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1 Introduction

This 501 project was inspired by the paper Cryptosystems Using Linear Groups by Baumslag,
Fine, and Xu (see [1]). During the course of reading that paper, it became clear that it
would be beneficial to have an exposition of a tool that is integral to their work, namely the
Reidemeister-Schreier rewriting process. To this end, we found Combinatorial Group Theory
by Magnus, Karras, and Solitar extremely helpful (see [2]). Subsequently, the goal of this
project became to provide a clear and (relatively) succinct explanation of the Reidemeister-
Schreier rewriting process. To this end, we briefly cover the foundational ideas of free groups
and group presentations, mostly to have the necessary definitions and symbolic language. In
addition, we present a number of arguments and theorems leading up to the Reidemeister-
Schreier rewriting process along with a selection of illustrative running examples, to see the
ideas displayed in practice. We assume a basic familiarity with the notation and definitions
of groups, as one might typically find in an introductory text like Gallian [[5], Ch. 1-2].

2 Group Presentations

2.1 Free Groups

It should be sufficient for our purposes to have a working definition of free groups without
defining them abstractly using universal properties, category theory, or some other method.
Indeed, there are plenty of other sources that describe free groups in this way far better than
this author could hope to. For example, [2], [3], and [4] are helpful resources on this topic.

Accordingly, for our purposes, a free group, F , with (possibly infinite) generating
symbols

{aν} = {a, b, c, . . . }
is the group generated by {aν}, together with the identity and inverses defined below, under
the group operation “concatenation”. Elements of F are equivalence classes of expressions
we call words, and in particular, a word in F might look like

w = x1x2 · · ·xr,

where xi ∈ {aν} for all i. We include the word in F written with no symbols of A, called the
empty word. Clearly “concatenation” is associative, since, if ∗ stands for concatenation,
a1 ∗ (a2 ∗ a3) = a1 ∗ (a2a3) = a1a2a3 = (a1a2) ∗ a3 = (a1 ∗ a2) ∗ a3. If we let () be the empty
word in F then () = e, the identity, since w ∗ () = w = () ∗w for all words in F . Lastly, if xi
is a generator of F , then we define the inverse of xi as simply x−1i . Including these symbols
we arrive at the complete definition of elements of F , namely if w ∈ F , then

w = x1x2 · · · xr,

where either xi ∈ {aν} or xi is the empty word or one of the inverses described above. By
associativity, any sequence of identical symbols in {aν},

ai · · · ai︸ ︷︷ ︸
m times
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can be rewritten as ami . We say that two words, w1 and w2 are freely equal if we can
rewrite w1 into the same word as w2 or vice versa, using a (possibly empty) sequence of
steps involving either of the following:

(i) Either inserting or deleting words of the form aia
−1
i or a−1i ai (which are equivalent to

the empty word e).

(ii) Either collapsing or expanding words of the form ai · · · ai︸ ︷︷ ︸
m times

or ami .

Thus a−1i ai and aia
−1
i are freely equal to the empty word. Also, if w = x1x2 · · ·xr, then

w−1 = x−1r x−1r−1 · · ·x−11 , since

ww−1 = (x1x2 · · ·xr)(x−1r x−1r−1 · · ·x−11 )

= x1x2 · · ·xr−1(xrx−1r )x−1r−1 · · ·x−12 x−11

which is freely equal to the empty word by repeatedly applying (i) above. Just to be sure,

w−1w = (x−1r x−1r−1 · · ·x−11 )(x1x2 · · ·xr)
= x−1r x−1r−1 · · · x−12 (x−11 x1)x2 · · · xr−1xr

which again is freely equal to the empty word by successive iterations of (i).

2.2 Presentation of a Group

In this section, we introduce some helpful terminology and notation that we will want to use
often in the later sections.

2.2.1 Group Presentations

First we want to modify the way we present free groups in order to describe how we can
present other groups in a similar manner.

