Reidemeister-Schreier Rewriting Process for Group Presentations
 A 501 paper presented for the degree of Master of Mathematics

Levi Casey
Under the direction of
J. Caughman
(adviser)
P. Latiolais (reader)

December 8, 2017

The People

Kurt Reidemeister
(13 October 1893-8 July 1971)

Loved cats.

Otto Scheier
(3 March 1901-2 June 1929)

Hated cats.

Interesting Tidbits

Kurt Reidemeister

- Geometer
- Contributed significantly to Knot Theory
- Leader of the original Vienna Circle of Logical Positivists
- Forced out of Germany in the 1930s due to his vocal opposition to the Nazi party.

Otto Schreier

- Algebraist
- Said of Reidemeister in a letter:
"By his humorous remarks he caused such roaring laughter as has never been heard, so it seems, in the Mathematics Society."
- Musician

Free Groups

A practical example.

Free Groups

A practical example.

- Generating symbols (in this paper, always finite).

Let us say $\{a, b, c\}$.
We include symbols such as a^{-1}, b^{-1}, and c^{-1}.

Free Groups

A practical example.

- Generating symbols (in this paper, always finite). Let us say $\{a, b, c\}$. We include symbols such as a^{-1}, b^{-1}, and c^{-1}.
- Words in those generating symbols. Examples: $a a b, c b c, b^{-1} b a, a^{-1} a^{-1} c b$.

Free Groups

A practical example.

- Generating symbols (in this paper, always finite). Let us say $\{a, b, c\}$.
We include symbols such as a^{-1}, b^{-1}, and c^{-1}.
- Words in those generating symbols. Examples: $a a b, c b c, b^{-1} b a, a^{-1} a^{-1} c b$.
- We "multiply" words simply with concatenation.

Ex : the product of $c b c$ and $b^{-1} b a$ is

Free Groups

A practical example.

- Generating symbols (in this paper, always finite). Let us say $\{a, b, c\}$.
We include symbols such as a^{-1}, b^{-1}, and c^{-1}.
- Words in those generating symbols. Examples: $a a b, c b c, b^{-1} b a, a^{-1} a^{-1} c b$.
- We "multiply" words simply with concatenation. Ex: the product of $c b c$ and $b^{-1} b a$ is $c b c b^{-1} b a$

Free Groups

A practical example.

- Generating symbols (in this paper, always finite). Let us say $\{a, b, c\}$.
We include symbols such as a^{-1}, b^{-1}, and c^{-1}.
- Words in those generating symbols. Examples: $a a b, c b c, b^{-1} b a, a^{-1} a^{-1} c b$.
- We "multiply" words simply with concatenation. Ex: the product of $c b c$ and $b^{-1} b a$ is $c b c b^{-1} b a$ OR b^{-1} bacbc

Free Groups

A practical example.

- Generating symbols (in this paper, always finite).

Let us say $\{a, b, c\}$.
We include symbols such as a^{-1}, b^{-1}, and c^{-1}.

- Words in those generating symbols. Examples: $a a b, c b c, b^{-1} b a, a^{-1} a^{-1} c b$.
- We "multiply" words simply with concatenation. Ex: the product of $c b c$ and $b^{-1} b a$ is $c b c b^{-1} b a$ OR $b^{-1} b a c b c$
So multiplication of words in a free group is not commutative.

Free Groups

A practical example.

- Generating symbols (in this paper, always finite).

Let us say $\{a, b, c\}$.
We include symbols such as a^{-1}, b^{-1}, and c^{-1}.

- Words in those generating symbols. Examples: $a a b, c b c, b^{-1} b a, a^{-1} a^{-1} c b$.
- We "multiply" words simply with concatenation. Ex: the product of $c b c$ and $b^{-1} b a$ is $c b c b^{-1} b a$ OR $b^{-1} b a c b c$
So multiplication of words in a free group is not commutative.
- We call the word in no (generating) symbols the empty word, and denote it with the symbol e. This is the identity of a free group, F.

Free Groups

- Allowed reductions.

Free Groups

- Allowed reductions.
- Words such as $b^{-1} b$ or $b b^{-1}$ can be reduced to the empty word.

Free Groups

- Allowed reductions.
- Words such as $b^{-1} b$ or $b b^{-1}$ can be reduced to the empty word.
- By associativity of concatenation, words such as aaa or $b b$ can be reduced to a^{3} or b^{2} respectively.

Free Groups

- Allowed reductions.
- Words such as $b^{-1} b$ or $b b^{-1}$ can be reduced to the empty word.
- By associativity of concatenation, words such as aaa or $b b$ can be reduced to a^{3} or b^{2} respectively.
- We call two words, w and w^{\prime}, freely equal if one can be transformed into the other through a series of the above two allowed reductions.

Free Groups

- Allowed reductions.
- Words such as $b^{-1} b$ or $b b^{-1}$ can be reduced to the empty word.
- By associativity of concatenation, words such as aaa or $b b$ can be reduced to a^{3} or b^{2} respectively.
- We call two words, w and w^{\prime}, freely equal if one can be transformed into the other through a series of the above two allowed reductions.
Examples: $a a b c c^{-1}$ is freely equal to $a^{2} b$

Free Groups

- Allowed reductions.
- Words such as $b^{-1} b$ or $b b^{-1}$ can be reduced to the empty word.
- By associativity of concatenation, words such as aaa or $b b$ can be reduced to a^{3} or b^{2} respectively.
- We call two words, w and w^{\prime}, freely equal if one can be transformed into the other through a series of the above two allowed reductions.
Examples: $a a b c c^{-1}$ is freely equal to $a^{2} b$ $a b c c^{-1} b^{-1} a^{-1}$ is freely equal to the empty word, e.

