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Abstract

Fibonacci solitaire is a combinatorial algorithm devised by Gnedin

& Kerov [8] to help examine the Young-Fibonacci graph, an example

of a differential poset. The algorithm is explored and a method for

finding the probability of a certain outcome is explained. The au-

thor describes several related activities that can be used in the class-

room. Activities include exploration of permutations, functions, injec-

tive functions, function inverses, and combinatorial rules for counting.

The activities are preceded by a discussion of how implementation of

these activities in experimental classrooms led to modifications to the

lessons.
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1 The game

1.1 Directions for gameplay

Let n be a positive integer and assume n is even. To play the game, you will

need a deck of cards numbered 1 to n. Shuffle the deck. Draw a card from

the top of the deck and place it face up on the table in front of you. Draw

the next card from the top of the deck and compare it to those on the table.

The following rules dictate what to do with this card.

FS 1: If the drawn card is smaller in value than the smallest card on the

table, place it on the table to the left of any cards on the table.

FS 2: If the drawn card is larger in value than the smallest card on the

table, pair it with the smallest card on the table, removing them both

from the table and placing this pair aside.

If at any point the table is empty, simply place the next card face up on

the table and continue playing according to the previous rules. When all the

cards have been played, the game is over. There may be cards remaining on

the table. If no cards remain on the table, then all cards have been paired,

and you win.

We will often have need to refer back to these original rules. When we

do so, we will refer to them as FS 1 and FS 2.

To clarify these instructions, we will consider an example game.
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1.2 An example game

Here we will play an example game together using a six-card deck. It may

be helpful to organize your deck as indicated and play through the example

with your cards. We will refer to this game several times throughout our

discussion. The deck is shuffled, and let us suppose that the cards in the

deck have the following order: 4, 6, 5, 1, 2, 3. The first card, number 4, is

turned over onto the table. The table appears as below:

On the table

4

The next card is 6, which is greater than 4. So, according to FS 2, we

pair it with the 4 and set the pair aside. The table is now empty.

On the table Removed from play

(4,6)

The next card, 5, is placed on the table.

On the table Removed from play

5 (4,6)

Next is card number 1. Since it is smaller than 5, we place it in the row

to the left of the existing cards on the table in accordance with FS 1.
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On the table Removed from play

1 5 (4,6)

The 2 is drawn next, and since it is larger than 1, we pair it with the

smallest card on the table, namely the 1. This pair is also set aside.

On the table Removed from play

5 (1,2) (4,6)

Next we draw the 3, it is smaller than 5, so we place it on the table to

the left of the 5 and our game is over.

On the table Removed from play

3 5 (1,2) (4,6)

Since the 3 and 5 have not been paired, this is not a winning game.

1.3 Some questions

In this game, if you follow the rules, you don’t have to make any strategic

choices. There is no strategy involved, only an algorithm that guides you to

the end of the ‘game’. It is because of this algorithmic nature that we can

consider the game as a function. From an initial starting point (a shuffled

set of cards) we will end up at a uniquely determined end-of-game scenario,

a pairing of cards. The resulting pairing is completely dependent upon the
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initial order of the cards in the deck. Some initial orders will lead to a win,

others to a non-win.

It is easy for us to count the number of different orders of the cards in

the deck, or permutations as we will call them from here on out. We will

talk more about permutations later. After we permute the cards (yes, we

can use it as a verb too) and before we flip over the first card, think about

how many different values the first card can possibly have. Since there are 6

cards in our example, there are 6 possibilities for the first card. Then there

are 5 possibilities for the second card because one possibility has already

been taken by the first. This continues and, by the fundamental theorem of

counting, we end up with 6 · 5 · 4 · 3 · 2 · 1 = 6! possible permutations. In

general, for an n-card deck, the number of permutations is given by n!

One obvious question is then: “How many permutations result in a win-

ning game?” Once that number is found, we can answer the question: “What

is the probability of winning?” Some students might ask: “Is the function

defined by the given algorithm one-to-one? Is it onto?” Some of these an-

swers are easily found for small deck sizes. For instance, if your deck has

only 4 cards, then there are only 24 permutations. These can be checked to

determine how many permutations result in a win. Larger deck sizes, how-

ever, are not as simple a matter, and a general solution is not immediately

apparent. We will examine these and other questions later on. The driving

focus will be to determine the probability of winning for an arbitrary, even

deck.
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2 Definitions and notation

Some terms that we will use have already been introduced, but have not yet

been defined. Words like ‘permutation’ deserve a more formal definition. We

will do that here as well as introduce some new vocabulary that we will use

in further discussion.

Permutation: Informally, a permutation is a rearrangement of a set. More

formally, a permutation of a set A is a bijective function f : A→ A. In

our case, a shuffled deck of cards is a permutation of the set of cards. We

will write permutations in brackets. Our permutation from the example

game above is written [4, 6, 5, 1, 2, 3], meaning that the first card drawn

is 4, followed by 6, then 5, and so on. The number of permutations on a

set of n objects is given by the factorial n! = n ·(n−1) ·(n−2) · . . . ·2 ·1

Pair: We will use this word only to describe cards that have been paired

according to FS 2 (or the act of pairing two cards by FS 2). We will

denote such pairs (a, b) where a and b are the numbers of the cards,

and where a is always smaller than b. For instance, suppose that,

after playing the game, 4 was paired with 6 according to FS 2. When

referring to this pair we would say “the pair (4, 6)” or simply “(4, 6)”.

We will never refer to the pair (6, 4). The smaller card in a pair will

sometimes be called the bottom, and the larger the top.

Singleton: We will use this word to describe cards that have not been paired

as above. Such cards will be referred to by their card number by saying
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“the singleton 4”, or simply “4”. The smallest singleton will often be

referred to as the base.

Pairing: We will call the result of any game–the set of pairs and singletons–

a pairing. We will also have a standard notation for our pairings to

help avoid confusion. The notation will also simplify the task of de-

termining whether two pairings are the same. In this notation, pairs

and singletons are written in numerical order, comparing the bottoms

of pairs to the singletons. We will use our example game from above

to help clarify. Remember that 3 and 5 remained as singletons and

that (4, 6) and (1, 2) were the resulting pairs. This pairing is written

“(1, 2), 3, (4, 6), 5”. Note that the smallest of the bottoms and single-

tons, 1, is placed first in this notation, followed by the next largest, 3,

and so on, until all pairs and singletons are written. We will call the

result of a winning game a perfect pairing. A perfect pairing contains

only pairs and no singletons.

Partial Pairing: It will become useful to discuss pairings that arise before

the completion of a game, we will call these partial pairings. Such

a pairing will contain a subset of the cards in the deck, and will be

written according to our standard notation.

Double Factorial: It will be helpful at later stages to use the notation n!!

which we define as the product n!! = n(n− 2)(n− 4)(n− 6) . . . (n− 2t)

where t is the largest integer that satisfies 2t < n. It is important to
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discern between n!!, as we have defined it, and (n!)! = n!(n!− 1)(n!−

2) . . . (n!− (n!− 1)).

2.1 Playing with new notation

Using the same permutation as in our initial example, [4, 6, 5, 1, 2, 3], after

our first card is drawn, we have the partial pairing 4. After drawing again we

have (4, 6). After the third card we get (4, 6), 5. Following this process and

writing the pairs and singletons in order as described in the previous section

we obtain the sequence of partial pairings:

4

(4, 6)

(4, 6), 5

1, (4, 6), 5

(1, 2), (4, 6), 5

(1, 2), 3, (4, 6), 5

Our final pairing consists of the pairs (4, 6) and (1, 2) as well as the

singletons 3 and 5. The numbers 4 and 1 are bottoms with 6 and 2 their

respective tops.

3 Playing backward

If you play the game a few times, it may become clear that a given pairing

produced by the algorithm may come from more than one distinct permuta-

tion. As an example, consider a deck of four cards. If the initial permutation

12



of these cards is [4, 2, 3, 1] in that order, then the result will be 1, (2, 3), 4.

Now, play the game again starting with the permutation [2, 3, 4, 1]. You will

again end at 1, (2, 3), 4. Thus, the game, when viewed as a function from

permutations to pairings, is not one-to-one. What if we wanted to be able

to play backward? That is, starting from a pairing, how can we determine

the permutation from which it arose, if any? Our understanding of the re-

lationship between injective functions and inverse functions tells us that we

cannot, from the pairing alone, determine the initial permutation. To do so,

we would need some more information. What other information do we need?

It turns out that, to determine the initial permutation, it is sufficient to

keep track of a bit of information concerning the bottoms in the final pairing.

To do this, we will refer to the depth of a card. The depth is defined to be

the number of cards written to its right, when the cards are written according

to our standard notation. Recall that the result of the prior example game

was (1, 2), 3, (4, 6), 5. In this pairing we say that the depth of 3 is 3, and that

the depth of 4 is 2. It will be helpful to use a shorthand notation for this

concept. Let δ(a) denote the depth of card a. So we will write δ(3) = 3 and

δ(4) = 2.

We will need to talk about the depth at different steps of the game, so we

need to modify the notation once more. Say we wanted to track the depth of

card 4 at each step of the algorithm. We will use the notation δx(a) to denote

the depth of card a when x cards have been drawn. Using our example again,

recall the sequence of partial pairings:

13



Stage of game Partial Pairing

1 4

2 (4,6)

3 (4,6), 5

4 1,(4,6),5

5 (1,2),(4,6),5

6 (final) (1,2),3,(4,6),5

Referring to the above, we see that δ1(4) = 0, δ2(4) = 1, δ3(4) = 2 and so

on. If a card has not been drawn at a given stage of the game, its depth at

that stage is undefined. For instance, δ1(1), δ2(1), and δ3(1) are all undefined,

while δ4(1) = 3.

To be able to play backward, a record of the depth of cards at each stage

would be useful to know. In fact, the depth of the bottoms of pairs are

all we really need, and for these we need only to record their depth at the

moment they were paired. Let’s look at our example again. We need to know

the depth of bottom b of pair (b, t) when b and t are first paired. That is,

δx(b) where x is the step in the game when b is first paired with t. Careful

thought indicates that the xth card drawn must be t. Let’s try to play our

example game, backward. In order to do this we must collect the information

discussed above. So, looking at our continued example we see,
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Bottom Step of game Depth of bottom

when bottom paired at that step

4 2 δ2(4) = 1

1 5 δ5(1) = 4

It will be helpful to define a new term to discuss the pairings along with

this information about the depth of bottoms when paired. Let’s call this

information a rigging. Then by a rigged pairing we mean a pairing along

with the rigging that will allow us to play backward. The algorithm for

backward play can be stated as follows.

3.1 Reverse algorithm

Given a rigged pairing or rigged partial pairing, compare the current depth

of all bottoms with their rigging.

Reverse 1: If no bottoms have a current depth matching their rigging, re-

move the smallest singleton.

Reverse 2: If any bottoms have a current depth matching their rigging,

consider the smallest such bottom, b. If there are no singletons smaller

than b, remove the top that is paired with b. Otherwise, remove the

smallest singleton.

As cards are removed from the partial pairing according to these rules,

place them face down in a pile, creating the original deck.
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To see why this algorithm works, we return to our example pairing

(1, 2), 3, (4, 6), 5.

To eliminate the need to consult the previous table, we will write the rigging

on the bottoms as a subscript. Thus,

(14, 2), 3, (41, 6), 5

indicates that the card 1 had δ(1) = 4 when it was paired, and that 4 had

δ(4) = 1 when it was paired. These subscripts, the rigging, will remain with

their respective card values throughout the reverse game.

3.2 A backward example

We will begin with the pairing resulting from our repeated example with the

rigging we developed for it. Examining our rigged pairing,

(14, 2), 3, (41, 6), 5

we see that δ(1) = 5 and δ(4) = 2. So since neither of the depths of the

bottoms match their rigging, we look at singletons. Since 3 is the smallest

singleton, we remove it by Reverse 1. Our rigged partial pairing now looks

like

(14, 2), (41, 6), 5.

Now we look at the depths again. Notice that δ(1) = 4, which is the same

as the rigging on 1. There are no singletons smaller than 1, that means that
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this is the step at which 1 was paired. We then remove the 2, leaving 1 as a

singleton, by Reverse 2.

1, (41, 6), 5

At this point, none of the depths of the bottoms matches their depth when

paired. So we remove 1 in accordance with Reverse 1. We are left with

(41, 6), 5.

We see that the depth of 4 still does not match its rigging. So we remove 5,

by Reverse 1, leaving only the pair

(41, 6).

Now finally, δ(4) = 1 so this is the step at which 4 was paired. We remove

its top, 6 because that’s what Reverse 2 says to do. Then the only card left

is

4.

It is the smallest singleton, so we remove it by Reverse 1.

Thus we have arrived at our original permutation, and if we play the

game, starting with this permutation, because our game is a function, we

will once again obtain our pairing, (1, 2), 3, (4, 6), 5. We see then that using

the rigging, we can play the reverse game and obtain our original permutation

again. Notice that at each step of the reverse game, we obtained a rigged

partial pairing that corresponds to a partial pairing in the sequence of partial

pairings developed previously, and that we obtained them in the reverse

order.
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Stage of Rigged

Reverse Game Partial Pairing Deck

1 (14, 2), 3, (41, 6), 5

2 (14, 2), (41, 6), 5 [3]

3 1, (41, 6), 5 [2, 3]

4 (41, 6), 5 [1, 2, 3]

5 (41, 6) [5, 1, 2, 3]

6 4 [6, 5, 1, 2, 3]

7 [4, 6, 5, 1, 2, 3]

Next, we will prove that these reverse rules work for any rigged pairing.

3.3 Playing backward is an inverse function

Consider an arbitrary game with a deck of n cards at stage p, meaning that

p cards have been drawn and processed according to the original rules. So

the number of cards on the table is p or fewer, and there may be a smallest

unpaired card, the base, call it bp. When we draw the p+ 1st card, either it

will be larger or smaller than our base bp.

3.4 Case 1: New base

If the p+1st card is smaller than bp, or if bp does not exist, then the p+1st card

becomes the new base, called bp+1, and we move to the next draw. Consider
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what would happen at this point if we were following our reverse algorithm.

The base bp+1 is the smallest singleton and there may be other singletons and

pairs. Some of the pairs may have riggings matching their current depths.

However, those pairs must have bottoms larger than bp+1 because when bp+1

was placed according to our standard notation, the depth of any pair with

a smaller base would have increased. So, according to Reverse 2, the next

card we must pick up is the smallest singleton, bp+1, as desired.

3.5 Case 2: Pairing

If the p + 1st card is larger than bp, it gets paired with the base bp, which

becomes a bottom, and the new card is a top which we will denote tp+1.

We associate with bp a rigging, namely δp+1(bp). When we consider what

would happen at that particular step of the reverse game, we see that bp

currently has a depth matching its rigging. All bottoms smaller than bp do

not have riggings matching their current depth because of the addition of

tp+1. Further, there are no singletons smaller than bp because it was the

smallest singleton at the moment it was paired. Therefore, by Reverse 2

we must pick up the top of this pair, tp+1.

Thus, whenever we move from the pth to the p + 1st step of the game,

our reverse algorithm will guide us back from the p + 1st to the pth step.

We conclude that the reverse algorithm is therefore the inverse of Fibonacci

Solitaire.
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4 Appropriate bounds on the rigging

What values are allowable on the rigging for our purposes? We can obviously

state that any rigging must be comprised of non-negative integer values be-

cause depth is always given as a non-negative integer. It is also fairly clear

that, since we are counting the corresponding top card when determining the

depth of a given bottom, the rigging must also be greater than zero. Thus,

values for a rigging must come from the set of counting numbers. What is

an appropriate upper bound for the rigging, rb, on a bottom, b, in any given

pairing?

4.1 Why rb ≤ δ(b)

Suppose a pairing, say for example (1, 2), 3, (4, 6), 5 had the following rigging

(12, 2), 3, (45, 6), 5. Let’s follow our reverse algorithm and see where this leads.

None of the riggings match the bottoms’ current depths, so we must remove

the 3 by Reverse 1. We are left with (12, 2), (45, 6), 5 and still no riggings

match, so we remove the 5. At this point, (12, 2), (45, 6), we have reached an

impasse. None of the riggings match, yet there are also no singletons that

we can remove. Clearly, this is not a valid rigging for the given pairing, but

why?

Considering the same pairing, but without rigging, (1, 2), 3, (4, 6), 5, we

can clearly see δ(4) = 2 and δ(1) = 5. If we now start removing cards, it is

only possible that the depths of 4 and 1 will decrease, they cannot increase.

But in our example above, the rigging on 4 was 5. The depth of 4 will never
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exceed 2 since we are trying to remove cards. We can see that an appropriate

upper bound for the riggings is the depth of the bottoms at the final pairing.

For example, (11, 2), (42, 6), 5 is a valid rigging, while (10, 2), (41, 6), 5 and

(16, 2), (42, 6), 5 are not. For any pairing or partial pairing, and for any

bottom b, the rigging rb on b must lie in 1 ≤ rb ≤ δ(b).

4.2 Are all such riggings valid?

The question then becomes: If rb lies in that interval, will the rigged pairing

yield a permutation through the reverse algorithm? Consider a rigged pairing

where the values of the rigging on each bottom lie within the bounds as

described above. It is possible that one or more of the bottoms initially has

a rigging matching its current depth. If this is the case, such a pair will soon

be split, and the bottom will remain as a single card. Since some bottoms

have riggings less than their current depths, by removal of singles and other

tops, the depths of these bottoms will decrease by increments of one. So, at

some point the rigging of each bottom will match its depth. That pair will

soon be split. If any pair has rigging 1, it will wait until there are no other

pairs or singletons written to its right. At that point, the rigging will match

the depth. It is because we only remove one card at a time, that the depth

of any bottom will decrease only in increments of one. This guarantees that,

at some point, the depth of a card will match its rigging.
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5 Probability of winning

In this chapter, we will prove our main result, which computes the probability

of winning Fibonacci solitaire.

Theorem 1 Let n be even, and let σ(n) be a permutation of the set {1, 2, 3 . . . , n}.

The probability that σ(n), under the Fibonacci solitaire algorithm, yields a

perfect pairing is:

Prwin(n) =
n!

2n · n
2

! · n
2

!

Before we embark on the proof of the above result, let us recall what we

mean by the probability of winning. Elementary probability theory tells us,

given a deck of n cards, that the probability of winning corresponds to the

number given by,

Prwin(n) =
# of permutations resulting in a win

# of permutations
.

This quantity will lie between 0 and 1. The closer it is to 1, the more likely

we are to win Fibonacci solitaire.

Now, if we consider the bijective nature of the Fibonacci solitaire algo-

rithm with rigging, we conclude that the number of rigged perfect pairings

is exactly the number of winning permutations. The probability in question

is now,

Prwin(n) =
# of rigged perfect pairings

# of permutations
.
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In the sections ahead, we will use familiar counting rules to determine

the number of riggings on a given pairing. We can also find the number

of possible perfect pairings (wins). Using these two numbers, we will find

the number of rigged perfect pairings. Our basic form for the probability of

winning becomes,

Prwin(n) =
# of perfect pairings ·# of riggings on a perfect pairing

# of permutations
. (1)

There are many characterizations of this probability, depending on what

logical thought processes were used in counting the perfect pairings. Be-

low we will outline one argument for the number of riggings on a perfect

pairing. We will then discuss several different logical pathways for counting

the number of perfect pairings. In a subsequent section, we will prove that

the characterizations of probability given by these counting arguments are

equivalent to the probability given in Theorem 1.

5.1 The number of riggings on a perfect pairing

Lemma 1 Given any perfect pairing of n cards, there are exactly

(n− 1)!!

permutations of n cards that result in the given perfect pairing.

Given a deck of n cards, a winning game will result in n/2 pairs. To

determine the number of riggings on a set of n/2 pairs, we must first decide
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the depths of the n bottoms. Using (a, ∗), (b, ∗), (c, ∗), (d, ∗) as a stand-in

for a perfect pairing of an 8-card deck, where a, b, c, and d are the bottoms

of the pairs, and the tops are designated ∗, we see that δ(a) = 7, δ(b) = 5,

δ(c) = 3, and δ(d) = 1. We can choose a value of the rigging on a from the

set {1, 2, 3, 4, 5, 6, 7}, allowing seven possible choices. For the rigging on b

we must choose from the set {1, 2, 3, 4, 5}, thus we have five possible values

we can choose. Continuing in this manner, we find that the total number of

riggings possible on a perfect pairing of 8 cards is 7 · 5 · 3 · 1 = 7!!.

Generalizing the previous argument, consider a perfect pairing of a deck

of n cards. Let ba be the base of the ath pair when the perfect pairing is

written in our standard notation. Examining the perfect pairing,

(b1, ∗), (b2, ∗), (b3, ∗), . . . , (bn/2, ∗)

we can see that the possible choices for a rigging on the bottom b1 must come

from the set {1, 2, 3, . . . , (n − 1)}. Similarly we can choose a rigging on the

bottom b2 from the set {1, 2, . . . , (n− 3)} giving (n− 3) choices. Continuing

on this line of thought, we see that for each perfect pairing, there are

(n− 1)(n− 3)(n− 5) . . . (n− (n− 1)) = (n− 1)!!

possible riggings for a winning game with a deck of n cards.

5.2 The number of perfect pairings

Now we must determine how many perfect pairings exist. There are several

counting arguments that can be made that result in equivalent characteriza-
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tions of the number of perfect pairings. Below we will describe three of these

arguments and share the characterization of probability that arises from each.

5.2.1 The first method for counting perfect pairings

Lemma 2 There are exactly

n!
n

2
! · 2n

2

distinct perfect pairings of n cards.

We can describe a set of n/2 pairs by pairing the numbers as they

appear in any permutation. For example, when n = 8, the permutation

[4, 6, 7, 2, 8, 1, 3, 5] would correspond to the set of pairs (4, 6), (7, 2), (8, 1), (3, 5).

However, n! over-counts our set of perfect pairings because it allows

(4, 6), (7, 2), (8, 1), (3, 5)

and

(8, 1), (7, 2), (3, 5), (4, 6)

to be counted as distinct pairings whereas, in our context, we view them as

equivalent. For each of the n/2 pairs in a perfect pairing on n cards, there

are (n/2)! equivalent perfect pairings that result from permutations of the

pairs. Correcting for this over-counting requires a division,

n!

(n/2)!
.

We are not quite done, however, because we have only corrected for permu-

tations of the pairs. The counting argument thus far, still counts the perfect
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pairings

(4, 6), (7, 2), (8, 1), (3, 5),

and

(6, 4), (2, 7), (1, 8), (5, 3)

as distinct. For each perfect pairing, the pairs themselves can be written with

the smaller or larger card first. For each pair, this results in two options, small

card first, or large card first. Since there are n/2 pairs in a perfect pairing of

n cards, there are 2n/2 equivalent perfect pairings resulting from reordering

the large and small card within each pair. To remove the over-counting of

these instances, we must divide our previous count by 2n/2. Then we can

express the number of possible perfect pairings as,

n!
n

2
! · 2n

2

. (2)

5.2.2 A second method for counting perfect pairings

Consider a perfect pairing written according to our notation. The pair with

the smallest bottom is written first, followed by the pair with the next small-

est, and so on. For an even deck, since all cards have been paired, the smallest

card must obviously be in a pair, thus this pair has the smallest bottom. Let

b1 represent the smallest of the n cards in our deck. Then we have (n − 1)

choices for the top of this pair. Let b2 represent the smallest unused card.

Obviously, it too must be in a pair. Since b2 is the smallest unused card, it

is smaller than whatever card it will be paired with. Therefore, b2 will be a
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bottom. We have (n− 3) choices for the top of this pair. Continuing in this

fashion, we argue that each bottom ba where a ∈ {1, 2, . . . , (n/2)} is uniquely

determined from prior choices for tops of pairs. Therefore, the only things

that need be counted are the choices available for those tops. We find that

the number of ways to construct our perfect pairing is

(n− 1)!! (3)

.

5.2.3 A third method for counting perfect pairings

Another counting method involves the use of the combination function.

For a deck of n cards, a perfect pairing consists of n/2 pairs. We have
(
n
2

)
ways to choose one of these pairs, meaning that we must choose two numbers

from our total set of n cards. Whichever two cards we choose, one will be

smaller than the other, and it will become the base of this pair. Since we have

already used 2 of the n cards available, there are n− 2 cards remaining from

which we can choose the next pair, the number of ways to do so is given by(
n−2
2

)
. There are then

(
n−4
2

)
ways to choose a third pair, and so on. We end

at
(
n−(n−2)

2

)
. This method over-counts the number of perfect pairings in the

same way that our first method did. For instance, if we were to choose (1, 2)

as our first pair and (3, 4) as our second, nothing would have prevented us

from choosing these same pairs in the reverse order, (3, 4) then (1, 2). Since

we consider different permutations of the same pairs as equivalent we need

to correct for permutations of the pairs. We must then take our product of
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combinations divided by (n/2)! as the number of possible perfect pairings.

This results in the following number of perfect pairings,

(
n

2

)
·
(
n− 2

2

)
·
(
n− 4

2

)
· . . . ·

(
n− (n− 2)

2

)
n

2
!

. (4)

5.3 Alternate characterization of n!!

In order to simplify computation, it is desirable to find an expression of n!!

that allows input into common calculators and computer algebra systems.

We can easily write the double factorial using the familiar indexed product

notation. For even n, we can say

n!! =

n
2∏

i=1

2i.

We see that the factors in the product are all even because each is a multiple

of 2. If we remove a factor of 2 from each factor in the product we obtain,

n!! =

n
2∏

i=1

2i = 2
n
2

n
2∏

i=1

i = 2
n
2 ·
(n

2

)
!.
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5.4 Determination of probability

We are now equipped to prove Theorem 1.

Proof of Theorem 1. The formula for the probability of winning, (1),

together with Lemma 1 and Lemma 2 allow an expression from which we

derive the desired result.

Prwin(n) =

n!
n
2
! · 2n

2

· (n− 1)!!

n!

=
(n− 1)!!
n

2
! · 2n

2

=
(n− 1)!! · n!!
n

2
! · 2n

2 · n!!

=
n!

n

2
! · n

2
! · 2n

2 · 2n
2

=
n!

2n · n
2

! · n
2

!
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Remark. Using the counting arguments, from Sections 5.2.2 and 5.2.3, for

the number of perfect pairings we can derive the same result.

Taking now the counting argument (3), from Section 5.2.2, we show

Prwin(n) =
(n− 1)!! · (n− 1)!!

n!

=
n!! · n!! · (n− 1)!! · (n− 1)!!

n!! · n!! · n!

=
n! · n!

2
n
2 · 2n

2 · n
2

! · n
2

! · n!

=
n!

2n · n
2

! · n
2

!
.
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Finally, examining the number of perfect pairings, (4), given in Section

5.2.3 we see,

Prwin(n) =

(
n

2

)
· · ·
(
n− (n− 2)

2

)
· (n− 1)!!

n

2
! · n!

=

n!

2! · (n− 2)!
· · · (n− (n− 2))!

2! · (n− (n− 2)− 2)!
· (n− 1)!!

n

2
! · n!

=
n! · (n− 1)!!

2
n
2 · n

2
! · n!

=
(n− 1)!! · n!!

2
n
2 · n

2
! · n!!

=
n!

2
n
2 · 2n

2 · n
2

! · n
2

!

=
n!

2n · n
2

! · n
2

!
.
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6 Connecting the algorithm to Fibonacci

We can think about the sequence of partial pairings we outlined in our main

example as binary strings where each singleton corresponds to a 1 in our

string and each pair corresponds to a 2. It is important to discern between

these binary strings, and the more familiar numbers from the decimal system.

The symbol 11 in this section is read “one one”, not “eleven”.

Partial Pairing Binary string

4 1

(4,6) 2

(4,6), 5 21

1, (4,6), 5 121

(1,2), (4,6), 5 221

(1,2), 3, (4,6), 5 2121

Each of the binary strings represents the order of pairs and singletons

in the pairing. Notice that the sum of the numbers in the string equals the

number of cards that have been drawn. So, while the length of our pairings

is constantly increasing, it is not the length of the binary string, but the sum

of its constituent digits that is constantly increasing.

This relationship can be discussed as a function bin from the set of finite

pairings to the set of binary strings. The function bin is not injective as we

can illustrate by example. The pairings

(1, 2), 3, (4, 6), 5
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and

(1, 6), 2, (3, 5), 4

are clearly distinct, but their binary strings

bin [(1, 2), 3, (4, 6), 5] = 2121

and

bin [(1, 6), 2, (3, 5), 4] = 2121.

are equivalent. Thus, for each binary string there may be more than one

corresponding pairing.

Interestingly, many of the rules of our Fibonacci solitaire game still ap-

ply. The possible sequences of our binary string are governed by the al-

gorithm. For instance, the sequence below is impossible when we consider

binary strings as representative of pairings.

1

2

21

121

1211

2121

Let us examine why this sequence does not correlate to a sequence of pair-

ings that would arise from our algorithm. The only difference between this

sequence and the example sequence at the beginning of this section is the

fifth term. When we ask how we might move from 121 to 1211 according
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to our algorithm, we see that we would draw a card that is larger than the

bottom of the pair. However, if this card is larger than the bottom of the

pair, then it is also larger than the base which corresponds to the leftmost

1. According to FS 2, it would have been paired with the base, resulting in

the binary string 221, rather than 1211.

Below is another sequence that is impossible, though for a slightly differ-

ent reason.

1

2

21

121

122

2121

The problem arises in the same location as in the previous impossible se-

quence. We now see 121 followed by 122. In the context of the Fibonacci

solitaire algorithm, this means that the card was paired with the singleton

that was to the right of the pair. Because that singleton was to the right of

the base, the leftmost 1, we know it must have been larger than the base.

Therefore, the card drawn was bigger than the smallest card. Again, by FS

2 the card would have been paired with the smallest card on the table which

is the leftmost 1. In this case then, 121 should be followed by 221 instead of

122.

Given a partial pairing, we can devise a set of conditions that will allow

us to determine the possible forms of the subsequent partial pairings. Stated
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differently, given a binary string, we will be able to determine the possible

strings that can come next in the context of Fibonacci solitaire.

6.1 Binary algorithm

Binary 1: A 1 can be inserted anywhere to the left of all existing 1s.

Binary 2: The leftmost 1 can be changed to a 2.

We can see how closely these rules mirror the Fibonacci solitaire algo-

rithm. Binary 1 comes directly from the understanding that whenever a

card is added as a singleton, it must be smaller than all other singletons.

Binary 2 is clearly related to FS 2 in that, if a pair is created, it is the

smallest singleton that gets paired with the most recently drawn card.

6.2 The Young-Fibonacci graph

Using these rules we can create a graph that indicates the forms of the partial

pairings in all possible games. Starting with ∅, which we will use to represent

our game before the first card has been drawn, the only possible next step

is that we obtain the binary string 1. This corresponds to drawing the first

card and simply placing it on the table. Next, we have two options, we

can insert a 1 to the left of the existing 1, or we can replace the 1 with a

2. These two options result in the binary strings 11, and 2. These binary

strings correspond, respectively, to drawing a second card smaller than the

initial card, and to drawing a larger card, thus creating a pair. Continuing
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with this line of reasoning we construct the directed graph below. Each

of the vertices is a binary string that corresponds to a number of pairings.