Let D4 represent the usual dihedral group, which corresponds to the symmetries of a
square. It is common to give a group presentation for D4 by picking a generating set of
group elements, say {r, f} (where r represents a rotation, and f represents a flip), along
with information of the order of these elements, and how they commute. This is often shown
thusly:

D4 = 〈r, f | r4 = e, f 2 = e, rf = fr3〉. (1)

To emphasize the abstract generality of the presentation, we may wish to use generic symbols
other than r and f , which bear the association with rotations and flips. In particular, under
the mapping r 7→ a and f 7→ b, we have

D4 = 〈a, b | a4 = e, b2 = e, ab = ba3〉 (2)

which we can describe as a free group on the two symbols a and b, where e stands for the
empty word, but with additional rules on which type of words can be reduced to the empty
word. For example, we already know that words like aa−1 reduce to the empty word, and,
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in fact, we wish to continue all reductions allowed in free groups whenever words are freely
equal. But now, we also wish to say that words like a4 and b2 can be reduced to the empty
word in our group D4. We call equations, such as those to the right of “|” in (1) and (2)
above, relations. When the right hand side of a relation is e, we call the expression on the
left side of the relation a relator. We often put all relations in this form and only write
down the list of relators in our presentation. Notice that every relation can be turned into
a relator. Thus we can write D4 in terms of its generators and relators:

D4 = 〈a, b | a4, b2, abab〉. (3)

We call this a presentation of the group D4 with generating symbols a, b and defining
relators a4, b2, abab.

It turns out that every group has a presentation (see [2] for more details), and every
finite group has a finite presentation. In this paper, we will see that the Reidemeister-
Schreier rewriting process is a method for finding the presentation of a specific subgroup H,
of a known group G, where the presentation of G is also known. In order to explore this
process further, we need some additional ideas.

2.2.2 Group Presentations and Their Corresponding Free Groups

Suppose G has the following presentation:

G = 〈a, b, c, . . . | P,Q,R, . . . 〉. (4)

In this expression, we may view a, b, c, . . . as the generating symbols of a free group F and
P,Q,R, . . . as the elements of F that are not freely equal to the empty word, the identity in
F , that we now want to be considered the identity in a new group G, obtained from F . We
do this by letting N be the normal subgroup of F generated by P,Q,R, . . ., the relators in
the presentation of G. This means that N contains P,Q,R, . . . along their inverses, and all
products thereof. But, this isn’t enough. In order to ensure that N is normal, we must also
include all elements of the form wPw−1, wQw−1, wRw−1, . . ., and their inverses, where w is
any word in F . Constructing N in this way, the factor group F/N will look much like the
group G. In fact, by Corollary 2.1 in [2], G is isomorphic to

F/N = 〈a, b, c, . . . | P,Q,R, . . . 〉,

under the appropriate natural isomorphism. In this way, group presentations identify the
corresponding groups as quotient groups of an associated free group.

2.2.3 Proving a List of Relators is Sufficient

Finally, say we are given a list of relators P,Q,R, . . . for a group G. We must do the following
to show that P,Q,R, . . . form a sufficient set of relators for G, i.e. to show that P,Q,R, . . .
are defining relators for G. Show that

(i) the list of relations are, in fact, relations, and
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(ii) show that any valid relation in G can be derived from the given list of P,Q,R, . . .
relators.

Intuitively, the second step can be understood thusly: Consider the set {aν} of generators
in the presentation of some group G. Any valid relation, R, in G can be written in the form

aα1
n1
aα2
n2
· · · aαrnr = aβ1m1

aβ2m2
· · · aβsms

which then can be rewritten as the following relator:

aα1
n1
aα2
n2
· · · aαrnra

−βs
ms · · · a

−β1
m1

.

If we can reduce this relator, showing it to be freely equal to the empty word using the addi-
tional insertion or deletion of P,Q,R, . . ., then we could rebuild this relator from P,Q,R, . . .
in reverse order, and hence we can rebuild the original relation from the given list P,Q,R, . . .
of relators. Since our choice of relation R was arbitrary, this would show that the given list
P,Q,R, . . . of relators is sufficient to express any relation for the group. Hence the given list
P,Q,R, . . . of relators is a set of defining relators for G.

3 Rewriting Process

3.1 Definition of a Rewriting Process

Let G be a group with presentation

G = 〈a, b, c, . . . | P,Q,R, . . . 〉, (5)

and let H be a subgroup of G.

Definition 3.1. Suppose that H has generators {ji}, which are words in the symbols {aν}.
For each i, identify each word of {ji} with a single new symbol si. Call this new set of
symbols {si}. A rewriting process for H with respect to generators {ji} is a map,
τ , from words in the symbols {aν} that define elements of H to words in the symbols {si},
such that these two words, one written in the symbols {aν} and the other in the symbols
{si}, define the same element of H.

Since {ji} is a set of generators for H then for any h ∈ H there is some t ∈ Z such that,

h = jε1n1
· · · jεtnt (εj = ±1). (6)

This is not the only way to write h as a product of the generators ji, but any such expression
will suffice for our purposes, so let us make use of this particular one. Note that, in this
form, h is a word in {aν}, since each ji is a word in {aν}. