm—l)[p(Kmemfl,X)—Xn_z]
Finally we address the last summation. We will re-index again in asimilar fashion. Here

welett=r-2,andsor=t+2.

_ (m_1)2z (_1)r p(Km_Z’m_2 - Z)Xn—zr - _ (m_l)zz (_1)t+2 p(Km_z,m_z ,t)xn—z(t+2)

r>2 t>0

= - (m_]-)ZZ(_]-)t p(Kmfz,mfzyt)XniAﬁ2t

t>0

== (M=-1> (-1 p(K 52,1 )X"

r>0
== (m_1)2 H(Kmfz,mfwx)

Combining all these expressions and simplifying, we obtain
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M(Km,m1x) = (X2 - 2m+1)M(Kmfl,rm17X) - (m_l)ZM(Km—Z,m—Z' X) .

Therefore we have written (K .., X) in terms of its two previous values of m, and so we

have derived the following three-term recurrence for complete bipartite graphs.

Proposition 3.4:  For any natural number m> 2,

H(Km,m' X) = (X2 - 2m+1)H(Km—1,m—17X) - (m_l)ZH(Km—z,m—Z' X) .
a

Based upon this recurrence we can list out the matchings polynomials of the first several

complete bipartite graphs.

1(Koo,X) =1

n(Ky,X) =x*-1

n(K,,x)  =(x*-3) - (xX*-D)-1=x*-4x"+2

n(Ky3,%) =(x*=5)-(x*"=4x*+2) - 4(x* -1) = x* —9x* +18x* -6
n(K,,, %) =(x*-7)-(x®* —9x* +18x* —6) - 9(x* —4x* +2)

= x® —16x° + 72x* —96%° + 24
n(Kgs,X)  =(x*—9)-(x® —16x° + 72x* —96x* + 24) —16(x° — 9x" +18x* — 6)
= x*° — 25x° + 200x° — 600x* + 600x* —120
1(Kgg,X) = (x> =11) - (x" — 25x® + 200x° — 600x"* + 600x* —120)
—25(x% —16x° + 72x" — 96X + 24)
= x"* - 36x" + 450x° — 2400x°® + 5400x" — 4320x* + 720

Example: Recall that in Section 1.4, we devel oped a counting argument for the

complete bipartite graph. For agraph K wheren =2m,

m,m?
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M(Km,mlx) = Z(_l)r(mJ r!xn—Zr .

r>0 r

In fact, using the above expression, we found the matchings polynomial of K, to be
n(K,s) = x®—9x* +18x° - 6.

Note thisis the same matchings polynomial that we found above using the three-term

recurrence.

It is perhaps worth remarking that the significance of having a three-term
recurrence on afamily of polynomialsis more than just computational. Indeed, the
existence of such recurrence relations actually implies that each of these families of
polynomials forms an orthogonal sequence with respect to an appropriate inner product.

We will return to this curious fact in alater chapter.
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Chapter 4 — Complements and Perfect M atchings

Given agraph G, itscomplement G denotes agraph that has the same vertex set
as G. However, the edge set of G isthe opposite of the edge set of G. That isto say, if
there is an edge between two verticesin G, then that edge is not inG ; if thereis not an

edge between two verticesin G, then thereiis such an edge inG . The following two

graphs exemplify this complementary relationship.

(D2 L (2
(O—) OO

G G

In this chapter, we study some rel ationships between the matchings polynomials

of agraph G and its compl ementG . We will eventual ly express such relationships using
integrals, but this requires the introduction of a particular kind of matching.

We define a per fect matching of agraph G to be a matching in which every
vertex of G isan endpoint of an edge in the matching. Said another way, a matching is
perfect if it covers every vertex in agraph. Let usdenote the number of perfect

matchingsinagraph G by pm(G).

Examples: Consider first the graphC,, mentioned in Section 1.2.
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It has two perfect matchings, as shown below. Note that al of the verticesin the graph

areincluded in both of these matchings, making the matchings perfect.

@% @/@g

@

Contrast this with the house graph, which has 5 vertices.

Note in this graph, no set of edges will cover every vertex and still fulfill the definition of
amatching. In order to include vertex 1 we would need to have {12} or {15} in our
matching. But if we include either of these edges, we are |eft with the following graphs
respectively. In neither case are we able to include the remaining three vertices in our

matching. Thus the house graph has no perfect matching.

—
Indeed, since any matching must cover an even number of vertices, a graph with an odd

number of vertices can never have a perfect matching.
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Section 4.1 — Perfect Matchingsin the Complement of G

We begin this section by considering pm(G), the number of perfect matchingsin
the complement of agraph G. We must first take note of two important identities. Lete
beanedgein G. Sinceee G, eisnot inG. SinceeisnotinG \e, it must be the case

that eisin G\e. Thus G\e will beexactlythe%\measé,except it will also include
the edge e. Therefore we have that

Gle=G+e.

We turn now to the second identity. Arguing using the notion of set difference, we note
that G \{uv} can be written as (K, \ G)\{uv} which, in turn, is equivaent to

(K, \{uM})\(G\{uv}). Thislast expression isthe same as G \{uv} , and hence

G\{uv} =G \{wj} .
We will use these two simple observations to prove the following lemma.

Lemma4.1l: For any graph G and any edge ein G with endpointsu and v,

pm(G) = pm(G \ e) — pm(G \{uv}).

Proof: Theedgeeisclearly in G + e soweconcludethat eisinG\ e by thefirst

identity above. The perfect matchingsin G\ e consist of two kinds — those that use e and

those that do not. Any perfect matching that does not use e is a perfect matching
inG\e\e, whichisjust the graph@ . Any perfect matching that does use e determines a

perfect matching inG \{uv} . Thus
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pm(G\e) = pm(G) + pm(G \{uv}).

Rewriting this equation using our second identity above, we obtain the statement of the

lemma.

Example: We demonstrate Lemma 4.1 with the following example. Let G and G be
the graphs below. Let e be the edge with the endpoints { 13}. Listed below each graphis

the number of perfect matchingsin each graph, which can easily be found by direct

counting.
/ g
OO O 6 (&) &3
pm(G\e) =1 pm(G\e) = 2 pm(G) =1 pm(G) =1

@ /9
© O
pm(G\{13}) =0 pm(G\{13})=1

We seg, then, that for thisexample it istrue that

pm(G) = pm(G \e) - pm(G \{13}).



Section 4.2 — Perfect M atchingsin the Complete Graph

In this section, we focus on perfect matchings in complete graphs. The lemmawe

obtain in this section will prepare us for the primary theorem in this chapter.

Lemma3d2 pm(K,)= _Ie’x/z x"d
Proof: Wedefine M (n) = \/;_ J'x”e‘xz/zdx,which we evaluate using integration by
[V

n+l

parts. Letting u=e*/? and dv=x"dx, wefind that du=—-xe™/? and v = . So

n+1

b b
by the parts formula, _[udv = uv|2 - j vdu , leading usto calculate as follows:

1 g L g X -
E:[Ce xdx_\/%e n+1| \/_J.n+1 dx.

n+1
To compute the first term on the right hand side, we note that lim ; e/ X 1
X—>1o0 T n +

equals O by repeated applications of L’Hopital’s Rule. So we now have that

—e‘xz/ 2dx ,

1 e
wle =i

and thisimpliesthat

M(n):iij.x'”ze‘xz/zdx

N+1+/2x i

_ M(n+2)
n+l1

To exploit this recurrence, we now find valuesfor M (1) and M (0). We have, by

definition,
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—x2/2

M (D) = 2yl = xdXx .

LTe
Vor =,

, and observethat f(—x)=-xe

1 Te
Jor =,
_x2/2

We define the function f (x) = xe x/2

and

— () =—xe ¥

. Since f(-x)=-"f(x), thisisan odd function, soitissymmetric
about the origin. Integrating from — oo to oo, then, will result in anet area of 0. Thus

M(n+2)

M (1) =0. NotesinceM (n) =
n+1

, thisimpliesthat M (n) = 0 whenever nis odd.

Next we find M (0) =1, and we use multivariate integration to confirm this.

Let | = Ie‘xzdx.Thm

o0 00

I J.e‘xz‘yz dydx = ]O Te‘xz e dydx = ( Te‘yz dy][ Te‘xz dx] =12

—00—00 —00—00

Switching to polar coordinates, we find that

21n 0

|12 = “e’rzrdrde .
00

So now, substituting u = —r?and du = —2rdr , we have

2n© 21 —©

|12 = ”e"zrdrde :—E_H‘e”dude = —lzjf(—l)de =7.
00 2 00 2 0

Thereforel =+/n . Notethat | could not equal —r ,asour integral clearly evaluates a

region with positive area. Now, with a simple change of variables, we can determine

M(0). Letting u=i and du:ﬂ,weseethat
J2 2
1 = _ 2/ 1 = \/E o
e Pdx=——[ e V2du=—2["eldu=1.
/2 J-—oo /271: J.—oo ,275 J.—oo
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M(n+2)

Hence M (0) =1. Since M (n) = , we have the following relationship:

(n+)-M()=M(n+2)
Using this relationship, we use M (0) =1 and M (1) =0 to compute as follows:

M(2)=1-M(0) =1

M@ =2-MD)=0
M(4)=3-M(2) =31
M(5)=4-M(3)=0
M(6)=5-M(4)=5-3-1
M(7)=6-M(5) =0

M@ =7-M(6)=7-531
M(9)=8-M(7)=0

Thus, becauseM (1) = 0, it followsthat M (n) = 0 when nis odd. And because M (0) =1,
it follows that for any eveninteger n=2r, M(2r) = (2r -(2r - 3)...3-1.
But note that a perfect matching in K, can only exist when there are an even

number of vertices. Therefore pm(K,) =0= M (n) when nisodd, and
pm(K,) = p(K,,,r) whenn=2r.

And recall from Section 1.3 that

p(K,, ,r)= % =(2r-)(2r -3)..3-1= M(2r).

Therefore, for any integer n, we have the desired result:
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1
\2r

pm(K,)=M(n) = Ix“e’xz/zdx.

Because x" isactually the matchings polynomial of the complement of K,

Lemma 4.2 suggests a possible relationship between graphs, their complements, and
perfect matchings. In the next section, we present atheorem that describes such a
relationship.

Section 4.3 - TheM atchings Polynomial of G and Perfect Matchingsin

its Complement

In the previous section, we established that the number of perfect matchingsin the

complete graph is given by the formula
pm(K,) = 1 T x"e */2dlx .
Vor °,

The integrand on the right hand contains a factor of the polynomial x". This polynomial
isin fact the matchings polynomial of the complement of K., afact which motivates the

following result.

Theorem 4.3:  For any graph G,
1

Jor

pm(G) = jw w(G, x)e ™ dx .

1

Jor

number of edgesin graph G. Lemma 3.2 has given our base case, the graph K_n with O

Proof: Denote | (G) =

f u(G, x)e’xz/ dx . We proceed by induction on the

edges, as
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Tx”exz/zdx _ 1 T n(K,,x)e™*"dx.

pm(K,,) = ———
" I N2 -
For our induction hypothesis, we assume that G has at least one edge e with
endpoints u and v, and we assume the theorem is true for any graph with fewer edges than
G. Theinduction step proceeds as follows. By Theorem 1.6, we have

1(G) = if;u(G,x)e‘xz/zdx

Jor

1n f; [L(G\ e x) - n(G \{u}, x) e *?dx

N

- 1 o —x2/2 1 o _x2/2
=— [ nG\egxe dx——J' n(G\{um, x)e*"%dx
\2n L’" N2

= 1(G\e) - 1(G\{u})

But both G\ e andG \{uv} havefewer edgesthan G, so the induction hypothesis applies.
It tells us that

1(G\e) = pm(G\e) and (G \{u}) = pm(G \{uv}).

Hence

1(G) = pm(G\ e) - pm(G \{w})

which equals pm(G) by Lemma4.1, and so we have the desired equation

1
\ 2

1(G) = [ e, x)e*dx = pm(G).
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Chapter 5—- Orthogonality

In this chapter we discuss the orthogonality of several families of matchings
polynomials with respect to variousinner products. Let R[x] denote the vector space of

all polynomialswith real coefficients. We can then view u (G, x) , the matchings
polynomial of agraph G, asavector in this vector space R x]. Before we discuss

orthogonality, let usfirst review the notion of an inner product.
If V isany vector space over the real numbers, then an inner product is any

function < , >:V> R that satisfies the following properties:

D (uv)=(vu) forevery uveV,
(2) <u,v+w =(u,v)+(u,w) forevery uv,weV,
(3  (k-uv)=k-(uv) forevery uveV and k € R,

4 (uu)>0 forevery ueV, and <u,u>:0 if and only if u=0.

An example of an inner product isthe usual dot product encountered in atypical calculus

course. Two vectors u,v are said to be orthogonal with respect to an inner product
< , > whenever (u,v)=0.

In the following sections, we will encounter a number of inner products on the
vector space R x], and we will find that, curiously, each of the families of matchings
polynomials we have studied is indeed an orthogonal set of vectorsin R x] with respect
to an appropriate inner product. Only the orthogonality of the matchings polynomials for
complete graphs isimmediately relevant for the main development of the resultsin this
paper, although the other families have equally interesting results. Therefore, in the
sections that follow, we will discuss the family of complete graphs in depth while
offering aless detailed treatment of the other three families (paths, cycles, and complete

bipartite graphs).
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Section 5.1 — Orthogonality and Complete Graphs

In this section we return to our discussion of complements and perfect matchings.

Observe that the complement of K U K isthe complete bipartite graphK ., since the

graph K, U K, consists of two independent sets of sizesm and n, with all possible edges

between them. (Recall aset of verticesisindependent if no two of them are joined by
an edge.)
Since a perfect matching must cover al of the vertices, we can only have a perfect

if m=n. On the other hand, if m= n, then a perfect matching does

matching inK |
indeed exist, because there are m choices for the first vertex to be paired with,

(m—1) choicesfor the next vertex to be paired with, and so on. Sowhen m=n, wein
fact find that there are atotal of m! (which isthe same as n!) perfect matchings. (In other
words, the existence is guaranteed by the counting argument.) Thus we arrive at the
following equation:

m if m=n _

0  otherwise

pm(K,) ={

Note that by Theorem 2.1, n(K,, WK, ) =pn(K,,,X)n(K,,X). Hence, using the
factthat K UK, =K, andapplying Theorem 4.3, we get

1
pm(K, ) Tor
T
L

Jor

Iu(Km UK., x)e*"?dx

J (K (K, 00 2

Thus we have shown the following resullt.
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Theorem 5.1:  For any natural numbers m and n, we have

M if m=n

Lu(K,, x)e " dx :{
0 otherwise

1 =
E_J;M(K

Theorem 5.1 indicates that the matchings polynomials of the complete graphs form an
orthogonal family of polynomials. They are orthogonal with respect to the inner product

_iw _x2/2
(P(x),q(x)) = @j p(x)q(x)e ™ 2dx.

In fact, the matchings polynomials of the complete graphs belong to awell-
studied family of orthogonal polynomials, known as the Her mite polynomials. For more
about these polynomials, the reader is referred to (Leon, 2006).

Example: Let usexamine two complete graphs, K, and K,. Their respective
matchings polynomials are given by u(K,, x) = x* —=3x and p(K,,x) = x* —6x*+3.

Substituting into the inner product above, we find that
1 % 2
Ko, %), m(K,, X)) = ——— [ (x® =3x)(x* —6x2 +3)e*dx =0,
((Kq 2,1 (K 4, X)) MJ@( ) )

as expected. If we evaluate the inner product of n(K,,x) withitself, we obtain

! j(xs ~3x)%e*Pdx =3

Vor

These are the results we would expect, given the orthogonality of the Hermite

polynomials.
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Section 5.2 — Orthogonality and Paths

We can also consider whether the matchings polynomials of paths form afamily

of orthogonal polynomials with respect to some inner product. Indeed, upon substitution
of 2x for x in the matchings polynomial of paths, we find afamiliar family of

polynomials. Infact,

u(R, sY (x,

wherethe U, ( x arethe so-called Chebyshev polynomials of the second kind (Leon,

2006). The Chebyshev polynomials are known to be orthogonal (indeed, orthonormal)
with respect to the following inner product

(p(.900) = 2 [ POOGONVI- o

T

Example: Let usexaminetwo paths, P, and P,. Their respective matchings
polynomials are given by p(P,, x) = x> — 2x and p(P,,x) = x* —3x® +1. Using the
above relationship u(P,, =Y (x,wefindthat U,(x)=8x>-4x and

U,(x) =16x* —12x* +1. Substituting U,(x) and U ,(X) into the inner product above, we
find that

1
2 j (8x2 — 4x)(16x* —12x% + 1)v1- x?dx =0,
T4
as expected. If we evaluate the inner product of U,(x) with itself, we find that

1
E_[(8x3 —4x)?\1- x?dx =1.
T4
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These are the results we would expect, given the orthogonality of the Chebyshev

polynomials of the second kind.

Section 5.3—-Orthogonality and Cycles

We can a so consider whether the matchings polynomials of cycles form afamily
of orthogonal polynomials with respect to some inner product. These polynomials are
also intimately related to awell known family of orthogonal polynomials. Indeed, for

n>1,

nG, 23712 &,

wherethe T, ( x arethe Chebyshev polynomials of thefirst kind (Leon, 2006). These
Chebyshev polynomials are known to be orthogonal (indeed, orthonormal) with respect

to the following inner product

27 1
: == —— dx.
<p(><) q(x)) . jl P(X)a(x) Mg X

Example: Let us examine two cycles, C, and C,. Their respective matchings
polynomials are given by 1 (C,, x) = x* = 3x and u(C,,x) = x* —4x* +2. Wefirst note
that u(C,,2x) =8x®> —6x and u(C,,2x) =16x* —16x* + 2. Then, using the above
relationship u(C, % 3 T2 & ,wefindthat T,(x) = 4x®-3x and

T,(X) =8x* —8x* +1. Substituting T,(x) and T,(x)into the inner product above, we
find that

1
1- x?

1
Ej(4x3 —3x)(8x* —8x? +1) dx =0,
T4



as expected. If we evaluate the inner product of T,(x) withitself, we find that

1
EJ(4x3 —3x)%V1-x%dx =1.
T4

These are the results we would expect, given the orthogonality of the Chebyshev

polynomials of the first kind.

Section 5.4 — Orthogonality and CompleteBipartite Graphs

Finally, we can aso consider whether the matchings polynomials of complete
bipartite graphs form afamily of orthogonal polynomials with respect to some inner
product. These polynomials are also closely related to awell known family of orthogonal

polynomials. In this case,

n(Ky B o0 (L) X 17,

wherethe L ( x arethe Laguerre polynomials (Leon, 2006). These Laguerre

polynomials are known to be orthogonal (indeed orthonormal) with respect to the

following inner product
(P(x),a03) = [ POYa(x)e *dx..

