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Abstract 

 

 

 

 
 Complex numbers and their basic operations are important components of 
the college-level algebra curriculum. Common learning objectives of college algebra 
are the computation of roots and powers of complex numbers, and the finding of 
solutions to equations that have complex roots. A portion of this instruction includes 
the conversion of complex numbers to their polar forms and the use of the work of 
the French mathematician, Abraham De Moivre, which is De Moivre’s Theorem. 
 
 The intent of this research project is to explore De Moivre’s Theorem, the 
complex numbers, and the mathematical concepts and practices that lead to the 
derivation of the theorem. The research portion of this document will a include a 
proof of De Moivre’s Theorem, 

   . 

where  is a complex number and n is a positive integer,  the 

application of this theorem, nth roots, and roots of unity, as well as related topics such as 

Euler’s Formula: 



eix  cos x  isin x, 

and Euler’s Identity  



ei 1 0. 
 

 This research will provide a greater understanding of the deeper 
mathematical concepts necessary to effectively teach the subject matter. In addition 
it will provide the opportunity to explore lessons and activities that will facilitate 
students developing a greater appreciation for the significance and power of the 
complex number system. 
 

 

 

 

 



zn  r cos isin  
n
 rn cosn isinn 



z  r cos isin 



 

  

 

ii 

Table of Contents 
 

 

Abstract.......…………………………………………………………………………...… i 

 

 

Part One:  The History and Mathematics of De Moivre's Formula 

 

 

Chapter 1: Some History…………………………………….......................……….. 2 

1.1 History of the Complex Numbers 

1.2 History of Abraham De Moivre 

 

Chapter 2: Some Mathematics……....................................................……………..  7 

2.1  Complex Numbers—Rectangular Form 

2.2  Complex Numbers—Polar Form  

2.3  Powers of Complex Numbers—De Moivre’s Theorem 

2.4  The Proof of De Moivre's Theorem 

 

Chapter 3: Some Uses and Related Content….………………………………..…  18 

3.1  Extracting Roots 

3.2  Power Series and Euler's formula 

 

 

 

Part Two:  Teaching Complex Numbers and De Moivre's Formula 

 

 

 

Overview of the Curriculum………………………………………………....……..… 22 

 

Lesson 1 – Operations of complex numbers………..………………………..……..... 25  

Activity 1 Lesson Plan 

Activity 1 SMART Board Slides 

Activity 1 

Teacher Solutions 

Student Version 

Reflections on Activity 1 

 

Lesson 2 – The Fundamental Theorem of Algebra…………………………………..36 

Activity 2 Lesson Plan 

Activity 2 SMART Board Slides 

Activity 2 

Teacher Solutions 

Student Version 

Reflections on Activity 2 



 

  

 

iii 

 

Lesson 3 – Complex Numbers and the Complex Plane……………………….……..51  

Introduction to Activity 3 

Activity 3 

Teacher Notes and Solutions 

Reflections on Activity 3 

 

Lesson 4 –  Polar Coordinates……….……..................................................................65 

Introduction to Activity 4 

Activity 4 

Teacher Notes and Solutions 

Reflections on Activity 4 

 

Lesson 5 – Trigonometric Form of a Complex Number.……………………...……81 

Lesson Plan 5a and 5b 

SMART Board Slides 5a 

Activity 5a 

Teacher Solutions 

Student Version 

SMART Board Slides 5b 

Activity 5b 

Teacher Solutions 

Student Version 

Reflections on Activity 5a and 5b 

 

Final Reflection……………………………………………………………..….……..115 

 

References…………………………………………………………………...…….…..117 

 

 

 

 

 



 

 

 

1 

 

 

 

 

 

 

Part One: 

 

The History and Mathematics of  

De Moivre's Formula 

 

 

 

 

 

 

 



 

 

 

2 

Chapter 1 – Some History 
 

 

 

Section 1.1 – History of the Complex Numbers 

 

The set of complex or imaginary numbers that we work with today have the fingerprints of many 

mathematical giants.  

 In 1545 Gerolamo Cardano, an Italian mathematician, published his work Ars Magnus 

containing a formula for solving the general cubic equation 



x3  ax2 bx c  0 

While deriving the formula, Cardano came across the solution with the square root of a negative 

number. Cardano did not publish this casus irreducibilis, considering it useless. 

 Rafael Bombelli introduced a label for such numbers in his set of books l’Algebra 

published in 1572 and 1579. While Cardano chose not to publish his work with complex 

numbers, Bombelli found the casus irreducibilis had validity and introduced a notation, calling it 

a “piu di meno,” for 



 1 and ―meno di meno” for 



 1 . He devised a table to explain his 

notation. 

  piu di meno via piu di meno fa meno 

  piu di meno via meno di meno fa piu 

  Meno di meno via piu di meno fa piu 

  meno di men via meno di meno fa meno  (Bashmakovia & Smirnova, 2000).  

Which means:  
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

1  1  1

1   1  1

 1  1  1

 1   1  1.

 

   

 Abraham De Moivre (1667 – 1754) further extended the study of such numbers when he 

published Miscellanea Analytica in 1730, utilizing trigonometry to represent powers of complex 

numbers. His work is the subject of the mathematical portion of this paper, and his life is 

described in more detail in the next section. 

 John Wallis contributed to the visualization of complex numbers in a treatise titled 

Algebra. Employing a single axis with positive values to the right and negative values to the left, 

Wallis constructed a circle with one end of the diameter 



AC  at the origin and the other to the 

right as a positive value. By then constructing similar right triangles within and about the circle 

and tangent to the circle, he reasoned the geometric mean would hold true regardless of positive 

or negative values assigned to vertices.  

 

That is 



AB

x

x

PB
 for side lengths AB and PB or 



x  AB PB  regardless of the position relative 

to the axis. While Wallis’ theories furthered the geometric image of complex numbers, they were 

awkward and inconclusive (Nahin, 1998).  
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 The Norwegian surveyor Caspar Wessel presented his visual interpretation of complex 

numbers to the Royal Danish Academy of Science in 1797. Wessel described a complex number 

a + bi, as point (a, b) on a plane consisting of a real axis and an imaginary axis (Nahin, 1998).  

  

 Sources attribute other brilliant men working in the field of mathematics, during the same 

time period, with utilizing similar representations of complex numbers. Carl Fredrick Gauss 

(1777 – 1855) relied upon a positional description of 



1 , much like Wessel’s. According to 

Paul J. Nahin, ―Gauss had been in possession of these concepts in 1796 and had used them to 

reproduce without Gauss’ knowledge, Wessel’s results‖ (1998, p. 82). In 1799, as part of his 

dissertation, Gauss relied on this knowledge to prove that any polynomial with real coefficients 

could be written as the product of linear or quadratic factors. Any such polynomial would then 

have a solution contained in the set of complex numbers (Mazur, 207).  This we now know as the 

Fundamental Theorem of Algebra. Gauss is also attributed with the introduction of the term 

complex number. 

 Leonhard Euler (1707 – 1783), a Swiss mathematician, refined the geometric definition 

of complex numbers. He described the solutions of the equation 



xn 1 0 as vertices of a 

regular polygon in the plane. Euler also introduced the notation 



1  i .  He defined the 

complex exponential, and published his proof of the identity 



eix  cos x  isin x, in 1748 (Nahin, 

1998).  
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 Isaac Newton once said, ―If I have seen further it is by standing on ye shoulders of 

Giants‖  (Livio 101). While Newton’s word where likely a slight to his contemporary Robert 

Hooke, it is certain that our understanding of complex numbers, or any other mathematical 

concept, are an evolution of the contributions of many. 