Free Groups

- Allowed reductions.
- Words such as $b^{-1} b$ or $b b^{-1}$ can be reduced to the empty word.
- By associativity of concatenation, words such as aaa or $b b$ can be reduced to a^{3} or b^{2} respectively.
- We call two words, w and w^{\prime}, freely equal if one can be transformed into the other through a series of the above two allowed reductions.
Examples: $a a b c c^{-1}$ is freely equal to $a^{2} b$ $a b c c^{-1} b^{-1} a^{-1}$ is freely equal to the empty word, e.
(Note that the last example shows that $(a b c)^{-1}=c^{-1} b^{-1} a^{-1}$, so the "socks and shoes" method is valid here.)

Group Presentations

Let D_{4} represent the usual dihedral group, which corresponds to the symmetries of a square,

$$
D_{4}=\left\{e, a, a^{2}, a^{3}, b, a b, a^{2} b, a^{3} b\right\}
$$

Group Presentations

Let D_{4} represent the usual dihedral group, which corresponds to the symmetries of a square,

$$
D_{4}=\left\{e, a, a^{2}, a^{3}, b, a b, a^{2} b, a^{3} b\right\}
$$

or as a presentation,

$$
D_{4}=\left\langle a, b \mid a^{4}=e, b^{2}=e, a b=b a^{3}\right\rangle
$$

We call the symbols to the left of "|" the generating symbols, and to the right of "|" the defining relations.

Group Presentations

We could also set each relation equal to e, and rewrite the previous presentation leaving out the " $=e$ ":

$$
D_{4}=\left\langle a, b \mid a^{4}, b^{2}, a b a b\right\rangle
$$

Group Presentations

We could also set each relation equal to e, and rewrite the previous presentation leaving out the " $=e$ ":

$$
D_{4}=\left\langle a, b \mid a^{4}, b^{2}, a b a b\right\rangle
$$

Here we still call a and b generators, but we will call relations written in this way relators.

Group Presentations

We could also set each relation equal to e, and rewrite the previous presentation leaving out the " $=e^{\prime \prime}$:

$$
D_{4}=\left\langle a, b \mid a^{4}, b^{2}, a b a b\right\rangle
$$

Here we still call a and b generators, but we will call relations written in this way relators.

What does this actually mean?

Group Presentations

We could also set each relation equal to e, and rewrite the previous presentation leaving out the " $=e^{\prime \prime}$:

$$
D_{4}=\left\langle a, b \mid a^{4}, b^{2}, a b a b\right\rangle
$$

Here we still call a and b generators, but we will call relations written in this way relators.

What does this actually mean?
Well, the theory, which we will state without proof, is that if N is the normal subgroup of the free group F generated by the relators, then

$$
F / N \cong G
$$

Obtaining D_{4} from the free group $F=\langle a, b\rangle$

- Let $F=\langle a, b\rangle$ and $D_{4}=\left\{e, r, r^{2}, r^{3}, f, r f, r^{2} f, r^{3} f\right\}$.

Obtaining D_{4} from the free group $F=\langle a, b\rangle$

- Let $F=\langle a, b\rangle$ and $D_{4}=\left\{e, r, r^{2}, r^{3}, f, r f, r^{2} f, r^{3} f\right\}$.
- Define the homomorphism $\varphi: F \rightarrow G$ by

$$
\varphi\left(a^{n_{1}} b^{n_{2}} \cdots a^{n_{r-1}} b^{n_{r}}\right)=r^{n_{1}} f^{n_{2}} \cdots r^{n_{r-1}} f^{n_{r}}
$$

where $n_{i} \in \mathbb{Z}, r \in \mathbb{Z} \geq 0$ for all i.

Obtaining D_{4} from the free group $F=\langle a, b\rangle$

- Let $F=\langle a, b\rangle$ and $D_{4}=\left\{e, r, r^{2}, r^{3}, f, r f, r^{2} f, r^{3} f\right\}$.
- Define the homomorphism $\varphi: F \rightarrow G$ by

$$
\varphi\left(a^{n_{1}} b^{n_{2}} \cdots a^{n_{r-1}} b^{n_{r}}\right)=r^{n_{1}} f^{n_{2}} \cdots r^{n_{r-1}} f^{n_{r}}
$$

where $n_{i} \in \mathbb{Z}, r \in \mathbb{Z} \geq 0$ for all i.

- Let N be the normal subgroup generated by a^{4}, b^{2}, and $a b a b$.

Obtaining D_{4} from the free group $F=\langle a, b\rangle$

- Let $F=\langle a, b\rangle$ and $D_{4}=\left\{e, r, r^{2}, r^{3}, f, r f, r^{2} f, r^{3} f\right\}$.
- Define the homomorphism $\varphi: F \rightarrow G$ by

$$
\varphi\left(a^{n_{1}} b^{n_{2}} \cdots a^{n_{r-1}} b^{n_{r}}\right)=r^{n_{1}} f^{n_{2}} \cdots r^{n_{r-1}} f^{n_{r}}
$$

where $n_{i} \in \mathbb{Z}, r \in \mathbb{Z} \geq 0$ for all i.

