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Abstract

My MST curriculum project aims to explore the history of the cycloid curve
and some of its many interesting properties. Specifically, the mathematical portion
of my paper will trace the origins of the curve and the many famous (and not-so-
famous) mathematicians who have studied it. The centerpiece of the mathematical
portion is an exploration of Roberval's derivation of the area under the curve. This
argument makes clever use of Cavalieri's Principle and some basic geometry.
Finally, for closure, the paper examines in detail the original motivation for this
topic -- namely, the properties of a pendulum constricted by inverted cycloids.
Many textbooks assert that a pendulum constrained by inverted cycloids will follow
a path that is also a cycloid, but most do not justify this claim. I was able to derive

the result using analytic geometry and a bit of knowledge about parametric curves.

My curriculum side of the project seeks to use these topics to motivate some
teachable moments. In particular, the activities that are developed here are mainly
intended to help teach students at the pre-calculus level (in HS or beginning college)
three main topics: (1) how to find the parametric equation of a cycloid, (2) how to
understand (and work through) Roberval's area derivation, and, (3) for more
advanced students, how to find the area under the curve using integration. Many of
these materials have already been tested with students, and so some reflections are

included on how to best implement them.
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Part One:

The History and Mathematics of
the Cycloid Curve



Chapter 1 — Introduction and History of the Cycloid

Section 1.1- Introduction

A cycloid is the elongated arch that traces thé péa fixed point on a circle as
the circle rolls along a straight line in two-dinseans. The study of this curve is a
subject rich in mathematical meaning, scientifiplagation, and important connections
within the history of mathematics. While a chiehcunderstand the basic concept of a
cycloid, a variety of more advanced mathematicgiic®-- such as unit circle
trigonometry, parametric equations, and integrédutas -- are needed for any real
mathematical understanding of the topic. Whileadtrany calculus textbook one might
find would include at least a mention of a cycldltkg topic is rarely covered in an
introductory calculus course, and most students/efencountered are unaware of what a
cycloid is. For the rare teacher with extra timeffr students who are looking for an
extra challenge), an exploration of the cycloidas only meaningful, but also offers an
opportunity to use several different mathemati&dlsstogether in a problem-solving
situation. Indeed, the entire exploration can siihain (primarily) within the realm of
“pure math,” rather than having to rely heavilyamy one specific science or engineering
application.

For the mathematician, two main questions arisaeaiately from the definition
of the cycloid. First, what is the length of oneloydal arch in relation to the size of the
circle that generated it? Or, in other words, hantfas the point traveled? And second,

what is the area between a cycloidal arc and tlagbt line its “generating circle” rolls



along? The answer to both these questions purzitlematicians for centuries until
the development of calculus brought with it waysamswer them both. And indeed,
calculus offered the world some surprisingly tishg@ers: the arc length of a single
cycloidal arch is precisely 8 times the radiushaf gjenerating circle, and the area under
such an arch is exactly 3 times the area of thergéing circle. We will consider such
mathematical properties later in this paper, bubegin with a brief history of the curve.
The cycloid has been called the “Helen of Geomgtdree to its pull on some of the
greatest mathematicians of the time. Indeed tsi@ityi of the cycloid reads like a

“Who’s Who” of renaissance and enlightenment er¢heraaticians.

Section 1.2—- Early History of the Cycloid

D.E. Smith, in hidistory of Mathematicsgives the following brief history of the
cycloid:

“This curve, sometimes incorrectly attributed tahblas Cusa (c. 1450),

was first studied by Charles de Bouelles (1501}hdn attracted the

attention of Galileo (1599), Mersenne (1628), anth&tval (1634).

Pascal (1659) completely solved the problem ofjuisdrature, and found

the center of gravity of a segment cut off by & Iparallel to the base.

Jean and Jacques Bernoulli showed that it is thehistochrone curve,

and Huygens (1673) showed how its properties dbtdmonism might be

applied to the pendulum.” (327)
The above paragraph, published in 1925, still foamsasonably accurate outline of the
history of the curve’s study, but a few more famoames can be added to the list, and
we can seek to fill in some of the interesting detédlthough the ancient Greeks were
aware of a similar phenomenon they called “doubdtion,” there is no evidence that
they knew of, or studied the cycloid. Cusa, elsawltalled Cusanus, was said to have

discovered the curve in a letter by John Walli$6i@9. However, many scholars,



including Cantor (Whitman, 310) have found no eritkeof such a discovery, leaving
the true discoverer of the curve lost to histodye French mathematician Charles de
Bouelles studied the curve, but erroneously thoutghés just part of a larger circle, with
a radius equal to one-and-a-fourth times that efgnerating circle (Whitman, 310).

This brings us to Galileo, who, according to Canboth popularized the curve
and gave it its name. One of his pupils wrote Heatirst attempted the quadrature of the
cycloid in 1599. (The term quadrature refers tasfaing” a shape by constructing a
square with equal area. The quadrature of théedsmne of the great mathematical
problems of antiquity, and has long been proverossjple.) As a method of finding the
area under the arch, Galileo cut the shape ounhwdtarial (some say sheet metal) and
compared its weight with that of a generating ei@lit from the same material. Several
experiments resulted in approximately the same,ratto 1, before Galileo gave up the
study thinking (mistakenly) that the ratio was ‘@memensurable,” what we now call
irrational. The clever approach of using weightl&termine area empirically was a
hallmark of Galileo's approach to science.

Mersenne, who is also sometimes called the diseowé the cycloid, can only
truly be credited with being the first to give @&pise mathematical definition of the
curve. However, it was Mersenne who proposed tbblem of the quadrature of the
cycloid (and the construction of a tangent to aapon the curve) to at least three other
very significant mathematicians: Roberval, Descard@d Fermat. While all three
responded with unique constructions, only Robemesd able to conquer the area
problem. His ability to do so was based on a new uof finding areas under curves

discovered by a student of Galileo. This studes wamed Bonaventura Cavalieri, and



he is the namesake of the well-known Cavalieriia@ple. In a later section, we will

examine this approach in detail.

Section 1.3- Breakthroughs and Calculus

Moving on through history, the next major advanicethe study of the cycloid
were made by Blaise Pascal, the famous Frenchsapler and mathematician.
Although Pascal had given up mathematics in favdheology, it is documented that a
combination of insomnia and a toothache causethimd to settle on the idea of a
cycloid. When the toothache disappeared, he toak & divine sign that he was
permitted once again to engage in mathematicaugars Once Pascal had completed a
fairly up-to-date study of the curve, he held ateshto answer some of the remaining

guestions:

1. How to find the area and center of gravity of tegion formed between one
arch of the cycloid and the x axis.

2. How to find the volume and center of gravity of gwid formed by rotating
the cycloid about the x axis.

3. How to find the volume and center of gravity ofadic formed by cutting the

above solid with a plane parallel to the x axis.

While only two contestants attempted to answerdlyggstions (and neither did so
successfully), by the time the contest was oveegimen -- Pascal, Roberval, and Sir

Christopher Wren -- had all found satisfactory amsao all the questions. Indeed,



Pascal had publishedHistoire de la Roulett{Roulette is the French word for cycloid)
bringing this chapter of the story to a close. M/Newton was sixteen years old at the
time of Pascal’s contest, and no calculus (as vesvkit) was in existence at the time, the
solving of these problems was done using new nstadriinfinites,” or “indivisibles” --
infinitely small slices of shapes that would becaime “fluxions” of Newton’s calculus.

Some fifteen years later, Christiaan Huygens, imathematician, physicist
and astronomer, found that constraining a penduwhitimtwo inverted cycloids caused
the pendulum to swing in the shape of the samepic\With such a pendulum, a
wonderful curiosity occurs: the length of the aacte swing follows has no effect on the
constant length of time each swing takes. Thduesto what is called the “tautochrone”
property of inverted cycloids. A ball placed ayamoint along an inverted cycloid will
take the exact same time to roll to its lowest pama ball placed anywhere else along
the cycloid. At the time, this was hailed as edbthrough that could provide for much
more accurate timekeeping. Somewhat disappointitglyever, the limitations of
physically implementing this curve did not allovgignificant improvement based on this
technique alone.

In 1686, Leibniz was able to write the first exfilequation for the curve:
Yy =+/2X— XX+ I dx/+/2x—=xx (Whitman, 315)

In 1696, the Bernoulli brothers, Jacques and Jgha,had already written some papers
on the cycloid, proposed a related mathematicddlpro known as the brachistochrone
problem. The main idea was this: what is thesitgbath for a particle pulled by its own
weight to travel from one point on a vertical pldoe lower point on the same plane, not

directly below it? Famously, the two inventorscafculus, Newton and Leibniz, were



both able to answer the question, as were the tathérs who posed it (Dunham, 201-
202). The answer, which will come as no surpristhiatpoint, is that the bachristachrone
curve is precisely given by the inverted cycloid.

While there is still interesting research beingelon cycloids today (see
Apostol), most of the important questions concegrilre curve were answered before the
beginning of the eighteenth century. Thereforis, where our short survey ends. The
rest of this paper, however, will explore Robersajuadrature of the cycloid, and will

culminate with an examination of Huygen'’s cyclaimhstrained pendulum.



Chapter 2 — Roberval's Derivation of Area Under a Cycloid

This section is adapted from an exercisMathematics for High School Teachdrg

Usiskin, Peressini, Marchisottro and Stanley.

Section 2.1- Parameters for the Cycloid

A cycloid is the curve produced by tracing the paith point on a circle as that
circle rolls along a straight path. Although thyeloid curve can be given an explicit
equation, there also exists a well-known parametjication that is much simpler to
state. In this formulation, we can produce equetior the x- and y-coordinates of the
curve in terms of a single parameter t, which destihe amount of revolutions the circle
has turned (in radians). Alternatively, if we as®uthat the circle is turning at a constant
rate, the parameter t could also be regarded asurmeg the elapsed time since the circle
began rolling.

We will call the radius of our circle a. A graphtbe cycloid curve and its generating
circle, at t =0, is shown in Figure 2.1. (The xigncoordinates of the grid are scaled as

multiples of a.)

Fig. 2.1: Cycloid curve shown with its generatingiccle



/ v C(at.a)

ot
S

Pz, y) ~ | ;

|—,4__—-——— Blat,a—acost)

A(at,0)

Fig 2.2: Detail of cycloid curve with generating iccle

Figure 2.2 shows the left portion of the cycloidhauin red, with its generating
circle shown after it has rotated t radians, ireblThe center of the circle has been
labeled C, and two radii have been constructedotige point (X, y) on the cycloid, and
another, vertical radius to a point,sA , on thexisa

Notice the x coordinate of both A and C, is givertlie arc length of the circle

between A and Palt. Next, a perpendicular t&C through P is constructed and the

intersection of it withAC is called B. Using right triangle trigonometry srangle PCB

gives us the following:

sint =.engthof PB lengthof PB=al3int

and o

cost = €ngthof BC lengthof BC = al¢ost
a



We can use these lengths to find the coordinat&sinfterms of t. Since the x-
coordinate of P is simply is the arc length, atusithe length oPB, and the y-
coordinate of P is the radius r minus the lengtfB6f , some common-term factoring of
a gives us the following parametric equation for P:

The x-coordinate of point P is given as

x=a(t —sint)

The y-coordinate is given as

y=a(l—-cost).

Section 2.2- A Companion Curve for the Cycloid

To this parametric graph we now add what Roberatkéd the “companion
curve” of the cycloid. This is a second curve, ethinas the parametric equation x= at
and y= a(l-cos(t)). The generating circletastarting point, whose parametric

equation is given by x = a(t-sin(t)) and y=a(1-tplso is seen below See Figure 2.3.

Cycloid:

X = a (t-sin (t)) - : .
y = a (1-cos Companion Curve
0\ X= at

y=a(1-cos(t))

Circle: —v
x=-a (sin(t))
y=a (1-cos(t))

Fig. 2.3: Cycloid curve shown with its generatingiccle and companion curve
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Since all three parametric equations have the gmrametric expression fory,
we see that at any given t value, the correspongiimgts on the circle, cycloid and
companion curve will have the same y value, anad&gne on the same horizontal line
y=a(1-cos(t)).

For a given t value (see Fig. 2.4) the distan¢eéen a point Pon the left half of
the generating circle and the y axis is the difieezbetween their x coordinates:

dist(R, y-axis) = 0-(-a(sin(t)) = asint.
At the same value of t, the distance between thegponding point Pon the

companion curve and the point da the cycloid is given by

dist(P.,R) = at—(at—asin(t)) = asin(t)

A

Fig. 2.4: Horizontal line intersecting cycloid cune, generating circle, & companion curve

Cavalieri’s principle states that if two regionssadhe same height for every x in [a,
b], then they have the same area in that interié&. are using a rotated version of

Cavalieri’s principle in which the two regions hae same width for every y in the

11



interval [0, 2a]. The two regions in question #re region between the semicircle and

the y axis and the region between the cycloid aeccompanion curve.

It follows immediately that the region between tyeloid and the companion curve

2

. e mTa
must have the same area as the semicircle, whiol é®urse, equal t92—. In the next

section we will use this to deduce the total area.

Section 2.3~ Finding the Total Area

Now we consider the rectangle with vertices (0(&g, 0), ga, 2a) and (0, 2a). See

Figure 2.5 below:

(0

v

2a

(ma.2:¢

P

Fig. 2.5: Companion curve and generating semi-cirelwith dimensions

12



For any given t, a point on the companion curyes Ehe same distance from the right

side of the rectangle as another poiptiB from the left side of the rectangle.

Distance from Pto right side of rectangle m=a — at = ax-t)

Distance from B to left side of rectangle ==&f) - 0 = a {-t)

Since the width between; Rnd x=2a for any t in the interval f), is equal to the
width between B and x=0, we can use Cavalieri’s principle agaistiow that the

two regions of the rectangle separated by the camopaurve have the same area. Since
the regions have the same area, and their unitre ilectangle, we conclude that the

companion curve divides the rectangle into 2 habfe=jual area. See Figure 2.6.

Fig. 2.6: Cycloid with companion curve and area n@ations

The area of the entire rectangletistimes 2a, which equalg#, half of which is

under the companion curve. The area under the aoimp curve between 0 and

13



equalsta®and the area between the companion curve and theic¢yn the same
2

interval is%, making the total area under the cycloid betweandra equal

2
o 3rra

. A similar argument could be made concerningattea under the right side
of the cycloid, or we could rely on the symmetrytloé cycloid to show the area

2
under the right side of the cycloid is af’s]éa—. Therefore the total area under one

2

arch of the cycloid curve i2[3m } = 377a® or 3 times the area of the generating

circle.
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Chapter 3— A Pendulum Constrained by Inverted Cycloids

Section 3.1- Setting up the Pendulum

In this section we consider a pendulum swinging@ord that is constricted by two
inverted cycloids. We will show that such a pemndulswings in the shape of a

congruent, inverted cycloid. Consider the Figutde 3.

/ J
/-)’f "I /
. 1 [xl:‘h] o

T — ____!____ ar o __-__I___-______,_

¢

TS e

Fig. 3.1. Path of a pendulum constrained by two werted cycloids

First we need to determine the length of the pamdid cord. From figure 3.1, we see
that it needs to be half the length of the cycloldhis can be shown to be 4r by using the

arc length integral formula, as follows.

b 2 2
Begin with the arc length formuld, = J\/(%) +(%j dt

15



x'=a(l-cos)

Taking the derivatives of our parametric for theloyd gives us: )
y'=a(sint)

Substituting into the arc length formula to fin@ tength of the arc between 0 and

gives us: L= aj 2(1- cost)dt
0

L= aj /4sin2[£jdt
0 2

L= ZaI sin[ljdt
5 2

wof-2nfy)]

L=4a
For any point in the path of the pendulum, we cardd the cord into two sections;,L
the part that is wrapped around the inverted cycland L, the part that swings free, and
we define R(x1,y1) as the point that divides the two, where the pénd leaves the

inverted cycloid.

Note that P has the parametric equation of a cycloid excepetjuation for the y

coordinate is negative. That is

X, =r(@-sinf)
y, =-r(1-cosf)

Also note that L is tangent to the inverted cycloid at P, so tlepelof L, is given by the
derivative of the inverted cycloid at theta.

__ sinf
M2 1-co<d

16



Since the length of lis the arc length of the cycloid at theta, thegtarof L, can be
found by subtracting the arc length of the cyclaidheta from 4r, the length of the

pendulum.

6

L, =4r - (—4r cos%j

= 4I’COSQ
0 2

We now have a situation where, at any theta, wevkihe coordinates of P, an endpoint
of L,, we know the length of4.and we know the slope of.L We should be able to
derive a parametric equation for the other endparhich happens to be the end, or bob,

of the pendulum.

17



Section 3.2— Coordinates for the Endpoint

Starting with two well known high school math foriasi-- the slope and distance
formulas -- we are able to find equations for therdinates of the missing endpoint of

any segment, given a length L, an endpointy®, and a slope m.

By first solving the slope formula for £yy;) and substituting into the distance formula,

then solving for x, we get

Similarly, if we solve the slope formula for,6%;) and substitute into the distance

formula and solve foryy we get the slightly more complicated formula belo

Now it's a matter of substitution and algebra talfa parametric for ¢xy.) the moving

end of the pendulum. We will begin with. x

7
+4r Ccos_
X, = 2__ +rf-rsind

( sing jz
+1
1-cosq

18



6
+4rCcos_
X, = 2 +r@-rsind

Sin’ 8+ (L-cosh)?
(- cost)’

+4r cosgJ (1-cosH)

== = = +rg-rsing
«/sm G+ (1-cosb)

+4r cosg (1-cosH)

= +r@-rsingd
4/2-2cos6
Now we need to use the half angle trig identﬁgsg =+ 1+ (;osﬁ_
4r(iwll+ ;Osgj(l—coséo
X, = +r@-rsiné

? \2(1-cosd)

Now when multiply the numerator and denominatoth®ydenominator, we get some

nice cancellation giving us

- 4r (ixllz— cog 9)

+r@d-rsin@

or just
X, = 2r (+sind+r6)-rsind
which simplifies to

X, =r(sind+6) or x,=r(6-3sinb).

19



Now to y:
Our initial substitution utilizing the simplificain of the radical expression from the

previous work, yields:

in@ .
y, = (_1?2039}[1(& sing)] - r(1-cosh)

which can be simplified to:

Substituting using the Pythagorean identity yields

Yy, = i(%} -r(l-cosb)

Now we utilize a “difference of two squares” fachgy pattern:

y, = +(2r(1+ cost)(1-cosb)

| cod j—r(l—cosH)

=+2r(1+cosf) —r(l—cosH)

=3r+3rcosd or y,=-3r-rcosld
We now have two parametric equations foard y. This situation is due to the fact that
our equation to find the other endpoint of a liegreent, given its first endpoint and
slope, finds two new endpoints by traveling differdirections along the line. A quick

check with a graphing utility shows that the endpeve want is the following:

X, =r(siné+6), and y, =—-3r —rcos<f

20



Section 3.3- Recognizing the Shifted Cycloid

Now we want to show that our new parametric eguaatior (%, y») show a
congruent, but shifted inverted cycloid. It wollel a mistake to think that, because we
need our new cycloid to be shifted down 2r and(l&ftright) xr that our new parametric
must be shown equal to the parametric of the iedecicloid withrr subtracted from (or
added to) the x formula and 2r subtracted fronytfrmula. Although those equations
would give us the graph we want, they cannot bevehto be equal to our new
parametric. This is a curious trait of paramedqeiations:two unequal parametric

eguations can give the exact same graph

In order to find an equivalent shift, we noticetthbd =0, the pendulum is exactly at the
halfway point in its cycloid, or at the same pasitthe original, inverted cycloid is at
when d=n. So, in order to have this happen, we substifis#tel for & in our x

equation. To shift the cycloid left, we need only to subtract.

So now we need to show that our two formulas foore that we derived earlier, and the

other that we obtained by shifting the input of swerted cycloid, are equal.

r((6+mn)—-sin@+mn)) - =r(sind+ 6

We will work to equate the left side with the righgirst, distribute the r.

ré+rn-rsin@+n)—nr =r(sind+ 6)

21



Note that therr terms cancel, and the trig identity then (6 + 71) = —siné gives us:
ré+rsin@=r(sind+6),
or:

r(sin@+6) =r(siné+6).

Now we can shift the y equation of the invertedloid the same way, by
replacing@ with (6+n). This time, however, we need to shift it downstrwe
subtract 2r. Which gives us:

y, =-r(l-cosé+n))—-2r
We need to show this shift of is equal to our derived equatiop, = —3r —rco<6.
Once again, this is done by first distributing r.

—-r +rcosi@+ n)) —2r
Then using the trig identitygosi@+ n) = —cosé,
—-r —rcosié) —2r
Combining like terms gives us our derived formua.:
=3r —rcosié).

So, we have shown that a pendulum constrained byrtvwerted cycloids will indeed

swing in a path of a congruent, but shifted, cyttloi

22
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Part Two:

Teaching Cycloids



Overview of the Curriculum Project

While cycloids are covered in most Calculus and®aeulus texts, they are
rarely taught, and it's not difficult to understantly not. In both high school and
college level classrooms, time is precious, andrdgd topics and standards are many.
While cycloids may present an excellent exampleatfonly the necessity of parametric
equations, but how to integrate and differentiagatt, they also require many
prerequisite skills and the ability to use thosdéisto problem solve. Even in a Calculus
class, much scaffolding is required so that alldtass can keep up.