 

Section 1.2 – History of Abraham De Moivre 
 

Abraham De Moivre was born in Champagne France on May 26, 1667. He became interested in 

mathematics at an early age and pursued mathematics intentionally in school and on his own. It 

was De Moivre’s unfortunate luck to be born into a protestant family at a time when the ruling 

monarchy was restricting religious freedom. He left France when he was 18, to live in London 

where his luck would most decidedly change. He was eventually thrown into the company of 

many brilliant mathematicians. Throughout his time in London he supported himself as a tutor.  

 Shortly after his arrival in London, De Moivre obtained a copy of Isaac Newton’s book 

Principia. He studied Newton’s work intently even tearing out, and carrying pages of the book 

so that he could study the work during spare moments. Tradition has it that De Moivre 

eventually became such an expert on Newton’s work that Newton himself would refer questions 

regarding Principia to de Moivre, saying, ―he knows more about it than I do‖ (Nahin 1998). 

 De Moivre met Edmond Halley in 1692. Halley took a paper written by De Moivre to the 

Royal Society. Through this introduction De Moivre became part of the exclusive society where 

men like Newton, Halley, Wallis and Cotes exchanged and clashed over ideas that were to 

become the many of the founding precepts of mathematical theory today. He was elected to the 

Royal Society in 1697. He was appointed to a commission in 1712 that would settle the battle 



 

 

 

6 

between Newton and Leibniz over the right to claim himself as the inventor of calculus. He of 

course ruled in favor of Newton (Maor 1998).  

 De Moivre made many contributions to the field of mathematics, mainly in the areas of 

theory of probability and algebra/trigonometry. In 1718 he published The Doctrine of Chances: 

or, a Method of Calculating the Probability of Events in Play. In 1725 De Moivre published a 

work A Treatise of Annuities upon Lives, an examination of mortality statistics. De Moivre 

published a formula in 1733 that approximated n factorial, 



n! cnn1/ 2en , where c is some 

constant. Unfortunately De Moivre was not able to determine the value of c. Today the formula 

is known as Stirling’s formula, since James Stirling of Scotland determined the value to be  



n! 2nnnen  (Maor 1998). 

 De Moivre’s third publication in 1730 is the work that motivates this research, 

Miscellanea Analytica. Here De Moivre tackles the important dilemma of the time, the 

factorization of the polynomial 



x2n  pxn 1 into quadratics. De Moivre was continuing the 

efforts of Roger Cotes. Essential to his work was a trigonometric representation of powers of 

complex numbers, we know today as De Moivre’s Theorem. That is



cos isin 
n
 cos n  isin n . It is interesting to note that it was Euler and not De Moivre 

that wrote this result explicitly (Nahin 1998).  

 Despite De Moivre’s mathematical contributions, he continued to support himself by 

tutoring. He was never able to attain an appointment to a chair at a university. In his latter years 

he began to sleep more and more. It is reported that he predicted the day of his own death. After 

observing his sleep time increased each day by an additional 15 minutes he calculated the 

arithmetic progression until he would sleep forever. His calculations were correct. He died 

November 27, 1754 (Maor, 1998). 
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Chapter 2 – Some Mathematics 

 

 

Section 2.1 – Complex Numbers—Rectangular Form 

 

The standard form of a complex number is a + bi where a is the real part of the number and b is 

the imaginary part, and of course we define 



i  1. Also we assume 



i2  1 since
  



1 
2

 1.  

The set of complex numbers contains the set of all real numbers, that is when b = 0.  

 We apply the same properties to complex numbers as we do to real numbers. To be 

considered equal, two complex numbers must be equal in both their real and their imaginary 

components. That is to say, the numbers 



abi  c di are equal to one another if and only if 



a  c  and 



b  d. 

 Complex numbers have the same additive identity as the real number system, namely 

zero. The additive inverse of the complex number a + bi is 



 abi abi  thus 



abi  a bi  00i  0. 

 When we add or subtract complex numbers, we add or subtract the real parts and the 

imaginary parts separately. Given the complex numbers a + bi and c + di, we add or subtract as 

follows: 

   



abi  c  di  ac  b d i    

   



abi  c  di  a c  b  d i. 

For example:   



22i  4 5i  6 7i  

   



22i  4 5i  2  3i  
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It is important to note that the sum or difference of two complex numbers can become a real 

number with no imaginary part, 

   



16i  56i  4 0i  4 . 

Because the complex numbers contain the set of real numbers, however, this fact does not 

contradict the fact that the complex numbers are closed under both addition and multiplication. 

Many other properties of real numbers apply to complex numbers: 

 The Associative Property of Addition  

   



abi  c  di   e fi  abi  c  di  e fi    

 The Commutative Property of Addition  

   



abi  c  di  c  di  abi  

 The Distributive Property of Multiplication over Addition       

  



k abi  abi  abi  abi  . . .  abi  ka kbi  for 



kR. 

These same properties hold for multiplication of complex numbers. Here we must rely on the 

defined value 



i2  1. Then for the complex numbers a + bi and c + di, 

   

 

a b i  c  d i  a c  d i b ic  d i 

 a c a d i b c i b d i 2

 a c a d i b c i b d  1 

 a cb d a d i  b c i

 a cb d  a db c i

 

As the above computation illustrates, we can also use the polynomial multiplication process 

commonly called FOIL to multiply complex numbers.  In order to find the quotient of complex 

numbers we rely on the complex conjugate. The complex conjugate of 



abi  is the complex 

number



a bi , where the imaginary parts differ only by a sign and the product of the two is a 

real number.  
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

abi  a bi  a a bi bi a bi  

    



 aa  ab i  ab i  bb i2

 a2  b2 1 

 a2  b2

 

 

Then for the quotient of complex numbers we have  

  



abi

c  di

abi

c  di










c  di

c  di









 

   




ac  adi  bci  bdi2

c2  d2


ac  adi  bci  bd 1 

c2  d2


ac  adi  bci  bd

c2  d2


ac  bd  bc  ad i

c2  d2

 

 

where the simplified value has no imaginary part in the denominator. Notice that, as a result, the 

complex numbers are closed under division, as long as the divisor is nonzero. 

 We graph complex numbers on the coordinate system called the 'complex plane', where 

the horizontal axis is the real axis and the vertical axis is the imaginary axis. On the complex 

plane, every ordered pair or point (a, b) corresponds to a unique complex number a +bi.  
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The absolute value of a complex number is defined as the distance from the origin to the ordered 

pair or point (a, b), 



abi  a2 b2 . 

 If we construct a segment connecting any complex number on the plane with the origin, 

then we will quickly observe that complex number operations share many similarities to 

operations of vectors. The absolute value of a complex number is the same calculation as the 

magnitude of a vector. 

   



abi  a2 b2    



v  v1
2
 v2

2
 

 When we add and subtract complex numbers graphically, it appears very much like vector 

addition and subtraction.  

 

While the multiplication of complex numbers does not match the process for any vector 

operation, if we visualize the complex numbers as vectors, it is much easier to understand what is 

occurring geometrically. On the graph below we see that the multiplication of complex numbers 



A  abi and 



B  c  di produces a new complex number 



C  ac bd  ad bc i, with 

magnitude equal to the product of the magnitudes of A and B. In addition, the angle formed by 

the positive x-axis and 



C  ac bd  ad bc i is equal to the sum of the angles formed by each 

of the complex numbers 



A  abi and



B  c  di , and the positive x-axis.  
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Operations with complex numbers can often become tedious and lengthy. Further discussion of 

the multiplication and division of complex numbers necessitates the consideration of another 

form of complex numbers. 

 

Section 2.2 – Complex Numbers—Polar Form 

 

We can represent a complex number using trigonometry much like we represent vectors in 

trigonometric form. We also call this representation the 'polar form' of complex numbers. Rather 

than using a coordinate for the real part and the imaginary part, we use the absolute value of the 

complex number and the directed angle from the positive x-axis or polar axis to the line segment 

connecting the complex point to the pole, measured in a counter-clockwise direction. 

Then the parameters of the rectangular and polar form are related as follows: 



a  rcos and 



b  rsin 

with  



r  a2 b2 ,    and    



tan 
b

a









 
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so that     



z  abi  rcos  rsin i.. 

 

Here r is called the modulus of the z and 



  is called the argument. Unlike the rectangular 

coordinates  (a, b) for a complex number, the ordered pair 

 

r,  is not unique since for any angle 

     



cos  cos 2k  and 



sin  sin 2k . 

Generally, to address this issue, we restrict such representations of complex numbers to an 

interval such as



0 2 , although a negative angle value may be used. For example we can 

find the trigonometric representation of the number 



z  22i in the following manner:  



r  2 
2
 2 

2
 8  2 2  



tan 
2

2
1 and 



  tan1 1  45 

but we know that z lies in the 3
rd

 quadrant and arctangent has a range of 






2
,


2









 so  

   



  45180 225 ,   or 



225 
5

4  

Putting it all together, we have 



z  2 2 cos225 isin225   or   



z  2 2 cos
5

4
 isin

5

4









. 
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 We use trigonometric or polar form of imaginary numbers for several calculations 

including multiplication and division of complex numbers, and for finding powers of complex 

numbers.  

Given the complex numbers 



z1  r1 cos1  isin1  and 



z2  r2 cos2  isin2  we find the 

product  

  



z1z2  r1r2 cos1  isin1  cos2  isin2  

          



 r1r2 cos1 cos2  cos1isin2  isin1 cos2  i
2 sin1 sin2 

 r1r2 cos1 cos2  1 sin1 sin2  i sin1 cos2  cos1 sin2  
 r1r2 cos1 cos2  sin1 sin2  i sin1 cos2  cos1 sin2  

 

 

Here we see the formula for the cosine of the sum of two angles and the sine of the sum of two 

angles thus  

   



z1z2  r1r2 cos 1 2  isin 1 2  
.
 

We have a very easy calculation to find the product of two complex numbers. We simply 

multiply the modulii and add the arguments. This method is a much more efficient model of the 

previously mentioned graphical representation of complex number multiplication. 
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 Given the same two complex numbers 



z1 r1 cos1isin1  and 



z2  r2 cos2  isin2   we find the quotient as follows. 

  



z1

z2


r1 cos1  isin1 
r2 cos2  isin2 

  

        




r1 cos1  isin1  cos2  isin2 
r2 cos2  isin2  cos2  cos2 


r1 cos1 cos2  icos1 sin2  isin1 cos2  i

2 sin1 sin2 
r2 cos2 

2
 icos2 sin2  icos2 sin2  i

2 sin2 
2 


r1 cos1 cos2  1 sin1 sin2  i sin1 cos2  cos1 sin2  

r2 cos2 2  1 sin2 2 


r1 cos1 cos2  sin1 sin2  i sin1 cos2  cos1 sin2  

r2 cos2 2  sin2 2 

 

 

Here we see the formula for the cosine of the difference of two angles and the sine of the 

difference of two angles, and a Pythagorean identity thus  

   



z1

z2


r1

r2
cos 1 2  isin 1 2  . 

Then for the quotient of two complex numbers we find the quotient of the modulii and the 

difference of the arguments. 

 

Section 2.3 – Powers of Complex Numbers—De Moivre’s Theorem 

 

In order to compute powers of complex numbers we must consider the process of repeated 

multiplication. Given 



z  r cos isin , then  
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

z2  r cos isin   r cos isin   r2 cos2 isin2 

z3  r2 cos2 isin2   r cos isin   r3 cos 3 isin3 

z4  r3 cos 3 isin3   r cos isin   r4 cos 4 isin4 

z5  r4 cos 4 isin4   r cos isin   r5 cos5 isin5 

 

As we continue to increase the power of z, we can see a pattern developing. This pattern is the 

core of the theorem named after the French mathematician Abraham De Moivre. 

 

De Moivre’s Theorem:  If 



z  r cos isin  is a complex number and n is a positive integer, 

then, 

   



zn  r cos isin  
n
 rn cosn isinn . 

 

Using this theorem we can easily compute the power of a complex number such as 



z  22i . 

First we must convert the complex number to its polar form: 

  



z  22i  2 2 cos45 isin45 ,  

 with  



r  22 22  8  2 2 , and



tan1 2

2








 45, 

 where z lies in the1st quadrant.   

Then  

 



z6  22i 
6
 2 2 cos45 isin45  

6

 2 2 
6

cos270 isin270  512i. 
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Section 2.4 – The Proof of De Moivre's Theorem 

 

To prove De Moivre’s Theorem, we use a simple proof by induction. Given a complex number,  



z  cos isin  

we can easily show using repeated multiplication that for n = 0, 1, 2, 3, and 4, 



z0  r0 cos0 isin0  1 cos0 isin0  1 i0 1

z1  r1 cos isin  
1

 r cos isin 

z2  r2 cos isin  
2

 r cos isin   r cos isin   r2 cos2 isin2 

z3  r3 cos isin  
3

 r2 cos2 isin2   r cos isin   r3 cos 3 isin3 

z4  r4 cos isin  
4

 r3 cos3 isin3   r cos isin   r4 cos 4 isin4 

 

 

 

Now let us assume that 



zn  r cos isin  
n
 rn cosn isinn  

is true for some 



nZ
.  

Then we must show that this implies it is true for all n + 1, that is,   

  



r cos isin  
n1

 rn1 cos n 1  isin n 1  . 

Then given  



r cos isin  
n
 rn cosn isinn  

we multiply both sides of the equation by



r cos isin  . 

Then  



r cos isin   r cos isin  
n
 rn cosn isinn r cos isin  

 

Therefore
 



r cos isin  
n1

 rnr cosncoscosnisin isinncos sinnsin . 
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We then employ the use of the common trigonometric formulas for the sum of an angle for sine 

and cosine,  

 



sin x  y  sin xcos y cos xsiny  and  



cos x  y  cos xcos y  sinxsiny . 

We let 



x  n, and 



y   and we have  



rn1 cos n  isin n   rn1 cos n 1  isin n 1  , 

 as desired for all positive integers. 

We must also consider 



nZ
 for  



zn  r cos isin  
n
 rn cos n  isin n  . 

Since cosine and sine are even and odd functions respectively, we have      

   



cos n  isin n  cos n  isin n  

     




cos n  isin n 

cos2 n  sin2 n 


1

cos n  isin n 


1

cos n  isin n 
 cos n  isin n 


1

cos n  isin n 

 

       

Therefore  



rn cos n  isin n  
1

rn
1

cosn isinn







. 
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Chapter 3 – Some Uses and Related Content 
 

 

Section 3.1 – Extracting Roots 

 

Potentially the greatest value of De Moivre’s work lies in the ability to find the n distinct roots of 

a complex number. If we let 



z  p cos isin and



zn  w , 

then for 



w  r cos isin  where 



zn  p cos isin  
n
  

we have 



pn cosn isinn  r cos isin . 

 So that implies that 



pn  r and 



n , or 



p  rn  and 



 


n
. 

Since both cosine and sine have a period of 



2 , we have solutions to both sides of the equation



n , that is 



n 2k  or 



 
2k

n
 with 



k  0, 1, 2, . . . , n 1.  

If we let k = n then we repeat the solutions since
 



 


n
 and 



2k

n



n
2 are co-terminal 

angles. Therefore for the positive integer n, we find n distinct nth roots of the complex number 



w  r cos isin  by 



z  rn cos
2k

n
 isin

2k

n









. 

 Visually we see, on the complex plane, these solutions or nth roots lie on a circle of 

radius 



n r , with n solutions evenly spaced at 



2

n
intervals. 
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 Using this formula we can easily compute the third roots of 1. First we represent 1 as a 

complex number, that is 1 = 1+0i. Then the modulus 



r  12 02 1, and the argument



  tan1 0

1








 0 , so we have



1 cos0 isin0. 

Then for the third roots of 1 we have 



cos
02k

3
 isin

02k

3
 with k = 0, 1, and 2. 

Then the roots are as follows, 

   



cos0 isin0 1

cos
2

3
 isin

2

3
 

1

2
 i

3

2

cos
4

3
 isin

4

3
 

1

2
 i

3

2
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For any set of nth roots of 1, the n distinct roots are called the nth roots of unity. These roots will 

lie on the unit circle, as seen above, and complex solutions will occur as conjugate pairs.  

 

Section 3.2 – Power Series and Euler's Formula  

 

Most any pre-calculus text will contain a chapter of sequences and series. As part of the unit of 

sequences and series, students become familiar with arithmetic, geometric and power series. Two 

familiar power series are those used to represent sine and cosine and the number e. 

   



sin x  x 
x3

3!

x5

5!

x7

7!
 . . .

cos x 1
x2

21

x4

4!

x6

6!
 . . .

ex 1
x

1!

x2

2!

x3

3!

x4

4!
 . . .

 

Leonard Euler (1707 – 1783), a Swiss mathematician, derived a formula relating the three series. 

Euler’s formula is 



eix  cos x  isinx, 

  where 



eix 1
ix

1!

ix 

2

2!

ix 

3

3!

ix 

4

4!
 . . . 

ix 
n1

n 1 !
 . . . 
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

1 ix 
i2x2

2!

i3x3

3!

i4x4

4!
 . . . 

i n1 x n1 

n 1 !
 . . .

1 ix 
x2

2!

ix 3

3!

x4

4!

ix 5

5!

x6

6!

ix 7

7!
 . . .

 

        

        

Now if we group real terms and imaginary terms we have 

       



 1
x2

2!

x4

4!

x6

6!
 . . .









 ix 

ix 3

3!

ix 5

5!

ix 7

7!
 . . .











 1
x2

2!

x4

4!

x6

6!
 . . .









 i x 

x3

3!

x5

5!

x7

7!
 . . .











 cos x  isin x

     

If we let 



x  , then 

            



ei  cos  isin  1 i0
 

or 

            



ei 1 0, 

an equation relating the five most important numerical constants in mathematics. This 

relationship encourages one to explore the question, ―How many mathematicians does it take to 

screw in a light bulb?‖  The answer: 



ei which of course equals 1 (Weisstein). 
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Part Two: 

 

Teaching Complex Numbers 

and De Moivre's Formula 

 

Overview of the Curriculum 

 The following lessons were designed for Pre-calculus classes taught at Oregon City High 

School (OCHS) in Oregon City, Oregon. This class is a two-trimester class, Pre-Calculus A and 

Pre-Calculus B, with a maximum of 35 students enrolled in each class. The student population 

consisted of primarily juniors and seniors with just a few sophomores. At OCHS students are 

required to earn a C or higher in Algebra 2 before they can take Pre-Calculus. Students are also 

strongly encouraged to take a one-trimester Trigonometry class before taking Pre-Calculus B but 

it is not required. As one of the two instructors teaching Pre-Calculus at OCHS, I taught 3 

sections of Pre-Calculus A during fall trimester, and 3 sections of Pre-Calculus B during winter 

trimester. Based on various influences—scheduling, failures, student preference—the student 

roster changed from fall to winter with about 60% of the students I taught in the fall returning for 

Pre-Calculus B in the winter.  
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 The student population of Pre-Calculus A and B comes with a wide variety of skill levels. 

During the first few weeks of Pre-Calculus A students spend time reviewing topics from Algebra 

2 including graphing equations by hand and with the calculator, solving equations graphically 

and algebraically, and solving inequalities graphically and algebraically. It is not unusual to find 

students who are unfamiliar or have great difficulty with point-slope form of a line, factoring to 

solve, completing the square to solve, and the domain and range of functions. In Pre-Calculus B 

we have students who have taken Trigonometry and can solve right triangles with confidence 

while other students struggle to make sense of SOH CAH TOA. It can be challenging to find 

meaningful lessons and activities that meet the needs of this diverse group of learners. 

 The following lessons are taken from the textbook PRECALCULUS WITH LIMITS A 

GRAPHING APPROACH, Third Edition. Ron Larson, Robert P. Hostetler, Bruce H. Edwards. 

The lessons were taught over the two-trimester time period but not as one continuous unit. There 

is a curriculum map already in place at OCHS and within the math department there are strong 

feelings towards maintaining the pacing calendar and section order developed by previous 

instructors.  

  For this research project Lesson 1, Complex Numbers, and Lesson 2, The Fundamental 

Theorem of Algebra, were taught during Pre-Calculus A, during the sixth or seventh week of the 

trimester. They were lessons from the second chapter of the textbook titled Polynomials and 

Rational Functions. Lesson 3, The Complex Plane, was taught in Pre-Calculus B during the 

seventh or eighth week of the winter trimester, and was an extension of the Complex Numbers 

section from the second chapter of the textbook, and the section on De Moivre’s Theorem, with 

additional supplements from several other sources.  
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 This lesson followed a vector unit from chapter 6, Additional Topics in Trigonometry, 

and preceded the lesson on De Moivre’s Theorem, also from chapter 6. Graphing complex 

numbers was not part of the Pre-Calculus A curriculum. Therefore it was assumed that students 

would have no prior knowledge of the complex plane or graphing complex numbers. It was also 

a good opportunity to review complex numbers.  Lesson 4, Polar Coordinates, from the tenth 

chapter, Topics in Analytic Geometry, directly followed the Complex Plane lesson and provided 

students with a more detailed rationale for De Moivre’s Theorem. Lesson 5 and 6, De Moivre’s 

Theorem came from chapter 6, the same chapter as the unit on vectors.  

 It is important to note that students had several weeks worth of experience with 

trigonometry by the time they were exposed to De Moivre’s Theorem. These students had been 

practicing Radian and Degree Measure, Trigonometric Functions and the Unit Circle, Right-

Triangle trigonometry, Graphing Trigonometric Functions, Inverse Trigonometric Functions, 

Using and Verifying Trigonometric Identities, Solving Trigonometric Equations, and working 

with several formulas such as the Sum and Difference, Multiple-Angle, and Product to Sum 

formulas. They had also spent several days using the Law of Sines and the Law of Cosines. 

These were difficult topics for many of these students, more so for those that had not taken the 

Trigonometric class offered at OCHS. Some students seemed to be growing weary of 

trigonometry by the time De Moivre’s Theorem was taught. This was the culminating 

trigonometric topic covered in Pre-Calculus B. The next chapter was Conics and students were 

relieved to find no sign of sine or cosine anywhere in their assignments.  
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Activity 1 Lesson Plan – Basic Operations of Complex Numbers 

 

Instructor: Cynthia Schneider 

   

Subject: Mathematics 

 

Grade Level: 12
th

 grade 

 

Title: Basic Operations of Complex Numbers 

 

Unit Title: Polynomials and Rational Functions 

 

Content/Topic: This lesson is an introduction to the imaginary unit i, and it’s use in writing 

complex numbers in standard form. Students will learn how to add, subtract, and multiply 

complex numbers, and how to use complex conjugates to divide complex numbers. 

 

Content Objectives: Students will be able to recognize and write complex numbers in standard 

form. They will be able to perform basic operations of complex numbers, including the use of 

complex conjugates. 

 

Language Objectives: Students will be able to use the following terminology correctly: 

imaginary unit i, complex numbers, complex conjugate. 

 

Required materials: 

 SMART Board lesson including definitions and examples from PRECALCULUS WITH 

LIMITS: A GRAPHING APPROACH, Third Edition 

 Complex Number Operations worksheet #1  

 

Instruction and Practice: See included SMART Board Lesson 

 

Time Allotment: Allow approximately 25 minutes for the lesson. The included assessment will 

require 30 – 40 minutes depending upon student skill level. 

 

Assessment: See included Complex Number Operations worksheet #1 
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Activity 1 SMART Board Slides - Operations of Complex Numbers 

Slide 1 

 
 

Slide 2 

Learning Objectives: 

1.  You will be able to recognize and write complex numbers in            

standard form. 

 

2.    You will be able to perform basic operations of complex numbers 

 
Slide 3 

 
 

Slide 4 
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Slide 5 

 
 

Slide 6 

 
 

Slide 7 

Complex Conjugates: 

For a + bi the complex conjugate is a - bi 

 

Find the product of the complex conjugates below. 

 (a + bi)(a - bi)  

 

 (1 + i)(1 - i) 

 

 (2 + 3i)(2 - 3i) 
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Slide 8 

 
 

 

Slide 9 
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Activity 1 - Complex Number Operations  

Write the complex number is standard form. 

1.) 



3 9   2.) 



3i2  i   3.) 



75 
2
 

 

 

 

 

 

 

 

Perform the addition or subtraction and write the result in standard form. 

4.) 



4  i  7 2i    5.) 



112i  36i  
 

 

 

 

6.) 



7 18  3 3i 2   7.) 



13i  14  7i  

 

 

 

 

 

8.) 



22 58i 10i    9.) 




3

4


7

5
i











5

6


1

6
i









 

 

 

 

 

 

Perform the multiplication and write the result in standard form.  

10.) 



6 2     11.) 



1 i  32i  
 

 

 

 

 

 

12.) 



6 2i  2  3i     13.) 



14  i 10  14  i 10  
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Find the product of the number and its conjugate. 

14.) 



4 3i     15.) 



3 i 2  
 

 

 

 

Perform the division and write the result in standard form. 

16.) 



6

i
     17.) 



4

4  5i
     

 

 

 

 

 

 

18.) 



8  7i

1 2i
     19.) 



1

4  5i 
2  

 

 

 

 

 

 

 

20.) 



2  3i  5i 
2 3i

    21.) 



2i

2 i


5

2  i
 

 

 

 

 

 

 

 

 

 

Simplify the complex number and write it in standard form. 

22.) 



4i2 2i3  23.) 



5i5   24.) 



2 
6
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Activity 1 – Basic Operations of Complex Numbers (Teacher Version) 
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33 

Activity 1 – Basic Operations of Complex Numbers (Student Work) 
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Reflection on Activity 1 

 Students were curious about the origins of complex numbers. I had several students ask 

why another number system was necessary. A handful of students had already used complex 

numbers and formed negative opinions regarding their use. I find that students seldom spend 

time learning how the various sets of numbers, natural integer, rational, irrational, and real 

numbers are related. Prior to pre-calculus there is little time spent teaching complex numbers let 

alone that the set of complex numbers contains all other sets of numbers. For most students the 

actual calculations were easy but the idea of another number system was more then they wanted 

to think about. 

  Since this lesson was only introductory, it was process oriented and little time was spent 

exploring the uses of complex numbers. Students found the process of adding and subtracting 

very easy. I related this process to combining like terms in an algebraic expression. Once we 

discussed the strategy for multiplying complex numbers using FOIL, this became an easy 

calculation. Division was more difficult. About half the class comprehended the concept of a 

conjugate and cleared complex numbers out of the denominator with ease after a few examples. I 

used the phrase, ―You don’t want i’s on your bottom‖ to catch their attention and help them 

remember to complete this process. It seemed to be effective. I usually relate this to not wanting 

zeros on ―your bottom‖ or a radical on ―your bottom‖.  

 The last three problems of the activity worked well spawning several conversations 

between students regarding the apparent patterns for computing powers of i. I was pleased with 

this response. I love to see students discussing patterns in mathematics and I enjoy hearing the 

words and phrases they use to explain math to one another. 
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Activity 2 Lesson Plan – The Fundamental Theorem of Algebra 

 

Instructor: Cynthia Schneider 

   

Subject: Mathematics 

 

Grade Level: 12
th

 grade 

 

Title: The Fundamental Theorem of Algebra  

 

Unit Title: Polynomials and Rational Functions 

 

Content/Topic: This lesson is an introduction to the Fundamental Theorem of Algebra (FTA). 

Students will find all the zeros or roots of polynomial functions that lie in the complex number 

system. Students will rely on factoring, synthetic and long division, and a graphing calculator to 

locate the zeros or roots. 

 

Content Objectives: Students will be able to use the Fundamental Theorem of Algebra (FTA) to 

determine the number of zeros of a polynomial function, and then find these zeros or roots, 

including complex solutions.  

 

Language Objectives: Students will be able to use the following terminology correctly: FTA, 

linear factorization, roots—zeros—solutions, irreducible. 

 

Required materials: 

 SMART Board lesson including definitions and examples from PRECALCULUS WITH 

LIMITS: A GRAPHING APPROACH, Third Edition 

 Fundamental Theorem of Algebra worksheet #2 

 

Instruction and Practice: See included SMART Board Lesson 

 

Time Allotment: Allow approximately 40 minutes for the lesson. The included assessment will 

require 50 – 60 minutes to complete depending on student skill level. 

 

Assessment: See included Fundament Theorem of Algebra worksheet #2 
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Activity 2 SMART Board Slides – The Fundamental Theorem of Algebra 

Slide 1 

 
 

Slide 2 

 
 

Slide 3 
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Slide 4 

Both of these theorems are referred to as existence theorems.  