Example: Let us examine two complete bipartite graphs, K, , and K;,. We have

n(K,,, X) =X —4x% +2 and p(K, 5, %) = x° —9x* +18x* — 6. Using the above

relationshipu(K, ¥ . (L) & 1 ", wefindthal, :%x2—2x+1 and
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L, = _(é x® —gxz + 3x—1j . Substituting L,(x) and L,(x)into theinner product above,

we find that

0

'[(ixz —2x+1)(—1x3 i35 —3x+1)edx=0,
2 6 2

0

as expected. If we evaluate the inner product of L,(x) withitself, wefind

J‘(—lx3 £ 3y —-3x+1)%edx=1.
6 2

0

These are the results we would expect, given the orthogonality of the Laguerre

polynomials.
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Chapter 6 — Rook Polynomials

We now turn our attention to a special case of the matchings polynomial, one that
provides useful applications for counting problems and other combinatorial concepts.
This specia matchings polynomial, called the ‘rook polynomial,” derives its name from
the familiar game of chess. In this game, arook is a piece which can move any number
of squares horizontally or vertically; it moves exclusively along the rows and columns of
achessboard, asindicated below.

We can associate chessboard configurations with graphsin the following way.

We define aboard to be any subset of the squares of an mx m chessboard. Any such
board B determines a bipartite graph G, asubgraph of K, = asfollows. The m vertices
inoneset of K correspond to the rows of the containing mx m chessboard, and the m
vertices of the other set correspond to the columns. We refer to these as the row-vertices
and column-vertices, respectively. Any given row-vertex, together with a column-
vertex, determines a unique square in the containing mx m chessboard. These vertices
arejoined by an edgein G; if and only if the square they determine isin the board B.

For example, consider the diagrams that follow. In the chessboard below, the
gray squares arerestricted positions, or squares on which no rook can be placed. Thus
the board B consists only of the white squares. Note we can see the relationship between

the board B and the graph G; : an edge exists between arow-vertex and a column- vertex

in G, exactly when the square defined by this row and column isin board B.

S7



1
- A
) ‘ ;'9
3 € ()
B G,

We also must define the complement of aboard B, which we denoteby B. The
complement B isaboard that is made up of squares that were not in B; indeed the
squaresin B are exactly the restricted squares for B, and, conversely, the squaresin B are
exactly the restricted squaresfor B. Infact, if Bisany sub-board of an mxm

chessboard, then B can be thought of as the board associated with the graph Knm—Gs-

The board B and its complement B are given below.

4 5 6 4 5 6
1 1
2 2
3 3
B B

Having now established a correspondence between boards and bipartite graphs,
and having introduced the notion of the complement of aboard, we can also consider the

graph theoretic version of such board complementation. Observe that, under our

definitions, G5 denotes the graph corresponding to the complement of board B. There is
an important distinction to note here, however. The graphG; is not the complement of
the graph G;.

In order better to understand this distinction, consider the two graphs that follow.

On theleft below is G_B , which is the graph complement of the graph G;. On theright

below is G, which isthe graph associated with the board B. The graph onthe left is
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obtained by first drawing G, and then taking the graph complement of it. Note here that

the vertices within the cells of the bipartition now must be adjacent, by definition of
graph complementation. Hence this graph is no longer bipartite and thus no longer

represents aboard. The graph on the right, however, is clearly still bipartite and therefore
is still associated with a board, namely B. The graphG; is often referred to as the

bipartitecomplement of the graph G;.

Complement of G, Bipartite Complement of G,

o
2

In other words, in forming the bipartite complement, only the edges and non-

edges between the two cells of the bipartition are interchanged — the non-edges within the

cellsare maintained. In general, we will use G to denote the bi partite complement of a
bipartite graph G.

We have seen above that there is a natural interpretation relating any possible
arrangement of rooks on B to a corresponding subset of edgesin G;. If, inan
arrangement of rooks, there are no two rooksthat in lie in the same row or same column,
then the arrangement is said to be non-attacking. The edgesin G, corresponding to the
locations of these rooks, then, will be digoint. So in any non-attacking arrangement of r-

rooks, the corresponding subset of edgesin Gg isan r-matching. In particular, the
number of non-attacking arrangements of r rooksis equal to p(Gg,r) .

Consider the following two diagrams which illustrate the notion of non-attacking

arrangements of rooks. The board B' below consists of the white squares and displays

such an arrangement of rooks; the R’s represent rooks on the board. The graphGg.
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represents the graph associated with this board, and the bold edges represent the r-

matching that corresponds with this particular arrangement of rooks.

0 N o o

We now introduce a generating function for the number of non-attacking

arrangements of rooks on aboard. Given any sub-board B of an mx m chessboard, the
rook polynomial of B isdefined to be the following:

p(B,X) =D (=) p(Gg,r)x™" .

r>0

So, in particular, the rook polynomial of aboard B is ailmost exactly the same as the

matchings polynomial of the graph G, associated with B. The only difference between

the two polynomials concerns the exponents of the terms. Specifically, we have that

p(B,x*)=(Gg,X) -

Example: Let us study asimple example that compares the rook polynomial of a board
B to the matchings polynomial of its graphG; .

4 5 6 (D)
1
o
2 ;'9
3 OBRO
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Notice that the rook polynomial of B,

p(B,x) = x®—6x*+8x—-2,

differsjust sightly from the matchings polynomial of G,

1(Gg,X) = x> —6x* +8x* - 2.

Thetwo only differ in the exponents of the terms, exemplifying the equality
p(B,x*)=pu(Gg,X) above.

The reader may well wonder why we need to introduce such aminor variation of
the matchings polynomial. Aswe mentioned above, the bipartite complement isa
different graph theoretic operation than the usual complement. In the following sections,
we will see that the rook polynomial, unlike the matchings polynomial, behaves well
under the operation of bipartite complementation. We will take advantage of thisfact as
we devel op some analogous theorems to those in Chapter 4, counting perfect matchings
in bipartite complements using rook polynomials of boards. Additionally, we will make

use of these results to provide elegant solutions to some famous combinatorial problems.

Section 6.1 — Rook Analogsfor M atchings Theorems

In this section, we prove the analogs of Theorem 2.1 and Theorem 2.2 for rook

polynomials.

Theorem 6.1: For two digoint boards B; and By,

p(B,UB,,X)=p(B;,X)p(B,,X) .
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Proof: We know from Theorem 2.1 that for two graphs G and H,

R(GUH,x) =p(G,x)p(H,x).

Then, by the fact that B, and B, correspond to the graphs G and G, respectively, and

by our above observation that p(B,x*)=u(Gg,X), it followsthat

p(B, UB,,x*) = p(B,, x*)p(B,,x*),
which impliesthat
p(B,UB,,X)=p(B,,X)p(B;,X) .

Example: We examine two boards B; and By; their rook polynomials are given below.

We can use these boards to exemplify Theorem 6.1.

B1 BZ
p(B,,X) = x* —3x+1 p(B,,X) = X® —5x* + 4x
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B, UB,

p(B,UB,,X) = x> —8x* + 20x® - 17x* + 4x

Note that
p(B,UB,,X) =x°-8x"+20x> -17x* + 4x
= (x* =3x+1) - (x® - 5x* + 4x)

=p(B,,X) - p(B,, %),
which illustrates the theorem presented above.

We now obtain areduction result.

Theorem 6.2: For any board B, and any square sin B located in row u and column v,

p(B.x) = p(B\s,x)—p(B\{uM},x),

where B\ 's denotes the board B with the square s forbidden, and where B\{uv} denotes

the board B with row u and column v forbidden.

Proof: Weknow from Theorem 2.2 that for any graph G and any edge e G with
endpointsu and v,
w(G,x) =pu(G\e x)— u(G\{u},x).

Note that B corresponds to a graph G, and square s corresponds to an edgeein G;.

Sincep (B, x*)=u(Gg, X), it follows that
p(B,x*) = p(B\s,x*) - p(B\{u},x?),

which impliesthat
p(B,X)=p(B\s,x)—p(B\{uv},Xx).
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Example: We examine the rook board B below and consider the square marked s to

illustrate the use of Theorem 6.2. The rook polynomials of the boards B, B\ s and
B\{uv} aregiven below.

B
p(B,X) = x* —8x> +19x* —12x

B\s B\{uv}

p(B\{uv}, x) = x* —8x> + 20x* —16x+ 4 p(B\s,X) = x* —4x+4

Note that
p(B,x) =x*-8x*+19x* —-12x
= (x* —8x% + 20x® —16x + 4) — (x> — 4x+ 4)
=p(B\s,x)-p(B\{uv},x),

which illustrates the theorem presented above.
Although analogs of Theorem 2.3 and 2.4 could be formulated for rook
polynomials, they are not directly pertinent to the focus of this paper. Therefore, we will

not address them here.
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Section 6.2 — Perfect Matchingsin theBipartite Complement of G

Throughout this section G will denote a bipartite graph. Recall that if G isa
spanning subgraph of K, , then its bipartite complement E is the graph with the same
vertex set as G, whose edge set is precisely those edgesof K, notinG. Similar to our

work in Chapter 4, we investigate an integral formulafor pm(E) , the number of perfect

matchings in the bipartite complement of G.
We must first take note of two important identities. Let e be an edgein G.

Certainly the graphs G \ e and G differ by at most theedgee. Sinceeisin G, it follows

that e isnot inG . Sinceeisalso not inG\e, weknow that eisin G\ e, the bipartite

complement of G\ e. Therefore, G\ e is exactly the same graph asG , except that it
includesthe edge e. Thuswe find that

\e=E+e.

®

Turning now to our second identity, we argue using the notion of set difference. Observe

that E\{uv} can be written as (K, \ G)\{uv} which, in turn, is equivalent to

(K \{})\(G\{w}). Thislast expression isthe same as G \{uv} , and hence

G\{w} =G \{w} .

We will use these two simple observations to prove the following lemma.
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Lemma6.4: For any bipartite graph G and any edge e in G with endpointsu and v,

pm(G) = pm(G \ &) — pm(G \{w}).

Proof: Theedgeeisclearlyin E+e, so we conclude that e G\ e by our first

identity above. The perfect matchingsin G\ e consist of two kinds — those that use edge
e and those that do not. Any perfect matching that does not use e is a perfect matching

inG\e\e, whichisjust the graph G. Any perfect matching that does use e determines a

unique perfect matching in G \{uv} . From the second identity above, observe that

G\{n} = G\{w}. Thus

pm(G\ ) = pm(G) + pm(G \{uv}) ,

which can be written to obtain the statement of the lemma.
a

Example: We demonstrate Lemma 6.4 with the following example. LetG and G be
the graphsbelow. Let e be the edge with endpoints{12}. Listed below each graph isthe

number of perfect matchings of the graph, which we can count directly.

—{= L. @
Ot ONSO
OO
pm(G) =1 pm(G) =1
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OV SO

OO

pm(G\e) =0 pm(G\e) =2

. ®

&—E 5 @

pm(G\{12}) =1 pm(G\{12}) =1

We see, then, that for the graph G in this example, pm(E) = pm(G\e)— pm(G\{12}).

Section 6.3 — Perfect Matchingsin the CompleteBipartite Graph

Lemma6.5: For any natural number m,

pm(K ., ) = .[xme’xdx
0

Proof: Wedefine M (m) = I x"e ™ dx, which we evaluate using integration by parts.
0

m+1
Lettingu=e™ and dv = x"dx, wefind that du=-eand v= :1 1
_|_

. S0 using the parts

b b
formul aj udv = uv — f vdu , we calculate as follows:
a a

@ m+1

e} X B
+J e dx
0m+l

e—xxm+l
m+1 |O

Ixme’xdx =
0
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m+1
To compute the first term on the right hand side, we note that Iim(XT must equal 0
o (Mm+1)e

by repeated applications of L’HOpital’ srule. Thuswe have that

OOm—x 1 Ocm+ —X
J;x e dx:0+m—+1£x le™dx

which implies that

M (m) = J. x™te™dx
0

m+1

~ M(m+1)
m+1

This equation leads us to an important recurrence which we will utilize in the rest of this
proof:
M(mM+1)=(mM+HYM(m).

Noteit is easy to determineM (0) ; we do so by letting m= 0 in the integral

M (m) = j x"e™dx wejust obtained above. Thus
0

eX

|\/|(O):J.XOefde:J.efxd)(:_efx;O :—i:]__
0 0

Now by exploiting the above recurrence, we find that

M(m)=m.

But we know that pm(K,, ) = p(K ,,,m) = m! from Proposition 1.4, and hence

m,m?

pm(K ) =M (m) = jxme‘xdx :
0
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Asin Section 4.3, we note that x™ isthe rook polynomial of the bipartite

complement of the complete bipartite graph K . Therefore the above lemma suggests

a possible relationship between bipartite graphs, their bipartite complements, and perfect
matchings. In the following section we introduce a theorem that describes just such a
relationship.

Section 6.4 — TheM atchingsPolynomial of G and Perfect Matchingsin

itsBipartite Complement

We have just shown that the number of perfect matchingsin the complete

bipartite graph is given by the formula

pm(K ) :J.xme‘xdx.
0

Notethat x™ isin fact the rook polynomial of the bipartite complement of K. This

observation motivates the following theorem.

Theorem 6.6: Let G be any bipartite graph and assume G is a spanning subgraph of
Kmm- Thenthefollowing holds:

pm(E) = T p(G,x)e *dx.

Proof: Weinduct on the number of edgesin G. Lemma 6.5 has given us our base case

when G has zero edges, then G isthe complete bipartite graph K ... Then

pm(E) =pm(K,, ) :J' x"eXdx = I p(G,x)e"dx,
0 0

as desired.
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For our induction hypothesis, we assume that G has at least one edgee. Let u and

v denote the endpoints of e and assume that pm(E) = I p(G,x)e “dx holdsfor any
0

subgraph of K, withfewer edgesthan G. By Lemma 6.4 above we have that

pm(G) = pm(G\e) - pm(G\{u})

oO=—38

p(G\e, x)e’xdx—j (G \{u}, x)e *dx
0

= [[p(G\exX) - p(G\{uv}, )]e™dx,
0
and by Theorem 6.2 we conclude
pm(G) = [ p(G,x)edx ,
0

asdesired.

Section 6.5 - Classic Counting Problems

In this section, we will use our results about rook polynomials (Theorem 6.6 in
particular) to solve two classic problems in enumeration. Although these problems are
commonly found among advanced combinatorial textbooks, the methods we have
developed in this paper are not. Aswe shall see, the results we have obtained provide

novel and elegant solutions to these famous problems.

Section 6.5a — Das Problem der Der angements

Thefirst classic counting problem can be described as follows. Let B denote an
mx m chessboard with the diagonal squares forbidden. Then the number of perfect
matchingsin the associated graph G, equals the number of permutations of {1,..., m} with
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no fixed points. Such permutations are often called derangements, and it is precisely the
number of these derangements that we wish to count.

Notice that the graph G, isasubgraph of K, and its bipartite complement is

the disioint union of m copies of K,. We denote this graph by mK,. The rook

polynomial of K, is(x—1), and so by Theorem 2.1 the rook polynomial ofG=B =mK,
must equal (x—-1)".

Let D(m) denote the number of derangements of {1...., m} . By construction,
D(m) = pm(G;), so we can use our results from this chapter to perform computations as

follows.

0

D(m) = ]Op(sz,x)exdx =I(x—1)’“e’xdx

0

Il
P —38

1
(x—1)"e*dx + j (x—1)™e*dx
0

Upon substituting y = x—1, thefirst integral smplifiesto e‘lj' y"eYdx, which evaluates
1

to m by earlier resultsin this chapter. We denote the value of the second integral — the
e

remainder —simply by R_. Thuswe have

D(m) =7+ R,

Notice, however, that

1

h m __yx h m |X_1|rml| 1
|Rm|££|(x—1)| e dx<£|(x—1)| dx =" ‘o_m+1.

So |R,| must be smaller than% for every m. Therefore D(m), the number of

derangements of {1,...,m}, isequal to the integer nearest to m
e
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Based upon this result, the following table provides us with an interesting
sequence of approximations to the number e. Since there can be no derangement of a set

with only one element, we begin our table with m= 2.

" m
D(m)
2 |
2_,
1
3
2_5
2
. B
2_8 5%
9 3
. -
4 11
|
10 100 44800 _, 118081658,

1334961 16481
We conclude this section with a simple example using derangements.

Example: Consider the following scenario. A professor hands back a quiz to his class
of 23 students, and he would like them to be able to grade each other’ s papers. In how
many ways can he pass the quizzes back such that no student receives their own paper to
grade?

Solving this problem is simply a matter of counting the number of derangements

of {1...,23} . From above, we know that D(23) isjust the closest integer to 23 which
e

equals 9.5104 x10*.
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Section 6.5b — L e Problém des M enages

The second classic counting problem that we consider using rook polynomialsis
called the Ménages problem. Here we are asked to find the number of ways of seating n
married couples at a circular table, where we alternate between men and women, and
where no one is seated next to their spouse. We can use our techniques to solve this
problem asfollows.

Note that we have n women and n men. We first seat the women, and since they

are seated around acircle, we consider there to be exactly (n-1)! distinct waysto
accomplish thistask. Next we label the women 1,2,3,..,n in a clockwise manner, and we
assign the number of the i™ woman both to her spouse and to the seat directly
counterclockwise of hers. Note that each possible seating arrangement for the men is
determined by a permutation of {1,...,n} , asthere are n places |eft for the men to sit at the
table. But thereisthe specified restriction yet to consider. In particular, we are
interested in counting only the permutations in which no number i gets mapped either to
itself or to the number i —1. Said another way, we' re concerned only with the
permutations f such that f (i) ¢{i —1,i} . We note here that subtraction is understood to
be taken modulo n, as we are considering positions at acircular table.

Counting such permutations, however, is equivaent (by an examination of the
associated rook board) to counting the number of perfect matchingsin the bipartite
complement of the cycleC,, on 2n vertices. From Section 2.2, we have that

p(Cy1) = 2N [Zn‘rj

2n—r r

for each integer r. Therefore, we have

pm(C,,) = [ p(C,y, X)E X
= _[(:OZ(—l)r p(C,,,r)x" e dx
r=0

=20 P(Co1) [ xmreax
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Recall from Lemma 6.5 that J.x” €“ d =< I, so by thisfact, and Proposition 1.2, we have
0

om(C,) =Y (1 =2 [zn‘rj(n—r)!

—o 2n—rr

Hence the number of seatings at the circular table equals

2n—r\r

(- (1 =2 (Zn_rj(n-r)!

which solves our problem.
We conclude this section with an example of the Ménages problem.
Example: Consider the case when n= 4. Then we simply use the above expression to

compute the number of ways in which 4 married couples can be seated at a circular table
so that no oneis seated next to their spouse. We find that there are

(=Y (-1 =2 (Zn‘r](n—r)! =ai(—1)f%ﬁ‘rj(4—r)!

ey

= 6[24—48 + 40 -16 +2]
=12

ways, which can be verified by direct enumeration.
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Part Two:

Teaching Combinatorics Using Rook Polynomials and

M atchings Polynomials

Overview of the Curriculum

Having investigated a variety of mathematical aspects of the matchings
polynomial, the focus of the paper now shifts to the development of curricular materials
related to these mathematical concepts. Although some of the mathematical details of the
above investigation are inaccessible to high school students, the didactical implications
are not as contrived as one might think. Indeed, if presented in a pedagogically
appropriate form, the mathematics studied above has the potential to be both relevant and
clearly understood, even within a high school classroom. To prepare the reader for the
curriculum to come, we draw their attention to two important aspects of the design of the
curriculum. First, we discuss the relationship between the mathematics in the previous
part of the paper and the mathematics in the curriculum. Second, we discuss the specifics

of the curriculum design and implementation.

The Mathematics of the Curriculum

The rook polynomial, which is a special case of the matchings polynomial, plays
amuch larger role in the curriculum than it did in the mathematical section of this paper.
Indeed, it has proven to be an invaluable focal point of the curriculum that follows.
Because students tend to be familiar with the game of chess, the problem of counting the

number of ways of placing rooks on a chessboard is a natural point of entry. Not only is
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thistype of problem intrinsically compelling for students, but also it is easy to visualize
and conceptualize. Another benefit of studying counting problemsin the context of rooks
isthat rook problems generalize quite naturally to awide range of counting problemsin a
variety of contexts, including counting problems with restricted positions. Thus, the
principles related to rook problems extend well beyond the original context, making such
problems even more useful (and motivating) for students, providing a springboard to
richer and more advanced mathematical concepts.

One minor technical adjustment that has been made in the transition from the
mathematical investigation to the curricular implementation concerns a simplification of
the form of the matchings (and rook) polynomials. Recall that the definition of the
matchings polynomial given above is somewhat at odds with the typical definition of a

generating function. In particular, the matchings polynomial was defined to be

1(G,X) = X (-1 PG, Nx"* .

r>0

Observe the presence of the alternating sign and the association of p(G,r), the number

of r-matchingsin agraph G, with theterm x"2". In the curriculum, however, the

notation m( G 1isused to indicate the number of r-matchingsin agraph G, and the
matchings polynomial is defined by the simpler

r(G, %) => m(G,r)x".

r>0

Note that the rook polynomial has undergone the same modification throughout the
curriculum as well.

It isworth remarking that this change is notationally convenient but has no
essential bearing on the associated mathematics. Indeed, in so defining the matchings
polynomial, many of the theorems still hold true while assuming aform that is
substantially more accessible to the students. Although the development of the

curriculum required careful attention to thisissue, and although several results needed to
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be re-derived, the concordant elimination of distracting algebraic complexity isvery
satisfactory.

Curriculum Design and Implementation

Because of the appealing nature of rooks, the ultimate goal in developing the
curriculum isto investigate the types of combinatorial principles that could effectively be
taught using the basic rook setup (namely, counting the number of ways of placing non-
attacking rooks on a chessboard). Combinatorially, the mathematicsin this paper
employs three major concepts which are important but are often difficult to convey in the
classroom: counting principles, generating functions, and matchings. (These three
concepts are rarely taught together, and certainly not from the standpoint of rook
problems. Infact, only rarely do textbooks mention arelationship between rooks and
matchings). The question emerges, then, whether students might be able to grasp all
three of these concepts through investigating rooks on a chessboard. Could rooks be the
entry point from which to introduce counting principles, generating functions, and even
matchings? If so, would this new approach prove to be effective for students?

It wasin thisvein, then, that this curriculum was developed. The curriculum was
tailored for and taught to an advanced group of high school seniors who were enrolled in
adiscrete math class. These students were undeniably bright and motivated, and they had
been introduced to many concepts in discrete math prior to working with this curriculum.
The reader should thus take note that these activities were specifically geared for a high-
level class. The actual teaching of the lessons ranged from having the students work
through and develop answers completely on their own to lecturing about the various
topics. When lecturing did take place, every effort was made to have the instruction be as
interactive as possible. More specifics related to this are discussed in reflections on the
activitiesin the section that follows.

The curriculum consists of seven activities total, along with three assessments, all
of which were designed to engage students in the three combinatorial concepts described
above. The activities were primarily presented to the class during their math period on
three consecutive Thursdays; some were given out between visits to the classroom. The

schedule of the curriculum is outlined below. Because of the nature and timing of the
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classroom visits, the actual writing of the curriculum was somewhat spontaneous in
nature. That is, rather than being pre-arranged and strictly implemented, the development
of many of the activities was based upon how the prior activity had gone.

The presentation of the activities in this paper proceeds chronologicaly,
according to how they were (and are meant to be) implemented in the classroom.
Included with each activity isabrief description of the activity, a Teacher’s Version
(which includes comments for the teacher and an answer key), and a reflection on how
the actual execution of the activity went.

Finally, it should be noted that despite the fact that this curriculum was presented
to ahigh-leve class, only minor modifications would be needed to alter the level of
presentation. Furthermore, the activities and assessments need not be implemented in the
particular timeframe outlined above. The curriculum that follows is not meant to be the
definitive curriculum regarding rooks. Rather, theintention here isto provide an
overarching structure for a unit on rooks and to illuminate the types of combinatorial

ideas that could be taught using this context.

Schedule of Activities

Prior to Day 1: Activity 1 — Rook Boards 101
Activity 2 — Rooks in the Real World

Day 1. Activity 3 — Taboo Squares
Prior to Day 2: Assessment 1 — Review Worksheet 1
Activity 4 — Bored with Boards Y et?
Day 2: Activity 5— Rook Kung Fu
Prior to Day 3: Assessment 2 — Review Worksheet 2
Activity 6 — All Aboard for Matchings, Captain Rook!
Day 3: Activity 7 —We're Gonna Rook Y our World
After Day 3: Assessment 3 — Rook Exam
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I ntroduction to Activity 1

This activity begins with an explanation of non-attacking configurations of rooks,
with the intent of orienting students to the most basic ideas of rooks on a chessboard.
The primary goal of this activity is to have students come up with aformulafor the
number of ways of placing r rooks on an nxn chessboard. In so doing, the students will
encounter the addition and multiplication principles of counting. This activity focuses
heavily on this particular context; the students can think about applying these principles
solely to problems about rooks. At this early stage of investigation, they need not
concern themselves with extrapolating these ideas to any other applications.

The use of groups will complement this activity nicely; the students should
engage with this problem and discuss it with their peers before being given any hints or
answers. Itisarelatively short activity on its own, but it has the potential to lead to
further discussion about binomial coefficient notation, representation of equations, and a

variety of other topics (see Teacher’ s Version).
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Activity 1 — Rook Boards 101

In chess, arook can move any number of spacesin straight lines along the rows and
columns of aboard. A configuration of rooks on aboard is called “ non-attacking” if no
two rooks occupy the same row or column.

1) Withyour group, find aformulafor the number of ways of placing r non-
attacking rooks on an nx n chessboard.

2) Useyour formula above to complete the following table.

number of 0 1 2 3 4 5
non-attacking

rooks

number of

configurations

on a 5x5 board

3) Makeasimilar tablefor a 14 x 7 chesshoard.
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Activity 1 — Rook Boards 101 (T eacher’sVersion)

In chess, arook can move any number of spacesin straight lines along the rows and
columns of aboard. A configuration of rooks on aboard is called “ non-attacking” if no
two rooks occupy the same row or column.

1) Withyour group, find aformulafor the number of ways of placing r non-
attacking rooks on an nx n chessboard.

Answer: There are several different ways to approach this problem. We proceed
with a particular solution, but any method will do. First we chooser rows, and there

n
are(r j ways of doing this. Inthefirst of these rows, we chose a column in which to

placethefirst rook. There are n choicesfor this. In the second of the chosen rows, there
are n — 1 columns available to place the 2" rook. We continue in this fashion until we are
left with n—r +1 columns available to place the r™ rook in the last of the chosen rows.
Thus, by the multiplication principle, we get the following formulafor the number of
ways of placing r non-attacking rooks on an nx n chessboard:

mn(n—l)(n— 2).(N—1 +1) = (n] n
r r)(n—r)!

n\n
Note that this expression could also be written as [ ][ ]r!
r\r
We believeit is very important to make sure that all students see this last, most
simplified, version of the formula and come to understand how it relates to the counting

procedure, so suggest it if it doesn’t arise from them. Thisformulawill generalize nicely
later.
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2) Useyour formula above to complete the following table.

number of 0 1 2 3 4 5
non-attacking

rooks

number of

configurations 1 25 200 600 600 120

on a 5x5 board

3) Makeasimilar tablefor a 14 x 7 chesshoard.

numberofnon- 0 1 2 3 4 5 6 7
attacking rooks

number of

configurations 1 98 3822 76440 840840 5045040 15135120 17297280
on a 14x7 board
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B Thisisarich problem for discussion, since any of the following issues may arise
(if they don't, perhaps the teacher could raise them).
o How many columns should there bein thetable? 7?14? Isit WRONG to
have 14?
o If weusemore columnsin our table, we could put zeros where
appropriate. This relates to the custom of setting “m chooser” to be zero
whenr >m.

B |n completing the table, students will (hopefully) come up with aformula similar
to the one they found in answering #1. How well are they dealing with the
variablesm, n, and r?

B Get them to discuss different ways of writing a general formulafor r rooks on an
m x n board. Did they develop any alternative formulas? We'd like them to
realize how awell-chosen version of the formulawill, in fact, behave properly
even in the troublesome cases. In particular, we'd like it to emerge that

o

isavery nice expression that worksin very general settings and aso reflects a
nice counting procedure that might, in fact, be different than the one they first
derived. Goal: by the end of the day, have al students understand how we
arrived at the above formula.



Reflection on Activity 1

Activities 1 and 2 had been given to the students prior to our first meeting with
them. In Activity 1, they worked in groups of three or four to develop the formulafor the
number of ways of placing r rooks on an nx n chessboard. During our first visit to the
class, we began by reviewing Activity 1 to see what the students had discovered. One
student who had correctly derived the formula came to the board and explained how he
had gotten it. The explanation was thorough and clear; it involved choosing columns
then choosing rows, and it made explicit the constraint forbidding repetition in rows and
columns. Furthermore, his explanation allowed for the extrar! as the number of ways of
shuffling the r rows of a particular placement to get all the other placements. Using the
students' counting formula, only a minor adjustment in notation was needed to arrive at
the desired expression.

When asked about the maximum number of rooks they could place on an mxn
board, one student explained that it wouldn’t make sense to place more than the lesser of
m and n rooks on aboard. Thisled to an interesting conversation of the possibility of

having more than min(m,n) rooks, and we were able to discuss conventions regarding the

m
expression [r j (where r > m). Inthefuture, I'd like to talk about this more explicitly,

possibly having them work through these ideas while they do the activity (particularly as
they consider making the mx n table.) A potential issue to discuss more in depth (which
we did mention, but only briefly) isthe value of having different forms of equations—
whether one form is more helpful than another depending upon the situation. Depending
upon how they are written, some expressions tend to suggest different counting
techniques. Thiswould be a beneficial topic to have the students consider.

Overall, | was pleased with the activity. | wasimpressed with the students
counting abilities and with their capacity to articulate their arguments. This particular
class was able to finish this activity without too much trouble in a single class period.
However, the activity could be extended to span more than one class period if necessary,
allowing the students to have more time to investigate these formulas and to consider

some of the ideas mentioned above.
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I ntroduction to Activity 2

This activity is designed to be a short warm-up to Activity 3. Thegoal isto have
students understand and appreciate the applicability of rook problemsto awider variety
of contexts. In particular, students are asked to relate rooks to a scenario of a high school
dance. The students may answer the questions on their own, but they should discuss their
answersin small groups at some point. While these questions are not overly complicated
in and of themselves, this activity forces the students to articul ate their thinking and
describe the connections they make. By explicitly answering these questions, and by
discussing them with their classmates, the students must demonstrate their understanding
of the conceptsintroduced in Activity 2. The rest of the activitiesin this curriculum rely
on students' abilities to generalize rook problems to various situations, and thus this

solidifying activity is worthwhile.
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Activity 2 —Rooksin the Real World

In avery small school, there are fifteen boys and ten girls who want to go to the dance.
These twenty-five people will not go with anyone outside of this group; every girl would
be perfectly happy going with any of the boys, and vice versa. Obviously not all of the
boyswill get to go.

Assume that every girl attends the dance - each of them goes with one (and only one) of
theboys. Recalling Activity 1, answer the following questions.

1) How doesthisrelate to the problem of non-attacking rooks?

2) If arook is placed on agiven square, what does it mean in the context of the
problem? In other words, what does the rook stand for?

3) Why rooks -- how does the movement of arook relate to the problem?
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Activity 2 —Rooksin the Real World (Teacher’s Version)

In avery small school, there are fifteen boys and ten girls who want to go to the dance.
These twenty-five people will not go with anyone outside of this group; every girl would
be perfectly happy going with any of the boys, and vice versa. Obviously not all of the
boyswill get to go.

Assumethat every girl attends the dance - each of them goes with one (and only one) of
theboys. Recalling Activity 1, answer the following questions.

1) How doesthis problem relate to the problem of non-attacking rooks?
e Rowsand columns represent boys & girls, and rooks denote a pairing.

2) If arook is placed on agiven square, what does it mean in the context of the
problem? In other words, what does the rook stand for?
¢ |t meansthe boy and the girl in whose column and row the rook is placed
are going together to the dance. The rooks represent a date.

3) Why rooks -- how does the movement of arook relate to the problem?

e Onceaboy and agirl go together, their ‘rows and columns' are used up,
asthey can’'t then go with anyone else.

Note: The teacher should make sure they eventually model this as arook problem,
even if it hasto be explicitly stated and demonstrated in front of the class. Itis
important for the students to understand that the rook boards can model these types of
counting problems.
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Reflection on Activity 2

As mentioned above, Activities 1 and 2 had been given to the students prior to our
first meeting. During our first meeting, after we had discussed Activity 1, we briefly
reviewed their work in Activity 2. It wasimmediately evident that they understood the
relationship between the word problem and the rook board. One student did a great job
explaining how arook represents a date because "once a girl and a guy go together, they
can’'t go with anyone else." The generalization of rook problems to broader contexts

seemed to come fairly naturally to the students.
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I ntroduction to Activity 3

In this activity, the students handle a variation of the counting problem of Activity
2 which involved the high school dance. They should recognize that this problemis
indeed equivalent to some rook problem, and thus the high school dance can be thought
of intermsof rooks. In thefirst question of the activity, they are faced with the notion of
asinglerestricted position on a chessboard. Counting configurations of rooks on a board
with restricted positions brings up an important counting principle: the principle of
inclusion/exclusion. This activity can serve as an introduction to, or areminder of, this
principle, depending upon how much exposure to counting principles the students have
had previously. In either case, visualizing the counting problem in terms of a chessboard
(regardless of the original context of the problem) potentially allows for a new way of
thinking about the inclusion/exclusion principle.

In answering the first question, students should use inclusion/exclusion (or at least
its most basic form: total - minus-bad) to develop aformulafor handling one restricted
position on a chessboard. In the second question, the students must utilize more
complicated applications of this principle. Infact, they must develop two more formulas,
each of which handles a special case of aboard with exactly two restricted positions.

While the principle of inclusion/exclusion is not the crux of this curriculum, it is
an important counting principle with which students should become familiar. It isnot
necessary that the students come up with this principle on their own (although some
might be able to); rather, the goal is for them to gain a better understanding of the
principle as they go through this activity. More than anything, this activity servesasa
means of using rooks to discuss this valuable counting principle. In addition, because
inclusion/exclusion increases in complexity with greater numbers of restricted positions,
this activity can provide motivation for alternative counting techniques for more
complicated boards.
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Activity 3— Taboo Squares

Consider now acase of 25 boys and 25 girls who want to go to adance. But now we say
that one boy, Brian, and one girl, Ashley, are brother and sister, so they can’t go to the
dancetogether.

1) Develop acounting argument that counts the number of ways in which everyone
can go to the dance (one boy and one girl in each date), but where Brian and
Ashley are not adate.

2) Let usnow consider apair of restricted positions. In other words, develop a
formulafor counting the number of ways of placing r rooks on an mxn board
that has 2 restricted positions.

89



Activity 3— Taboo Squares (Teacher’s Version)

Consider now a case of 25 boys and 25 girls who want to go to adance. But now we say
that one boy, Brian, and one girl, Ashley, are brother and sister, so they can’t go to the
dancetogether.

1) Develop acounting argument that counts the number of ways in which everyone
can go to the dance (one boy and one girl in each date), but where Brian and
Ashley are not a date.

r-1,Ar-1

25\ 25 24\ 24
numerical answer should be 25— 24/ = 2524 .
25\ 25 24\ 24

-1\ n-1
Answer: |n general, the counting argument is [:n)(?]r!—[m J(n j(r ~1). Thus, the

Notes

B The students should model this as a board with one restricted square

B Thisproblem will just barely begin to introduce the inclusion/exclusion principle
(total minus bad).

2) Let usnow consider apair of restricted positions. In other words, develop a
formulafor counting the number of ways of placing r rooks on an mxn board
that has 2 restricted positions.

Answer: This breaks down into two cases:

When the forbidden positions were in distinct rows and columns, the general formulais
m\ n m-1\n-1 m-2\n-2
r -2 (r—2y + (r-2).
ronr r-1\r-1 r-2 \r-2
When they were in the same row (or column), the formulais

B Wty e

Notes:

B Thissecond problem will rely heavily on the principle of inclusion/exclusion.

B \When the students are explaining their formulas on the board, the teacher should
have the students explain each term in the formulawith a diagram.

B Inexplaining the differences between the two cases, it’s helpful to note that the
final term in the formulafor the first case is necessary because we had double
counted cases in which rooks were in both restricted positions. But in the second
case, we will never have rooksin both restricted positions, so thisisn't even a
possibility (and doesn’t need to be accounted for).
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Reflection on Activity 3

The students worked on this activity during the first day we visited the class. We
had just gotten finished discussing Activities 1 and 2, and we simply handed out Activity
3 for them to work on. We gave no mention of the principle of inclusion/exclusion; we
were curious about what they could come up with on their own. They first worked in
groups of two or three on Question 1, and it didn’t take very long for the groups to deal
with the issue of asingle restricted position. After some time we reconvened as an entire
class to discuss the results. One student explained his work to the class, and he had used
the notion of the “total minus the bad,” which is precisely the idea behind
inclusion/exclusion. Indeed, before we returned to the big group, there were at least four
groups with solutions that were more or less equivalent to this “total minus the bad”
result. Admittedly, some students had been explaining their solutionsto others, but by
the time we had the one student share out, most everyone had a grasp of how to count
this. | wrote the general formulafor this on the board, and students generally seemed to
understand how we' d obtained it.

Next, the students worked in groups of two or three on Question 2. We had given
them a concrete example in our original statement of Question 2, (using numbersin an
effort to make things easier), but this proved to be unnecessary. Ultimately they arrived
at the answer in a general form, and one group had even cleverly made the variables a
little more colorful. They continued to work for awhile, and again they realized the need
for inclusion/exclusion on their own.

An interesting issue that arose was that the students only considered the casein
which the restricted positions are in distinct rows and columns (this was likely due to the
dance aspect of the problem). In reality, however, two cases of restricted position must
be considered: one in which the restricted positions are in distinct rows and columns, and
another in which they are in acommon row or column. Not surprisingly, with alittle bit
of pushing they came up with the case breakdown themselves. In fact, when we pushed
them to consider the other case of 2 restricted positions, a student quickly offered a case
where Brian has 2 sisters — where the rooks are in the same row or column. | was pleased
that this contextualization was suggested, relating the issue to the context of the dance.
We then had them work on this second case, and it seemed like even the kids who
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typically got the answers right were not entirely sure how to count this. Eventualy,
though, they reasoned through it and presented it. We finished with a brief explanation
of thiswhich explained why the formulas were different (which was mentioned in
Activity 3' s Teacher’sVersion).

When two students presented their solution to Question 2, some of their
classmates were not entirely satisfied with their explanation. We pushed them to draw
diagramsto go along with the termsin their formula, and this proved to be helpful. Other
students contributed to these diagrams as well, and we ultimately ended up with very
satisfying diagrams that explained the formula. We ended the activity with a quick
comment that they could naturally wonder what happens for three, four, or more

restricted positions.

On the whole | was very happy about how things went. It should be noted that
these students had seen the principle of inclusion/exclusion before, although | was
somewhat surprised that they were so comfortable with using it. Their ability to think
through and apply this principle in the context of rooks was impressive. At the very least,
this activity served the purpose of reinforcing old principles (like counting principles,
inclusion/exclusion) and setting the stage for some more exciting math (like generating
functions and matchings)!

The activity would have gone quite differently had we presented these problems
to students who had never encountered inclusion/exclusion before. It would not be better
or worse; rather, | anticipate that it would require nothing more than a slight change in
emphasis. In such asetting, | do believe that rooks could be used effectively to teach

these principles to students for whom these ideas would be new.
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I ntroduction to Review Worksheet 1

After students have worked through Activity 3, they are ready to handle Review
Worksheet 1. The design of thisfirst assessment isto provide fun problemsin an effort
to engage the students with their newly acquired tools, namely the three formulas they
had developed in Activities 1-3. Specificaly, in Part A of the worksheet, the students
first revisit the basic formulathat they derived for counting the number of ways of
placing r rooks on an mx r chessboard; a couple of interesting contexts related to this
formula are presented. In Part B, by studying a detailed situation involving a high school
dance, the students work through problems that involve one restricted position. Andin
Part C, they consider the case of two restricted positions within this same context. Again,
Nno new concepts are being taught here; thisis designed to help students collect and unify

their thoughts up to this point.
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Assessment 1- Review Worksheet

Now that you have had some exposure to questions about rooks (and some real-life
problems they model), let’ s review some of what we' ve learned.

A. Recall that the number of ways of placing r rooks on an mx n board (with no
restrictions) is given by the beautiful expression:

Wi

Use this formulato answer the following gquestions.

1) Supposethere are 12 puppies at the pound, and 8 kids who want to adopt them.
How many ways could 5 of the puppies get paired up with 5 of the kids?

2) Suppose you have 8 rooks and a chessboard with 8 rows. How many columns
must your chessboard have, in order for the number of non-attacking
configurations of your 8 rooks to exceed atrillion? (Note: 1 trillion = 10.)

3) Suppose you have a chessboard with 4 rows and 6 columns. What number of
rooks gives the highest number of non-attacking configurations? Isit always true
that “more rooks’ means “ more non-attacking configurations’? Either explain or
give acounterexample.
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B. Recdl, too, that we found aformulafor the number of ways of placing r rooks on an
mx n board with one restricted position. The fabulous formulawas:

B 1y By G

Use this formulato answer the following (very realistic) questions.

1

2)

3)

In a(small) senior class of 30 guys and 36 girls, we need to decide on a Prom
King and Queen. The senior class must choose 5 couples, and then the entire
school votes from among these final couples. But Kyle and Bethany refuse to be
paired up with each other. How many different ways could the senior class come
up with 5 “acceptable” final couples for the school to vote on, given this
constraint?

The ever-popular math teacher, “Dr. G,” told his class not to worry so much about
Kyle and Bethany, because it wasn't very likely that they’ d be paired up anyways.
To seejust how right he was, figure out what per centage of the total # of pairings
of 5 couples are actually “acceptable,” given the constraint.

After Dr. G's particularly difficult math exam, 1/2 of the guys and 1/2 of the girls
suffered “severe” dropsin their grades, making them ineligible for Prom King and
Queen. Now that the eligible pool is down to 15 guys and 18 girls, what
percentage of the total # of pairings of 5 couples are “acceptable”?
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C. Finaly, recall that we found 2 different formulas for counting the number of ways of
placing r rookson an mx n board with two restricted positions. Which formulato use
depends on how the restricted positions are arranged.

¢ When the 2 forbidden positions arein distinct rows and columns, our formulais:
-1\(n-1 -2\(n=-2
A N R e (S el Bl ()
roAr r-1Ar-1 r—-2 \r-2
e Whenthey are in the same row (or column), our formulais the simpler:
-1\ n-1
kAT
ro\r r-1;Ar-1

Use these formulas to answer the following questions.

1) Suppose that a pairing of Jeremy and Lauraisimpossible, and Kyle and
Bethany still refuse to be paired up, and there are only 15 guys and 18 girls.
How many matchings of 5 couples are we down to now?

2) If Kyle and Bethany resolve their issues, but if Jeremy somehow ruins his
chances with both Laura AND Bethany, then how many matchings of 5
couples do we have?
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Assessment 1- Review Wor ksheet (Teacher’sVersion)

Now that you have had some exposure to questions about rooks (and some real-life
problems they model), let’ s review some of what we' ve learned.

A. Recall that the number of ways of placing r rooks on an mx n board (with no
restrictions) is given by the beautiful expression:

Wi

Use this formulato answer the following gquestions.

1) Suppose there are 12 puppies at the pound, and 8 kids who want to adopt them.

How many ways could 5 of the puppies get paired up with 5 of the kids?
128
Answer: (5 J(SJSI = 5322240

2) Suppose you have 8 rooks and a chessboard with 8 rows. How many columns
must your chessboard have, in order for the number of non-attacking
configurations of your 8 rooks to exceed atrillion? (Note: 1 trillion = 10%2)

8
Answer: Since (8} iIsthe ‘rowsterm’ in the formula, we' re looking for n such that

n
[8] -8>1,000,000,000,000. A littletrial and error shows that the number of columns

must be 36 to exceed atrillion. (Note: 18 columns would exceed a billion.)

3) Suppose you have a chessboard with 4 rows and 6 columns. What number of

rooks gives the highest number of non-attacking configurations? Isit always true
that “more rooks’” means “more non-attacking configurations’? Either explain or

give acounterexample.

Answer: This problem shows that placing 4 rooks (the maximum number) doesn’t

necessarily result in the most possibilities for configurations — in this case 3 rooks
results in more possibilities (480 total) than 4 rooks (360 total).
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B. Recal, too, that we found aformulafor the number of ways of placing r rooks on
an mxn board with one restricted position. The fabulous formulawas:

mjy(n m-1)n-1
r- (r -1y
ronr r-1Ar-1
Use this formulato answer the following (very realistic) questions.

1) Ina(small) senior class of 30 guys and 36 girls, we need to decide on a Prom King
and Queen. The senior class must choose 5 couples, and then the entire school votes
from among these final couples. But Kyle and Bethany refuse to be paired up with
each other. How many different ways could the senior class come up with 5
“acceptable” final couples for the school to vote on, given this constraint?

30)(36)_ (29)'35
Answer: 5- 4 = 6,416,988,177,600

2) Theever-popular math teacher, “Dr. G,” told his class not to worry so much about
Kyle and Bethany, because it wasn’t very likely that they’ d be paired up anyways.
To seejust how right he was, figure out what per centage of the total # of pairings
of 5 couples are actually “acceptable,” given the constraint.

30)(36), (2935),
5 \5 4 \4 ) 6,416,988,177,600

= ~ 99.5%
(SOJ(BGJS! 6,446,834,634,240

Answer:

5 |5

3) After Dr. G's particularly difficult math exam, 1/2 of the guys and 1/2 of the girls
suffered “severe” dropsin their grades, making them ineligible for Prom King and
Queen. Now that the eligible pool is down to 15 guys and 18 girls, what
percentage of the total # of pairings of 5 couples are “acceptable” (Kyle-and-

Bethany free)?
15118 14\(17
HNaNH,
Answer: _ 3.030,387,360 ~ 98.1%
(15)(18}5 3,087,564,480
5 \5 )
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C. Finaly, recall that we found 2 different formulas for counting the number of ways of
placing r rooks on an mx n board with two restricted positions. Which formulato use
depends on how the restricted positions are arranged.

¢ When the 2 forbidden positions arein distinct rows and columns, our formulais:
m)\ n m-1\n-1 m-2\n-2
r— (r-1y + (r-2)
roAr r-1Ar-1 r—-2 \r-2
e When they arein the same row (or column), our formulais the simpler:
mjy(n m-1)n-1
kAT
ro\r r-1;Ar-1
Use these formulas to answer the following questions.

1) Supposethat apairing of Jeremy and Lauraisimpossible, and Kyle and Bethany
still refuse to be paired up, and there are only 15 guys and 18 girls. How many
matchings of 5 couples are we down to now?

1518 1417 13)(16
Answer: 9-2 4+ 3= 2,974,171,200
5 \5 4 \4 3 \3

2) If Kyleand Bethany resolve their issues, but if Jeremy somehow ruins his chances
with both Laura AND Bethany, then how many matchings of 5 couples do we
have?

15\18)_ (1417
Answer: 5-2 4= 2,973,210,240
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Introduction to Activity 4

In this activity, students get more practice applying the formulas they found for
counting boards with restricted positions; certainly Part A consists solely of such
computation. They should be comfortable with using these formulas by now, especially
having completed Review Worksheet 1. The primary goal of this activity, however, rests
in Part B. The large board they are asked to count really consists of the two sub-boards
they computed in Part A. The students are thus given the tools they need to count this
board, even though it isalarger board than they have previously dealt with and consists
of many restricted positions.

The students should be given this activity without much advice or explanation; it
isintended to be exploratory in nature. Again, they should work in small groups and
discuss their processes and ideas with their classmates. Whileit is not particularly long
or involved, the intent isthat their investigation will lead them to discover ageneral rule
for counting alarge board that consists of two digjoint sub-boards. Ideally, they will
recognize that counting the number of ways of placing r rooks on a large board involves
several cases. taking O rooks from one sub-board and r rooks from the other, or 1 rook
from the first sub-board and r — 1 from the other, etc. Even if they cannot express these
concepts in such specific terms, they should begin to formulate thoughts that correspond

to theseideas.
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Activity 4 —Bored with Boards Yet?

Part A

Putting the drama of high school Proms aside, we gladly return to the safe world of
counting rooks on chessboards. As nice as our formulas are, we're still not quite to the
big picture yet. So let us begin by considering the following two 5x5 boards, where a
gray box represents arestricted position. Recall from Activity 3 the formulas we
developed for computing the number of ways of placing r rooks on anmx n board where:

e Thetwo restricted positions are in distinct rows and columns
m)\ n m-1\n-1 m-2\n-2
r— (r-1y + (r-2)
roAr r-1Ar-1 r—-2 \r-2
e Thetwo restricted positions share arow or column

B U ey b

Bl B2
For each board B1 and B2, use the above formulas to compl ete the following tables.

# of non-

attacking 0 1 2 3 4 5
rookson B1

# of ways of

placing these

rookson B1

# of non-

attacking 0 1 2 3 4 5
rooks on B2

# of ways of

placing these

rooks on B2
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Activity 4 — How About Now?

Part B

Now we present you with the following 10x10 board, where again gray boxes represent
restricted positions.

1) How many ways are there to place 7 rooks on the given 10x10 board?
2) What process did you go through in order to solve this problem?

3) Can you extract any general principles from the way you worked through this
problem?
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Activity 4 —Bored with Boards Yet? (Teacher’sVersion)

Part A

Putting the drama of high school Proms aside, we gladly return to the safe world of
counting rooks on chessboards. Asnice as our formulas are, we still don’t see the big
picture yet. So let us begin by considering the following two 5x 5 boards, where a gray
box represents arestricted position. Recall from Activity 3 the formulas we devel oped
for computing the number of ways of placing r rooks on anmx n board where:

e Thetwo restricted positions are in distinct rows and columns

B U ey (R ey e

e Thetwo restricted positions share arow or column

P AT e

Bl B2
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For each board B1 and B2, use the above formulas to compl ete the following tables.

Answer m@“ ‘Z(i”ff](r”? ﬂ(r ™ +(T—_22J(?: ;J(r -2

Let m,n =5, and haver range from O to 5, and we arrive at the following completed table.

# of non-

attacking 0 1 2 3 4 5
rookson B1

# of ways of

placing these 1 23 169 465 426 78
rookson B1

e (1 42

Let m,n =5, and haver range from 0 to 5, and we arrive at the following completed table.

# of non-

attacking 0 1 2 3 4 5
rooks on B2

# of ways of

placing these 1 23 168 456 408 72
rooks on B2
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Activity 4 — How About Now? (Teacher’'sVersion)

Part B

Now we present you with the following 10x10 board, where again gray boxes represent
restricted positions.

1) How many ways are there to place 7 rooks on the given 10x10 board?

Answer: 169-72+ 465- 408+ 426- 456 + 78-168 = 409248. The reflection on this
activity gives further insight into methods for solving this problem.

2) What process did you go through in order to solve this problem?

Answer: They should have recognized that the largel0x 10 board is exactly made up of
the two smaller boards we computed above. Thus the way of placing 7 rooks on this
board can be thought of as four distinct cases: putting 5 on the first board and 2 on the
second, 4 and 3, 3and 4, and 2 and 5. Each of these cases uses the multiplication
principle, and we add the four cases together, which is how we got the result above.

We hope they’ll use the tables they just computed in order to find the answer.

3) Can you extract any general principles from the way this problem worked for
you?

Answer: Hopefully they can begin to see that this sort of case breakdown would
generalize to other boards with similarly digoint sub-boards. Ultimately we're pushing a
relationship between this and polynomial multiplication, but we don’t expect them to
make this connection yet. We don’t want to push anything yet; it's good if they can just
generaly reflect upon how they found their result.
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Reflection on Activity 4

The students were given Activity 4 to work on between our visits, almost asa pre-
activity to our second visit. When we arrived for this second visit, we began the day by
asking them to reflect upon Activity 4. They had recorded the number of ways of placing
rooks on each of the two boards in the provided table, and, in turn, had proceeded to use
these tables to count the number of ways of placing r rooks on the digjoint union of the
two boards. One student very succinctly and eloguently explained how he' d approached
the problem — which was exactly the type of answer | was hoping to hear. He had done
what we'd aimed for, namely, used the two smaller boards to count the larger one; in fact
his explanation included a nice description of the convolution of the two sequences
associated with each board. Other students seemed to indicate that this was the approach
they took aswell. We asked whether anyone had tried counting the large board directly,
and one student said it had been quite a bit harder than the convolution that the first
student had described.

For the students, this activity might have seemed a bit trivial; many of them
seemed to understand it fairly naturally. From our perspective, however, thiswas a
hugely important step in the quest toward generating functions. This activity was a
success because the students essentially recognized the idea of convolution of sequences,
even if they weren't aware of the mathematical implications of what they were saying.
Although sequence convolution is not yet being introduced explicitly, each subtle

exposureto thisideais significant in the devel opment of generating functions.
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I ntroduction to Activity 5

Thisisafairly long activity, among the most involved of anything the students
will work on. Essentially, by the end of this activity, the students will have the tools
necessary to solve any rook board they will ever encounter (it is remarkable that three
relatively ssmple principles allow for thisto be the case). However, in this activity the
students will also be exposed to generating functions for the first time. Thisis one of the
most important concepts in the entire curriculum, and it will take time and effort to
convey thisidea properly. Thus, there is an abundance of material for the students to
engage with in this activity, and al of it contains extremely relevant combinatorial idesas.

The structure of the activity isasfollows. The students will study the three
principles (called “Rook Rules’) that allow for any rook board to be reduced and
counted: the Digjoint Board principle, the Use/Don’t Use principle, and Switcheroo. In
Part A, these rules are introduced solely on the basis of counting, whilein Part B
generating functions are introduced. Although the computations in Part A can be a bit
unwieldy, the familiar ideas should come relatively naturally. It isunlikely, however,
that the students will be able to develop each of these entirely on their own. A whole-
class discussion of these ideas (an interactive lecture) might be a valuable approach in
conveying these concepts. There are some practice problems throughout the activity for
the studentsto work on (in the midst of such awhole class discussion) in order to confirm
the ideas that are being taught. The students should appreciate the fact that these three
Rook Rules enable them to reduce and count any rook board they may encounter.

In Part B, when generating functions are introduced, the analogs of these Rook
Rules are presented — this time employing the idea of generating functions. Thisisa
topic of enormous weight, and care should be taken inraising it. Again, an interactive
lecture is arecommended means of communicating these ideas. Because of the subtle
attention given to sequence convolution in Activity 4, the introduction to generating
functions appears remarkably well-motivated. The students are primed for such a
discovery. After having gone through the more cumbersome counting versions of the
Rook Rules, the generating function versions should be awelcome relief.

This entire activity really serves to motivate an understanding of generating
functions. Thereisalot of material, but it isimperative that students understand it before
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moving on to subsequent activities. Because of the power that generating functions hold
in other mathematical contexts, they are one of the most central topics of the entire
curriculum, and they should be treated as such.
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Activity 5—Rook Kung-Fu

Part A

Goal: We want to establish a set of rules that will allow usto count ANY rook board we

could ever encounter: the Kung-Fu of rook problems.

Notation: Given aboard B, the number of ways of placing r non-attacking rooks on B
will be denoted by n, (B). From now on, when we refer to rooks, we'll assume we are

talking about non-attacking rooks.

Rook Rule #1. (Digoint Boards) If aboard C consists of two sub-boards A and B that

do not overlap in any rows or columns, then

,(C) = N, (ANy(B) + N, (AN, (B) +---+ny(A)n, (B)

1) The following tables describe the number of ways of placing r rooks on the
two disjoint sub-boards (A, B) of the board C below. We used our restricted
position formulas to construct these tables. (Note: let A be the sub-board on
the *upper left’ and B be the sub-board on the ‘lower right.”)

R 0 1 2 3

n. (A) 1 10 25 14

R 0 1 2 3

n, (B) 1 4 3 0
C

Complete the following table using the Digoint Board principle.

r 0 1 2

nr (C)

3 4 5 6
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Rook Rule#2: (Use/ Don’'t Use) If thei,j-square S of aboard C is not aforbidden
square, then
n, (C) = nr—l(Cl) +n, (Cz) ,

whereC, is the board formed when we use S (and remove the i row and j™ column),
andC, isthe board formed when we don’t use S (and S becomes a forbidden square).

(Note: it would make sense to define n_,(C) =0 for any board C.)