Sometimes, however, there is extra time, even iadvanced math class. For
example, at my high school, there are a handfabotseniors in the calculus classrooms.
Since the seniors graduate one or two weeks d@hdy,are left with several class periods
after the final with little material left to covelhese lessons would fit perfectly in this
situation. Alternately, a calculus teacher cowdtmue to return to the topic of cycloids
throughout the year (or even throughout two years).

While it’s often difficult to hold students accoabte for complex exploration
type activities, a teacher could grade the workishemvided for completion and, if
students were given time to work in groups, heher ould grade each group for effort
and participation.

Since the first lesson requires some knowledgeatdrpetric equations, along
with right-triangle trigopnometry, it would probablbe best suited to a pre-calc or calc
class, although with some explanation of parametjigations, it could be taught to
advanced Algebra 2 students. The remaining tlegsohs require calculus and could
either be taught throughout the year (for example second lesson could be taught after
covering Cavalieri's Principle, the third after eang integration of parametric
equations) or as a culminating activity at the efhthe year, as discussed above.

I've taught the first and second lesson twice, amagr two class periods to a
small group of high school calculus students at Retham H.S. and once to a
community college pre-calc class over one longsciasiod at Longview Community

College.
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Introduction to Activity 1

Instructional GoalStudents will learn what a cycloid is, label tl®inates of a
diagram of a cycloid and its generating circle, &ndlly use those coordinates to derive
the parametric equation of a cycloid.

Time needed:Roughly 45 minutes to one hour.

Prerequisite knowledgeStudents should have some knowledge of paranezjtiations

along with good right-triangle trigonometry skiitecluding the use of radian measure as

well as some basic algebra and geometry knowledge.

Supplies: Students need only the worksheet provided. €haehter, if possible, should
have a graphing utility with the ability to graparametric equations (Winplot, a free
download, and Grapher, which comes with most Agplaputers, both work well). A
projector to project this graph on a large screesiso highly recommended.

Classroom OrganizationWhile introduction to cycloids at the beginninigtloe lesson

needs to be done in lecture/notes format, the m@ngexercises could, and probably
should, be done as small group or pair activities.
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Activity 1 — Introduction to Cycloids/Deriving a Parametric Equation for a Cycloid

Part 1: Introduction

Worksheet 1.1 is passed out and students are &skedd the definitions of a cycloid.
Students are asked to sketch what they think aaalill look like. After everyone has
a sketch, a cycloid applet is shown on the projedtds of good applets are available

online, ex: http://www.ies.co.jp/math/javal/calc/cycloid/cycldiiml) so that the class

has a clear understanding of what a cycloid isvainal it looks like. Answer the

guestions about the dimensions of the cycloid elass.

Part 2: Finding the parametric:

Students are assigned to pairs or groups of 3dlaengiven Worksheet 1.2 to work on.
Students should be reminded that the coordinatdsegboints will be in terms of r, the

radius and theta, the amount of rotation of thelejrin radians. Students should also be
reminded that when they find the coordinates & point on the cycloid, in terms of r

and theta, they will have found a parametric equfior the cycloid. As students work to
find the coordinates of the points, the teachatfi@bout the class, answering questions
and giving hints and advice. If the same questi@®&p coming up, or if the class seems
stuck at one place, the teacher may want to adtltesdass as a whole, or allow a group

to present their partial finding.
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Part 3: Graphing the Parametric:

When the class has all found parametric equationB for different groups have
different solutions, the teacher can begin grapliregn on the projected graphing utility
to check if the equations really make cycloid cgtv®Vhen the class is satisfied that the
equations are correct, all students should copyndibw correct equations and the

exercise is over.

Extensions/Homework:

If an extension or homework assignment is desitezliteacher may want to introduce the
concept of daypocycloid, the path of a point on a circle as it raliside a bigger circle
Again, applets are available online, and many sttgdeill recognize this as being

similar to Spirograph, a children’s toy. The paeant for a hypocycloid will have 2
constants, R, the radius of the larger circle, rantlde radius of the smaller circle, as well
as theta, the amount of rotation in radians. Toearfalding the parametric easier, situate

the origin at the center of the larger circle.
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Worksheet 1.1 (page 1 of 2)

Name Date

Cycloid Exploration Worksheet 1.1

Part I: What is a cycloid?

Wikipedia:

the curve traced by a point on the rim of a circuwheel as the wheel rolls along
a straight line.

Webster:
a curve that is generated by a point on the ciresemice of a circle as it rolls
along a straight line.

Dictionary.com:

acurvegenerated by point on thecircumferenceof a circle thatolls, without
slipping, on astraightline.

Exercise I Based on the definitions above, sketch a cycloid

Question: What is the distance along the x axiwéen the beginning and end of the
cycloid?

Question: What is the height of the cycloid?
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Worksheet 1.1 (page 2 of 2)

Part Il: The Parametric Equation of a Cycloid

Exercise 2 Find the coordinates of the following pointg@mms of r, the radius of the
circle andd, the amount of rotation of the circle.

Point A;

(hint: what does the x coordinate of point A regamt in terms of the circle?)

Point C:

Now use right triangle trigonometry to find the dgin of PB and BCin terms of
0:

Length of PB:

Length of BC:

Use the length of the above segments to find dloedinates of B and P.
Point B:
Point P:
The coordinates of point P, a point on the cycloggresent a parametric equation for the

cycloid. After checking them with a graphing utiliwrite the parametric equation of the
cycloid below.

Parametric Equation of a Cycloid of radius r:
X=

y:
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Worksheet 1.2

Figure 1: Cycloid with Generating Circle

P(X, Y,)

A
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Activity 1 — Introduction to Cycloids/Deriving a Parametric Equation for a Cycloid
(Teacher’s Key)

Part 1

Question 1: The length of the cycloid along the x axis ig,2he circumference of the
generating circle.