Perfect pairings are indicated by binary strings consisting only of 2s. Each

edge indicates a possible move between strings according to the binary rules

above which correspond to FS 1 and FS 2. For example, there are edges

between 1 and 11 and between 1 and 2 because those are possible subsequent

strings according to the binary algorithm.

1111

111

CC��������������
// 211

11

==zzzzzzzz

!!CCCCCCCC

∅ // 1

??��������

��???????? 21

DD















//

��**************************** 121

2

=={{{{{{{{{

!!DDDDDDDDD

12 //

��77777777777777 112

22

The graph above is only a very small subgraph of the Young-Fibonacci

graph. The Young-Fibonacci graph is infinite, having as its vertices every
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binary string. Moving left to right, look carefully at the number of vertices

at each step of the graph. The number of vertices at each step corresponds

to the Fibonacci sequence, {1, 1, 2, 3, 5, 8, 13,...}.

This graph shows the connection of the Fibonacci solitaire algorithm to

the field of Graph Theory. Exploring the properties of this graph would be

beyond the scope of this project, and beyond the comprehension of most high

school students. Instead, we now turn to a discussion of how we might use

the Fibonacci solitaire algorithm in a classroom.
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7 Introduction to classroom activities

Fibonacci solitaire is a card game that begins with a shuffled deck and results

in a pairing of the cards. The game offers opportunities for students to

explore some abstract mathematical concepts while maintaining a concrete

context. For example, the algorithmic card game can be viewed as a function.

Students are encouraged to think about functional processes by playing the

game.

Each of the lessons includes implementation suggestions for the instructor,

student activity sheets, and a complete set of example solutions.

The first three lessons are preliminary to the game, which will not be

introduced until Lesson 4. Lessons 1-3 introduce permutations. Students

will shuffle a deck of cards to develop understanding of the concept and will

practice with some notation. Lesson 4 introduces the Fibonacci solitaire al-

gorithm. Students will learn to play the game and learn standard notation

for writing results. Lesson 5 has students play several games and compute

experimental probabilities of winning for two sample sizes. After developing

a theoretic probability for small deck sizes, students will compare experi-

mental and theoretic probabilities and make a conjecture about how sample

size affects experimental probability. Lesson 6 revisits the algorithm with a

focus on determining whether the function is injective. Students will have

an opportunity to understand the connection between the injective property

and invertible functions. Lesson 7 introduces some new notation and an algo-

rithm that reverses the Fibonacci solitaire process. Students will understand
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that by the addition of some information, some functions can be made invert-

ible. Lesson 8 concludes with a determination of the theoretic probability

for playing with 8 cards.

7.1 Lesson implementation

These activities were designed, expecting group work and student effort to

be the classroom norm. Students should be capable of working together and

working to make sense of mathematics. Many of the lessons have natural

breaking points where, depending on the need, an activity can be stopped

for the day or paused to allow the class to reconvene and discuss what they

are learning. The instructor may wish to distribute only part of a worksheet,

to help with determining of a proper time to bring the class back as a whole.

The following time line is generally applicable to all the lessons herein. The

cyclic nature of the time line offers a flexibility that allows the instructor

to break into group work and regroup as a class as many times as is neces-

sary. Instructors whose classrooms do not have group work as a norm should

clearly indicate expected behavior for working in groups and for the process

of reconvening as a class. Indicate to your students that they will be expected

to shift from their groups, to the teacher, and back when instructed. This

method of classroom management allows greater opportunity for students

and teachers to work together directly and removes much of the fear that

students may have of looking foolish in front of the entire class. The cycle

of instruction below always starts with preparation, on the teacher’s part,
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before student contact. When students arrive, the cycle, “Direct, Monitor,

Discuss” can be repeated as many times as necessary and allows flexibility

for multiple class time periods.

Do This Time Description

Prepare 20 min Read and attempt all activity problems. Examine the

solutions sheet for example answers. Prepare for any

questions you think your students may have about the

activity. Gather required materials. Print work sheets

for students or prepare overhead copy.

Direct 5 min Give the students instructions about how you want them

to complete the activity. If you want the students to

work in groups, create those groups now. If you wish,

you may divide the activity into a few parts to develop

a natural return to full classroom discussion. Give them

either the first part, “What is a permutation?”, or the

whole activity.

Monitor 10-30 min Move about the classroom. Listen to student discussion.

Encourage students to read directions carefully and try

to work out the concepts together.
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Do This Time Description

Discuss 10 min Reconvene as a class. Discuss any major misunderstand-

ings you observed while moving about the room. Answer

any questions students may have. Share an example. En-

sure everybody understands what they should be doing.

If you decided to break the activity into parts, distribute

the second part if students are now ready.

Direct 1 min Guide student attention from whole class discussion, to

group discussion as they continue with the activity.

Monitor 10-30 min After a clarifying classroom discussion, students may feel

more confident that they can accomplish the tasks. Move

about the classroom again, ensuring students are engaged

in mathematical activity. If many students are encoun-

tering the same or similar problems, you may wish to

reconvene the class one more time. Otherwise, let the

students work to complete the activity.

Discuss 5-10 min Always end the class by reconvening and clarifying any

last minute misunderstandings. It is important to re-

view what happened during the day’s lesson to remind

students what to pay attention to.
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8 Lesson 1: Permutations

Lessons 1-3 are preliminary to the introduction of Fibonacci solitaire, which

occurs in Lesson 4.

This lesson uses card shuffling as a method to introduce permutations.

The use of cards to help explain the concept is quite helpful. A student might

draw an association between shuffling a deck of cards, and permuting a set.

Such an association could prove helpful in retaining the concept long after the

class in which the concept was learned. The word permutation is commonly

used in the English language as well, so helping students understand the term

mathematically will hopefully allow them to extend their understanding to

other areas of their life. Defining the term now will allow better under-

standing of the Fibonacci solitaire algorithm as a function. Understanding

a function’s domain is an integral part of knowing how the function behaves

generally. Further, the Fibonacci solitaire algorithm as described uses two

different notations for permutation. The sequence notation defined in the fol-

lowing lesson is used to describe elements of the domain, while cycle notation

is how the algorithm defines elements of its range. Helping students see this

now allows the use of the term permutation in later lessons, allowing simpler

descriptions and greater likelihood of students understanding instructions.
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Notes to the instructor

Materials Cards: Students will need a deck of numbered cards. A deck of

size 10 is definitely sufficient. Many of the subsequent lessons require

only six cards. A deck of standard playing cards, partitioned into suits,

with King, Queen, and Jack removed will give 4 sets of 10 cards when

the Ace is considered as a 1. If playing cards, or simply numbered

cards are unavailable, you can have students make their own cards

using index cards or slips of paper.

Lesson worksheets: The activity below can be photocopied and should

be distributed to students. An overhead can be made from the activity

as well, if so desired, then students will work with their own paper to

answer the questions projected.

Goals Students will be able to describe what a permutation is.

Students will be able to write a given permutation according to two

different notations.

Students will conjecture about the number of permutations on a set of

size n.

Prerequisite student knowledge Students should be at a high school math-

ematics level.

Possible student misconceptions While sequence notation is very sim-

ple, Cycle notation can be deceptively difficult to grasp. Students may

view the parentheses as meaning that those cards “go together” and
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may then simply place the cards as if in sequence notation. Those stu-

dents who understand that those cards in the parentheses switch places

may not be able to determine where the last card in the group goes.

For instance, when presented with the permutation (1,4,2,3) 5 6, a

student might not know what to do with the 3.
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Activity 1 Permutations

May 2010 Cliff Smith

Name:

What is a permutation?

Informally, a permutation of a set is a re-ordering of that set. Shuffling a deck

of cards offers a good example of a permutation. There are many different

ways to talk about and write permutations. We will explore a few of them

here. Start with the deck of cards your teacher gave you. Put the deck in

ascending numeric order. When you draw from the top of the deck, the first

card you draw should be 1, followed by 2, and so on. This permutation is

going to be our starting point. We will write permutations in relation to this

order as well as in relation to each other.

1. Shuffle the deck a few times, then draw the cards one at a time from the

top of the deck. Use the table below to keep track of the order in which you

draw the cards.

1st card 2nd card 3rd card 4th card 5th card 6th card



2. The order in which you wrote the cards in the previous problem is one

way to write a permutation. For clarity, we will call writing permutations

in this way Sequence Notation . Simply write the numbers in the order

in which they appear. Do it twice more here on your own. Shuffle the deck,

then draw the cards once at a time and write them in the order they appear.

Put all the numbers into one set of [brackets]

3. Did you get the same permutation more than once?

4. Make a guess. How many permutations of a set of 6 cards do you think

there are? (Be sure to include the permutation [1,2,3,4,5,6]) We’ll figure out

how to count them later, just make a guess here.



A new way to think about permutations

In the previous questions, we were talking about permutations as things. By

permutation, we meant a certain order of the elements in our set. Now, we

are going to try to think about a permutation as a set of instructions about

how to order a set. In this section, you will try to put the cards in order as

instructed.

Put your cards on the table in front of you, face up, in this order [2,5,6,3,1,4],

left to right. This is sequence notation, and it tells us directly where to put

each card. Another way to write this permutation is (1,5,2)(3,4,6). This

notation we will call Cycle Notation and we’ll use parentheses rather

than brackets to help distinguish between the two notations. The expres-

sion (1,5,2)(3,4,6) means that the 1 goes to the fifth position, the 5 goes to

the second position, and the 2 goes to the first. It also means that the 3 goes

in the fourth position, the 4 in the sixth, and the 6 in the third.

5. Which of the permutations below are the same? Draw a line matching a

permutation in sequence notation to the same permutation in cycle notation.

Sequence Notation Cycle Notation

[3, 4, 5, 6, 1, 2] (1,3,5)(2,4,6)

[2, 6, 1, 5, 4, 3] (1,3,6,2)(4,5)

[6, 5, 4, 3, 2, 1] (1,5,3)(4,2,6)

[5, 6, 1, 2, 3, 4] (1,6)(2,5)(3,4)



6. Write the permutations (2,5)(3,4,1,6) and (3,6,5)(1,2,4) in sequence

notation.

7. Write the permutations [2,4,1,5,6,3] and [6,3,5,1,2,4] in sequence nota-

tion.

Sometimes a card should be directed to go to “its own” position. For

instance, in the permutation [3,4,2,1,5,6], the 5 and 6 are already in the

position they’re supposed to be in. When this happens, we write them on

their own, not in parentheses. That permutation looks like (1,4,2,3) 5 6

when written in cycle notation.

8. Write the permutations [5,3,2,4,1,6] and [3,6,5,4,2,1] in cycle notation.

9. Write the permutations 3 (6,2,1)(5,4) and (3,1) 4 (5,2) 6 in sequence

notation.



