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The People

Kurt Reidemeister
(13 October 1893 - 8 July 1971)

Loved cats.

Otto Scheier
(3 March 1901 - 2 June 1929)

Hated cats.



Interesting Tidbits

Kurt Reidemeister

I Geometer

I Contributed significantly to
Knot Theory

I Leader of the original Vienna
Circle of Logical Positivists

I Forced out of Germany in
the 1930s due to his vocal
opposition to the Nazi party.

Otto Schreier

I Algebraist

I Said of Reidemeister in a
letter:
”By his humorous remarks
he caused such roaring
laughter as has never been
heard, so it seems, in the
Mathematics Society.”

I Musician



Free Groups

A practical example.

I Generating symbols (in this paper, always finite).
Let us say {a, b, c}.
We include symbols such as a−1, b−1, and c−1.

I Words in those generating symbols.
Examples: aab, cbc, b−1ba, a−1a−1cb.

I We “multiply” words simply with concatenation.
Ex: the product of cbc and b−1ba is cbcb−1ba
OR b−1bacbc
So multiplication of words in a free group is not commutative.

I We call the word in no (generating) symbols the empty word,
and denote it with the symbol e. This is the identity of a free
group, F .
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Free Groups

I Allowed reductions.

I Words such as b−1b or bb−1 can be reduced to the empty
word.

I By associativity of concatenation, words such as aaa or bb can
be reduced to a3 or b2 respectively.

I We call two words, w and w ′, freely equal if one can be
transformed into the other through a series of the above two
allowed reductions.
Examples: aabcc−1 is freely equal to a2b
abcc−1b−1a−1 is freely equal to the empty word, e.
(Note that the last example shows that
(abc)−1 = c−1b−1a−1, so the “socks and shoes” method is
valid here.)
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Group Presentations

Let D4 represent the usual dihedral group, which corresponds to
the symmetries of a square,

D4 = {e, a, a2, a3, b, ab, a2b, a3b},

or as a presentation,

D4 = 〈a, b | a4 = e, b2 = e, ab = ba3〉

We call the symbols to the left of “|” the generating symbols, and
to the right of “|” the defining relations.
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Group Presentations

We could also set each relation equal to e, and rewrite the
previous presentation leaving out the “= e”:

D4 = 〈a, b | a4, b2, abab〉

Here we still call a and b generators, but we will call relations
written in this way relators.

What does this actually mean?

Well, the theory, which we will state without proof, is that if N is
the normal subgroup of the free group F generated by the relators,
then

F/N ∼= G .



Group Presentations

We could also set each relation equal to e, and rewrite the
previous presentation leaving out the “= e”:

D4 = 〈a, b | a4, b2, abab〉

Here we still call a and b generators, but we will call relations
written in this way relators.

What does this actually mean?

Well, the theory, which we will state without proof, is that if N is
the normal subgroup of the free group F generated by the relators,
then

F/N ∼= G .



Group Presentations

We could also set each relation equal to e, and rewrite the
previous presentation leaving out the “= e”:

D4 = 〈a, b | a4, b2, abab〉

Here we still call a and b generators, but we will call relations
written in this way relators.

What does this actually mean?

Well, the theory, which we will state without proof, is that if N is
the normal subgroup of the free group F generated by the relators,
then

F/N ∼= G .



Group Presentations

We could also set each relation equal to e, and rewrite the
previous presentation leaving out the “= e”:

D4 = 〈a, b | a4, b2, abab〉

Here we still call a and b generators, but we will call relations
written in this way relators.

What does this actually mean?

Well, the theory, which we will state without proof, is that if N is
the normal subgroup of the free group F generated by the relators,
then

F/N ∼= G .



Obtaining D4 from the free group F = 〈a, b〉

I Let F = 〈a, b〉 and D4 = {e, r , r2, r3, f , rf , r2f , r3f }.

I Define the homomorphism ϕ : F → G by

ϕ(an1bn2 · · · anr−1bnr ) = rn1f n2 · · · rnr−1f nr ,

where ni ∈ Z, r ∈ Z≥0 for all i .

I Let N be the normal subgroup generated by a4, b2, and abab.

I Recalling that a requirement for normalcy is that
wNw−1 = N, for all words w ∈ F , N must be the subgroup
generated by the words {wa4w−1,wb2w−1,wababw−1} for all
w ∈ F .