Question 2: The height of the cycloid is 2r, the diameter &f generating circle.
Part 2:

Point A: (6, 0) The x coordinate of point A i8,rthe intercepted arc length @f
Point C: (8, 1)

Length of PB: r sird

Length of BC: r co$

Point B: (6, r —r co$)

Point P (parametric for the cycloid):0( r sirb, r — r co$)

or, by factoring out an r from both:  qr si), r (1- co$))
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Activity 1 — Introduction to Cycloids/Deriving a Parametric Equation for a

Cycloid (Selected student work)

I Figure 1: Cycloid with Generating Circle | \
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Reflection on Activity 1

After teaching this lesson once, | developed akealoeet to scaffold the lesson.
After teaching it a second time, | modified the iareet to further scaffold the lesson.
So obviously, this is a more difficult lesson tHaoriginally thought. Here are some of
the things I think that make this so difficult feiudents:

First, students are not used to problem solvirtpiatlevel, and they certainly
aren’t used to using trigonometry to problem soludess it’ specifically a trigopnometry
problem. Students weren’t comfortable using toidind an expression for a side length.

But what was really surprising was the number ofishts who struggled to find the

coordinates of P, evafter we had found the lengths d®B andBC. The idea that we
could subtract the lengths of parallel segmentstbthe coordinates of x and y seemed
especially difficult. Many students could not showe where segments of length x and y
were on their picture.

On the positive side, students were very engagetie activity, even though in
both classes, it seemed clear that their performmandhe exercise would not affect their
grade in the class. Also, the concept of a panacrequation was not difficult for them
to understand, nor was the difference betweenanpeatric and an explicit equation.

In one class, a student found the y value of Hrametric by translating a unit
circle up r units. He had difficulty adjusting ftbre fact that rotation on a unit circle
happens in a counter-clockwise direction and strtthree o’clock” where rotation on a

cycloid happens clockwise and begins at “six 0’klbcwWith a new emphasis on
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transformations in the math curriculum, teachemukhbe ready for these types of
answers.
All'in all, I thought the exercise went well andigénts in both classes told me they

enjoyed it, and found it interesting and thouglavaking.
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Introduction to Activity 2

Instructional Goal:Students will work through Roberval’'s derivatiointhe area under a

cycloid, furthering their understanding of parante¢équations, Cavalieri's Principle, and

their ability to problem solve and follow complexathematical problem solving.

Time needed:Roughly 45 minutes to one hour.

Prerequisite knowledgeStudents should have some knowledge of paranmezjtiations.

Some familiarity with Cavalieri’s Principle may albe helpful. Knowing the area

formula for a circle is necessary to success & phoject.

Supplies: Students need only the worksheet provided. &haehter, if possible, should
have a graphing utility with the ability to graparametric equations (Winplot, a free
download, and Grapher, which comes with most Agplaputers, both work well). A

projector to project this graph on a large screesiso highly recommended.

Classroom OrganizationDepending on the level and motivation of the glalsis could

be done in a lecture format, or as group work.bBibdy a mix of the two would be best.
The main idea, including the idea of the ‘compargarve’ could be explained as a
lecture. After that, students could work on theksbeet, which leads them through the
derivation, in pairs or small groups. It would pably be a good idea to bring the class
back once or twice, having students present timswars to various questions on the
worksheet to the class, to make sure everyone is speed.
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Activity 2: Roberval’s Derivation of the Area Undea a Cycloid

Part 1: Intro and Review

Here the teacher reviews the definition of a cytkmnd, if time permits, summarizes
some of the history of the study of the curve. rApdning utility is projected so students
can see the graph of a cycloid and its generatinetec To this graph a third equation is
added, that of the companion curve discussed itidde2. Students are told that we are
going to use the companion curve, along with Cavigdi Principle to find the area under
the cycloid. A brief review of Cavalieri’s Prindgwould be useful, especially if

students haven’t seen it in awhile.

Part 2: Working through the Derivation

The worksheet packet 2.2 is distributed, and stisdeither work in pairs or small groups
to answer the questions on the worksheet. Thé¢edloats about; answering questions
and giving hints. Once again, if the same quedtemsps coming up, or if everyone
seems stuck at the same place, the class may méedctlled back together.

Part 3: Bringing it all together

When time is winding down, and some, or most, sttglare finished, the class is called
back together. Students can present their answaeri§ time is short, the teacher can go
over the questions with the class. Questionsesweared, and the teacher makes sure

that everyone has access to the correct information
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Worksheet 2.1

Figure 2: Cycloid with Left Half
of Generating Circle and
“Companion Curve

s
T
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Worksheet 2.2 (p.1 of 3)

Part I: Using Cavalieri’'s Principle to find the Area under a Cycloid (Roberval’s

Method).

Label the curves in Figure 2 with their paramedguations:
1. Cycloid, C: See exercise 3 above. Xc= ap-sind)
yc= a(1-co$)

2. Generating Circle (or semicircle), G: xc= -a (sing))
ye= a (1-cos))

3. “Companion Curve,” H: e at
yn=a (1-cos{))
Labelr on the x axis.

Exercise I Explain why at any givef, the points on each of the above curves will lie
on the same horizontal line.

Exercise 2 Show that at an§, the distance betweeg and the y axis is equal to the
distance betweernpand x.
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Worksheet 2.2 (p.1 of 3)

A two-dimensional version dfavalieri’s Principle states:
Suppose two regions in a plane are included betweerparallel lines in that plane. If
every line parallel to these two lines interseatthiregions in line segments of equal
length, then the two regions have equal areas.