- Let N be the normal subgroup generated by a^{4}, b^{2}, and $a b a b$.
- Recalling that a requirement for normalcy is that $w N w^{-1}=N$, for all words $w \in F, N$ must be the subgroup generated by the words $\left\{w a^{4} w^{-1}, w b^{2} w^{-1}, w a b a b w^{-1}\right\}$ for all $w \in F$.

Obtaining D_{4} from the free group $F=\langle a, b\rangle$

- Let $F=\langle a, b\rangle$ and $D_{4}=\left\{e, r, r^{2}, r^{3}, f, r f, r^{2} f, r^{3} f\right\}$.
- Define the homomorphism $\varphi: F \rightarrow G$ by

$$
\varphi\left(a^{n_{1}} b^{n_{2}} \cdots a^{n_{r-1}} b^{n_{r}}\right)=r^{n_{1}} f^{n_{2}} \cdots r^{n_{r-1}} f^{n_{r}}
$$

where $n_{i} \in \mathbb{Z}, r \in \mathbb{Z} \geq 0$ for all i.

- Let N be the normal subgroup generated by a^{4}, b^{2}, and $a b a b$.
- Recalling that a requirement for normalcy is that $w N w^{-1}=N$, for all words $w \in F, N$ must be the subgroup generated by the words $\left\{w a^{4} w^{-1}, w b^{2} w^{-1}, w a b a b w^{-1}\right\}$ for all $w \in F$.
- Note that $\operatorname{ker}(\varphi)=N$, and $\operatorname{im}(\varphi)=D_{4}$, since clearly $D_{4} \subseteq i m(\varphi)$ and $\operatorname{im}(\varphi) \subseteq D_{4}$. Thus by the first isomorphism theorem,

$$
F / N=F / \operatorname{ker}(\varphi) \cong i m(\varphi)=D_{4}
$$

The Big Question

Now that we know where presentations of groups come from, let's get to the main question in this 501 project (through the lens of an example):

The Big Question

Now that we know where presentations of groups come from, let's get to the main question in this 501 project (through the lens of an example):

- Suppose $D_{4}=\left\langle a, b \mid a^{4}, b^{2}, a b a b\right\rangle$, and consider the Klein-4 subgroup of $D_{4}, V=\left\{e, a^{2}, a^{2} b, b\right\}$. A presentation for V is well known, namely $V=\left\langle x, y \mid x^{2}, y^{2},(x y)^{2}\right\rangle$, if we make the identifications $x \rightarrow a^{2}$ and $y \rightarrow b$.

The Big Question

Now that we know where presentations of groups come from, let's get to the main question in this 501 project (through the lens of an example):

- Suppose $D_{4}=\left\langle a, b \mid a^{4}, b^{2}, a b a b\right\rangle$, and consider the Klein-4 subgroup of $D_{4}, V=\left\{e, a^{2}, a^{2} b, b\right\}$. A presentation for V is well known, namely $V=\left\langle x, y \mid x^{2}, y^{2},(x y)^{2}\right\rangle$, if we make the identifications $x \rightarrow a^{2}$ and $y \rightarrow b$.
- But what if we wanted to derive a presentation for V from the presentation for G ? Is there a way to do this? The answer may surprise you....

The Big Question

Now that we know where presentations of groups come from, let's get to the main question in this 501 project (through the lens of an example):

- Suppose $D_{4}=\left\langle a, b \mid a^{4}, b^{2}, a b a b\right\rangle$, and consider the Klein-4 subgroup of $D_{4}, V=\left\{e, a^{2}, a^{2} b, b\right\}$. A presentation for V is well known, namely $V=\left\langle x, y \mid x^{2}, y^{2},(x y)^{2}\right\rangle$, if we make the identifications $x \rightarrow a^{2}$ and $y \rightarrow b$.
- But what if we wanted to derive a presentation for V from the presentation for G ? Is there a way to do this? The answer may surprise you....
- YES! In fact, the Reidemeister-Schreier rewriting process is a process that will input a group, G, the presentation of G, a subgroup, H, of G, and output a presentation for H.

Preliminaries(II)

Before we jump right in and see the Reidemeister-Schreier method in practice, there are a few terms we should be familiar with.

Preliminaries(II)

Before we jump right in and see the Reidemeister-Schreier method in practice, there are a few terms we should be familiar with.
Transversal

- If you recall complete residue systems modulo n from number theory, a transversal is just a generalization to any set of cosets G / H. For our transversals we will require an additional small restriction.

Preliminaries(II)

Before we jump right in and see the Reidemeister-Schreier method in practice, there are a few terms we should be familiar with.

Transversal

- If you recall complete residue systems modulo n from number theory, a transversal is just a generalization to any set of cosets G / H. For our transversals we will require an additional small restriction.
- Example: For D_{4} with subgroup V, we have

$$
D_{4} / V=\left\{\left\{e, a^{2}, a^{2} b, b\right\},\left\{a, a^{3}, a b, a^{3} b\right\}\right\}
$$

A transversal for D_{4} / V could be $\{e, a b\}$ or $\left\{a^{2}, a\right\}$ or $\left\{e, a^{3}\right\}$.