They don't tell you how to find the zeros or solutions.  

For that you rely on: 

  Factoring  

  Roots 

  Quadratic Formula 

  Rational Zero Test 

  Synthetic or Long Division 

  Calculator 

 

Slide 5 

 
 

 

Slide 6 

 
 

Slide 7 
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Slide 8 

 
 

Slide 9 

 
 

Slide 10 
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Activity 2 –The Fundamental Theorem of Algebra 

 

Find all the zeros of the function. 

1.) 



f x  x2 x  3  x2 1    2.) 



f x  x 5  x 8 
2 

 

 

 

 

 

3.) 



h t  t  3  t 2  t  3i  t  3i  4.)   



h m  m  4 
2
m 2 4i  m 2  4i  

 

 

 

 

 

 

Find all the zeros of the function. Is there a relationship between the number of real zeros 

and the number of x-intercepts of the graph? Explain. 

5.) 



f x  x3  4x2  4x 16   

  

  
Find all the zeros of the function and write the polynomial as a product of linear factors. 

Use your graphing calculator to verify your results graphically. 

6.) 



f x  x3  3x2 15x 125    7.)



h x  x4 6x3 10x2 6x 9  
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Find all the zeros of the function and write the polynomial as a product of linear factors. 

Use your factorization to determine the x-intercepts of the graph of the function. Use your 

graphing calculator to verify your results graphically. 

8.) 



f x  x2 12x  34    9.) 



f x  x3 11x 150 

 

 

 

 

 

 

 

10.) 



f x  x3 10x2  33x  34   11.) 



f x  x4 8x3 17x2 8x 16 

 

 

 

 

 

 

 

 

Find a polynomial function with integer coefficients that has the given zeros.  (There are 

many correct answers.) 

12.) 



4, 3i, 3i      

 

 

13.) 



6, 52i, 5 2i  
 

 

14.) 



5, 5, 1 i 3  

 

 

Write the polynomial (a) as the product of factors that are irreducible over the rationals, 

(b) as the product of linear and quadratic factors that are irreducible over the reals, (c) in 

completely factored form. 

15.) 



f x  x4 2x3  3x2 12x 18   

 (Hint: One factor is 



x2 6.) 
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Use the given zero to find all the zeros of the function. 

 Function       Zero 

16.) 



f x  2x4  x3  7x2  4x  4     



2i  

 

 

 

17.) 



h x  3x3  4x2 8x 8      



1 i 3  

 

 

 

Graphical Analysis: Use the zero or root feature of a graphing calculator to approximate the 

zeros of the function accurate to three decimal places. Determine one of the exact zeros and 

use synthetic division to verify your result. Find the exact values of the remaining zeros. 

18.) 



f x  x3  4x2 14x 20 

 

 

 

 

 

EXPLORATION: Use a graphing calculator to graph the function 



f x  x4  4x2  k  for 

different values of k. Find values of k such that the zeros of f satisfy the specified 

characteristics. (Some parts have many correct answers.) 

a.)  Four real zeros 

b.) Two real zeros each of multiplicity 2 

c.) Two real zeros and two complex zeros 

d.) Four complex zeros 
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Activity 2 – The Fundamental Theorem of Algebra  (Teacher Version) 
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Activity 2 – The Fundamental Theorem of Algebra  (Student Work) 
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Reflection on Activity 2 

 The second SMART Board was useful since it provided students with a concepts map to 

help them think through the various sets of numbers. I noticed that many students drew the ven 

diagram and referred back to it later. The Fundamental Theorem of Algebra seemed insignificant 

to most students but they frequently made mention of the Linear Factorization Theorem when 

talking to one another. They reminded each other that there were ―n solutions‖ to an equation 

they were working with. When finding solutions of polynomials students were most likely to rely 

on their calculators. This of course was the fastest way to find solutions but I had hoped some 

would remember to look at the possible set of rational solutions, that is 

  



p

q


factors of the contant term

factors of the leading coefficient
, and use synthetic division to confirm. I did require 

students to verify solutions from the calculator with synthetic division.  

 Several students struggled with linear factorization and many forgot to include the pair of 

complex conjugates. They then wondered why their neighbors were getting results with a higher 

leading exponent, or they wondered what to do with the i left over when they multiplied terms 

back together. This became a quick way for me to check understanding. 

Most students found the terminology ―irreducible over the rationals‖ or ―irreducible over the 

reals‖ very confusing. With continued practice the factoring, and writing linear factorizations 

became easier. However for several students it was a formulaic process with specific clues at to 

when to write irreducible over the rationals or reals without understanding why. 

 Problem number 15 was a good opportunity to review long division and it provided 

students with an example of a polynomial that was factorable but had no rational solutions. 
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The last problem gave students a chance to examine how the position of a graph is altered by the 

constant term and reinforced the concepts of zeros as solutions and set the stage for the graphical 

representation of complex solutions. 
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Activity 3 Lesson Plan – Complex Numbers and the Complex Plane 

 

Instructor: Cynthia Schneider 

   

Subject: Mathematics 

 

Grade Level: 12
th

 grade 

 

Title: Complex Numbers and The Complex Plane 

 

Unit Title: Additional Topics in Trigonometry 

 

Content/Topic: This lesson is an introduction to the complex plane. Students will learn how to 

plot complex numbers given and real axis and an imaginary axis. They will also learn to find the 

absolute value of a complex number.  

 

Content Objectives: Students will be able to plot complex numbers on the complex plane and 

find the absolute value of a complex number. 

 

Language Objectives: Students will be able to understand and use the following terminology: 

complex plane, real axis, imaginary axis, and absolute value of a complex number. 

 

Required materials: 

 SMART Board lesson including definitions and examples from PRECALCULUS WITH 

LIMITS: A GRAPHING APPROACH, Third Edition 

 Graphing Complex Numbers worksheet #3  

 

Instruction and Practice: See included SMART Board Lesson 

 

Time Allotment: Allow approximately 20 minutes for the lesson. The included assessment will 

require 20 – 25 minutes to complete depending on student skill level. 

 

Assessment: See included Graphing Complex Numbers worksheet #3 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

52 

Activity 3 SMART Board Slides – Complex Numbers and the Complex Plane 

Slide 1 

 
 

Slide 2 

 
 

Slide 3 
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Slide 4 

 
 

Slide 5 

 
 

Slide 6 
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Activity 3 – Complex Numbers and the Complex Plane 

 

Express each complex number as an ordered pair and then graph each number on the 

complex plane. 

1.) 



3 4i     2.) 



4  i  

    
 

3.) 



3 3i       4.) 



4i  

    
 

5.) 



2       6.) 



42i
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Calculate the absolute value of each number and then graph each number on the complex 

plane. 

 

7.) 



1 i      8.) 



1 i   

 

 

  

     
 

9.) 



22i  
       10.) 



22i   
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11.) 



3  i 3      12.) 



 5  i 5  
 

 

 

    
 

 

13.) 



3i      14.) 



2 2i 2  
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15.) 



55i 5  
      

 
 

Find each sum graphically. Check algebraically. 

16.) 



4  i  4 5i     17.) 



32i  2 4i   

 

    
 

18.) 