-From Wikipedia.

Looking back at exercise 2, what two regions masehthe same area. What is that
area?

Exercise 3. Consider the rectangle with vertices (0, 0), {§,(2r, 0), (tr, 2r).

a) Determine the area of the rectangle.

b) Show, using Cavalieri’s Principle, that the t@gmanion Curve” divides the rectangle
into two equal halves.

Do this by showing that for arty the distance betweea(0) and the y axis is equal to
the distance between(t-0) and the line x = .
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Worksheet 2.2 (p.1 of 3)

Use your results to show that theea under any cycloid is equal to 3 timesthe area of
the generating circle.

Write any questions or comments you have aboutytedploration below, and
remember to ask your calculus teacher next yesindav you how to find the area under a
cycloid usingintegration!
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Activity 2: Roberval’s Derivation of the Area Undea a Cycloid

(Selected Student Work)

Figure 2: Cycloid with Left Half
of Generating Circle and ’
“Companion Curve” O( ~ |
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Reflection on Activity 2

This activity was very engaging to students. Sstodents had heard that the
area under a cycloid was three times as big asittle that created it, and students were
interested to see the proof. Although most stugleatrectly answered Exercise 1, they
were timid about Exercise 2. When | helped théraythad no problem with it, and the
idea that the two regions had the same area setenmeake sense to most. Finding the
area of the rectangle in Exercise 3a was also obl@m either, but, as | suspected, the
upside-down use of Cavalieri’s Principle in 3b waa difficult for anyone in the class,
and | had to walk them through that part.

Afterward, students seemed excited and satisfigutive proof and the activity.
Many gave me positive comments on their papersaakdd interesting questions about
calculus (their next math class). Overall, | waspwhappy with the activity, and wonder

why it's not more widely taught.
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Introduction to Activity 3

Instructional Goal:Students will use integration techniques and tdasto find the area

under a cycloid and the arc length of a cycloid.

Time needed:Roughly 45 minutes to one hour.

Prerequisite knowledgeStudents should have seen integration using izt and

have some knowledge of integration of parametricaégns.

Supplies: Students need only the worksheet provided.

Classroom OrganizationDepending on the level and motivation of the glalsis could

be done in a lecture format, or as group work. sérere the types of problems generally
done on the board, by the teacher in a traditioreth classroom. Working in pairs or
groups on a scaffolded worksheet gives studentg imnership of the problems and

their solutions.
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Activity 3: Finding the Area Under a Cycloid and the Arc Length of a Cycloid by
Integration

This activity is a simple one. Two problems usihg same parametric equations
are given. In both cases, algebra and trig idestdre used, along with integration by
substitution to solve the problems. The worksipeetided walks them through the
problems step by step.

Depending on the size and motivation of the cldese may be no need for any
lecture material at all. This could be a “projeat”an “in-class assignment” that is due at
the end of the period. Students could work inggamall groups or solo, asking
guestions when appropriate, or checking in at titeaf each step.

This activity could be done as a review activitieaf unit on parametric
equations, or as part of a cycloid exploration taiithe end of a semester of calculus. |
didn’t feel it was in the scope of this curriculyroject to spend time on why the formula
for the area under a parametric curve works, aviohgrthe arc length formula. My

assumption is that at this point, those lessons bh&ready been taught.
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Worksheet 3.1 (p.1 of 3)

Name Date

In-Class Assignment: Area Under and Arc Length @fycloid

Part 1: Review of Cycloids
Recall that a cycloid is the curve made by a poma circle as the circle rolls along a flat

surface.

2_-

A cycloid has the parametric equation
x= r(0-sinb) andy= r(1-co®) where r is the radius of the generating circle @rs
the amount of rotation of the circle in radians.

Part 1: Area Under the Cycloid

Recall the formula for the area under a parametnge:
If x = f(t) and y= g(t)
then

t2 t2

A= [ydx= g F'()

t1 t1

Step 1: Find f'(t)

Step 2: Substitute g(t) and f'(t) into the formalaove.
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Worksheet 3.1 (p.2 of 3)

Step 3: Determine the limits of integration.
Step 4: Expand g(t)[f'(t )

Step 5: Factor any constants out from the integrw does this change the limits of

integration?

Step 6: Use the trigonometric identitps x =1+LS(2X) -1 +1c052x .

2 2 2

Step 7: Integrate each term. Use a u substittbiamtegrate the last term.

Step 8: Evaluate for the given limits.
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Worksheet 3.1 (p.3 of 3)

Part 2: Arc Length of a Cycloid

Recall the arc length formula:
b 2 2
=) ()
- |\ dt dt

Step 1: find% and%’ and set the limits of integration.

Step 2: Substitute and expand, factoring outthe r

Step 3: Substitute, using the trig identltycost = Zsinz(éj

Step 4: Eliminate the radical, and integrate.

Step 5: Evaluate over the given limits.
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Introduction to Activity 4

Instructional Goal:Students will understand and work through somefproof that a

pendulum constrained by two inverted cycloids wiling in the shape of a congruent,

inverted cycloid.

Time needed:Roughly 45 minutes to one hour.

Prerequisite knowledgeStudents will have worked through the previow8vities and

have a good understanding of integration, parametjuations, algebra and trig.

Supplies: Students need only the worksheet provided.