Preliminaries(II)

Before we jump right in and see the Reidemeister-Schreier method in practice, there are a few terms we should be familiar with.

Transversal

- If you recall complete residue systems modulo n from number theory, a transversal is just a generalization to any set of cosets G / H. For our transversals we will require an additional small restriction.
- Example: For D_{4} with subgroup V, we have

$$
D_{4} / V=\left\{\left\{e, a^{2}, a^{2} b, b\right\},\left\{a, a^{3}, a b, a^{3} b\right\}\right\}
$$

A transversal for D_{4} / V could be $\{e, a b\}$ or $\left\{a^{2}, a\right\}$ or $\left\{e, a^{3}\right\}$.

- We denote our transversal with \mathcal{K}.

Preliminaries(II)

Before we jump right in and see the Reidemeister-Schreier method in practice, there are a few terms we should be familiar with.
Transversal

- If you recall complete residue systems modulo n from number theory, a transversal is just a generalization to any set of cosets G / H. For our transversals we will require an additional small restriction.
- Example: For D_{4} with subgroup V, we have

$$
D_{4} / V=\left\{\left\{e, a^{2}, a^{2} b, b\right\},\left\{a, a^{3}, a b, a^{3} b\right\}\right\}
$$

A transversal for D_{4} / V could be $\{e, a b\}$ or $\left\{a^{2}, a\right\}$ or $\left\{e, a^{3}\right\}$.

- We denote our transversal with \mathcal{K}.
- A small restriction for our purposes is that e must be an element of our transversal.

Right Coset Representative Function

- Given a group G, a subgroup H, and a transversal, \mathcal{K}, for G / H, a right coset representative function is a function that maps $g \in G$ to $k \in \mathcal{K}$ such that $g \in H k$.

Right Coset Representative Function

- Given a group G, a subgroup H, and a transversal, \mathcal{K}, for G / H, a right coset representative function is a function that maps $g \in G$ to $k \in \mathcal{K}$ such that $g \in H k$.

Right Coset Representative Function

- Given a group G, a subgroup H, and a transversal, \mathcal{K}, for G / H, a right coset representative function is a function that maps $g \in G$ to $k \in \mathcal{K}$ such that $g \in H k$.

- We denote this function using ""-".

Right Coset Representative Function

- Given a group G, a subgroup H, and a transversal, \mathcal{K}, for G / H, a right coset representative function is a function that maps $g \in G$ to $k \in \mathcal{K}$ such that $g \in H k$.

- We denote this function using """.
- Example: If $D_{4} / V=\left\{\left\{e, a^{2}, \underline{a^{2} b}, b\right\},\left\{a, a^{3}, a b, a^{3} b\right\}\right\}$ and $\mathcal{K}=\{e, a b\}$, then $\bar{b}=e$ and $\overline{a^{3} b}=a b$.

A Carefully Chosen Set of Generators for a Subgroup

- Suppose $G=\left\langle a_{1}, \ldots a_{r} \mid P, Q, R, \ldots\right\rangle, H$ is a subgroup of G, and \mathcal{K} is a transversal for G / H. Then H is generated by the set of words

$$
S=\left\{k a_{i}{\overline{k a_{i}}}^{-1} \mid k \in \mathcal{K} \text { and } a_{i} \text { is a generator for } G\right\} .
$$

A Carefully Chosen Set of Generators for a Subgroup

- Suppose $G=\left\langle a_{1}, \ldots a_{r} \mid P, Q, R, \ldots\right\rangle, H$ is a subgroup of G, and \mathcal{K} is a transversal for G / H. Then H is generated by the set of words

$$
S=\left\{k a_{i}{\overline{k a_{i}}}^{-1} \mid k \in \mathcal{K} \text { and } a_{i} \text { is a generator for } G\right\} .
$$

- Rather than prove this, let's just see how a particular $h \in V$ can be factored into elements of S.

Let $h=a^{2} b$, then we can factor h into elements of the form $k a_{i} \overline{k a_{i}}{ }^{-1}$ in the following way:

Let $h=a^{2} b$, then we can factor h into elements of the form $k a_{i} \overline{k a_{i}}{ }^{-1}$ in the following way:

$$
a^{2} b=a a b
$$

Let $h=a^{2} b$, then we can factor h into elements of the form $k a_{i} \overline{k a_{i}}{ }^{-1}$ in the following way:

$$
a^{2} b=a a b
$$

Ok, phew.

Let $h=a^{2} b$, then we can factor h into elements of the form $k a_{i} \overline{k a_{i}}{ }^{-1}$ in the following way:

$$
a^{2} b=a a b
$$

Ok, phew. Now we identify the initial segments of h :

Let $h=a^{2} b$, then we can factor h into elements of the form $k a_{i} \overline{k a_{i}}-1$ in the following way:

$$
a^{2} b=a a b
$$

Ok, phew. Now we identify the initial segments of h :
$w_{1}=e, w_{2}=a, w_{3}=a a$.