6  i  32i  

 
 

 

 



 

 

 

58 

Activity 3 – Complex Numbers on the Complex Plane  (Teacher’s Version) 
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Activity 3 – Complex Numbers on the Complex Plane (Student Work) 
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Reflection on Activity 3 

  Students found this lesson very easy and were expecting more difficult work. They 

adapted quickly to graphing on the complex plane. Several students commented on the 

similarities between finding the absolute value of a complex number and finding the magnitude 

of a vector. The only portion of this activity that gave students trouble was with calculations 

when a or b was a radical. Here I think it was how to graph a radical, and the look of a radical 

squared and underneath a radical when finding the absolute value.  

 Students needed prompting with the process for the last three questions. Once I suggested 

using a process similar to adding vectors they all were able to complete these exercises. 

When I teach this unit again I will change the directions for problems 1 – 6 to be more specific. I 

was looking for an ordered pair to identify the location. Notice that the student work I have 

included shows these ordered pairs with a value for the vertical coordinate that includes an i. 
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Activity 4 Lesson Plan – Polar Coordinates 

 

Instructor: Cynthia Schneider 

   

Subject: Mathematics 

 

Grade Level: 12
th

 grade 

 

Title: Polar Coordinates   

 

Unit Title: Topics in Analytic Geometry 

 

Content/Topic: This lesson provides students an additional mathematical perspective of 

graphing. Students will learn how to plot points in polar form. Students will convert points from 

rectangular to polar form, and polar to rectangular. Students will be introduced to the conversion 

of equations from rectangular to polar form and vice versa. 

 

Content Objectives: Students will be able to plot and find multiple representations of points in 

the polar coordinate system.  Students will be able to convert points from rectangular to polar 

form and vice versa.  

 

Language Objectives: Students will understand and be able to use the following terminology: 

polar coordinate system, polar axis, pole,  

 

Required materials: 

 SMART Board lesson including definitions and examples from PRECALCULUS WITH 

LIMITS: A GRAPHING APPROACH, Third Edition 

 Polar Coordinates worksheet #4  

 Polar Graph paper for students to take notes on 

 

Instruction and Practice: See included SMART Board Lesson 

 

Time Allotment: Allow 30 – 35 minutes for the lesson, and 40 – 45 minutes for students to 

complete the Polar Coordinates worksheet #4. 

 

Assessment: See included Polar Coordinates worksheet #4 
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Activity 4 SMART Board Slides – Polar Coordinates 

Slide 1 

 
 

Slide 2 

 
 

Slide 3 
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Slide 4 

 
 

Slide 5 
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Slide 6 

 
 

Slide 7 

 
Slide 8 
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Slide 9 

 
 

Slide 10 
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Activity 4 – Polar Coordinates 

 

Find the corresponding rectangular coordinates for the given polar points. 

1.) 



4,


2









    2.) 



1,
5

4









 

 

  
 

Plot the point given in polar coordinates and fin three additional polar representations of 

the point using 



2  2. 

3.) 



4,
2

3









    4.) 



5, 
5

3









 
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5.) 



3

2
, 

3

2









    6.) 



3, 
7

6









 

 

 

 

 

  
 

Plot the point given in polar coordinates and find the corresponding rectangular 

coordinates for the point. 

7.) 



4, 


3









      8.) 



18, 
3

2









 
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Plot the given rectangular coordinates and find two sets of polar coordinates for the point 

for 



0  2. 

9.) 



7, 0     10.) 



3, 4  
 

 

  
 

Convert the rectangular equation to polar form. Assume 



a 0. 

11.) 



x2  y2  49      12.) 



x2  y2  a2 

 

 

 

 

 

13.) 



x2  y2 2ax  0     14.) 



x2  y2 2ay  0 

 

 

 

 

 

15.) 



x 12       16.) 



x  a 

 

 

 

 

 

Convert the polar equation to rectangular form. 

17.) 



r  4sin   18.) 



 


6
   19.) 



r2  cos 
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Activity 4 – Polar Coordinates (Teacher Version) 
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Activity 4 – Polar Coordinates (Student Work) 
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Reflection on Activity 4 

 Students had only minor problems plotting any given polar coordinate. However, most 

struggled with finding additional polar coordinates describing the same point. Note problem #4 

in the student version of the activity. This student, like most, had trouble visualizing a rotation 

from the positive pole in the counterclockwise direction to a co-terminal angle. Every student 

had trouble finding the angle 



  units away with a negative r-value. I found the best way to help 

students think through this process was with a physical example. I would stand ―on the pole‖ 

with my arm extended and say ―I am pointing at the pole, or the positive x-axis‖. Then I would 

rotate my body 



 


3
 units clockwise. I would describe that I was now facing this direction 



 

and then take 4 steps out to the location. I would then repeat this process rotating in the 

counterclockwise direction 



 
2

3
. I would describe how I was facing opposite the location 

desired and so would take 4 steps backwards, represented by a negative value. For some reason 

this practice of physically moving to demonstrate the process seemed to help more students grasp 

the process of finding additional representations. Maybe it was just funny to watch their teacher 

spin around in circles? 

 Converting polar coordinates to rectangular was an easy process for students. Converting 

rectangular coordinates to polar coordinates was more difficult. Students had trouble with 

inverse tangent function value when the rectangular coordinates were in the 2
nd

 and 3
rd

 quadrant. 

I asked students to make a quick sketch of the point in rectangular coordinates. Then we 

discussed the inverse tangent function and its range. We would discuss the value of the inverse 

tangent function and how it related to the actual point. It took working through both problems 

before students began to see that they needed to add or subtract 



  to find the correct angle. I will 

include several more of these types of problems in the future.  
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 Converting equations was extremely challenging. This was not major objective for this 

lesson but rather an introduction to the concept. With practice about half of my students could 

convert a basic equation from rectangular to polar. The reverse was much more difficult. 
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Activity 5 – Trigonometric Form of a Complex Number 

 

Instructor: Cynthia Schneider 

   

Subject: Mathematics 

 

Grade Level: 12
th

 grade 

 

Title: Trigonometric Form of a Complex Number  

 

Unit Title: Additional Topics in Trigonometry 

 

Content/Topic: This lesson is designed to instruct students on how to re-write complex numbers 

in polar form. Students will then learn to multiply and divide complex numbers in polar form. 

Students will use De Moivre’s Theorem to find powers of complex numbers. Finally, students 

find nth roots of real and complex numbers. 

 

Content Objectives: Students will be able to write complex numbers in polar or trigonometric 

form. Students will be able to multiply and divide complex numbers in polar or trigonometric 

form. Students will be able to use De Moivre’s Theorem to find powers complex numbers and 

nth roots of real and complex numbers. 

 

Language Objectives: Students will understand and be able to use the following terminology: 

trigonometric form of complex number, modulus, argument, De Moivre’s Theorem, nth roots, 

and roots of unity. 

 

Required materials: 

 SMART Board lesson including definitions and examples from PRECALCULUS WITH 

LIMITS: A GRAPHING APPROACH, Third Edition 

 Products and Quotients of Complex Numbers in Trig Form worksheet #5a 

 De Moivre’s Theorem and Nth Roots worksheet #5b 

 

Instruction and Practice: See included SMART Board Lesson 

 

Time Allotment: Allow two class periods to complete this lesson. On the first day allow 25 – 35 

minutes for the lesson and 40 – 45 minutes to complete the worksheet #5a. On the second day 

allow 30 – 35 minutes for the lesson, and 40 – 45 minutes to complete worksheet #5b. 