2) Select asguare for Sin the board B below which (after applying Rook Rule
#2) will reduce the given board B to two simple rectangles. Shade in the

restricted squares for your new boardsB, and B,, whereB, is the board
obtained after we use S, and B, isthe board obtained after we don’t use S.

Y ou do not need to reduce the board further or count the number of
configurations.

B, -useS B, -don'tuse S

If we wanted to placer rooks on board B, how many rooks do we place on B,and B,
respectively?
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Rook Rule #3: (Switcher0o) Suppose a board B can be obtained from another board C
simply by permuting rows and/or columns. Then for any integer r,

n,(B)=n, (C)

In other words, we can swap rows and columns without affecting the outcome.

3) For the following boards B and C, perform a series of row and/or column
switchesto transform one into the other. Y ou may use the empty boards to

draw the intermediate stages.
Areyou satisfied that we can switch rows and columns without changing the

counting problem? Why or why not?

C

4) Since we know how to count disjoint sub-boards, transform the board below
into a board containing two digjoint sub-boards.
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Activity 5—Rook Kung Fu

Part B
Notation: By the rook polynomial of a board B, we mean the polynomial

R(B,x) =) n (B)x" .

r>0

The rook polynomial of a board is a generating function where the coefficient of the
r'"termis n, (B), the number of ways of placing r rooks on a chessboard B.

Rook Rule #1. Digoint Boards (polynomial version) If aboard C consists of two sub-
boards A and B that do not overlap any rows or columns, then

R(C,x) = R(A X)R(B, x) .

5) Use rook polynomials Rook Rule #1 to complete the following problem. The
rook polynomial of the boards A and B are given below.

A B

R(A X) =1+ 3x+ x° R(B,X) =1+ 4x+ 2x?

C

Then board C is simply the digoint union of boards A and B.
According to Rook Rule #1, give the rook polynomial for board C:

R(C,x)=

If we count the board C by hand, we arrive at the same result!
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Rook Rule #2: Use/Don’t Use (polynomial version) If thei,j-square S of aboard Cis
not aforbidden square, then
R(C,x) = xR(C,,X) + R(C,, x),

Where C, isthe board formed when we use S (and forbid the i™ row and j column), and
C, isthe board formed when we don’t use S (and S becomes a forbidden square).

6) Use rook polynomials and Rook Rule #2 to complete the following problem.

S

C
If we use square S, then we forbid the row and columns of S, and we get the following

board C,, whose rook polynomial is given below.

[ )]

C,
R(C,,Xx) =1+ 2x

If we don’t use square S, then we get the following board C,, whose rook polynomial is
given below.

CZ
R(C,,X) =1+ 4x+ 2x°

Use Rook Rule #2, to write the rook polynomial of board C.
R(C,x) = xR(C,,X) + R(C,,x) =

Again, counting board C directly yields the same resullt.

113



Rook Rule #3: Switcher oo (polynomial version) Suppose aboard B can be obtained
from another board C simply by permuting rows and/or columns. Then

R(B, x) = R(C, X)

In other words, we can swap rows and columns without affecting the outcome.

7) Transform board B into board C by switching rows and columns. The rook
polynomial of board B is given.

B C
R(B,X) =1+ 5x + 4x*

According to Rook Rule #3, what is the rook polynomial of C?
R(C,x) =

Use counting methods to obtain R(C, x) to confirm that you obtain the expected result.
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Activity 5—Rook Kung Fu (Teacher’sVersion)

Part A
Preliminary Notes: The teacher could begin the class by saying something like:

“Recall that we' ve developed formulas for counting the number of ways of
placing r rooks on boards with O, 1, and 2 restricted positions. We used some basic
counting principles, (including the principle of inclusion/exclusion) to derive these
formulas. It turns out, though, that applying the principle of inclusion/exclusion to
increasingly complex boards gets ridiculously hard pretty quickly. Fortunately, we can
continue to use some basic counting principlesin order to ssmplify (and then count) more
intricate boards.

In Activity 4 you made tables for two boards (using formulas we had derived),
and then you figured out away to place 7 rooks on the digoint union of these two boards.
In doing this problem, did you develop a conjecture about the general way to count such
boards? What must be true of these boards in order to make your conjecture hold? How
do you know? How do counting principles relate to this?’

Goal: Wewant to establish a set of rulesthat will allow usto count ANY rook board we
could ever encounter: the Kung-Fu of rook problems.

Notation: Given aboard B, the number of ways of placing r non-attacking rooks on B
will be denoted by n, (B). From now on, when we refer to rooks, we'll assume we are
talking about non-attacking rooks.

Rook Rule #1. (Digoint Boards) If aboard C consists of two sub-boards A and B that
do not overlap in any rows or columns, then

N, (C) = n. (Any(B) +n,_; (AN, (B) +---+ne (AN, (B)

1) The following tables describe the number of ways of placing r rooks on the
two digoint sub-boards (A, B) of the board C below. We used our restricted
position formulas to construct these tables. (Note: let A be the sub-board on
the ‘upper left’ and B be the sub-board on the ‘lower right.”)

r 0 1 2 3
n, (A) 1 10 25 14
r 0 1 2 3
n, (B) 1 4 3 0
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C
Complete the following table using the Disjoint Board principle.
Answer: By applying Rook Rule #1, the students should arrive at the following table.
R 0 1 2 3 4 5 6

n, (C) 1 14 68 144 131 42 0

Notes:

B Emphasize what “ digoint” means on the blackboard. For this Rook Rule #1 to hold,
the boards must be completely digoint; they cannot overlap in any row or column.
For instance, below are two boards A and B. A consists of two digoint sub-boards,
but B does not. Thisisan important distinction for your studentsto recognize.

A B

B Also, while Rook Rule #1 is stated for two disjoint sub-boards, it holds true for any
number of digoint sub-boards. This knowledge will benefit the students later. It

might be worthwhile to ask them if they think the rule generalizes and then have
them explain their reasoning.
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Rook Rule #2: (Use/ Don’t Use) If thei,j-square S of aboard C is not aforbidden
square, then
n, (C) = nr—l(Cl) +n, (Cz) ,

whereC, isthe board formed when we use S (and remove the i row and j™ column),
andC, isthe board formed when we don’t use S (and S becomes a forbidden square).

(Note: it would make sense to define n_,(C) =0 for any board C.)

2) Select asguare for Sin the board B below which (after applying Rook Rule
#2) will reduce the given board B to two simple rectangles. Shade in the

restricted squares for your new boardsB, and B,, whereB, is the board
obtained after we use S, and B, isthe board obtained after we don’t use S.

Y ou do not need to reduce the board further or count the number of
configurations.

Answer: We show the desired square S and the resulting reduced boards below.

B, -useS B, -don'tuse S

If we wanted to place r rooks on board B, how many rooks do we place on B,and B,
respectively?

Answer: We seek to place r —1 rooks on B, and to placer rookson B, .

Notes: See transparency at the end of this activity for a complete example of thisrule.
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Rook Rule #3: (Switcheroo) Given any board B, and any board C that can be obtained
from B merely by permuting rows and/or columns of C, we have

n, (B)=n,(C)
In other words, we can swap rows and columns without affecting the outcome.
Notes: In these exercises, hopefully the students will recognize the fact that they can
switch multiple rows and columns aswell. For instance, they could interchange a set of
two rows with asingle row. This should make sense to them.
1) For the following boards B and C, perform a series of row and/or column

switches to transform one into the other. Are you satisfied that we can switch
rows and columns without changing the counting problem? Why or why not?

Answer: Thisisone option of ascenario for transforming B into C.

118



2) Since we know how to count disjoint boards, deform the board B below into a
board containing two digjoint sub-boards.

Answer: They should deform it to something like the board on the right, although there
are other options as well.

JEN 5 Ny B
A5 5y N N
S50 5 N I S
R B R BT

g [
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Activity 5—Rook Kung Fu (Teacher’sVersion)

Part B
Notation: By the rook polynomial of aboard B, we mean the polynomial

R(B,x) = > n, (B)x'

r>0

The rook polynomial of a board is a generating function where the coefficient of the
r'"termis n, (B), the number of ways of placing r rooks on a chessboard B.

Rook Rule #1. Digoint Boards (polynomial version) If aboard C consists of two sub-
boards A and B that do not overlap any rows or columns, then

R(C,x) = R(A X)R(B, x)

3) Use rook polynomials Rook Rule #1 to complete the following problem. The
rook polynomial of the boards A and B are given below.

A B

R(A X) =1+ 3x+ x° R(B,X) =1+ 4x+ 2x?

C

Then board C is simply the disjoint union of boards A and B.
According to Rook Rule #1, give the rook polynomial for board C:

R(C,X) = R(A X)R(B, X) = (1+ 3x+ X?) - (1+ 4X + 2x?) =1+ 7x+15x* +10x> + 2x*

If we count the board C by hand, we arrive at the same result!
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Rook Rule #2: Use/Don’t Use (polynomial version) If thei,j-square S of aboard Cis

not aforbidden square, then
R(C,x) = xR(C,,X) + R(C,, x),

whereC, isthe board formed when we use S (and remove the i row and j™ column),
andC, isthe board formed when we don’t use S (and S becomes a forbidden square).

4) Use rook polynomials and Rook Rule #2 to complete the following problem.

S

C
If we use square S, then we get the following board C,, whose rook polynomial is given

below.

8 )

C,
R(C,,Xx) =1+ 2x

If we don’t use square S, then we get the following board C,, whose rook polynomial is
given below.

C,
R(C,,X) =1+ 4x+2x°

Use Rook Rule #2, to write the rook polynomial of board C.
R(C,X) = XR(;, X) + R(,, X) = X(1+ 2X) + (1+ 4x+ 2x*) =1+ 5X + 4x°

Again, counting board C directly yields the same resullt.
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Rook Rule #3: Switcher oo (polynomial version) Suppose aboard B can be obtained
from another board C simply by permuting rows and/or columns. Then

R(B, x) = R(C, x)

In other words, we can swap rows and columns without affecting the outcome.

5) Transform board B into board C by switching rows and columns. The rook
polynomial of board B is given.

B C
R(B,X) =1+ 5x + 4x*

According to Rook Rule #3, what is the rook polynomial of C?
R(C,X) = 1+ 5x + 4x?

Use counting methods to obtain R(C, x) to confirm that you obtain the expected result.
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Given the board C below, use Rook Rule #2 to complete the given table for n, (C).
We choose S strategically.

S
UseS Don't Use S
S
C, C, C,
UseS Don'tUse S
C, C, C,

By our Rook Rule#2, we know that n. (C) =n ,(C,))+n,(C,)

N (C)+[n,(C)+1,(C,)]
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Student Version

Now C,, C,,and C, arerelatively easy to count.

r 0 1 2 3 4
,(C,)

r 0 1 2 3 4
n,(C,)

r 0 1 2 3 4
,(C,)

Recall that by our Rook Rule #2, we know that n, (C)

N, (C)+n(C,)
n1(Cy)+[n 4 (C)+n. (C,)]

So by plugging the above table values into given equation, we can complete the desired
tablefor n, (C). Keepin mind we define n , (B) = Ofor any board B.

r 0 1 2 3 4
n (C)
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Answer Key

Now C,, C,,and C, arerelatively easy to count. Some of the counting may require
formulas from activity one, but most of can be counted by hand.

r 0 1 2 3 4
n, (C,) 1 5 6 2 0
r 0 1 2 3 4
n, (C) 1 5 7 2 0
[ 0 1 2 3 4
n (C,) 1 7 14 8 0

Recall that by our Rook Rule #2, we know that n, (C)

nr—l (Cl) + nr (CZ)
N4 (C)+[n,(C)+n, (C,)]

So by plugging the above table values into given equation, we can complete the desired
tablefor n, (C).

Keep in mind we define n_, (B) = Ofor any board B.

r 0 1 2 3 4
n (C) 1 9 24 21 4
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Reflection on Activity 5

We went through this activity in asingle class period. Thisinvolved more lecture
than we had previously used, but because each key point in the discussion was followed
immediately by a simple example and a short time of working in pairs, it was quite
interactive in nature. Indeed, as we introduced concepts and raised questions, the
students were very engaged and responsive. Furthermore, when | would query them asto
what | should write on the board in various examples, they enthusiastically participated,
offering valuable insights and suggestions. To introduce this activity we talked briefly
about the fact that we needed to move away from inclusion/exclusion, asit can get
complicated very quickly. We explained that we were giving them rules that will allow
them to count any rook board ever.

We then had them work on the first problem of Activity 5 (Rook Rule #1), and
the students seemed to understand the gist of it. | noticed that some students started to
work out the formulas for counting the smaller boards, but their classmates pointed out
that they could use the tables that were aready provided. After some time, one student
presented his solution on the white board. We' d written the tables for the smaller boards
on the white board, and he was able just to point to the various combinations of r rooks
from each board, which essentially demonstrated this idea of the convolution of
sequences. Again, this was the exact connection | had been hoping they would make. It
was nice to get a sense of how he reasoned through the problem, and the rest of the class
seemed to understand his explanation. We asked them if this reminded them of anything,
but no one recognized this as polynomial multiplication (we didn’t push it and weren't
expecting them to connect these ideas).

Next | lectured a bit about Rook Rule #2, doing a small example of the Use/Don’t
Use principle. The class was responsive and able to answer questions about how many
rooks were to be placed on the reduced boards (r or r — 1, depending on the case). They
seemed to be pretty convinced about why this rule would be true. We then had them
work on Question 2. Admittedly, thiswas alittle hard, and we have since refined it a bit
for this activity. While some students were very careful about what to choose for S,
others didn’t make avery strategic choice. It wasjust alittle much, and they got bogged
down in the computation of it. Many of them were still ableto arrive at the right
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answers, though, which was good. In fact, some of the girls said that they were enjoying
reducing the boards in thisway. If we had alittle more time, we really could have
hammered this home, particularly for some of the possibly weaker students. Asl
observed the small groups as they worked, not all of the students were clear about what
was going on, and a couple more examples would have likely clarified this more
completely. Ultimately this was a good lesson for me, however, as| learned to tone this
example down abit for the future.

Dueto time, we barely touched on Rook Rule #3, just mentioning the fact that
they could switch rows and columnsif they so desired. Again, they seemed to
understand this. With alittle more time, as with the above activity, we could make sure
that the entire class really understands this. We were anxious to get past this, though, and
move on to rook polynomials. We also had the luxury of knowing that they could have a
week to absorb the ideas we were introducing before we would return to continue with
more,

Next, | briefly introduced the idea of a generating function. It was not clear at
first that they completely followed the definition, but as | wrote the generating functions
for the tables that were aready up on the board, they obviously began to have a much
better understanding of what | had said. We talked about the relationship between the
counting we had done earlier and polynomial multiplication, and, to our surprise, the
students grasped it immediately. Infact, | heard at least a couple of “that’ s awesome”s
from the class, which was great. It was pretty natural for them to see the relationship
between generating functions and our Rook Rule #1. Surrounded by vigorous nodding
and nonverbal clues of encouragement, we proceeded to go through the other rules pretty
quickly. Indiscussing Rook Rule #2, something important happened. We presented the
rule, and a student asked what the extra*“x” was doing there. Another student was able
correctly to answer him in a manner that reflected an understanding of both the
underlying counting principle as well as the algebraic significance of the generating
function structure. So | think that, already, some of the students had a good sense of what
was going on and were even excited about it.

At one point we had a couple of simple boards drawn on the white board, and |

sort of talked through what the rook polynomials might be. | would say, “how many
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ways can we place 0 rooks?’ and they would answer. Then, | would write that answer as
the coefficient of the x° term. As| did thisfor a couple of boards, this helped the
students get at the notion of what arook polynomial was (and hopefully something about
generating functions as well).

On the whole | was pretty pleased, especially because we successfully used rooks
to introduce generating functions. The students seemed genuinely excited about the idea
of generating functions, and | believe they realized the value of them, at least as
computational time-savers. Everyone was more relaxed during this second visit, too,

(including myself) which made the whole experience that much more enjoyable.
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I ntroduction to Review Worksheet 2

Similar to the first review worksheet, thisis designed to have students explore the
new ideas to which the students have just been introduced. Intended to follow Activity 5
directly, this assessment specifically allows for more time spent exploring both the
counting and polynomial versions of the Rook Rules. The purpose is to have interesting,
somewhat fun problemsto give them practice with these new concepts. This could easily

be given as homework or as a group assignment in class.
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Assessment 2 — Review Worksheet

We have established 3 pretty sweet counting principles related to rook problems, and
these allow usto count ANY rook board we may encounter. Recall the three major
principles we discussed. ..

Rook Rule #1. (Digoint Boards) If aboard C consists of two sub-boards A and B that
do not overlap in any rows or columns, then

,(C) = N, (ANy(B) + N, (AN, (B) +---+ny(A)n, (B)

Rook Rule #1: Digoint Boards (polynomial version) If aboard C consists of two sub-
boards A and B that do not overlap in any rows or columns, then

R(C, x) = R(A X)R(B, x)

Rook Rule#2: (Use/ Don’t Use) If thei,j-square S of aboard C is not a forbidden
square, then

n, €)= nr—l(Cl) +n, (Cz) ,

whereC, isthe board formed when we use S (and remove the i™ row and j™ column),
andC, isthe board formed when we don’'t use S (and S becomes a forbidden square).

Rook Rule #2: Use/Don’t Use (polynomial version) If thei,j-square S of aboard Cis
not aforbidden square, then
R(C,x) = xR(C,,X) + R(C,, x),

whereC, isthe board formed when we use S (and remove the i row and j™ column),
andC, isthe board formed when we don’'t use S (and S becomes a forbidden square).

Rook Rule #3: (Switcher oo) Suppose aboard B can be obtained from another board C
simply by permuting rows and/or columns. Then

n, (B)=n,(C)

In other words, we can swap rows and columns without affecting the outcome.

Rook Rule #3: Switcher oo (polynomial version) Suppose aboard B can be obtained
from another board C simply by permuting rows and/or columns. Then

R(B, x) = R(C, x)

In other words, we can swap rows and columns without affecting the outcome.
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Now that we have these great principles about counting and rook polynomials, let’s put
them into practice! Use the principles we discussed in class (and the Rook Rules listed
above) to answer the following problems.

1)

2)

3)

Use rook polynomials to determine the number of ways of placing 4 rooks on
the RED sguares of a checkerboard (which has dimension8x 8).

Five kids are getting ready to buy the last five pets at a pet store. Their
options are a hamster, afrog, agoldfish, a cockatiel, and a puppy. The only
problem is some of the kids can’t handle some of the pets:

Carly only wants something with fur (feathers don’t count).
Sarah prefers amphibians.

Brad would like anything that doesn’t have claws or talons.
Joanna only wants a puppy or a hamster.

Derek wants a pet that can fly.

How many ways can we distribute the pets to these five kids? Keeping in
mind our simplification methods, set up arook board for this problem and
solve.

Since Skating with Celebrities and Dancing with the Stars have been

relatively big hits, the networks are aready |ooking for some celebrities to
appear on their newest show: Acting with the Stars. In this show, we take
respected, Oscar-winning actors and pair them with B-list action heroes. They
perform scenes in front of members of the Academy, and each week, one
unlucky duo gets voted off. There are current negotiations attempting to give
the winning team honorary Academy Awards.

Unbelievably, the networks have gotten 4 good actors and 5 less-good actors
to agree to this. The networks have hired you to determine just how many
ways we could get 4 couples from the given choices. Let’sfaceit, though;
some actors have egos. So the following restrictions apply:

Sir Anthony Hopkins absolutely refuses to work with Steven Seagal, Carl
Weathers and Jean-Claude Van Damme.

Even though Al Pacino hasn’'t won in afew years, he just can’t respect Carl
Wesathers or Steven Seagal .

Meryl Streep loves accents, so she wants to work with Jean-Claude Van Damme
or Lucy Lawless.

Dame Judi Dench hates two things: Australian accents and facial hair, so she
doesn’t want to work with Lucy Lawless or Chuck Norris.

Use our theorems to count the number of ways of making 4 couples!
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Assessment 2 — Review Worksheet (Teacher’sVersion)

We have established 3 pretty sweet counting principles related to rook problems, and
these allow us to count ANY rook board we may encounter. Recall the three major
principles we discussed. ..

Rook Rule #1. (Digoint Boards) If aboard C consists of two sub-boards A and B that
do not overlap in any rows or columns, then

,(C) = N, (ANy(B) + N, (AN, (B) +---+ny(A)n, (B)

Rook Rule #1: Digoint Boards (polynomial version) If aboard C consists of two sub-
boards A and B that do not overlap in any rows or columns, then

R(C, x) = R(A X)R(B, x)

Rook Rule#2: (Use/ Don’t Use) If thei,j-square S of aboard C is not aforbidden
square, then

n, €)= nr—l(Cl) +n, (Cz) ,

whereC, isthe board formed when we use S (and remove the i™ row and j™ column),
andC, isthe board formed when we don’'t use S (and S becomes a forbidden square).

Rook Rule #2: Use/Don’t Use (polynomial version) If thei,j-square S of aboard Cis
not aforbidden square, then
R(C,x) = xR(C,,X) + R(C,, x),

whereC, isthe board formed when we use S (and remove the i row and j™ column),
andC, isthe board formed when we don’'t use S (and S becomes a forbidden square).

Rook Rule #3: (Switcher oo) Suppose aboard B can be obtained from another board C
simply by permuting rows and/or columns. Then

n, (B)=n,(C)

In other words, we can swap rows and columns without affecting the outcome.

Rook Rule #3: Switcher oo (polynomial version) Suppose aboard B can be obtained
from another board C simply by permuting rows and/or columns. Then

R(B, x) = R(C, x)

In other words, we can swap rows and columns without affecting the outcome.
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Now that we have these great principles about counting and rook polynomials, let’s put
them into practice! Use the principles we discussed in class (and listed above) to answer
thefollowing problems.

Notes. The purpose of these problemsis to have the students become familiar with the
principleswe used. The hope is that they will recognize the various counting ideas, and
that they will become familiar with how to implement them. They really could approach
these either with the counting ideas or the rook polynomial versions of those ideas, but
hopefully at some point they will realize that the rook polynomials (the generating
functions) aid in computation.

1) How many ways can we place 4 rooks on the RED squares of a checkerboard?

Answer: This problem is utilizes Rook Rule #1 and #2. It’sredlly just a matter of
swapping rows and columns and then applying Rule #1.

We can use our previously-derived formulas to find that the rook polynomial for each
sub-board SB (which also happens to be a 4 x 4 square).

R(SB, x) = 1+16x + 72x° + 96x° + 24x*

Thus the rook polynomial for the entire board B is
R(B, X) =(1L+16x + 72x* + 96x> + 24x")?
= 1+ 32X+ 400x? + 2496x° + 8304x"* +14592x° +12672x° + 4608x’ + 576x®

Thus the coefficient of thex*term, or the number of ways of placing 4 rooks, is 8304.
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2) Five kids are getting ready to buy the last five pets at a pet store. Their
options are a hamster, afrog, a goldfish, a cockatiel, and a puppy. The only
problem is some of the kids can’t handle some of the pets:

Carly only wants something with fur (feathers don’t count).
Sarah prefers amphibians.

Brad would like anything that doesn’t have claws or talons.
Joanna only wants a puppy or a hamster.

Derek wants a pet that can fly.

How many ways can we distribute the pets to these five kids? Keeping in
mind our simplification methods, set up arook board for this problem and
solve.

Answer: This answer begins with a given configuration of the board. Note that students
may label their rows and columns differently to begin with. However, the actual rook
polynomial should come out to be the same no matter what configuration they start with.
Note the kids are listed as rows in the order they were mentioned, and the pets are listed
as columnsin the order they were mentioned. In this problem we labeled the rows and
columns so the instructor can better understand this answer key. The rook board itself
consists of the board without the row and column of labels.

X| K| Fl c|lc|P

C

S

B

J

C

X| H| P| F| c| C X F| Pl F| c|cC
C C
S J
B B
J S
C C

Note we can transform thisinto the board on the right above, which consists of three
digoint sub-boards that are easily countable. The rook polynomials for the boards are as
follows:
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R(A,X) =1+ 4x + 2x? R(B, X) =1+ 3x+ X* R(C,x) =1+ X

Because they are digoint, the rook polynomial of the entire board is the product of the

three,

R(D,X) = 1+ 4x+2x?) - (1+3x+ X?) - (1+ X) =1+ 8x + 22x* + 25x® +12x* + 2x°
So there are only two waysto distribute these pets to these five kids!

3)

Since Skating with Celebrities and Dancing with the Stars have been

relatively big hits, the networks are aready |ooking for some celebrities to
appear on their newest show: Acting with the Stars. In this show, we take
respected, Oscar-winning actors and pair them with B-list action heroes. They
perform scenesin front of members of the Academy, and each week, one
unlucky duo gets voted off. There are current negotiations attempting to give
the winning team honorary Academy Awards.

Unbelievably, the networks have gotten 4 good actors and 5 less-good actors
to agree to this. The networks have hired you to determine just how many
ways we could get 4 couples from the given choices. Let’sfaceit, though;
some actors have egos. So the following restrictions apply:

B Sir Anthony Hopkins absolutely refuses to work with Steven Seagal, Carl

Weathers and Jean-Claude Van Damme.

B Eventhough Al Pacino hasn’t won in afew years, he just can’t respect Carl

Wesathers or Steven Seagal.

B Meryl Streep loves accents, so she wants to work with Jean-Claude Van Damme

or Lucy Lawless.

B Dame Judi Dench hates two things: Australian accents and facial hair, so she

doesn’t want to work with Lucy Lawless or Chuck Norris.

Use our theorems to count the number of ways of making 4 couples!

Answer: Thisproblem really utilizes Rook Rule #2, and it could potentially be tricky.
As above, this answer begins with a given configuration of the board. Note that students
may label their rows and columns differently to begin with. However, the actual rook
polynomial should come out to be the same no matter what configuration they start with.
Note the “good actors’ are listed as rows in the order they were mentioned; the “bad
actors’ arelisted as columnsin the order they were mentioned. The letters correspond to
their last names. In this problem I labeled the rows and columns so the instructor can
better understand this answer key. The rook board itself consists of the board without the
row and column of labels. | eliminate them after the initial set-up of the board is clear.
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O | w»m|T|T|X
wmn

D

If we use S we get the following board, call itC,. Then we use Rook Rule #3 to get the
board below on the right.

Therook polynomial of thisboard C, isthe easily computable
R(C,,X) = 1+ 2X) - (1+ 3x+ X*) = 1+ 5x+ 7x* + 2x°.

If we don’t use S we get the following board, call it C, .

C2

ThisboardC, , however, is still alittle complicated to count, so we apply Use/Don’t Use
again tothe C,. We select square S.
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If we use S, then we get the following board.

Cl
The rook polynomial of thisboard C, isthe easily computable
R(C,, X) = (1+3%) - (1+2x) =1+ 5x+ 6x°.

If wedon't use S, then we get the following board.

CZ
Therook polynomial of this boardC, isalso easy to compute:
R(C,, %) = (L+4x+2x%) - (1+ 4x+ 2x%) = 1+ 8x + 20x* +16x° + 4x*

So now we recall Rook Rule #2, and we realize that before we add all of these together
we need to multiply the rook polynomials of C, and G by x first.

o, in total, we use Rook Rule #2 to find the rook polynomial of our original board D.
Since we applied Use/Don’'t use again toC, and found C, and C, , we get

R(D, x) = xR(C,, X) + R(C,, X) = XR(C,, X) +[xR(&,x) + R(g,x)] .

Just to recap, note that
R(C,,X) = (L+2X) - (1+ 3x + X?) = 1+ 5x + 7x* + 2x°
R(C,, X) = (1+3%) - (14 2x) =1+ 5x+ 6x°

R(C,, %) = (L+4x+2x%) - (1+ 4x+ 2x*) = 1+ 8x + 20x* +16x° + 4x*

Plugging in, we get
R(D, X) = X(L+ 55X+ 7x* + 2x>) + X(1+ 5X + 6x?) + (1+ 8x + 20x* +16x° + 4x*)

=1+10x+ 30x* + 29x° + 6x*
So there are 6 ways that we could make couples for the new TV show!
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I ntroduction to Activity 6

This activity relates matchings, atopic from graph theory, to students' developing
knowledge of rook boards. It asks specific questions that force them to consider the
relationship between configurations of rooks and matchings in complete bipartite graphs.
The activity, asit iswritten, assumes that the students have some prior exposure to
matchings. If they have been introduced to matchings before they start this activity, it is
reasonabl e to expect them to be able to work through it on their own or in small groups.
If not, however, more time might be needed in order to explore the notion of matchings
further. It isnot necessary that students know any of the powerful theorems concerning
matchings that are out there; rather, they need only afamiliarity with the basic concepts
and definitionsinvolved.

This activity should be treated more as a pre-activity, just to get studentsto think
about theseideas. The open-ended nature of the questions should force them to articulate
their ideas clearly, ultimately making their learning more meaningful. Discussion of

these problems among studentsis greatly encouraged.
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Activity 6 — All Aboard For M atchings, Captain Rook!

Even though you guys are probably pros at matchings by now, take a moment to remind
yourselves of the definition of a matching.

Matchings

Here we deal with ssimple graphs consisting of vertices and edges. A matching in
agraph G isaset of edges such that no two edges share an endpoint. Or, said another
way, amatching is a set of edges, no two of which have avertex in common.

Since matchings are edge sets, we can find matchings of various sizes for a given
graph; an r-matching in agraph G, then, isaset of r edges, no two of which share a
common vertex.

Rooks and Matchings

Rook boards correspond to bipartite graphsin a natural way. Each row and each
column is represented by a vertex, where the row vertices and the column vertices make
up the two cells of the bipartition. An edge is drawn between arow vertex and a column
vertex if the square in that row and column is not forbidden. For example, inan mxn
board with no forbidden squares, the corresponding graph is the complete bipartite graph,
K

mn *

1) Draw agraph that correspondsto a 4x5 chessboard with no restricted positions.
2) Relatetherules of placing non-attacking rooks to the rules governing matchings.

3) Explain why rook boards always give rise to bipartite graphs with this
construction. Can every bipartite graph be modeled by arook board?

4) What does arestricted position in the rook setting correspond to in the setting of
graphs? In other words, how might we describe arestricted position in a graph?

5) Using aformulawe have about rooks, find the number of r-matchingsin the
complete bipartite graph K, . Look at this formula and discuss how you would
describe the counting process it revealsin terms of matchings.
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Activity 6 — All Aboard For Matchings, Captain Rook! (Teacher’sVersion)

Even though you guys are probably pros at matchings by now, take a moment to remind
yourselves of the definition of a matching.

Matchings

Here we deal with simple graphs consisting of vertices and edges. A matching in
agraph G isaset of edges such that no two edges share an endpoint. Or, said another
way, amatching is a set of edges, no two of which have avertex in common.

Since matchings are edge sets, we can find matchings of various sizes for agiven
graph; an r-matching in agraph G, then, isaset of r edges, no two of which share a
common vertex.

Rooks and Matchings

Rook boards correspond to bipartite graphsin a natural way. Each row and each
column is represented by a vertex, where the row vertices and the column vertices make
up the two cells of the bipartition. An edge is drawn between arow vertex and a column
vertex if the square in that row and column is not forbidden. For example, inan mxn
board with no forbidden squares, the corresponding graph is the complete bipartite graph,
K

mn *

1) Draw agraph that correspondsto a 4x5 chessboard with no restricted positions.

2) Relatetherules of placing non-attacking rooks to the rules governing matchings.

Answer: Intherook board setting, once we place a non-attacking rook we cannot place
any other rook in the same row or column as our given rook. Similarly, because of how
matchings are defined, once we select an edge to be in a given matching, we cannot re-
use either endpoint of that edge in that matching. Since the rows and columns each
correspond to verticesin acell of the bipartition, we see that just asarow or column is
“used up” once arook is placed there, so avertex is“used up” onceits edgeisincluded in
amatching. Said another way, a given row or column can contribute to at most one rook

being placed on the board, and a given vertex can contribute to at most one edgein a
matching.
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3) Explain why rook boards always give rise to bipartite graphs with this
construction. Can every bipartite graph be modeled by arook board?

Answer: Because of the fact that the rows and columns of the rook board correspond to
verticesin the two cells of the bipartition, these rook boards and bipartite graphs are
inextricably linked. 1t works out ideally that matchings and non-attacking rooks have
exactly the same restrictions, so the problems of rooks and matchings are perfectly
analogous to one another. Note, however, that rook boards do not model other types of
non-bi partite graphs.

4) What does arestricted position in the rook setting correspond to in the setting of
graphs? In other words, how might we describe arestricted position in agraph?

Answer: A restricted position in the graph isamissing edge. Two vertices cannot be
paired up (and an edge between them cannot be included in a matching) unless an edge
exists between them. A missing edge essentially disallows a pairing of vertices, much
like arestricted position in the rook setting.

5) Recalling aformulawe have about rooks, find the number of r-matchingsin the
complete bipartite graph K, . Look at this formula and discuss how you would
describe the counting process it revealsin terms of matchings.

Answer: Werealize that in our complete bipartite graph K, |, mand n are the number of

verticesin each cell of the bipartition. In counting the r-matchings in such a graph, we
are essentially looking for edge sets of sizer. In order to do this, we must first pick r left
endpoints from one cell (of size m) and then r right endpoints from the other cell (of size
n). Once we' ve selected our endpoints, there are r! ways to arrange edges among them.

Therefore the number of r-matchingsin the complete bipartite graph K, isgiven by the

my/(n
formula (r J(r ]r! . Notethisisreally the same thing as picking rows and columns on a

rook board.
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Reflection on Activity 6

The students worked on this activity directly prior to our third visit with them.
They had previously been exposed to matchings earlier in their coursework, and so the
point of this activity was mainly to jog their memories. We began the third day by
exploring rook polynomials and their relationship to bipartite graphs. The students were
able to describe how a bipartite graph might model arook board, and this was fairly
natural for them. We then discussed briefly the fact that we can use graphs to model
more general counting problems, and we explained the distinction between counting
matchings in bipartite graphs versus counting matchingsin any general graph. In the
general, non-bipartite case, it is not necessary to match up members of two distinct sets—
we can match up any vertices, provided they are joined by an edge. This, then, provided
some motivation for learning about the matchings polynomial (which appliesto graphsin
general) instead of just the rook polynomial (which applies to bipartite graphs). We just
briefly introduced the real- life wrestling problem as an example of this. Sincethis
activity wasjust awarm-up for Activity 7, more reflections on how the students handled
thismaterial isincluded in the reflections for Activity 7.
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I ntroduction to Activity 7

Thisfinal activity isfairly ambitious. It explores the matchings polynomial,
which isthe more general case of the rook polynomial. This matchings polynomial
provides a nice bridge between generating functions and matchings, allowing students to
make connections between two previous concepts. This activity motivates counting
problems related to matchings, informing students that they might encounter problemsin
which a matchings polynomial would be more useful than the rook polynomial.
Additionally, this activity investigates various properties of matchings, including four
interesting theorems. Finally, the notion of perfect matchingsisintroduced, and a
fascinating integral formulafor computing the number of perfect matchingsis discussed.

There are two primary goalsfor this activity. Thefirst isto get students
thoroughly comfortable with the idea of matchings. They should feel confident in
identifying matchings in graphs, counting them, computing matchings polynomials, etc.
Such familiarity with matchings will aid them in further mathematical studies. The
second goal isfor them to appreciate the breadth and variety of interesting results about
matchings; the intent is to give students some insight into how remarkable these concepts
are. Thefact that there are interesting results when differentiating and integrating these
polynomiasis—let’sfaceit —just plain cool, and this activity seeks to convey this.

This activity will likely be most effective in an interactive lecture setting, in
which topics are explicitly explained, but where students feel free to ask questions and
engage with the material. There are some questions throughout the activity where the
students can take some time alone or in small groupsin order to work through them. The
Teacher’s Version includes an additional example that could be used during the class as
well. Because of the depth of the subject matter covered in this activity, the material

included here could be spread over more than one class period.
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Activity 7—We're Gonna Rook Your World

WEe' ve talked some about the rook polynomial, which we defined to be a
polynomial function whose coefficients represent the number of configurations of rooks
on achessboard. Specificaly, the coefficient of theterm x' isthe number of ways of
placing r rooks on a board.

Y ou have a'so recognized the very natural (and undeniably cool) relationship
between rook boards and bipartite graphs, which includes the fact that a configuration of
non-attacking rooks on a board represents a matching in a bipartite graph.

A Real-Life Example of Matchings
So why do we even care about matchings in graphs? Glad you asked!
Consider a counting problem like this one:

There are 10 kidsin gym class who have to get matched up into 5 pairs of wrestling
partners. Somehow, you (the cool-but-small math nerd) always seem to get matched up
with Buzz (the guy with no neck). Suppose there are 4 kids who refuse to wrestle Buzz
and 3 (different) kids who don’t want to wrestle you. If a5-matching is chosen at
random, what is the probability that you’'ll have to wrestle Buzz? (Note: In this case, the
10 kids represent verticesin a graph, and a pairing represents an edge between them, but
this graph doesn’t have to be bipartite!)

Sinceyou're now well-versed in all of this, and since you're familiar with the notion of a
generating function, we feel we' re ready to unleash the big dog: the matchings
polynomial.

The Matchings Polynomial
Thisisredly just what it soundslike: it’s a generating function where the coefficient of

X" represents the number of r-matchingsin the graph. (Recall that an r-matchingin a
graph G isaset of r edges, no two of which have avertex in common.) So if we denote
the number of r-matchingsby m(G, r) , then the matchings polynomial is defined as

n(G,x) =Y mG,r)x’

r>0

For example, in atriangle graph (call it G), there is one 0- matching, there are three 1-
matchings, and there are no 2-matchings. Thus the matchings polynomial of the triangle
graphisp (G, x) =1+ 3x
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The following graph is often called the “house” graph (for obvious reasons); we will use
it to familiarize ourselves with the matchings polynomial. We'll call the house graph H.

H

In order to find the matchings polynomial of the house graph, we must first determine the
number of r-matchingsin the graph, denoted m(H,r). We find these by direct counting

in this case; the table should make it easier to keep track of everything.

r 0 1 2 3
m(H,r)

According to this table we have valuesfor m(H,r), and we can plug these into our

definition of the matchings polynomial. Write the matchings polynomial for the house
graph H below.

n(H,x) =

Cool Theorems about the Matchings Polynomial

Alright, so now that you have the matchings polynomial for the house graph, we're going
to discuss some relevant theorems about this polynomial. Rather than proving these,

we' |l have you work these out with the house graph (and the triangle graph), whose
matchings polynomials we already know.

Theorem 1: For any two digoint graphs G and H, u(GuU H,x) = u(G,x)u(H, x)

Example 1. Show that thisistrue for our two digoint graphs: our triangle graph G and
our house graph H.

Theorem 2: If eisan edgein G with endpointsu and v, and G \{uv} is the graph where
weremoveverticesu and v, then p(G, x) = xu (G \{uv},Xx) + u(G\e x)

Example 2: Pick any edgein our house graph H and verify that this works.
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Theorem 3: If uisavertex of agraph G, then (G, x) = x> u(G\{uM, X) + u(G\u,x)

Example 3: Pick any vertex in our house graph H and verify that this works.

Theorem 4: For some edge e with endpointsu and v, G \{uv} isthe graph where we
remove vertices u and v, aswell as any edge incident to either vertex. Then

SHGX = TRE WY

uveE(G)

Example 4: Show that this holds true for the house graph H.

Now we switch gears alittle bit and return to some good ol d-fashioned counting.

A Little Review
Recall that a complete graph on n vertices, K ., contains edges between every pair

of vertices, the verticesinK , are all mutually adjacent. The complement of agraph onn
vertices G, denoted G , has the same vertex set as G, but it contains all edgesin K,notin

G. Said another way, the edgesin G, together with all edgesinG , make up the edgesin
K, . Thefollowing two graphs exemplify this complementary relationship.
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Also, a perfect matching of a graph is a matching that includes every vertex. Note
that a graph can only have a perfect matching if it has an even number of vertices. If the
number of vertices is even, say n = 2k , then the number of perfect matchings will be the

coefficient of the x* term.

1) Develop aformulathat counts m(K ,r), the number of r-matchingsin the
complete graph on n vertices.

2) Draw the complete graph on 4 vertices, K,. Use the above formulayou just
found to write the matchings polynomials for this graph.

],L(K4,X) =

Now we introduce a random (but not as random as you’ d think) formulathat gives the

number of perfect matchings in the complement of agraph G . It'san integral, how cool
isthat?!

pm(G) = 1 IeTX”u(G,—iz)dx
e X

Jor

3) Inorder to convince yourselves of the verity of the above equation, find the
matchings polynomial of the complement of K, and plugitinfor u(G, xinthe
formulaabove. Try it for a couple of values of n on your calculator. It turns out
(check it sometime!) that if niseven, say n= 2k, then the integral equals

|
(njhk , which of course is the number of perfect matchingsin K. (If nisodd,

then thisintegral equals0.)
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4) Consider now the graph K, U K,, the digoint union of two copiesof K,. Since
we have the matchings polynomial for K, , we can use Rook Rule #1 (remember
that?) about digoint boardsto compute n(K, U K,,x). Tryit!

(K, UK, x)=

5 Plugu(K, vK,,x) intotheintegral formulaabove to give us the number of
perfect matchingsin the complement K, UK, .

6) Now, draw the graph for K, U K, , the complement of the digoint union. Does
thisremind you of anything? (Hint: it should!!)

7) Just to hit our point home, use the very first formulawe derived to find the
number of ways of placing r non-attacking rooks on a 4x 4 board with no
restrictions. Now, compare this to the number of perfect matchingsin the graph

K, UK,. Isthat sweet or what?!

8) Remember our problem about pairing up the wrestlers? Given what you know
now about polynomials, perfect matchings, integrals, life, can you come up with a
solution?!
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Activity 7—We're Gonna Rook Your World (Teacher’'s Version)

WEe' ve talked some about the rook polynomial, which we defined to be a
polynomial function whose coefficients represent the number of configurations of rooks
on achessboard. Specificaly, the coefficient of theterm x' isthe number of ways of
placing r rooks on a board.

Y ou have also recognized the very natural (and undeniably cool) relationship
between rook boards and bipartite graphs, which includes the fact that a configuration of
non-attacking rooks on a board represents a matching in a bipartite graph.

A Real-Life Example of Matchings
So why do we even care about matchings in graphs? Glad you asked!
Consider a counting problem like this one:

There are 10 kidsin gym class who have to get matched up into 5 pairs of wrestling
partners. Somehow, you (the cool-but-small math nerd) always seem to get matched up
with Buzz (the guy with no neck). Suppose there are 4 kids who refuse to wrestle Buzz
and 3 (different) kids who don’t want to wrestle you. If a5-matching is chosen at
random, what is the probability that you'll have to wrestle Buzz? (Note: In this case, the
10 kids represent verticesin a graph, and a pairing represents an edge between them, but
this graph doesn’t have to be bipartite!)

Sinceyou're now well-versed in all of this, and since you' re familiar with the notion of a
generating function, we feel we're ready to unleash the big dog: the matchings
polynomial.

The Matchings Polynomial
Thisisredly just what it soundslike: it’s a generating function where the coefficient of

X" represents the number of r-matchingsin the graph. (Recall that an r-matchingin a
graph G isaset of r edges, no two of which have avertex in common.) So if we denote
the number of r-matchingsby m(G, r) , then the matchings polynomial is defined as

n(G,x) =Y mG,r)x’

r>0

For example, in atriangle graph (call it G), there is one 0- matching, there are three 1-
matchings, and there are no 2-matchings. Thus the matchings polynomial of the triangle
graphisp (G, x) =1+ 3x
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The following graph is often called the “house” graph (for obvious reasons); we will use
it to familiarize ourselves with the matchings polynomial. We'll call the house graph H.

H

In order to find the matchings polynomial of the house graph, we must first determine the
number of r-matchingsin the graph, denoted m(H,r). We find these by direct counting

in this case; the table should make it easier to keep track of everything.
r 0 1 2 3
m(H,r) 1 6 6 0

According to this table we have values form(H,r), and we can plug these into our

definition of the matchings polynomial. Write the matchings polynomial for the house
graph H below.

w(H,x) = 1+6x+6x°

Notes: The students ability to compute this matchings polynomial of H will rely on their
understanding of matchings. It’simportant to emphasize that a given r- matching can
only include a vertex at most once.

Cool Theorems about the Matchings Polynomial

Alright, so now that you have the matchings polynomial for the house graph, we're going
to discuss some relevant theorems about this polynomial. Rather than proving these,

we' |l have you work these out with the house graph and the triangle graph, whose
matchings polynomials we already know.

Theorem 1: For any two digoint graphs G and H, n(GU H,x) = u(G,x)u(H,x)

Note: Inthis section that follows, the teacher ought to run through the following example
provided in class. Then, the students can work through the same process with the house
graph.

Examplein class: Let G be the graph consisting of two components: a C, and a P;, as
shown below.
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Counting the number of r-matchingsinP, U C, givesusu (P, U C,,X) =1+5x+6x>.
We note that n(P;, X) =1+ 2x and n(C,, x) =1+ 3X,

sou(P,, X)u(Cs, X) = (1+ 2x)(1L+ 3x) = 1+ 5x + 6x°.
Thus, comparing the above results, we see that (P, U C,, x) = n (P, X)) (C;, X)

Example 1: Show that thisistrue for our two disjoint graphs: our triangle graph G and
our house graph H.

Answer: We found above that, for triangle graph G and house graph H,

1(G,x) =1+3x and p(H,x) = 1+6x+6x".

We count directly and find that u(Gu H,x) =1+ 9x+ 24x* +18x°.

Comparing thiswith (G, X)u(H, x) = 1+ 3X)(L+ 6x+ 6x?) =1+ 9x + 24x* +18x°, and
we see that the theorem holds true.

Theorem 2: If eisan edgein G with endpointsu and v, and G \{uv} isthe graph without
theverticesu and v, then (G, x) = xu (G \{uv}, x) + u(G\ e x)

Exampleinclass: Let G be the following graph, where edge e has endpoints 2 and 4.
Note, this theorem would still work regardless of the edge chosen. {12} would be
another interesting choice for edge e.

Counting 11 (G, x) directly gives usthe polynomial 1+ 4x+ x?.

Jo

We consider two sub-graphs, one where we delete e, and one where we delete the
endpointsof e. G\e and G\{24} arethe following respective sub-graphs.

g

©

Gle G\{24)
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Counting the matching polynomials of each sub-graph gives usp (G \ e, x) =(1+ 3x + x?)
andpu(G\{24},x)=(1) .

S0 xp (G \{24},X) + (G \ e x) =X+ (1+3x+ x*) =1+ 4x + X°

Thusfor the graph G we seethat 1 (G, xX) = xu (G \{24},X) + u(G\ e x) .

Example 2: Pick any edgein our house graph H and verify that this works.

Answer: For our house graph H shown above, pick the edge e with endpoints 2 and 5.

SO

(s—(9)
H\e H \{25}

n(H\ex) =1+5x+5x* and p(H \{25},x) =1+ X.

From the theorem above we find that 1 (H, X) = X(1+ X) + (L+ 5X + 5x?) = 1+ 6X + 6X°.
This checks out with what we know p(H, x) to be.

Theorem 3: If uisavertex of agraph G, thenu (G, x) = XZ n(G\{uv},x)+ pn(G\u,x)

v~u

Examplein class: We use the same graph G, shown below. Let vertex 2 be the vertex u
we delete.
©
(—

We consider two classes of sub-graphs. Thefirst isasingle sub- graph, one where we
delete vertex 2. The second is agroup of graphs, where in each graph we delete vertex 2
and one vertex adjacent to it. The sub-graphs are drawn below.

®

G\2
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G\{21 G\{23 G\{24)

Counting the matchings polynomials of these subgraphs givesus p(G\ 2,x) =1+ x, and
> u(G\{2i},%) =[(1+X) +1+1] = 3+ x. Thus, we get

i~2

n(G,x) = XZH(G\{ZV},X)+ 1(G\2,X) = X(3+ X) + (1+ X) =1+ 4x+ X°.

v~2
We know from above (or by direct counting) that (G, x) =x* + 4x* +1.
So for the given graph G and u =2 we have p(G,x) = x> n(G\{u, X) + p(G\u,X)

Example 3: Pick any vertex in our house graph H and verify that this works.

Answer: We pick vertex u =1 to be the vertex we remove.

—)
(H—
H\1

w(H\1LX) =1+ 4x+ 2x?

We must also consider the graphs that remove the edges of which 1 is an endpoint,
namely H\{12} and H \{15}.

) (=
(—{(9)
H\{12} H \{15}

uw(H\{12},x) =1+ 2x and p(H \{15},x) =1+ 2x.
So D u(H \{um,x) = (1+2x) + (1+ 2x) = 2+ 4x, and thus

v~u

XY u(H \{um, X) = X(2+ 4x) = 2 + 4x°
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Thenp(H,X) = (2x+ 4x%) + (1+ 4x+ 2x%) = 1+ 6x+ 6x°, which we know is the
matchings polynomial for the house graph.

Theorem 4: For some edge e with endpointsu and v, G \{uv} isthe graph where we
remove vertices u and v, aswell as any edge incident to either vertex. Then

d
&u(G, X) = WEZE(:GL)L(G \{uv}, x) .

Examplein class. We consider the same graph G, pictured below.

Jo

(=)
(—9)
Let us examine Z u(G\{uv}, x). Sincethere arefour edges, there will be four
uveE(G)
subgraphs to consider.
©® ©
G\{12% G\{23 G\{24} G\ {34}

We can compute the matchings polynomials for each of these subgraphs. Summing these
polynomiaswill give the right hand side of the equation in the theorem.

n(G\{12} =1+ x

p(G\{23 =1
u(G\{24 =1
n(G\{34} =1+ x

Thus, > p(G\{uM,x)=(1+X) +1+1+ (1+X) = 4+ 2x

uveE(G)

We know from above that 1 (G, x) =1+ 4x+ x>, and so di},t(G, X) =4+ 2X.
X
Therefore the theorem holds for this graph.
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Example 4: Show that this holds true for the house graph H.

Answer: On the right hand side, we must consider Z n(G\{uv},x), whichisthe

uveE(G)
matchings polynomials of al subgraphs of H where an edge (and its endpoints and their
incident edges) isremoved, H\1, H\2, H\3, H\4,and H \5.

o o b
ob bo ¢

H\12 H\15 H\23
Y P
oo
G—@
H\25 H\34 H\45

We compute the matchings polynomials for the above subgraphs and sum them.

n(H\{12},x) =1+ 2x
u(H \{15},x) =1+ 2x
u(H \{23},x) =1+ 2x
u(H\{25},x) =1+ x

u(H\{34},x) =1+ 3x,
n(H \{45},x) =1+ 2x

Then > pn(G\{uv},x)=4(1+2X) + (1+ X) + (1+3x) = 6+12x

WeE(G)

We compare this with % u(G,x) .

We know that p1(H,x)=1+6X+ 6X°, SO %M(G,x) =6+12x.
Therefore, for the graph H it is true that %M(G,x) = > uG\{w},x).

uveE(G)
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Now we switch gears alittle bit and return to some good ol d-fashioned counting.

A Little Review

Recall that a complete graph on n vertices, K ., contains edges between every pair
of vertices, the verticesinK , are all mutually adjacent. The complement of agraph onn
vertices G, denoted G , has the same vertex set as G, but it contains all edgesin K notin

G. Said another way, the edgesin G, together with all edges inG, make up theedgesin
K, . Thefollowing two graphs exemplify this complementary relationship.

Also, a perfect matching of a graph is amatching that includes every vertex. Note
that a graph can only have a perfect matching if it has an even number of vertices. If the
number of vertices is even, say n = 2k, then the number of perfect matchings will be the
coefficient of the x* term.

Note: Perfect matching is an important notion for the students to grasp. It would be
worth running through afew examples of perfect matchings to hit this concept home.

1) Develop aformulathat counts m(K ,,r), the number of r-matchingsin the
complete graph on n vertices.

Gy

2" (n—2r)12%r!
some 2r vertices from n, which represents picking a set of vertices for our r-matching (as
every edge hastwo vertices). From those 2r vertices, we pick r of them as left endpoints,
and we assign r right endpoints to these left endpointsin r! ways. But since there are no
left and right endpoints, we must divide by 2. Simplification gives us the second
equation.

Answer:

. We get thisin the following way. First we pick

There are other ways to think of counting this as well, but they should result in this same
formula.
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2) Draw the complete graph on 4 vertices, K, . Use the above formulayou just
found to write the matchings polynomials for this graph.

Answer.
0"9
(o—3

K,

n(K,,x) =1+6x+ 3x

Now we introduce a random (but not as random as you' d think) formula that gives the

number of perfect matchingsin the complement of a graph G. It'san integral, how cool
isthat?!

1 0 7X2

pm(G) = T j e2x" M(G,—X—lz)dx

3) Inorder to convince yourselves of the verity of the above equation, find the
matchings polynomial of the complement of K, and plugitinfor u(G, xinthe

formulaabove. Try it for acouple of values of n on your calculator. It turns out
(check it sometime!) that if niseven, say n= 2k, then the integral equals

n |
(kJ% , which of courseisthe number of perfect matchingsin K, . (If nisodd,

then thisintegral equals0.)

Answer: The complement of K isjust the empty graph on n vertices. The matchings
polynomial of an empty graph will always just be 1 (as thereisjust one O-matching in

any empty graph). So we end up integrating pm(K_n) = L j e? (x"-Ddx,

N2,
and testing this for some values of n confirmsthis. Perhaps students could try different
valuesfor n on their calculators and then share their results with the class. Or,

aternatively, the teacher could do thisin Maple or some such program.
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4) Consider now the graph K, U K,, the digoint union of two copiesof K,. Since
we have the matchings polynomial for K, , we can use Rook Rule #1 (remember
that?) about digoint boardsto compute n(K, U K,,x). Tryit!

(K, UK, x)=

Answer: Becausep(K,,x) =1+6x+3x* and u(K,,x) =1+ 6x+3x7,
(K, UK,,x) = (14 6x+ 3x?)(1+ 6x+ 3x?)
=1+12x+ 42x* + 36x° + 9x*

5 Plugn(K, vK,,x) into the formulaabove to give us the number of perfect
matchingsin the complement K, UK, .

Answer:

We know that (K, u K4,—i2) :1—E+4—2—§+%, and we note that n = 8.
X

x> x* x® x

Then x®u(K, U K4,—X—12) =x® —12x° + 42x* —36x* +9.

Therefore, pm(K, UK,) = L IeT(xs —12x° + 42x* —36x% + 9)dx =24

Vo

6) Now, draw the graph for K, U K, , the complement of the digoint union. Does
this remind you of anything? (Hint: it should!!)

Answer: It should! Thisisreally agraph that modelsa 4 x 4 rook board with no
restricted positions!!

7) Just to hit our point home, use the very first formula we derived to find the
number of ways of placing r non-attacking rooks on a 4 x 4 board with no
restrictions. Now, compare this to the number of perfect matchingsin the graph
K, UK,. Isthat sweet or what?!
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4\ 4
Answer: (:nj[:jr': (4}[4}44 = 24 isthe same as the number of perfect matchingsin

K, UK, that wejust found above!

8) Remember our problem about pairing up the wrestlers? Given what you know
now about polynomials, perfect matchings, integrals, life, can you come up with a
solution?!

Answer: In our wrestling scenario, we're looking for a perfect matching (since we want a
5-matching in a10-vertex graph). Let S, be astar with 3 leavesand S, be a star with 4
leaves, as seen below. These represent the restrictions related to you (the S;) and to
Buzz (the S,). Thewrestling graphis G=K,, -S; -5, (asthe S; and S, are digoint
from each other).

The numerator we need is the number of 5- matchingsthat do pair you and Buzz up,
so we look for a4- matching in the graph not including you and Buzz. (Sincethe
restrictions only affect you and Buzz, once you and Buzz are paired up, anyone else can
be paired up together.) Deleting you and Buzz givesthe graph G’ = K. Thishas

[SJ
4 4
=105 matchings of size4. Note, this numerator could also be found by plugging

24

the matchings polynomial of the graph K_8 (which happens to be 1) into the integral

formulaabove. Thiswould give the same result.
The denominator is the total number of 5-matchingsin the graph G, which we count

as the number of perfect matchings of the graph that is the complement of [S, U S, U (3
isolated vertices)]. Since p(S;, x) =1+3x and pu(S,, x) =1+ 4x (and the isolated
vertices have a matchings polynomial = 1), the graph that does consistof [S, U S, U (3
isolated vertices)] has matchings polynomial (1+ 4x)(1+ 3x) =1+ 7x+12x* by the
digoint union formula.

Wereplace x with — iz and multiply by x* in our integral formula as above to give
X

us the polynomial x* — 7x® +12x°. Then using thisin our integral formula, we need to

2

integrate 1 J.eT (x"® —7x® +12x%)dx . Thisgives us 390 matchings for our
N2

denominator. Therefore 105/390 is the probability that you and Buzz are going to get
paired up.
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Reflection on Activity 7

The students worked on this activity during our third and final visit to the
classroom. After discussing Activity 6, we introduced the matchings polynomial as being
analogous to the rook polynomial. | gave aquick example of a matchings polynomial but
then realized that they hadn’t had a prior introduction to matchings in non-bipartite
graphs (which I had unwittingly assumed). Had | known this sooner, | might have been
more explicit in describing matchings to them. However, despite this, they seemed to
catch on pretty quickly to the idea of matchings, and, throughout the rest of the time,
counting matchings came easily for them. When asked to compute the matchings
polynomial in the house graph, they did it correctly and very quickly; | was impressed
and even alittle surprised.

We then delved into the four theorems about the matchings polynomial. | ran
through a pretty simple example on the board, and even as | did so they were able to
recognize what the various subgraphs and matchings polynomials should be. So, it
became clear that counting matchings and finding matchings polynomials was a very
natural thing for them to do. The first three theorems went pretty well. We explained
how the first two theorems were anal ogous to our first two counting principles. And,
although we did not explicitly connect Theorem 3 for them, one student volunteered the
observation that this theorem represents the Use/Don’'t Use principle applied to a vertex.

Theorem 4 provides a startling connection to derivatives, which we included for
its coolness factor. There was atechnical difficulty surrounding the incorporation of this
theorem in the curriculum. In particular, the change in form of the matchings polynomial
that we employed in the curriculum — although it simplified every other result — actually
complicated this one substantially. Specifically, the formula below appeared in the

original version of the activity given to students

d 1 1 1
— | Xx"u(G,=) |= X" u(G\v,—).
dx[ n( Xz)} VEVZ@ n( x2)
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Notice the algebraic complexity of this expression. Although the students had previously
dealt with sigma notation, set theoretic notation, and derivatives, the substitution of iz
X

for x in the generating function was disorienting for them. Having to perform this
substitution seemed arbitrary and unmotivated, and as a result the theorem appeared less
impressive to them. In reflecting upon this activity, we discovered a substantial
simplification of thistheorem that retains all of the mathematical content while avoiding
the substitution. We have incorporated the newer, cleaner version in the curriculum
presented here.

In retrospect, | would have liked to have been able to take alittle more time to hit
home the idea of matchings and the matchings polynomial. In doing this, | would have
emphasized some applications of these four theorems. | wonder if, without this
motivation, working through these theorems (and finding matchings polynomials) felt too
computational to them. | think that with alittle more time | might have better made this
connection.

Wejust barely got to discussing complements and complete graphs. While | think
they understood this discussion, | don't think that they’ d had much exposure to either of
these terms. This makes me think that the rook problem (and the matchings polynomial)
has the potential to introduce and allow students to learn about complements and
complete graphs as well. Because of the powerful results that the matchings polynomial
has about complete graphs and complements (which we didn’t get to because of time), |
think this exercise would provide an effective means for discussing these two important
graph theory concepts.

We had to rush pretty quickly to count the number of matchings in the complete
graph. But again, because these kids were good counters, they ultimately followed the
formulathat we, in the interest of time, presented to them. They might have even been
able to come up with this formula on their own. We just started to have them draw the
complete graphs when the class period abruptly ended prematurely, and we had to leave.

| think it went okay overall. We were purposefully ambitious about what we
could get through given that this was our last day with them, and | wonder if alittle more

motivation wouldn’t have been beneficial for them, just to give alittle more purpose
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behind what we were doing. Even without this motivation, though, they did get a solid
introduction to matchings and matchings polynomials, which isimportant, | think. 1'm
not sure that | had a good idea of what the purpose of the activity was going to be, but |
see now that at the very least it was useful to discuss matchings and the matchings
polynomial. Infact, by the end they exhibited a good understanding of both of these
concepts. In that sense, then, as our ultimate goal involves trying to give them exposure

to combinatoria principles, this activity was successful.
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I ntroduction to Rook Exam

Thisexam isafinal assessment tool, designed to gauge what the students came
away with from thistime. The hopeisto have students unify their thoughts related to all
of thismaterial. This*exam’ does not necessarily need to be taken as an in-class exam,; it
could even be a group worksheet that they work through. The intent is simply to provide
teachers with a means of comprehensively testing the student’ s knowledge of the entirety
of therook materials. At the very least, this exam gives teachers some more problems

and question types which they can pass along to their students.
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Assessment 3—-Here' sRookin’ at You, Kid

164

1.

Given a 10x 49 chessboard with no restricted positions, what is the maximum
number of rooks you could place on the board? Explain your answer.

In class we found that the number of configurations of r non-attacking rooks
nyn
onan mxn board is given by the formula (r j(r jr!. Considering the above

guestion (1), use the language of rooks to relate this formulato the convention

of letting U]]:O if n<r.

Consider the following scenario. Four college students want to go on an
exchange program, and their school can send one student each to Spain, New
Zealand, and China, and Honduras. There are, of course, some restrictions:

Ander and Becky don’t want to go to a Spanish-speaking country, but John
only wants to go to one. Nick, on the other hand, will only be happy if he gets
to go to Europe.

Use rook rule #1 and rook rule #3 to count the number of ways that these
students could be sent to the countries of their choice.

For the given board B, apply the use/don’t use principle (rook rule #2) exactly
twice in order to simplify the board. In other words, use this principle to
obtain simpler boards (with digjoint sub-boards) that you can easily count
using the digjoint board principle (rook rule #1). Then find the board B’ s rook
polynomial. Try to pick astrategic square for S.

B

Could the following polynomials be rook polynomials for some board? If so,
draw aboard that representsit. If not, then why not?

a 1+2x°

b. 2+4x+4x?

C. 1+6x+5x?

d. 1+3x+3x?+2x°



Come up with a story problem that could model the following board.

Find the matchings polynomial for the following graphs.

a. A star with n vertices

b. A path with n vertices

c. Usethese facts to compute the matchings polynomial of the graph given
below (yes, those are supposed to be snowflakes).

Go (o
G 23
@ 6@ .
Ols . o4
o)
Ee6 Sl
2
a3
o @ = o
G

Recall that we had a theorem (Theorem 3 from Activity 7) that states
“If uisavertex of agraph G, then p(G,x) = x> p(G\{ud, x) + p(G\u,x) "

Note v ~ u indicates that we sum across al neighbors of u; G \{uv} means

we del ete both vertices u and v from the graph G, and G\ u means that we
delete vertex u from G.

Explain how this given theorem equation is an example of the Use/Don’t Use
Principle (i.e. indicate what it is that we use or don’t use).
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Assessment 3—Here' sRookin’ at You, Kid (Teacher’s Version)

1. Given a 10x 49 chessboard with no restricted positions, what is the maximum
number of rooks you could place on the board? Explain your answer.

Answer: There can be at most 10 rooks on such a board, because there are only 10 rows
(or columns). Any more than 10 rooks would require an 11" row in order to avoid the
other rooks, but there is no such row. If we tried to put an 11" rook on the board, even if
it was on one of the 49 columns, it would hit one of the other rooks already in the 10
rows. Thought of another way, we must always choose a number of rows and columns

on which to place our non-attacking rooks. There are at most 10 rows to choose from, so
we can't place any more than that.

2. In class we found that the number of configurations of r non-attacking rooks
nyn
on an mxn board is given by the formula (r j(r Jr!. Considering the above

guestion (1), use the language of rooksto relate this formulato the convention

of letting mzo if n<r.
r

Answer: WLOG say n isthe number of rows. Then having n<r it would belike
placing more rooks than we have columns. Since there are no ways of doing this (no
such configurations), it makes sense that this value should be zero.

3. Consider the following scenario. Four college students want to go on an
exchange program, and their school can send one student each to Spain, New
Zedland, and China, and Honduras. There are, of course, some restrictions:

Ander and Becky don’t want to go to a Spanish-speaking country, but John

only wants to go to one, while Nick will only be happy if he getsto go to
Europe.

Use rook rule #1 and rook rule #3 to count the number of ways that these
students could be sent to the countries of their choice.

Answer: The board should be able to be drawn, ultimately, like the one on the right
below, using rook rule #3.

After thiswe use rook rule #1 and see that we have digoint boards. Therefore, we can
take the product of the rook polynomials of the disjoint boards, which gives us

(G, X) = (1+ 3x+ X*)(A+ 4x + 2x?) =1+ 7x+15x* + 10x°® + 2x*
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4, For the given board B, apply the use/don’t use principle (rook rule #2) exactly
twice in order to simplify the board. In other words, use this principle to
obtain simpler boards (with digoint sub-boards) that you can easily count
using the digoint board principle (rook rule #1). Then find the board B’ s rook
polynomial. Try to pick astrategic square for S.

Answer:

UseS Don't Use S

Denote B* asthe board B\(rows and columns of S), shown below, that we get if we do
use S. Then this graph has the rook polynomial

R(B*,X) = (L+ X)(1+ 3x+ x?) =1+ 4x+ 4x* + x>. We get this by using rook rule #3 to
shift rows and columns, and then applying rook rule #1 since we then have digjoint
boards.
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B*

Denote B\S as the board below, which we obtain if wedon't use S. It'sagood exercise
now further to simplify thisboard. We choose S as the next square to utilize.

UseS Don't UseS

We note that B**, the board that does use Sis the board below.

B**

We can easily compute its rook polynomial by using rook rule #1. So
R(B**,X) = (1+ X)(1+ 2X) = 1+ 3x + 2%?

And the board B\S is the one below, where we do not use S.
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B\S

Again, since there are digoint sub-boards, this rook polynomial isfairly easy to compute.
Weget R(B\S,x) = (1+3x+ x%)? =1+ 6x+11x* + 6x° + x*.

So what'’s the rook polynomial for the whole board B, R(B, x) ?

Werecall, from rook rule #2, that

R(B,x) = xR(B*,x) + R(B\ S,x). But R(B\ S,x) =xR(B**,x)+ R(B\ S, X).
Substituting in, then we get

R(B, x) = xR(B*,x) +[XxR(B**,x) + R(B/ S, X)]

R(B, X) = X(1+ 4X + 4x?) + X(1+ 3x + 3x?) + (1+ 6x +11x* + 6x° + x*)

R(B,X) = X+ 4x® + 4x® + X+ 3% + 3x® + 1+ 6x +11x* + 6x° + x*

R(B,x) = 1+ 8x+18x* +12x° + 2x*

Thus, since the coefficient of the x* termis 2, the answer is 2.

5. Could the following polynomials be rook polynomials for some board? If so,
draw aboard that representsit. If not, then why not?
a 1+2x°
b. 2+4x+4x®
C. 1+6x+5x°
d. 1+3x+3x*+2x°

Answer:

a Nope —we can’'t skip a power of x likethat. Thiswould imply that we have
no one- matchings (so no edges), but we still have two- matchings, which isn't
possible.

b. Nope —we must have 1 as our constant term.

C. Surel —Here'saboard that models it

d. Nope — the coefficient of the x term shows that there are 3 allowable squares,
and so we couldn’t possibly have 2 ways of arranging 3 rooks on these
sguares.
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6. Come up with astory problem that could model the following board.

Answer: Any story problem involving the specified restricted positions would do. We
present one such problem. There are six dessert items at a cafeteria (chocolate pudding,
cheesecake, carrot cake, apple pie, twinkies, and brownies), and four students (Ander,
Brad, Carly, and Derek) must choose exactly one dessert to eat. Some of the students
have alergies, however, restricting some of the choices. If we listed them in the order we
just described, where the students represent the rows and the desserts represent the
columns, then the board models the following restrictions:

Ander refusesto eat twinkies.

Brad is allergic to cream cheese.

Carly doesn't like the consistency of pudding and can’t eat apples.

Derek can’t have chocolate.

7. Find the matchings polynomial for the following graphs.
a. A star with n vertices
b. A path with n vertices
C. Usethese factsto compute the matchings polynomial of the graph given
below (yes, those are supposed to be snowflakes).

&
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Answer: The matchings polynomial for the components are as follows. Let the stars be
denoted S1...34 from left to right, and let the path be P6. Then

u(S;,x) =1+6x
u(S,,x) =1+ 4x
n(S;, x) =1+5x
u(S,,Xx) =1+ 6x
w(P,,X) =1+ 5x+6x* + X°

So by the digoint board principle, we can just multiply all of these to get
(G, X) = (1+6X)(1+ 4X)(1+ 5X)(L+ 6X)(1+ 5x + 6x* + X°)

=1+ 26X+ 275%* +1511x> + 4545x" + 7148x° + 4884x° + 720x’

8. Recall that we had atheorem (Theorem 3 from Activity 7) that states
“If uisavertex of agraph G, then u(G,x) = xz n(G\{uv},x)+u(G\uy,x)".

v~u

Note v ~ u indicates that we sum across all neighbors of u; G \{uv} means

we del ete both vertices u and v from the graph G, and G\ u means that we
delete vertex u from G.

Explain how this given theorem equation is an example of the Use/Don’'t Use
Principle (i.e. indicate what it is that we use or don’t use).

Answer: Thisisthe Use/Don’t Use for avertex in the graph. If we do use avertex u,
then by the definition of a matching we can’t also include any of its neighboring vertices.
So we must consider all of the sub-graphs that don’t include u and one of its neighbors,
and we look for an r — 1-matching in that remaining graph. We multiply by x since these
r-1-matchings contribute to the total number of r-matchingsin G. So the reason for
multiplying by x is to shift the coefficients in the polynomial from the x"* termsto the

x" term. If we don’t use vertex u, then we're looking for the number of matchingsin the
graph G minus the vertex u. Thisishow we arrive at the above expression.
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Final Reflection

As| reflect back upon this whole process, several salient points come to mind.
First, | was utterly amazed at the mathematical connections that came through as |
studied thistopic. | initially chose to study rook polynomials because | thought they
might have an interesting application to counting principles, but | was not prepared for
the wide variety of mathematical topics to which these polynomialsrelate. Indeed, the
fact that most textbooks fail to mention such connections would have led me to believe
that rooks were a mathematical concept almost entirely independent of the rest of a
traditional combinatorics curriculum. 1t was genuinely exciting, then, to witness all of
the inter-connectedness that this particular mathematical topic exhibits.

Enthused by the fascinating mathematics that | investigated, | was eager to see
how much of it could be taught to studentsin a high school class. Although | had little
expectation of how much of the mathematics we might actually be able to integrate into
curriculum, it has been interesting to see just where points of entry can be made.

Because | initialy did not know what to expect of the high school students, | was
extremely pleased to have been afforded the luxury of time. In particular, | had an entire
week between each meeting with the students. Asaresult, | could carefully tailor a
highly targeted set of activities as we went along; as mentioned above, many of the seven
activities (and three assessments) were informed by how the prior activity had gone.
Thanks to the flexibility of this time schedule, | was able to be intentional and thoughtful
as | planned each exercise, and | believe that this came across to the students. Ultimately
| developed a curriculum that spanned all three of the major mathematical topicsin the
paper: counting principles, generating functions, and matchings.

So how did this grand experiment turn out? | was honestly surprised by how much
of the mathematics that | had studied was able to be incorporated into a high school
classroom. As| reflect now and evaluate how the entire curriculum process unfolded, |
realize that | am very pleased with the overall outcome. Why isthisso? Why do |
consider it a success?

Superficially, al along the project seemed to be progressing quite smoothly.
Many students expressed enthusiasm for our visits; they nodded, smiled, and were
attentive in the classroom, and even more explicitly, they took occasionsto tell us how
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much they were learning and enjoying the material. Asnice asthiswasto hear, | was
inclined to reserve judgment concerning the success or failure of the curriculum as a
whole. In particular, | wanted to wait until I knew more exactly the extent to which these
students were able to process the mathematics itself. Specifically, | felt the success of the
curriculum should be judged primarily by some measure of how well the students
understood the three mathematical aims of counting principles, generating functions, and
matchings. Continuing to reflect upon the curriculum, let us focus on each of these
mathematical concepts and discuss the didactical successes or drawbacks related to each.

Wefirst consider the question of how well-suited rooks are for teaching counting
principles. While, in theory, the answer is unquestionably affirmative, the particulars of
our situation somewhat obviated the entire issue. That is to say, the students we taught
were simply already quite good at counting before we even walked in the door.
Therefore, | do not think that too much can be said regarding the ability of the curriculum
to introduce counting principles. However, the rooks did provide a helpful context for
discussing such counting principles. Indeed, as the reflections above indicate, the rook
problems gave way naturally to discussions ranging from inclusion/exclusion to the
multiplication principle, etc.

Turning now to the question of generating functions and matchings, however, itis
clear that students gained a sophisticated understanding of these topics. Thisfact is
evidenced by the speed and skill with which they computed rook and matchings
polynomialsfor small boards. It just recently struck me that thisfact, in and of itself, isa
great accomplishment — providing evidence that the curriculum was indeed effectivein a
surprising way. Their ability to handle rook and matchings polynomialsis so remarkable
because generating functions are notoriously difficult to teach. Indeed, combinatorics
professors often struggle with clear and convenient means of explicating thistopic. In
observing the students and talking with them, it was absolutely apparent that computing
and mani pul ating generating functions was extremely natural for them — so natural, in
fact, that | think they took for granted the degree of difficulty of the topic they were
studying.

In fact, during a subsequent visit with them, the students presented solutions on

the board from the Rook Exam that had been given. Thiswas quite encouraging to see,
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as nine different students presented correct, clearly-explained solutions to the problems. |
was once again struck by the deftness with which they manipul ated generating functions.
Also in this Rook Exam, they were asked to make connections among concepts they had
encountered in severa prior activities, and they made these connections effortlessly.

Finally, pedagogically, this experience was beneficial for me personally in
another way. | have had little chance in my own teaching experience to experiment with
or implement the ideas | have learned in my ‘math ed’ classes. For instance, | have long
wanted to see whether or not students could, in practice, truly come up with sophisticated
mathematical ideas. Prior to this project, | had not taken advantage of any occasion to do
so. This particular teaching environment, however, provided me with the perfect
opportunity to try thisout. Indeed, | had the luxury of having amost no time constraints
and virtual free rein to seeif the students could come up with ideas about rook
polynomials and matchings on their own. And in fact, on several notable occasions, they
did, indeed, come up with some amazing results on their own, as the reflections above
haveindicated. Thus, through the vehicle of this project, | feel that | was able to gain
first-hand experience with the potential that students have to develop new ideas on their
own.

On the whole, then, this entire project — both the mathematics and the curriculum
— have provided me with awealth of new perspectives and insights. By revealing novel
vistas of the higher mathematical terrain, and by offering breathtaking glimpses of an
ideal pedagogy, thisincredibly formative experience will undoubtedly shape, nourish,

and empower the mathematician and educator | am to become.
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