Let $h=a^{2} b$, then we can factor h into elements of the form $k a_{i} \overline{k a_{i}}{ }^{-1}$ in the following way:

$$
a^{2} b=a a b
$$

Ok, phew. Now we identify the initial segments of h : $w_{1}=e, w_{2}=a, w_{3}=a a$. And we plug these into an expression of the following form:

Let $h=a^{2} b$, then we can factor h into elements of the form $k a_{i}{\overline{k a_{i}}}^{-1}$ in the following way:

$$
a^{2} b=a a b
$$

Ok, phew. Now we identify the initial segments of h : $w_{1}=e, w_{2}=a, w_{3}=a a$. And we plug these into an expression of the following form:

Let $h=a^{2} b$, then we can factor h into elements of the form $k a_{i}{\overline{k a_{i}}}^{-1}$ in the following way:

$$
a^{2} b=a a b
$$

Ok, phew. Now we identify the initial segments of h : $w_{1}=e, w_{2}=a, w_{3}=a a$. And we plug these into an expression of the following form:

We can check that this does in fact give us h. One fact we need is that $\overline{a b}=\overline{\bar{a} b}$:

Let $h=a^{2} b$, then we can factor h into elements of the form $k a_{i} \overline{k a_{i}}{ }^{-1}$ in the following way:

$$
a^{2} b=a a b
$$

Ok, phew. Now we identify the initial segments of h : $w_{1}=e, w_{2}=a, w_{3}=a a$. And we plug these into an expression of the following form:

We can check that this does in fact give us h. One fact we need is that $\overline{a b}=\overline{\bar{a} b}$:

$$
\begin{aligned}
\left(\bar{e} a \overline{\bar{e} a}^{-1}\right)\left(\bar{a} a \overline{\bar{a} a}^{-1}\right)\left(\bar{a} a b \overline{\bar{a} a}^{-1}\right) & =\left(\bar{e} a \overline{e a}^{-1}\right)\left(\bar{a} a \overline{a \bar{a}}^{-1}\right)\left(\bar{a} a^{a a a b} \bar{b}^{-1}\right) \\
& =(\bar{e}) a\left(\overline{e a}^{-1} \bar{a}\right) a\left(\bar{a}^{-1} \overline{a \bar{a}}\right) b\left(\overline{a a b}^{-1}\right) \\
& =(e) a(e) a(e) b(e) \\
& =a a b=h
\end{aligned}
$$

Reidemeister Rewriting Process

We are one step away from our main goal!

Reidemeister Rewriting Process

We are one step away from our main goal!

- First, from the previous slide, recall our special generators for H, of the form $k a \overline{k a}^{-1}$. We denote the following symbol for these elements: $s_{k, a}=k a \overline{k a}^{-1}$.

Reidemeister Rewriting Process

We are one step away from our main goal!

- First, from the previous slide, recall our special generators for H, of the form $k a \overline{k a}^{-1}$. We denote the following symbol for these elements: $s_{k, a}=k a \overline{k a}^{-1}$.
- Let $h=a_{1}^{\epsilon_{1}} a_{2}^{\epsilon_{2}} \ldots a_{r}^{\epsilon_{r}}\left(\epsilon_{j}= \pm 1\right)$ be a word in the generators of G that defines an element of H. Define the mapping τ in the following way:

$$
\tau(h)=s_{k_{1}, a_{1}}^{\epsilon_{1}} s_{k_{2}, a_{2}}^{\epsilon_{2}} \cdots s_{k_{r}, a_{r}}^{\epsilon_{r}}
$$

Reidemeister Rewriting Process

We are one step away from our main goal!

- First, from the previous slide, recall our special generators for H, of the form $k a \overline{k a}^{-1}$. We denote the following symbol for these elements: $s_{k, a}=k a \overline{k a}^{-1}$.
- Let $h=a_{1}^{\epsilon_{1}} a_{2}^{\epsilon_{2}} \ldots a_{r}^{\epsilon_{r}}\left(\epsilon_{j}= \pm 1\right)$ be a word in the generators of G that defines an element of H. Define the mapping τ in the following way:

$$
\tau(h)=s_{k_{1}, a_{1}}^{\epsilon_{1}} s_{k_{2}, a_{2}}^{\epsilon_{2}} \cdots s_{k_{r}, a_{r}}^{\epsilon_{r}}
$$

where

$$
k_{j}= \begin{cases}\overline{a_{\nu_{1}}^{\epsilon_{1}} a_{\nu_{2}}^{\epsilon_{2}} \ldots a_{\nu_{j-1}}^{\epsilon_{j-1}}} & \text { if } \epsilon_{j}=1 \\ \frac{a_{\nu_{1}} a_{\nu_{2}} \ldots a_{\nu_{j}}^{-1}}{\epsilon_{2}} & \text { if } \epsilon_{j}=-1\end{cases}
$$

Reidemeister Rewriting Process

We are one step away from our main goal!

- First, from the previous slide, recall our special generators for H, of the form $k a \overline{k a}^{-1}$. We denote the following symbol for these elements: $s_{k, a}=k a \overline{k a}^{-1}$.
- Let $h=a_{1}^{\epsilon_{1}} a_{2}^{\epsilon_{2}} \ldots a_{r}^{\epsilon_{r}}\left(\epsilon_{j}= \pm 1\right)$ be a word in the generators of G that defines an element of H. Define the mapping τ in the following way:

$$
\tau(h)=s_{k_{1}, a_{1}}^{\epsilon_{1}} s_{k_{2}, a_{2}}^{\epsilon_{2}} \cdots s_{k_{r}, a_{r}}^{\epsilon_{r}}
$$

where

$$
k_{j}= \begin{cases}\overline{a_{\nu_{1}}^{\epsilon_{1}} a_{\nu_{2}}^{\epsilon_{2}} \ldots a_{\nu_{j-1}}^{\epsilon_{j-1}}} & \text { if } \epsilon_{j}=1 \\ \frac{a_{\nu_{1}} a_{\nu_{2}} \ldots a_{\nu_{j}}^{-1}}{\epsilon_{2}} & \text { if } \epsilon_{j}=-1\end{cases}
$$

- We call the choices for k_{i} under the ${ }^{-}$the initial segments of h.

Example of the Reidemeister rewriting function with our ongoing example of $G=D_{4}$ and $H=V$

Example of the Reidemeister rewriting function with our ongoing example of $G=D_{4}$ and $H=V$

For ease of reference: $D_{4} / V=\left\{\left\{e, a^{2}, a^{2} b, b\right\},\left\{a, a^{3}, a b, a^{3} b\right\}\right\}$

Example of the Reidemeister rewriting function with our ongoing example of $G=D_{4}$ and $H=V$

For ease of reference: $D_{4} / V=\left\{\left\{e, a^{2}, a^{2} b, b\right\},\left\{a, a^{3}, a b, a^{3} b\right\}\right\}$

- If $h=a b a^{-1}$ (same group element as $a^{2} b$) and $\mathcal{K}=\{e, a b\}$, then $k_{1}=e, k_{2}=\bar{a}=a b$, and $k_{3}=\overline{a b a^{-1}}=e$.

Example of the Reidemeister rewriting function with our ongoing example of $G=D_{4}$ and $H=V$

For ease of reference: $D_{4} / V=\left\{\left\{e, a^{2}, a^{2} b, b\right\},\left\{a, a^{3}, a b, a^{3} b\right\}\right\}$

- If $h=a b a^{-1}$ (same group element as $a^{2} b$) and $\mathcal{K}=\{e, a b\}$, then $k_{1}=e, k_{2}=\bar{a}=a b$, and $k_{3}=\overline{a b a^{-1}}=e$.
- So $\tau\left(a b a^{-1}\right)=s_{e, a} s_{a b, b} s_{e, a}^{-1}$

Example of the Reidemeister rewriting function with our ongoing example of $G=D_{4}$ and $H=V$

For ease of reference: $D_{4} / V=\left\{\left\{e, a^{2}, a^{2} b, b\right\},\left\{a, a^{3}, a b, a^{3} b\right\}\right\}$

- If $h=a b a^{-1}$ (same group element as $a^{2} b$) and $\mathcal{K}=\{e, a b\}$, then $k_{1}=e, k_{2}=\bar{a}=a b$, and $k_{3}=\overline{a b a^{-1}}=e$.
- So $\tau\left(a b a^{-1}\right)=s_{e, a} s_{a b, b} s_{e, a}^{-1}$

Another necessary concept is that of a Schreier transversal. A Schreier transversal is simply a transversal that is closed under initial segments. Thus

Example of the Reidemeister rewriting function with our ongoing example of $G=D_{4}$ and $H=V$

For ease of reference: $D_{4} / V=\left\{\left\{e, a^{2}, a^{2} b, b\right\},\left\{a, a^{3}, a b, a^{3} b\right\}\right\}$

- If $h=a b a^{-1}$ (same group element as $a^{2} b$) and $\mathcal{K}=\{e, a b\}$, then $k_{1}=e, k_{2}=\bar{a}=a b$, and $k_{3}=\overline{a b a^{-1}}=e$.
- So $\tau\left(a b a^{-1}\right)=s_{e, a} s_{a b, b} s_{e, a}^{-1}$

Another necessary concept is that of a Schreier transversal. A Schreier transversal is simply a transversal that is closed under initial segments. Thus

$$
\mathcal{K}=\{e, a b\}
$$

is not a Schreier transversal because an initial segment of $a b$ is a.

Example of the Reidemeister rewriting function with our ongoing example of $G=D_{4}$ and $H=V$

For ease of reference: $D_{4} / V=\left\{\left\{e, a^{2}, a^{2} b, b\right\},\left\{a, a^{3}, a b, a^{3} b\right\}\right\}$

- If $h=a b a^{-1}$ (same group element as $a^{2} b$) and $\mathcal{K}=\{e, a b\}$, then $k_{1}=e, k_{2}=\bar{a}=a b$, and $k_{3}=\overline{a b a^{-1}}=e$.
- So $\tau\left(a b a^{-1}\right)=s_{e, a} s_{a b, b} s_{e, a}^{-1}$

Another necessary concept is that of a Schreier transversal. A Schreier transversal is simply a transversal that is closed under initial segments. Thus

$$
\mathcal{K}=\{e, a b\}
$$

is not a Schreier transversal because an initial segment of $a b$ is a. But

$$
\mathcal{K}=\{e, a\}
$$

is a Schreier transversal, because the only initial segment of a is e, which is in \mathcal{K}.

The Reidemeister-Schreier Rewriting Process

Finally, the theorem we have been waiting for.