Classroom OrganizationDepending on the level and motivation of the glalsis could

be done in a lecture format, or as group work. séhee the types of problems generally
done on the board, by the teacher in a traditioveth classroom. Working in pairs or
groups on a scaffolded worksheet gives studente imnership of the problems and

their solutions.
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Activity 4: Showing that a Pendulum Constrained byTwo Inverted Cycloids

Swings in the Shape of a Congruent, Inverted Cycldi

Because of the complexity of the algebra involvethe actual derivation (see section 3
of Part 1), I've eliminated some of the more difiicsteps. This activity should probably
be done as follows:

Intro: Teacher presents Diagram 3.1 and goestbednasic problem.

Students work in pairs or small groups or solodiwes the following problem.

Activity 1: Given the coordinates of one endpoint of a liegnsent, the length of that
segment and the slope of that segment, find a flarmouind the other endpoint.

Let (x. y1) be the known endpoint. Let L be the length ef segment, and m be its
slope.

(Hint: combine the slope formula and the distammrentila. Your “formula” will have
two parts, one to find the x coordinate of the mig€ndpoint, and one to find the y

coordinate).
Once everyone has the formulas, we begin actiwity t
Activity 2: Looking at the diagram, what expressions can lweg imto our formulas for

the following variables. Be ready to give a sheplanation for your answer.

X1=
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Substitute the expressions into the equations:

Teacher explanation: After some involved algetm@can simplify the above equations

into the following:

X, =r(sin@+6) or x,=r(6-3sinb)
And
Y, =3r+3rcosf or y, =-3r —r cosf

Teacher asks, “How do we determine which equationse?”
Combinations of the two parametrics are graphed graphing utility so that students
can see the correct equations are:

X, =r(sind+6), and y, =-3r —rcosd

Now a class discussion centers on how to showthieae are the graphs of congruent
shifted cycloids. If no one comes up with it, teacher might have to point out that the
shifted cycloid is in the middle of its path whéw toriginal cycloid has just begun.
Students should see that we must adal the input of both expressions of the shifted
cycloid to achieve this effect. Both expressioagehbeen shifted down 2r and students

will hopefully know that that is simply a matter sibtracting 2r from both expressions.
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Activity 3: The final activity is to show that this worksaths, show that

r((@+mn) -sin@+n)) -7 =r(siné+ 6

and that —-r(@-cos@+n))—2r =-3r —-rcoH
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Final Reflection

Over the several years that | worked on this ptgy#cand on, I've never really
gotten bored of cycloids. They are an incredibty topic mathematically and
historically. I've been able to use the math tteaalgebra, geometry, trigonometry,
while brushing up on parametric equations and nalezplculus. The process has made
me a better, more thoughtful and better-roundedemaétician.

I've also found that many students have an inttigsiriosity about cycloids. |
think it's because the idea of a cycloid is so denpet the math needed to work with
them is very complex. When approached with a gglalelated problem, it seems that
“we should be able to figure this out.” Cycloitietefore show the need for complex
mathematical ideas such as parametric equationsgagtals, and can be used as a
motivational tool to students who feel “bogged ddwuith complex algorithms such as
integration by substitution and such.

As we move further into the age of technology,ghecedures will lose their
importance as computers and calculators can do amatenore of them. What will gain
in importance is the conceptual understanding aitwimose procedures are actually
finding and the ability to use that conceptual kiemge to solve new problems. I've
spoken with many adults who took calculus classe®ilege, but claim to have not
understood what they were doing, even though theyeel an A or B in the class. How
could they possibly apply calculus to a new probitthat is the case?

As a teacher, | know that teaching problem solvimtpe mathematics classroom

is incredibly difficult. Students are often togaatl to be incorrect to take the risk of
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attempting to solve a problem. School has becéonenany students, a matter of
memorizing steps and algorithms and applying thebedt questions. When students are
given problem solving work samples for state assesss, teachers often show solutions
to similar problems before handing them out. Stislare able to pass, and even excel at
many high school math classes without ever solaipgoblem in a meaningful way.

Many students, and their parents as well, will @sotf a student is expected to solve a
problem that they haven't seen before, and beewslaccorrect solution. The emphasis
on standardized multiple-choice tests as the manuntability measure for schools
doesn’t help this phenomenon. Nor does the neastant “raising of the bar” as far as
the number and level of mathematical topics stiglareg supposed to master in their high
school math curriculum. Now recession era budgettages add much larger class sizes
to the mix, as well as decreased planning and ggattne for teachers.

According to many teachers, professors and empdoyenerica having a crisis in
problem solving. An important discussion needsappen in the math education
community, and the general education community &l @as to how to teach, and assess
this crucial skill. Part of the answer is suralyspend more time on projects and
investigations such as the cycloid activities ahowt@ch require combining several
previously learned skills to solve a complex pranleUnfortunately, this cannot happen
without buy-in from parents, politicians, and thébjic at large, and it will not happen on

the cheap.

53



54



References

Apostol, Tom, and Mamikon Mnatsakanian. “Cycloidaéas without Calculus.’Math
HorizonsSeptember 1999 : 12-16. Print.

Dunham, William. Journey Through GeniublewYork: Wiley. 1990. Print.
Smith, D.E.History of Mathematics Vol2ew York: Dover. 1923. Print.

Usiskin, Peressini, Et dllathematics for High School Teachers: An Advanced
Perspective.New Jersey: Pearson Education Inc, 2005. Print.

Whitman, E. A. “Some Historical Notes on the Cydldi The American Mathematical
Monthly. 50.5 (1943): 309-315. Web. 7 Feb. 2(1ifp://|stor.org/stable/2302830

55