 

Assessment: See included worksheets #5a, and #5b. 
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Activity 5a SMART Board Slides – Products and Quotients of Complex 

Numbers in Trigonometric Form 

Slide 1 

 
 

Slide 2 

 
 

Slide 3 
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Slide 4 

 
 

Slide 5 

 
 

Slide 6 

 
 

Slide 7 

 
  

Slide 8 
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Slide 9 

 
 

 

Slide 10 

 
 

Slide 11 
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Activity 5a - Products and Quotients of Complex Numbers in Trig Form 

 

Write the complex number in trigonometric form. 

1.)          

 
 

2.)  

 
 

 

Represent the complex number graphically, and find the trigonometric form of the 

number. 

3.) 



55i      4.) 



3  i   
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5.) 



2 1 i 3      6.) 



8i  

 

 

    
 

 

 

 

 

7.) 



7 4i    
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Represent the complex number graphically, and find the standard form of the number. 

8.) 



2 cos120 isin120     9.) 



3

2
cos 330 isin330  

 

 

 

 

    
 

 

10.) 



3.75 cos
3

4
 isin

3

4









    11.) 



4 cos
3

2
 isin

3

2









 
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Perform the operation and leave the result in trigonometric form. 

12.) 



3 cos


3
 isin



3



















4 cos



6
 isin



6



















  

 

 

 

 

 

13.) 



3

2
cos



6
 isin



6



















6 cos



4
 isin



4



















 

 

 

 

 

 

14.) 



5

3
cos140 isin140 







2

3
cos60 isin60 







  

 

 

 

 

 

 

15.) 



cos5 isin5  cos20 isin20  
 

 

 

 

 

 

 

16.) 



cos50 isin50

cos20 isin20
    17.) 



2 cos120 isin120 
4 cos40 isin40 
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18.) 



cos
7

4









 isin

7

4











cos  isin
    19.) 



18 cos54 isin54 
3 cos102 isin102 

 

 

 

 

 

 

 

 

20.) 



9 cos20 isin20 
5 cos75 isin75 

 

You have in your notes the proof for multiplying complex numbers in trigonometric form. 

Use a similar process to prove the following. 

21.)  

Given two complex numbers 



z1  r1 cos1  isin1  and 



z2  r2 cos2  isin2  , z2  0 ,  

 

 Prove that 



z1

z2


r1

r2
cos 1 2  isin 1 2  . 
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Activity 5a - Products and Quotients of Complex Numbers in Trig Form 

(Teacher Version) 
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Activity 5a - Products and Quotients of Complex Numbers in Trig Form 

(Student Version) 
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Activity 5b SMART Board Slides – De Moivre’s Theorem and Nth Roots 
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Slide 2 
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Slide 3 
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Slide 5 

 
 

Slide 6 
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Slide 7 
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Slide 9 

 
 

Slide 10 
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Activity 5b – De Moivre’s Theorem and Nth Roots 

 

Use De Moivre’s Theorem to find the indicated power of the complex number. Express the 

result in standard form. 

1.) 



1 i 
3      2.) 



1 i 
10     

 

 

 

3.) 



2 3  i 
5
     4.) 



32i 
5   

 

 

 

5.) 



5 cos20 isin20  
3
   6.) 



cos
5

4
 isin

5

4











10

 

 

 

 

 

7.) 



3 cos150 isin150  
4
   8.) 



4 cos2.8 isin2.8  
5
 

 

 

 

 

 

Use the Complex Root Theorem to find the indicated roots of the complex number and 

then represent each of the roots graphically. Express the roots in standard form. 

9.) Fourth roots of 



16 cos
4

3
 isin

4

3









    
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10.) Fifth roots of 



32 cos
5

6
 isin

5

6









  

         
               

 

11.) Fourth roots of i 

         
 

12.) Fifth roots of 1 
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Use the Complex Roots Theorem to find all the solutions of the equation and represent the 

solutions graphically. 

13.) 



x4  i  0     

         
 

14.) 



x5 243  0    

         

15.) 



x3 64i  0  
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Activity 5b – De Moivre’s Theorem and Nth Roots (Teacher Version) 
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Activity 5b - De Moivre’s Theorem and Nth Roots (Student Work) 
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Reflection on Activities 5a and 5b 

 

 Students had some difficulty with the process of re-writing complex numbers in trig 

form, particularly with values in quadrants 2 – 4. Students were not confident with their 

knowledge of the range of the inverse tangent function. They were reluctant to plot an imaginary 

number and then use the location of that point to visualize an approximate angle of rotation from 

the positive x-axis. When faced with an angle from the tangent inverse that seemed incorrect 

students were confused and unsure whether to add 



2  or 



  in order to obtain the angle, which 

terminates in the 2
nd

 or 3
rd

 quadrant. With repeated instructions to consider which quadrant the 

rectangular coordinates would lie in, and reminders of the restrictions to the range of the inverse 

tangent function, students got better at conversions. 

 Students had little trouble with the process of multiplying and dividing once a complex 

number was converted to trig form. Students had little trouble with the process of De Moivre’s 

Theorem. They enjoyed having a series of clearly defined steps to work through, rather than the 

ambiguity of proving trigonometric identities. There was very little interest in the proof of this 

theorem. Students found it tedious and were reluctant to follow along. 

 The process of finding roots was almost as easy for students as powers. I expected 

students to have more difficulty with finding nth roots of equations such as 



x4  i  0. Most 

students were quick to find the first root with the formula for roots and then found multiples of 

the angle for this value based on the exponent for x. Several students struggled with writing the 

complex number in trig form if there was no imaginary part. For example if the equation to solve 

was 



x5 243  0 they had trouble visualizing the point on the complex plane. 

Student learning would have improved greatly with an additional class period of lecture and 

practice. 
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Final Reflection 

 

 

 While it was with some trepidation the curriculum for this class was re-ordered and 

supplemented, it was satisfying to observe students identify similarities between plotting 

complex numbers and vectors. It was surprising to find that with practice, students were quite 

capable of writing complex numbers in trigonometric form. Students continued to grumble 

regarding the need for another number system throughout the lessons, until they began to find 

nth roots of equations. Here not every student came to see the purpose for complex numbers but 

many did, and a handful even seemed to grasp the elegance of our number system where rules 

stay true and values hold despite the addition of an imaginary unit.  

 In changing individual lessons it seems better to combine operations of complex numbers 

along with graphing on the complex plane. However, it would be necessary to review these 

concepts along with instruction on the absolute value of complex numbers prior to writing 

complex numbers in polar or trig form.  The textbook gives very little precedent for writing 

complex numbers in polar form and the section on polar numbers comes four chapters later. 

Students are likely to question what they are being taught. It was helpful to provide students with 

a more thorough understanding of polar coordinates before turning to complex numbers in their 

polar or trigonometric form.  

 Finally, if there were one over-arching element to change for these lessons on complex 

numbers, De Moivre’s Theorem, and nth roots, it would be to have more time for each lesson 

and more time for student practice. Students felt pushed to perform without feeling confident in 

their understanding. There was not time to introduce any of the history of complex numbers, 

Abraham De Moivre, or Euler’s formula . Certainly these are important to 
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student learning. Student disbelief at the need for an additional number system was an ongoing 

topic of conversation throughout these lessons. Perhaps insight would be gained through learning 

even some of the history of the complex number system and the great mathematicians that 

contributed to its discovery.  
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