The Reidemeister-Schreier Rewriting Process

Finally, the theorem we have been waiting for.
Theorem
Suppose G has the following presentation:

$$
\begin{equation*}
G=\left\langle a_{1}, \ldots, a_{n} \mid P, Q, R, \ldots\right\rangle, \tag{1}
\end{equation*}
$$

and let H be a subgroup of G. If τ is a Reidemeister-Schreier rewriting process, then H can be presented as

$$
\begin{equation*}
\left\langle s_{k, a_{i}}, \cdots \mid s_{m, a_{\lambda}}, \ldots, \tau\left(k R k^{-1}\right), \ldots\right\rangle \tag{2}
\end{equation*}
$$

where k is an element of a Schreier transversal for $G / H, a_{i}$ is any generator of G and R is any relator in (1), and m is a Schreier representative and a_{λ} a generator such that

$$
\begin{equation*}
m a_{\lambda} \text { is freely equal to } \overline{m a_{\lambda}} . \tag{3}
\end{equation*}
$$

Note: a Reidemeister-Schreier rewriting process, is just a Reidemeister rewriting process in which we've chosen a Schreier transversal for \mathcal{K}.

Note: a Reidemeister-Schreier rewriting process, is just a Reidemeister rewriting process in which we've chosen a Schreier transversal for \mathcal{K}.
Let's see the theorem play out with our example of D_{4} and V !

Note: a Reidemeister-Schreier rewriting process, is just a Reidemeister rewriting process in which we've chosen a Schreier transversal for \mathcal{K}.
Let's see the theorem play out with our example of D_{4} and V !

- Using the theorem as a guide, we have for (1): $D_{4}=\left\langle a, b \mid a^{4}, b^{2}, a b a b\right\rangle$.

Note: a Reidemeister-Schreier rewriting process, is just a Reidemeister rewriting process in which we've chosen a Schreier transversal for \mathcal{K}.
Let's see the theorem play out with our example of D_{4} and V !

- Using the theorem as a guide, we have for (1): $D_{4}=\left\langle a, b \mid a^{4}, b^{2}, a b a b\right\rangle$.
- We've already noted that $\mathcal{K}=\{e, a\}$ is a Schreier transversal.

Note: a Reidemeister-Schreier rewriting process, is just a Reidemeister rewriting process in which we've chosen a Schreier transversal for \mathcal{K}.
Let's see the theorem play out with our example of D_{4} and V !

- Using the theorem as a guide, we have for (1): $D_{4}=\left\langle a, b \mid a^{4}, b^{2}, a b a b\right\rangle$.
- We've already noted that $\mathcal{K}=\{e, a\}$ is a Schreier transversal.
- We see from the following table that only one pair $\left(m, a_{\lambda}\right)$ satisfies the conditions of (3):

$m a_{\lambda}$		$\overline{m a_{\lambda}}$	freely equal?	$m a_{\lambda}$		$\overline{m a}$	freely equal?
$e a$	\rightarrow	a	Y	$e b$	\rightarrow	e	N
$a b$	\rightarrow	a	N	$a b$	\rightarrow	a	N

Note: a Reidemeister-Schreier rewriting process, is just a Reidemeister rewriting process in which we've chosen a Schreier transversal for \mathcal{K}.
Let's see the theorem play out with our example of D_{4} and V !

- Using the theorem as a guide, we have for (1): $D_{4}=\left\langle a, b \mid a^{4}, b^{2}, a b a b\right\rangle$.
- We've already noted that $\mathcal{K}=\{e, a\}$ is a Schreier transversal.
- We see from the following table that only one pair $\left(m, a_{\lambda}\right)$ satisfies the conditions of (3):

$m a_{\lambda}$		$\overline{m a_{\lambda}}$	freely equal?	$m a_{\lambda}$		$\overline{m a_{\lambda}}$	freely equal?
$e a$	\rightarrow	a	Y	$e b$	\rightarrow	e	N
$a b$	\rightarrow	a	N	$a b$	\rightarrow	a	N

- So (2) becomes
$\left\langle s_{e, a}, s_{e, b}, s_{a, a}, s_{a, b}\right| s_{e, a}, \tau\left(e a^{2} e^{-1}\right), \tau\left(e b^{2} e^{-1}\right), \tau\left(e a b a b e^{-1}\right)$, $\left.\tau\left(a a^{2} a^{-1}\right), \tau\left(a b^{2} a^{-1}\right), \tau\left(a a b a b a^{-1}\right)\right\rangle$

Sparing you the details, after evaluating all the τ functions, we obtain the following generating symbols and relators in a presentation for V :

Sparing you the details, after evaluating all the τ functions, we obtain the following generating symbols and relators in a presentation for V :

- Generating symbols: $s_{e, a}, s_{e, b}, s_{a, a}, s_{a, b}$

Sparing you the details, after evaluating all the τ functions, we obtain the following generating symbols and relators in a presentation for V :

- Generating symbols: $s_{e, a}, s_{e, b}, s_{a, a}, s_{a, b}$
- Relators:

$$
\begin{aligned}
& S_{e, a} \\
& S_{e, a} S_{a, a} S_{e, a} S_{a, a} \\
& S_{e, b} S_{e, b}, S_{e, a} S_{a, b} S_{a, a} S_{e, b} \\
& S_{e, a} S_{a, a} S_{e, a} S_{a, a} \\
& S_{e, a} S_{a, b} S_{a, b} S_{e, a}^{-1} \\
& S_{e, a} S_{a, a} S_{e, b} S_{e, a} S_{a, b} S_{e, a}^{-1}
\end{aligned}
$$