10. Shuffle your deck six times. Use the permutations you get to fill in the

following table.

Sequence Notation Cycle Notation













9 Lesson 2: Permutations as functions

Lesson 2 is a preliminary to the introduction of the Fibonacci solitaire algo-

rithm which occurs in Lesson 4.

Continuing and broadening students’ understanding of permutation is the

goal of the next lesson. Specifically, this lesson is designed to incorporate a

functional view of permutation into the students existing knowledge. Stu-

dents will learn to repeatedly apply a single permutation to achieve differing

results. I mean this lesson to guide students’ thinking of a permutation from

simply an order of a set, to a process that orders a set in a certain way and

can be repeated or combined with other processes. The goal is to develop in

the student the understanding of permutations as functions. The purpose of

this lesson is not to lead students toward being able to understand Fibonacci

solitaire, but only to strengthen the concept of permutation.
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Notes to the instructor

Materials Cards: Students will need a deck of numbered cards. A deck of

size 10 is definitely sufficient. Many of the subsequent lessons require

only six cards. A deck of standard playing cards, partitioned into suits,

with King, Queen, and Jack removed will give 4 sets of 10 cards when

the Ace is considered as a 1. If playing cards, or simply numbered

cards are unavailable, you can have students make their own cards

using index cards or slips of paper.

Lesson worksheets: The activity below can be photocopied and should

be distributed to students. An overhead can be made from the activity

as well, if so desired, then students will work with their own paper to

answer the questions projected.

Goals Students develop understanding of permutation as a function

Prerequisite student knowledge Students should know and understand

the definition of function.

Students should be able to determine whether a given relation, pre-

sented in non-symbolic and non-graphical form, is a function

Possible student misconceptions Students will repeatedly apply a per-

mutation to itself and to other permutations. Because students will

be obtaining different outputs each time they apply a permutation to

itself, they may view this as evidence that permutations are not func-

tions. That is, students may feel that a permutation has multiple
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outputs without considering the fact that they are actually considering

the result of multiple inputs. The instructor should direct the students

to consider what information they are using to determine the ‘output’

from the permutation. Direct students’ attention to the initial order of

the objects in the set as the ‘input’ to the permutation.

Students may have difficulties understanding how to permute objects

from a previously permuted set. The use of numbered cards may indi-

cate to the student that there is only one initial order on the set. These

students may benefit from using objects that do not have an intrinsic

order. Ask this student to use objects such as a pencil, some keys, an

eraser, a card, a coin and any other objects that are easy to find and

distinct. They should then place them in any order on the table and

use the permutation as instructions about which item should go where

when permuted. It is important for students to understand that the

numbers in a permutation can be taken to mean ‘the object in that

position’ rather than ‘this number’.

Mathematics Common Core Standards 2010 A-IF-1: Understand that

a function from one set (called the domain) to another set (called the

range) assigns to each element of the domain exactly one element of

the range. If f is a function and x is an element of its domain, then f(x)

denotes the output of f corresponding to the input x.
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Activity 2 Permutations

May 2010 Cliff Smith

Name:

How to permute permutations

Last time we learned how to write permutations two different ways. Remind

yourself how to do it below.

1. Shuffle the cards and deal them out face up placing each card to the

right of those before. Write the resulting permutation in both Sequence and

Cycle notations.

We said that Cycle notation could be thought of as instructions about

how to permute your set. We’ll make that more clear now.

2. Place your cards in order on the table in front of you according to the

permutation (4,2,3) (1,6) 5. Write it in sequence notation.



3. Use that same permutation, (4,2,3) (1,6) 5, as instructions about how to

permute the cards again. For instance, the 4 went to the second position the

first time. Now move the card that is in the fourth position to the second

position. The permutation tells you to take the card that’s in the second

position, and put it in the third. It also says to move the card that’s in the

third position to the fourth position. The cards in the positions designate by

the first set of parentheses all swapped places. Continue this process. Write

the result of this second application of the permutation in both Sequence and

Cycle notation.

4. Apply the same permutation to the new order. The card that’s in the

fourth position (not necessarily 4) will move to the second position and so

on. Write the new permutation in both sequence and cycle notations.

Do it some more

5. Shuffle your deck and write the resulting permutation in cycle notation

here.



6. Use the permutation you got in the last problem and apply it repeatedly

like in the previous section.

# of times permutation applied Resulting permutation

7. Essay/Long answer: If you continue applying a permutation to itself like

this, will it eventually get back to the original order of the set? Why or why

not?









10 Lesson 3: Counting permutations

Lesson 3 is a preliminary to the introduction of the Fibonacci solitaire algo-

rithm which occurs in Lesson 4.

An integral part of the Fibonacci solitaire lesson sequence is determina-

tion of the probability of winning. To do this successfully, students need to

know how to count objects such as permutations. This lesson introduces the

student to counting combinatorially, using the multiplicative counting rule,

and guides them to develop the factorial for counting permutations. This

introduction will help students achieve greater success when asked to count

more difficult objects such as perfect pairings and riggings, both of which

can be counted using multiplication.
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Notes to the instructor

Materials Cards: Students will need a deck of numbered cards. A deck of

size 10 is definitely sufficient. Many of the subsequent lessons require

only six cards. A deck of standard playing cards, partitioned into suits,

with King, Queen, and Jack removed will give 4 sets of 10 cards when

the Ace is considered as a 1. If playing cards, or simply numbered

cards are unavailable, you can have students make their own cards

using index cards or slips of paper.

Lesson worksheets: The activity below can be photocopied and should

be distributed to students. An overhead can be made from the activity

as well, if so desired, then students will work with their own paper to

answer the questions projected.

Goals Students will learn simple combinatorial counting techniques.

Students will count the number of permutations of a given set.

Students will encounter and understand factorial notation.

Students will evaluate factorials by hand and with technology.

Prerequisite student knowledge Students should be at a high school math-

ematics level.

Possible student misconceptions Students may fail to develop, in the

first few problems, the understanding that these numbers can be cal-

culated with multiplication, but instead may list out all possibilities
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and count. For such a student, the instructor may want to help the

student organize their lists so that it becomes clear that for each of a

certain attribute, there are a constant number of possibilities. Remind

this student that this form of repeated addition is, in fact, a simple

multiplication problem.

Students may falter when presented with factorial notation. Some may

ask, “Why?”. The instructor might ask in return “why do we use +

when we mean add?” The answer is that sometimes we have to do

something quite often and it behooves us to save time and paper by

writing n! rather than the entire multiplication problem.
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Activity 3 Permutations

May 2010 Cliff Smith

Name:

Counting your options

1. A restaurant has 3 types of meat and 2 types of bread. How many

different sandwiches can they make?

2. You are going to buy a car. There are 3 paint colors to choose from and

3 types of upholstery. How many different ways can you order your car?

3. Mr. Rogers has 7 cardigan sweaters, 9 pairs of loafers, and 4 pairs of

pants. How many different outfits can he put together?



In all of the above problems, you were told how many choices you had for

each item. If you multiplied these choices together you would get the total

number of ways to choose your options. For example, if you chose “mystery

meat #1” you could then get it two ways, with one bread or the other. If you

choose “mystery meat #2” you can get that sandwich two ways also. Same

with the third meat option. You are adding 2 to itself 3 times, ie multiplying

3 and 2.

4. Write some of your friends’ names here. Count how many you wrote.

5. Write some of the ways you could get home after school (if it was ok

with your parents). How many did you write?

6. Write some things you might do when you get home. How many?

7. Assume you go home with one friend, and only do one activity when you

get home. How many ways are there for you plan your afternoon?



How many permutations are there?

8. Pretend you’ve shuffled the same deck of cards we’ve been using previ-

ously. How many options are there for the first card?

9. Now that the first card has been drawn, how many remaining possibilities

are there for the second card?

10. How many for the third card?

11. Keeping that in mind, write an expression that will give the number of

permutations of six objects.

12. Write an expression that will give the number of permutations of 10

objects.



This is called a factorial , and it is written with an exclamation point,

5! = 5 · 4 · 3 · 2 · 1. Your calculator should have an exclamation point and if

you use it, it will do the math for you.

13. Use your calculator to find 20! and 30!.

14. Use your calculator to find the number of ways to permute a set of 40

objects.











11 Lesson 4: Fibonacci solitaire

This lesson is designed mainly to help the student become comfortable with

the algorithm and the associated notation. Additionally, this is the lesson

where students work to decide whether the algorithm is a function. Under-

standing the algorithm as a function is key to understanding the counting

arguments that come later in the lesson sequence. Students should be able

to tell fairly quickly that the algorithm is sufficiently specific to limit the

output to a unique pairing given any order of the cards in the deck. This

lesson also hints at the fact that the algorithm is not injective. Students

can work together to determine whether two different permutations lead to

the same resultant pairing. Formalization of the injective property, and the

algorithm’s lack of it will wait until the next lesson.

75



Notes to the instructor

Materials Cards: Students will need a deck of numbered cards. A deck of

size 10 is definitely sufficient. Many of the subsequent lessons require

only six cards. A deck of standard playing cards, partitioned into suits,

with King, Queen, and Jack removed will give 4 sets of 10 cards when

the Ace is considered as a 1. If playing cards, or simply numbered

cards are unavailable, you can have students make their own cards

using index cards or slips of paper.

Algorithm instruction sheet: The algorithm is called Fibonacci solitaire

and the sheet with instructions and an example game is at the end of

this lesson. Students will be instructed to ask you for the instruction

sheet when they are ready. If you wish, you may give it to them with

the rest of their lesson worksheets.

Lesson worksheets: The activity below can be photocopied and should

be distributed to students. An overhead can be made from the activity

as well, if so desired, then students will work with their own paper to

answer the questions projected.

Goals Students will follow algorithmic instructions.

Students will determine whether an algorithm is a function.

Students will analyze domain and range of the algorithm using previous

knowledge about permutations.

Students will be introduced to the injective concept, if not the vocab-
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ulary.

Prerequisite student knowledge Students should know and understand

the function definition.

Students should understand the concepts of domain and range.

Possible student misconceptions Students may feel that the algorithm

is not a function because it does not have an equation, or because it

cannot be graphed. They may feel it is not a function because they

cannot apply the vertical line test to it. These are common misconcep-

tions about function that often arise because the majority of examples

in the classroom are given in such a context. Students should be re-

ferred to the definition of function. This misconception may need to

be addressed directly.

This function is very different from functions that a student might have

previous experience with. Particularly, the function has the set of per-

mutations as a domain rather than the set of real numbers. Students’

previous work with real functions, and the fact that cards are drawn

one at a time may lead the students to believe that the algorithm has

the set of integers as domain. Direct the students’ attention to the

start of the game and the end of the game. What do they start the

game with? A shuffled set of cards, or a permutation. What does the

game give at the end? A set of pairs and singles (a pairing). Directing

their attention to the entirety of the process rather than a single step

may help them to make the connection to permutation that we desire.
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Students may initially show confusion about the standard notation we

require. It is difficult to explain in writing how to organize the pairing.

Direct student’s attention to the example game and how its result is

written. Perhaps ask the students to organize their cards as in the

example game, and play. What do they obtain as the final result?

How would they have to change their result to make it align with the

example? Do not allow this to take up too much time. The point of the

lesson is the justification of the algorithm as a function. If necessary,

give the student direct instruction about how to write some of their

results.

It may happen that no two students in the classroom obtain the same

final pairing. If students are apt to think that every result comes from

a unique permutation, then the instructor should step in and correct

this logical misstep. Offer the students two example permutations that

will give the same resulting pairing. Ask them to apply the algorithm

to both of your permutations, they should see, that some pairings are

the result of more than one permutation. As an example, consider a

set of four cards. If the initial permutation of these cards is [4, 2, 3, 1]

in that order, then the result will be 1, (2, 3), 4. Now, play the game

again starting with the permutation [2, 3, 4, 1]. You will again end at

1, (2, 3), 4. Tell the students to search together for an example using

their 8-card deck.
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Fibonacci solitaire

To play the game, you will need a deck with an even number of cards. The

cards should be numbered 1, 2, 3,... and so on.

Directions for gameplay

Shuffle the deck. Draw a card from the top of the deck and place it face up

on the table in front of you. Draw the next card from the top of the deck

and compare it to those on the table. The following rules dictate what to do

with this card.

FS 1 If the drawn card is smaller in value than the smallest card on the

table, place it to the left of any cards on the table.

FS 2: If the drawn card is larger in value than the smallest card on the

table, pair it with the smallest card on the table, removing them both

from the table and placing this pair aside.

If at any point the table is empty, simply place the drawn card face up on

the table and continue playing according to the previous rules. When all the

cards have been played, the game is over. There may be cards remaining on

the table. If no cards remain on the table, then all cards have been paired,

and you win.

We will often have need to refer back to these original rules. When we

do so, we will refer to them as FS 1 and FS 2.



An example game

Here we will play an example game together using a six-card deck. It may

be helpful to organize your deck as indicated and play through the example

with your cards. Let us suppose that the cards in the deck have the following

order: 4, 6, 5, 1, 2, 3. The table below shows which card is drawn, and how

the game should be played, given that card.

Card drawn On the table Removed from play

4 4

6 (4,6)

5 5 (4,6)

1 1 5 (4,6)

2 5 (4,6) (1,2)

3 3 5 (4,6) (1,2)

Since there are two cards left on the table, this game does not result in a

win. The initial permutation of the cards was [4, 6, 5, 1, 2, 3] and the final

pairing is (1,2), 3, (4,6), 5



Activity 4 Fibonacci Solitaire

May 2010 Cliff Smith

Name:

1. The instruction sheet your teacher gave you tells how to play a game

called Fibonacci Solitaire. Follow the instructions and play a few games with

a deck of 8 cards, keeping track of the order in which you drew the cards

as well as the resulting pairings. Always write the pairs with the smaller

number first. Write the results with the singles and the small cards from

each pair organized numerically, in ascending order. See the example below,

the numbers in the small boxes are the values of cards in the order they were

drawn the resulting set of pairs and singles is written under “Final pairing”.

Ace is low.

1st 2nd 3rd 4th 5th 6th 7th 8th Final pairing

6 3 8 7 4 2 1 5 (1,5), 2, (3,8), 4, (6,7)



2. If you play the game several times with the same initial order of the

cards in your deck, will you always end up with the same result? Try it.

3. Is it possible for a single permutation of the deck to lead to two different

pairings?

4. Does this algorithm define a function? Provide justification for your

answer. (examples don’t count as justification)

Most functions you’ve seen up to this point take the set of real numbers

as a domain, and usually have a subset of the real numbers as the range.

This function is a bit different.

5. What is the domain of this algorithm?

6. Describe the range of this algorithm.



7. Compare your results with those of your classmates. Do any of your

classmates have a result the same as any of yours? If so, did they have the

same permutation of their deck of cards as you did?

8. Find two permutations that are different, but that lead to the same final

result.









12 Lesson 5: Experimental probability

Determining the theoretic probability of a winning game of Fibonacci soli-

taire is the motivating force behind all of the work that students will do with

permutations, rigging, and inverse functions. It is not necessary, however to

wait until the theoretic probability is determined before developing experi-

mental probabilities with which we can compare the theoretic determination

later. This lesson guides students through a number of games with different

deck sizes and asks them to calculate experimental probabilities by obtaining

sample information from peers. Students will make a conjecture about how

the probability of the algorithm behaves as deck size increases.
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Notes to the instructor

Materials Cards: Students will need a deck of numbered cards. A deck of

size 10 is definitely sufficient. Many of the subsequent lessons require

only six cards. A deck of standard playing cards, partitioned into suits,

with King, Queen, and Jack removed will give 4 sets of 10 cards when

the Ace is considered as a 1. If playing cards, or simply numbered

cards are unavailable, you can have students make their own cards

using index cards or slips of paper.

Algorithm instruction sheet: The algorithm is called Fibonacci solitaire

and the sheet with instructions is at the end of the previous lesson.

Students should have kept their instruction sheets from the prior lesson,

but you may find it handy to have a few extra copies available.

Lesson worksheets: The activity below can be photocopied and should

be distributed to students. An overhead can be made from the activity

as well, if so desired, then students will work with their own paper to

answer the questions projected.

Goals Students will cooperate to find an experimental probability for win-

ning the Fibonacci solitaire game with two different deck sizes.

Students will make a conjecture about the theoretical probability based

on their examples.

Prerequisite student knowledge Students should have completed lesson

4 and be familiar with the Fibonacci solitaire algorithm.
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Students must know what a permutation is and how to identify it.

Students should be familiar with simple probability and how to find it.

Possible student misconceptions Students may feel that the theoretic

probability is the real probability, and that their experimental prob-

ability is wrong, or is just an approximation to the real probability.

Students may also hold these views in the reverse order. This is a good

lesson to help the students understand that these two different proba-

bilities, obtained in different ways, are equally valid, and have differing

uses. Many probabilities in real contexts cannot be calculated, but

must be determined experimentally. Probabilities determined in this

way are not wrong. Students should know that experimental proba-

bility will, statistically speaking, approach the theoretic probability as

the sample size increases.

Students may obtain different experimental probabilities and view this

as meaning that they are wrong. This should be discouraged. Students

often want their answers and work to be the same as others, this mirrors

the view that there is only one way to do mathematics, and that any

other way is incorrect. This should also be discouraged.
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Activity 5 Fibonacci Solitaire

May 2010 Cliff Smith

Name:

1. Using a “deck” with only two cards, play the Fibonacci solitaire game 5

times. When you are finished, count how many times you won and find your

experimental probability of winning. Divide the number of games you won

by the total number of games you played.

Initial permutation Final pairing

2. Ask 4 of your classmates how many times they won when they played with

only two cards. Using this sample, determine the experimental probability

of winning. Divide the total number of wins you and your four classmates

had by the total number of games you and your four classmates played.



3. How many different ways are there to order the cards in a two-card deck?

List them.

4. How many of the permutations you found in the previous problem result

in a win?

5. Find the theoretic probability of winning with a two-card deck. Divide

the number of orderings of the deck that result in a win by the total number

of orders of the deck.

6. Compare the theoretic probability from the last problem with the ex-

perimental probabilities you calculated in problems 1 and 2. How do they

compare? Which of the experimental probabilities is closer to the theoretic

probability you found in the last problem?



7. Now you need a deck of four cards. Play the game 5 times. Find your

experimental probability for these 5 games.

Initial permutation Final pairing

8. Ask 4 of your classmates how many times they won when they played

with a four-card deck. Combined with your results, you now have a sample

size of 25 games. Determine the experimental probability of winning with

this sample.

9. Develop and organize a table that contains all the permutations of a four-

card deck, (remember that 4! is the number of permutations). Determine

whether or not each game ends in a win. Find the theoretic probability of

winning with a four-card deck.



10. Examine the two experimental probabilities you found, and the theoretic

probability you developed. Which of the experimental probabilities is closer

to the theoretic? any ideas why?

11. Play the game 5 times with an eight-card deck. Find your experimental

probability with this sample of five.

Initial permutation Final pairing

12. Ask 4 of your classmates how many times they won when they played

with a four-card deck. Combined with your results, you now have a sample

size of 25 games. Determine the experimental probability of winning with

this sample.



13. Which of these two experimental probabilities do you think is closer to

the theoretic probability of winning with an eight-card deck? Why do you

think so?

14. Make a conjecture about the experimental probability you would obtain

if you used the results of all of your classmates? How big would the sample

size be?













13 Lesson 6: Fibonacci solitaire as a function

The initial lesson involving the Fibonacci solitaire game hinted at the non-

injective nature of this algorithm. This lesson introduces and helps explain

the concept of injective functions and formalizes the knowledge that the

algorithm is not injective. The algorithm provides a concrete example of

why the injective property is necessary for a function to have an inverse.

Students will see that because the function is not injective, if they try to

reverse their steps, they will not be able to do so in a well defined way. This

concrete example will help to demystify the inclusion of the injective property

in the definition of inverse function.
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Notes to the instructor

Materials Cards: Students will need a deck of numbered cards. A deck of

size 10 is definitely sufficient. Many of the subsequent lessons require

only six cards. A deck of standard playing cards, partitioned into suits,

with King, Queen, and Jack removed will give 4 sets of 10 cards when

the Ace is considered as a 1. If playing cards, or simply numbered

cards are unavailable, you can have students make their own cards

using index cards or slips of paper.

Algorithm instruction sheet: The algorithm is called Fibonacci solitaire

and the sheet with instructions is at the end of the previous lesson.

Students should have kept their instruction sheets from the prior lesson,

but you may find it handy to have a few extra copies available.

Lesson worksheets: The activity below can be photocopied and should

be distributed to students. An overhead can be made from the activity

as well, if so desired, then students will work with their own paper to

answer the questions projected.

Goals Students will observe and support their claim that the Fibonacci

solitaire function is not injective.

Students will discover the importance of the injective property to in-

verse functions.

Prerequisite student knowledge Students should have completed lesson

4 and be familiar with the Fibonacci solitaire algorithm.
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Students must know what a permutation is and how to identify it.

Students should have, at least, been introduced to the injective prop-

erty of functions.