I Note that ker(ϕ) = N, and im(ϕ) = D4, since clearly
D4 ⊆ im(ϕ) and im(ϕ) ⊆ D4. Thus by the first isomorphism
theorem,

F/N = F/ker(ϕ) ∼= im(ϕ) = D4
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The Big Question

Now that we know where presentations of groups come from, let’s
get to the main question in this 501 project (through the lens of an
example):

I Suppose D4 = 〈a, b | a4, b2, abab〉, and consider the Klein-4
subgroup of D4, V = {e, a2, a2b, b}. A presentation for V is
well known, namely V = 〈x , y | x2, y2, (xy)2〉, if we make the
identifications x → a2 and y → b.

I But what if we wanted to derive a presentation for V from the
presentation for G? Is there a way to do this? The answer
may surprise you....

I YES! In fact, the Reidemeister-Schreier rewriting process is a
process that will input a group, G , the presentation of G , a
subgroup, H, of G , and output a presentation for H.
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Preliminaries(II)

Before we jump right in and see the Reidemeister-Schreier method
in practice, there are a few terms we should be familiar with.

Transversal

I If you recall complete residue systems modulo n from number
theory, a transversal is just a generalization to any set of
cosets G/H. For our transversals we will require an additional
small restriction.

I Example: For D4 with subgroup V , we have

D4/V = {{e, a2, a2b, b}, {a, a3, ab, a3b}}

A transversal for D4/V could be {e, ab} or {a2, a} or {e, a3}.
I We denote our transversal with K.

I A small restriction for our purposes is that e must be an
element of our transversal.



Preliminaries(II)

Before we jump right in and see the Reidemeister-Schreier method
in practice, there are a few terms we should be familiar with.
Transversal

I If you recall complete residue systems modulo n from number
theory, a transversal is just a generalization to any set of
cosets G/H. For our transversals we will require an additional
small restriction.

I Example: For D4 with subgroup V , we have

D4/V = {{e, a2, a2b, b}, {a, a3, ab, a3b}}

A transversal for D4/V could be {e, ab} or {a2, a} or {e, a3}.
I We denote our transversal with K.

I A small restriction for our purposes is that e must be an
element of our transversal.



Preliminaries(II)

Before we jump right in and see the Reidemeister-Schreier method
in practice, there are a few terms we should be familiar with.
Transversal

I If you recall complete residue systems modulo n from number
theory, a transversal is just a generalization to any set of
cosets G/H. For our transversals we will require an additional
small restriction.

I Example: For D4 with subgroup V , we have

D4/V = {{e, a2, a2b, b}, {a, a3, ab, a3b}}

A transversal for D4/V could be {e, ab} or {a2, a} or {e, a3}.

I We denote our transversal with K.

I A small restriction for our purposes is that e must be an
element of our transversal.



Preliminaries(II)

Before we jump right in and see the Reidemeister-Schreier method
in practice, there are a few terms we should be familiar with.
Transversal

I If you recall complete residue systems modulo n from number
theory, a transversal is just a generalization to any set of
cosets G/H. For our transversals we will require an additional
small restriction.

I Example: For D4 with subgroup V , we have

D4/V = {{e, a2, a2b, b}, {a, a3, ab, a3b}}

A transversal for D4/V could be {e, ab} or {a2, a} or {e, a3}.
I We denote our transversal with K.

I A small restriction for our purposes is that e must be an
element of our transversal.



Preliminaries(II)

Before we jump right in and see the Reidemeister-Schreier method
in practice, there are a few terms we should be familiar with.
Transversal

I If you recall complete residue systems modulo n from number
theory, a transversal is just a generalization to any set of
cosets G/H. For our transversals we will require an additional
small restriction.

I Example: For D4 with subgroup V , we have

D4/V = {{e, a2, a2b, b}, {a, a3, ab, a3b}}

A transversal for D4/V could be {e, ab} or {a2, a} or {e, a3}.
I We denote our transversal with K.

I A small restriction for our purposes is that e must be an
element of our transversal.



Right Coset Representative Function

I Given a group G , a subgroup H, and a transversal, K, for
G/H, a right coset representative function is a function that
maps g ∈ G to k ∈ K such that g ∈ Hk .

H

Hk1

Hk2

Hk3

g

G K

g = k1

e

k2

k3

I We denote this function using “ ”.

I Example: If D4/V = {{e, a2, a2b, b}, {a, a3, ab, a3b}} and
K = {e, ab}, then b = e and a3b = ab.
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A Carefully Chosen Set of Generators for a Subgroup

I Suppose G = 〈a1, . . . ar | P,Q,R, . . . 〉, H is a subgroup of G ,
and K is a transversal for G/H. Then H is generated by the
set of words

S =
{
kaikai

−1 | k ∈ K and ai is a generator for G
}
.

I Rather than prove this, let’s just see how a particular h ∈ V
can be factored into elements of S .
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Let h = a2b, then we can factor h into elements of the form
kaikai

−1
in the following way:

a2b = aab
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Reidemeister Rewriting Process

We are one step away from our main goal!

I First, from the previous slide, recall our special generators for

H, of the form kaka
−1

. We denote the following symbol for

these elements: sk,a = kaka
−1

.

I Let h = aε11 a
ε2
2 . . . a

εr
r (εj = ±1) be a word in the generators of

G that defines an element of H. Define the mapping τ in the
following way:

τ(h) = sε1k1,a1s
ε2
k2,a2
· · · sεrkr ,ar

where

kj =

{
aε1ν1a

ε2
ν2 . . . a

εj−1
νj−1 if εj = 1

aε1ν1a
ε2
ν2 . . . a

−1
νj if εj = −1

I We call the choices for ki under the the initial segments of
h.
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Example of the Reidemeister rewriting function with our ongoing
example of G = D4 and H = V

For ease of reference: D4/V = {{e, a2, a2b, b}, {a, a3, ab, a3b}}
I If h = aba−1 (same group element as a2b) and K = {e, ab},

then k1 = e, k2 = a = ab, and k3 = aba−1 = e.

I So τ(aba−1) = se,asab,bs
−1
e,a

Another necessary concept is that of a Schreier transversal. A
Schreier transversal is simply a transversal that is closed under
initial segments. Thus

K = {e, ab}

is not a Schreier transversal because an initial segment of ab is a.
But

K = {e, a}

is a Schreier transversal, because the only initial segment of a is e,
which is in K.
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The Reidemeister-Schreier Rewriting Process

Finally, the theorem we have been waiting for.

Theorem
Suppose G has the following presentation:

G = 〈a1, . . . , an | P,Q,R, . . . 〉, (1)

and let H be a subgroup of G . If τ is a Reidemeister-Schreier
rewriting process, then H can be presented as

〈sk,ai , · · · | sm,aλ , . . . , τ(kRk−1), . . . 〉, (2)

where k is an element of a Schreier transversal for G/H, ai is any
generator of G and R is any relator in (1), and m is a Schreier
representative and aλ a generator such that

maλ is freely equal to maλ. (3)
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Note: a Reidemeister-Schreier rewriting process, is just a
Reidemeister rewriting process in which we’ve chosen a Schreier
transversal for K.

Let’s see the theorem play out with our example of D4 and V !

I Using the theorem as a guide, we have for (1):
D4 = 〈a, b | a4, b2, abab〉.

I We’ve already noted that K = {e, a} is a Schreier transversal.

I We see from the following table that only one pair (m, aλ)
satisfies the conditions of (3):

maλ maλ freely equal? maλ maλ freely equal?

ea → a Y eb → e N
ab → a N ab → a N

I So (2) becomes
〈se,a, se,b, sa,a, sa,b | se,a, τ(ea2e−1), τ(eb2e−1), τ(eababe−1),
τ(aa2a−1), τ(ab2a−1), τ(aababa−1)〉
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Sparing you the details, after evaluating all the τ functions, we
obtain the following generating symbols and relators in a
presentation for V :

I Generating symbols: se,a, se,b, sa,a, sa,b
I Relators:

se,a

se,asa,ase,asa,a

se,bse,b, se,asa,bsa,ase,b

se,asa,ase,asa,a

se,asa,bsa,bs
−1
e,a

se,asa,ase,bse,asa,bs
−1
e,a
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Which looks awful, but can be cleaned up slightly by canceling
group elements and using the fact that se,a = e. Once doing so we
get

I Generating symbols: se,b, sa,a, sa,b
I Relators:

(sa,a)2

(se,b)2

sa,bsa,ase,b

(sa,b)2

sa,ase,bse,asa,b

Using the identifications sa,a ⇒ x , se,b ⇒ y , and sa,b ⇒ z , the
presentation for V looks even better:

V = 〈x , y , z | x2, y2, zxy , z2, xyz〉
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presentation for V looks even better:

V = 〈x , y , z | x2, y2, zxy , z2, xyz〉
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Checking our Answer by Reducing to the More Familiar
Presentation

I Relators zxy , z2 actually mean zxy = e, z2 = e, which yields
xy = z .

I Substituting back into z2 = e yields (xy)2 = e.

I Having eliminated z , we get the following presentation for V :

〈x , y | x2, y2, (xy)2〉

I So in fact the two presentations 〈x , y , z | x2, y2, zxy , z2, xyz〉
and 〈x , y | x2, y2, (xy)2〉 are equivalent.

I Now might be a good time to note that presentations are not
unique, but I hope mine was.
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