Which looks awful, but can be cleaned up slightly by canceling group elements and using the fact that $s_{e, a}=e$. Once doing so we get

Which looks awful, but can be cleaned up slightly by canceling group elements and using the fact that $s_{e, a}=e$. Once doing so we get

- Generating symbols: $s_{e, b}, s_{a, a}, s_{a, b}$

Which looks awful, but can be cleaned up slightly by canceling group elements and using the fact that $s_{e, a}=e$. Once doing so we get

- Generating symbols: $s_{e, b}, s_{a, a}, s_{a, b}$
- Relators:

$$
\begin{aligned}
& \left(s_{a, a}\right)^{2} \\
& \left(s_{e, b}\right)^{2} \\
& s_{a, b} s_{a, a} s_{e, b} \\
& \left(s_{a, b}\right)^{2} \\
& s_{a, a} s_{e, b} s_{e, a} s_{a, b}
\end{aligned}
$$

Which looks awful, but can be cleaned up slightly by canceling group elements and using the fact that $s_{e, a}=e$. Once doing so we get

- Generating symbols: $s_{e, b}, s_{a, a}, s_{a, b}$
- Relators:

$$
\begin{aligned}
& \left(s_{a, a}\right)^{2} \\
& \left(s_{e, b}\right)^{2} \\
& s_{a, b} s_{a, a} s_{e, b} \\
& \left(s_{a, b}\right)^{2} \\
& s_{a, a} s_{e, b} s_{e, a} s_{a, b}
\end{aligned}
$$

Using the identifications $s_{a, a} \Rightarrow x, s_{e, b} \Rightarrow y$, and $s_{a, b} \Rightarrow z$, the presentation for V looks even better:

Which looks awful, but can be cleaned up slightly by canceling group elements and using the fact that $s_{e, a}=e$. Once doing so we get

- Generating symbols: $s_{e, b}, s_{a, a}, s_{a, b}$
- Relators:

$$
\begin{aligned}
& \left(s_{a, a}\right)^{2} \\
& \left(s_{e, b}\right)^{2} \\
& s_{a, b} s_{a, a} s_{e, b} \\
& \left(s_{a, b}\right)^{2} \\
& s_{a, a} s_{e, b} s_{e, a} s_{a, b}
\end{aligned}
$$

Using the identifications $s_{a, a} \Rightarrow x, s_{e, b} \Rightarrow y$, and $s_{a, b} \Rightarrow z$, the presentation for V looks even better:

$$
V=\left\langle x, y, z \mid x^{2}, y^{2}, z x y, z^{2}, x y z\right\rangle
$$

Checking our Answer by Reducing to the More Familiar Presentation

- Relators $z x y, z^{2}$ actually mean $z x y=e, z^{2}=e$, which yields $x y=z$.

Checking our Answer by Reducing to the More Familiar Presentation

- Relators $z x y, z^{2}$ actually mean $z x y=e, z^{2}=e$, which yields $x y=z$.
- Substituting back into $z^{2}=e$ yields $(x y)^{2}=e$.

Checking our Answer by Reducing to the More Familiar Presentation

- Relators $z x y, z^{2}$ actually mean $z x y=e, z^{2}=e$, which yields $x y=z$.
- Substituting back into $z^{2}=e$ yields $(x y)^{2}=e$.
- Having eliminated z, we get the following presentation for V :

Checking our Answer by Reducing to the More Familiar Presentation

- Relators $z x y, z^{2}$ actually mean $z x y=e, z^{2}=e$, which yields $x y=z$.
- Substituting back into $z^{2}=e$ yields $(x y)^{2}=e$.
- Having eliminated z, we get the following presentation for V :

$$
\left\langle x, y \mid x^{2}, y^{2},(x y)^{2}\right\rangle
$$

Checking our Answer by Reducing to the More Familiar Presentation

- Relators $z x y, z^{2}$ actually mean $z x y=e, z^{2}=e$, which yields $x y=z$.
- Substituting back into $z^{2}=e$ yields $(x y)^{2}=e$.
- Having eliminated z, we get the following presentation for V :

$$
\left\langle x, y \mid x^{2}, y^{2},(x y)^{2}\right\rangle
$$

- So in fact the two presentations $\left\langle x, y, z \mid x^{2}, y^{2}, z x y, z^{2}, x y z\right\rangle$ and $\left\langle x, y \mid x^{2}, y^{2},(x y)^{2}\right\rangle$ are equivalent.

Checking our Answer by Reducing to the More Familiar Presentation

- Relators $z x y, z^{2}$ actually mean $z x y=e, z^{2}=e$, which yields $x y=z$.
- Substituting back into $z^{2}=e$ yields $(x y)^{2}=e$.
- Having eliminated z, we get the following presentation for V :

$$
\left\langle x, y \mid x^{2}, y^{2},(x y)^{2}\right\rangle
$$

- So in fact the two presentations $\left\langle x, y, z \mid x^{2}, y^{2}, z x y, z^{2}, x y z\right\rangle$ and $\left\langle x, y \mid x^{2}, y^{2},(x y)^{2}\right\rangle$ are equivalent.
- Now might be a good time to note that presentations are not unique, but I hope mine was.