Students should have studied, at least briefly, the concept of function

inverses. Students should know how to find the inverse of a linear

function.

Possible student misconceptions The injective property is often confused

for the function definition. There is good reason for this. The two prop-

erties are so similar because the injective property allows an inverse

relation to be a function. To reduce confusion, the injective property is

often stated “a function f is one-to-one if whenever f(a) = f(b), then

a = b”. The similarity between the injective property and function

definition is confusing, but it can also be very enlightening. Talk as a

class about how the two are related. Expect your students to struggle

here, but do not be alarmed.

Students may believe the function is not injective because it does not

pass the horizontal line test. They may believe this because they cannot

draw the function, so cannot apply the test. Conversely, some students

may believe that the function is injective for similar reasons, every hor-

izontal line does not intersect this function because in different spaces,

one in real space, the other in the space of permutations. Tell the stu-

dents that because this function does not have the real numbers as a

domain, it cannot be drawn on the familiar coordinate axes. Because
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of this, they cannot use the horizontal line test. Refer students to the

definition of the injective property.

Students may think that finding a permutation that gives a certain re-

sult indicates that the process is invertible. The instructor should guide

these students to look for other permutations that give the same result.

Additionally, the instructor could tell the student to compare answers

with peers and see whether they found the same permutation. Ask the

student what it means that there are two permutations that give the

same result. How does the student know for sure which permutation

the given result arises from?
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Activity 6 Fibonacci Solitaire

May 2010 Cliff Smith

Name:

1. Work with a friend to find two different permutations that lead to the

same result after playing Fibonacci solitaire. What are the permutations?

What is the result?

2. Find two numbers that are different from each other, but whose squares

are equal. In other words, find two numbers a and b so that a2 = b2.

A function is called one-to-one, or injective, if every value of the range

comes from a unique value in the domain. Stated another way, a function f

is one-to-one if whenever f(a) = f(b), then a = b. For example, the function

f(x) = x2 is not one-to-one because 22 = (−2)2 but 2 6= (−2).

3. Is the Fibonacci solitaire function one-to-one? Explain.



4. Suppose someone told you that they played Fibonacci solitaire and that

they got the result (1,2), 3, (4,6), 5. Can you find out what their starting

permutation was? If so, find it. If not, say why.

An inverse function is one that undoes the process of another. For in-

stance if f is a function, and g is its inverse, then if you apply f to an element

of its domain, and apply g to the result, the output from g is the element to

which you originally applied f .

5. Let f(x) = x+ 7 what is the function that will undo what f does?

6. Shuffle your deck of cards. Write the permutation in sequence and

cycle notations. What is the permutation that undoes that permutation?

That is, What is the permutation that will return the cards to the order

[1,2,3,4,5,6,7,8]

7. Essay/Long answer: Why is it important that a function be one-to-one

in order for it to have an inverse?







14 Lesson 7: Undoing Fibonacci solitaire

Lesson 7 introduces the depth function, rigging, and the algorithm that is

the reversal of Fibonacci Solitaire. Students will work through some tasks

that require them to calculate depths of cards in certain pairings, then they

will play through the original algorithm, keeping track of depths as they go.

Rigging will be explained and students will be required to find the rigging

of their pairing, then they will follow the reversal algorithm. Students will

learn that with the addition of rigging, Fibonacci solitaire is now an injective

function, and they will have experience with the inverse. This will lead to

the next lesson where students will learn what a bijective correspondence is

and how it can be used to reach our goals.
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Notes to the instructor

Materials Cards: Students will need a deck of numbered cards. A deck of

size 10 is definitely sufficient. Many of the subsequent lessons require

only six cards. A deck of standard playing cards, partitioned into suits,

with King, Queen, and Jack removed will give 4 sets of 10 cards when

the Ace is considered as a 1. If playing cards, or simply numbered

cards are unavailable, you can have students make their own cards

using index cards or slips of paper.

Algorithm instruction sheet: The algorithm is called Fibonacci solitaire

and the sheet with instructions is at the end of lesson 4. Students should

have kept their instruction sheets from the prior lesson, but you may

find it handy to have a few extra copies available.

Reverse Algorithm instruction sheet: It’s easy to refer to this algorithm

as the Reverse algorithm. Students will need a copy of the instructions

to refer to. The Reverse Algorithm instruction sheet is at the end of this

lesson. It is important that this sheet be separate from the students’

worksheets so that they can refer to it while working.

Lesson worksheets: The activity below can be photocopied and should

be distributed to students. An overhead can be made from the activity

as well, if so desired, then students will work with their own paper to

answer the questions projected.

Goals Students apply a function to a permutation to obtain information
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about that permutation

Students will be introduced to a new algorithm.

Students will understand that the new algorithm is the inverse of the

Fibonacci solitaire algorithm.

Students will examine domain and range of an inverse function.

Prerequisite student knowledge Students should understand the func-

tion definition.

Students should have knowledge of the injective property of functions.

Students should know what an inverse function is.

Students should understand the relation between the injective property

and inverse function.

Possible student misconceptions Students will be tempted to modify

the rigging on pairings as they play backward. This may be a re-

sult of how the δ function was introduced and discussed. Students will

want to equate rigging and depth. This should be discouraged. Remind

students that a depth can change, but once a rigging is established, it

stays put.

Students may be uncomfortable with the δ(a) = b notation. Many sec-

ondary students are uncomfortable with function notation, but should

be encouraged to continue to work at understanding it. Continued

practice will improve their ability to use the symbolic notation. Re-

mind students that δ(a) is just the number of cards written to the right
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of a. The δ function is deceptively simple. Students may want to use

their calculators, or fill out an equation. Remind them that they need

only count.
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Reverse algorithm

As you remove cards from the table according to the algorithm below, place

them facedown in a single pile.

Compare the current depth of all bottoms with their rigging.

Reverse 1 If no bottoms have a current depth matching their rigging, re-

move the smallest singleton.

Reverse 2 If any bottoms have a current depth matching their rigging, con-

sider the smallest such bottom, call it b. If there are no singletons

smaller than b, remove the top that is paired with b. Otherwise, re-

move the smallest singleton.



Activity 7 Fibonacci Solitaire

May 2010 Cliff Smith

Name:

Depth

1. Shuffle the deck. Play a game of Fibonacci Solitaire. Be sure to write

down the initial permutation of the cards in your deck as well as the resulting

set of pairs and singletons.

The depth,δ of a card is the number of cards written to the right of that

card. For instance, in the result (1,2), 3, (4,6), 5, the depth of 1 is 5, so we

write δ(1) = 5.

2. Find the depths of all the cards in your result from problem 1.



We have to keep track of our games in a different way now. As you play,

you need to write down the partial results. For instance, if the first card you

draw is a 4, the first partial result is 4. If the next card is a 6, then the

next partial result is (4,6). Remember to write the partial results in numeric

order. Below is an example from the permutation [4,6,5,1,2,3]

4

(4, 6)

(4, 6), 5

1, (4, 6), 5

(1, 2), (4, 6), 5

(1, 2), 3, (4, 6), 5

3. Shuffle your deck and play a game of Fibonacci solitaire. Keep track of

your partial results like in the example above.

4. Find the depth of the lower card in each pair for all your partial results in

the previous problem. If a card hasn’t been drawn for a given partial result,

then its depth is undefined. In the example above, δ(1) is undefined until

the fourth step.



Rigging

What we really need to keep track of though is the depth of the lower cards

in each pair when that pair is first created. In the example above, δ(4) = 1

when the pair (4,6) was first made. Also δ(1) = 4 when the pair (1,2) was

first made. We will write this important information as a subscript, so that

our new final result looks like (14, 2), 3, (41, 6), 5

5. Using your game from problem 3, determine the depth of the low card

in each pair when that pair was first made. Write that information as a

subscript on your final result.

6. Shuffle your deck and play Fibonacci solitaire. Write down all the partial

results as well as the starting permutation, and find the depth of the lower

card from each pair when that pair was first created.

This information that you are writing as a subscript on your final results

we will call the rigging. The rigging will allow us to play the game backward.

7. Ask your instructor for a backward playing instruction sheet. Did you

get one?



8. Follow the directions carefully and, starting from your final result in

problem 6, play backward. Don’t peek at your partial results from 6, just

follow the directions and when you are done, check to see that you ended

at your starting permutation from problem 6. If you ended elsewhere, make

sure your rigging is correct and try again. Follow the instructions carefully.

9. Use the rigged pairing

1, (24, 6), (32, 10), 4, (53, 7), 8, 9

and play backward. Write the order of the deck you obtained as a result.

10. Remember what we said last time about inverse functions and one-to-

one functions. Because we can now undo the Fibonacci solitaire function,

what does that tell you?

11. What is the domain of the Fibonacci solitaire function?



12. What is the new range of the Fibonacci solitaire function?













15 Lesson 8: Winning Fibonacci solitaire

Understanding bijective correspondences need not wait until college algebra.

It is clear to see that if a correspondence can be made from the objects

of one set to the objects of another, then those sets must be of the same

size. This lesson helps students to understand that, and helps them to see

distinctly what sets are in bijective correspondence due to the Fibonacci

solitaire algorithm. Students then work to count the number of objects in

the domain and in the range. Students will determine how to count the

number of rigged perfect pairings using their knowledge gained from lesson

3. These numbers are sufficient to calculate the probability of winning, and

students will do so for a few values of n. The mathematics here is deep, but

because the example is concrete, we hope that students will be able to more

readily generalize to the abstract.
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Notes to the instructor

Materials Cards: Students will need a deck of numbered cards. A deck of

size 10 is definitely sufficient. Many of the subsequent lessons require

only six cards. A deck of standard playing cards, partitioned into suits,

with King, Queen, and Jack removed will give 4 sets of 10 cards when

the Ace is considered as a 1. If playing cards, or simply numbered

cards are unavailable, you can have students make their own cards

using index cards or slips of paper.

Lesson worksheets: The activity below can be photocopied and should

be distributed to students. An overhead can be made from the activity

as well, if so desired, then students will work with their own paper to

answer the questions projected.

Goals Students will use their intuitive understanding of correspondences to

conjecture about numbers of objects in different sets.

Students will use previous knowledge of counting rules to count the

number of rigged perfect pairings.

Students will use their conjecture about bijective correspondences to

understand that the number of rigged perfect pairings is the same as

the number of winning permutations.

Students will calculate the probability of winning using a deck of given

size.

Prerequisite student knowledge Students should understand the defini-
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tion of function.

Students should be able to reason about sets of objects.

Students should complete activity 3, or be familiar with combinatorial

counting rules.

Students should be familiar with simple probability.

Possible student misconceptions The counting problems in this section

are non-trivial. Students may develop a variety of counting arguments.

There are many correct methods of counting the set of rigged perfect

pairings. Unfortunately, there are even more incorrect ways to count

this set. Students may convince themselves that they have found a

correct way to count the set when they have either under-counted or

over-counted. In each case it is the teachers’ place to give an example

of the over/under count so that students will continue to work.
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Activity 8 Fibonacci Solitaire

May 2010 Cliff Smith

Name:

One-to-one correspondences

1. Suppose that there are two parking lots. One lot has trucks in it, and

the other has cars. Suppose that every truck is a different color than every

other truck. Also suppose that for every truck of a given color you can find

exactly one car of that same color in the other lot. For example, if you see

an orange truck, that means that there is exactly one orange car. What can

you say about the number of trucks and the number of cars?

2. Imagine a room with a bunch of your friends in it. Some people are on

the left side of the room, and some on the right. Every person on the left

side of the room is pointing at someone on the right side. That person on

the right side is pointing straight back at the person who is pointing at him.

Suppose everybody is pointing at somebody. What can you say about the

number of people on the left side of the room and the number of people on

the right side of the room.



The previous two problems are examples of a one-to-one correspondence.

3. Count the number of chairs in your classroom out loud. How many are

there?

What you’ve just done is create a one-to-one correspondence between the

numbers 1, 2, 3, 4,... and the chairs in your room.

4. In your own words (two sentences minimum) write what it means for

two sets of objects to be in a one-to-one correspondence.

5. What does a one-to-one correspondence tell us about the numbers of

objects in these sets?

A function and its inverse can be thought of as a room full of people

pointing at each other like in problem 2. The permutation [4, 6, 5, 1, 2,

3] and the rigged result (14, 2), 3, (41, 6), 5 would be two people on opposite

sides of the room, both pointing at each other. This means that a function

that has an inverse creates a one-to-one correspondence between its domain

and its range.



6. What can we say about the sizes of the set of permutations of 6 objects,

and the set of rigged results of Fibonacci solitaire played with 6 cards?

Counting winning games

What we’re really interested in is the probability of winning a game of Fi-

bonacci solitaire. It’s hard to determine how many permutations end in

winning games. However, we can handily count the winning rigged results.

Since they each point at a specific permutation, meaning that they are in

a one-to-one correspondence with winning permutations, they are the same

number.

7. Work with a friend to find the number of winning final results when

playing with 8 cards. Remember what you learned when counting permuta-

tions.

8. Given a winning game, how many different ways can you pick a rigging?

Remember, riggings must be positive and less than or equal to the card’s

final depth. (how many different values can a given card have?)



9. How many winning, rigged results are there when playing with 8 cards?

10. How many permutations are there for an 8 card deck?

11. The probability of winning is given by

# of winning permutations

# of permutations
.

What is probability of winning with an 8 card deck?











16 Reflection on classroom implementation

In an attempt to estimate the effectiveness of such activities in the class-

room, I implemented two previous versions of the activities outlined above

in two separate classroom experiments. One of these was with a mixed group

of undergraduate and graduate students who were taking a discrete math-

ematics course designed for current and future mathematics teachers. The

second of these experiments took place in an intermediate algebra course at

a nearby community college. In the first class, the focal points of the lesson

were the counting process and the use of bijective functions to simplify object

counting. For the second class, I implemented a lesson designed to empha-

size the differences between injective and non-injective functions in the hopes

that such a lesson might help students to understand the abstract definitions

given in their textbooks. Changes have been made to these lessons for several

reasons, but the goals addressed in my classrooms are still addressed by the

modified lessons in this article.

While designing the lessons, I was consistently questioning whether a

certain question or task might reduce the cognitive demand of the activity.

There was a constant struggle to balance mathematical demand while guid-

ing student attention. In their book [6], Boaler and Humphreys develop a

method of determining the cognitive demand of classroom activities. If an

activity gives too much information, or if questions divide the activity into

steps that are simply procedural, much of the cognitive demand of the task

can be removed. However, if not enough support is given to the students they
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may spend much of their time following a path that will not lead to success, or

they may stop trying and degenerate into non-mathematical activity (2005).

Understanding this, I constantly asked myself if a certain question would re-

move the student’s opportunity to think deeply, while simultaneously asking

whether the questions I was asking provided an appropriate amount of scaf-

folding. I believe that the lessons I created were appropriately demanding of

the student, however that demand may have been misplaced. In an attempt

to build activities that were inquiry oriented, I required students to develop

the reverse algorithm themselves. At times the majority of the cognitive de-

mand on the student seemed to be that of creating the algorithm. I want the

demand to be in developing arguments that the algorithm is injective, or that

the inverse algorithm is an inverse function. Students should be occupied in

learning mathematics that is applicable to other situations, not simply this

algorithm. They seemed to enjoy the puzzle of trying to construct the re-

versal algorithm. Typically, students were able to see that smaller singletons

need be removed first, and that a pair’s top needs to be removed before the

bottom. However, this logical puzzle does not necessarily lead to mathe-

matical activity. The lessons below have been modified to place more of the

demand on the counting arguments and functional analysis, while removing

much of the demand in the section about the algorithm. It is not necessary

that students construct the reverse algorithm, but that they understand how

to use it, and that it works.

In both cases, student interest was high. Students in each of the exper-

imental classrooms indicated that they liked the activities. There is some
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question as to whether the physical manifestation of the function in the form

of an algorithm on playing cards allowed greater understanding of the un-

derlying function. I did not attempt to teach the algorithm without cards,

but this could be an interesting question for further study. The lessons I

hoped to implement were slightly ambitious in the sense that I underesti-

mated the time that would be required for students to be able to complete

the tasks. Modifications were made to the lessons to correct this mistake.

These modifications range from splitting a lesson into several, to giving more

direct instruction in the use of the algorithms, allowing students more time

to deal with the mathematics.

In preparing the lesson for the first class, I wanted to reduce some of the

confusion and direct instruction necessary to teach the standard notation in

which we write pairings that allows determination of the rigging. It is difficult

to explain this notation in writing, and often is difficult even with examples.

It often takes several examples to ensure that all students understand the

specifics. I believed that I could modify the algorithm in such a way that the

cards on students’ tables would be ordered in a way that directly translated

to the standard written form. I did so quickly and perhaps over-confidently.

When reading the algorithm, I was not sufficiently objective. I believed it

would act as I hoped, but I was sorely incorrect. Here is the algorithm that

I presented to the students.

Wrong 1: If the drawn card is smaller in value than the smallest on the

table, place it face up to the left of the cards on the table.
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Wrong 2: If the card is larger than any on the table, slide it under the

smallest unpaired card on the table. These two cards are now a pair

and will not be separated for the rest of the game.

Close inspection shows that this is not equivalent to the original algo-

rithm. This led to great confusion in the classroom about what the algorithm

was supposed to do and how to play the game. In a class of undergraduate

or high school students, this may have derailed the entire activity. At the

very least, it would have necessitated a large amount of time in which the

correct algorithm was written on the board and students learned to play.

Additionally, If a person who was not familiar with the algorithm tried to

use the lesson, they may not have been able to produce the correct algorithm.

This mistake is a clear reminder that any modifications to a lesson require

a significantly objective eye to determine whether the changes even make

sense. Since then, I have created the algorithm that does what I wanted the

bad algorithm above to do, but it is unwieldy and unnecessarily complicated.

Revision 1: If the drawn card is smaller in value than the smallest unpaired

card on the table or if there is no unpaired card on the table, place it

on the table in numerical order in relation to the single cards and the

smaller cards of each pair.

Revision 2: If the card is larger than the smallest unpaired card on the

table, slide it under that smallest unpaired card. These are now a pair

and will stay together throughout the rest of the game.
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These instructions are difficult to follow, and clarification would require

the addition of further vocabulary, or perhaps breaking the algorithm into

three cases instead of just two. Further, I believe that these more com-

plicated instructions would make reverse play more difficult for students to

understand. Whereas, with the original algorithm, it is clear that the larger

card in every pair comes later in the permutation, this more complicated al-

gorithm seems to obscure that information by requiring the constant moving

and reorganizing of cards during game play. Retaining the original, simpler

algorithm seems the best choice, and the small amount of time required to

ensure that students understand the standard notation is a necessary step.

A step that, I believe, is best accomplished through direct instruction.

138



References

[1] Al-Agha K.J., & Greechie R.J. (2008). Order dimension of orthomodular

amalgamations over trees. Order. 25 (1), 55-68.

[2] Asiala, M., Kleiman, J., Brown, A., & Mathews, D. (1998). The Devel-

opment of Students’ Understanding of Permutations and Symmetries.

International Journal of Computers for Mathematical Learning. 3 (1),

13.

[3] Asiala, M., Dubinsky, E., Mathews, D. M., Morics, S., & Okra, A.

(1997). Development of Students’ Understanding of Cosets, Normality,

and Quotient Groups. Journal of Mathematical Behavior. 16 (3), 241-

309.

[4] Bates, C., Bundy, D., Perkins, S., & Rowley, P. (2004). Commuting In-

volution Graphs in Special Linear Groups. Communications in Algebra.

32 (11), 4179-4196.

[5] Bax, E. T. (1994). Algorithms to count paths and cycles. Information

Processing Letters. 52 (5), 249.

[6] Boaler, J., & Humphreys, C. (2005). Connecting mathematical ideas:

Middle school video cases to support teaching and learning. Portsmouth,

NH: Heinemann.

139



[7] Devillers A., & Giudici M. (2008). Involution graphs where the prod-

uct of two adjacent vertices has order three. Journal of the Australian

Mathematical Society. 85 (3), 305-322.

[8] Gnedin, A., & Kerov, S. (2000). The Plancherel measure of the Young-

Fibonacci graph. Mathematical Proceedings of the Cambridge Philo-

sophical Society. 129 (3), 433-446.

[9] Gnedin, A., & Kerov, S. (2002). Fibonacci Solitaire. Random Structures

and Algorithms. 20, 71-88.

[10] Gnedin, A., & Kerov, S. (2005). Derangement Characters of the Finite

General Linear Group. Algebras and Representation Theory. 8 (2), 255-

274.

[11] National Governors Association and Council of Chief State School Of-

ficers. (2009). College and Career Readiness Standards for Mathematics

(Draft for Review and Comment). Common Core Standards Initiative,

http://www.corestandards.org/Files/MathStandardsSources.pdf.

[12] National Governors Association and Council of Chief State

School Officers. (2009). Common Core State Standards for

Mathematics (draft). Common Core Standards Initiative,

http://www.corestandards.org/Files/K12MathStandards.pdf.

[13] Perkins, S. (2006). Commuting involution graphs for Ãn. Archiv Der
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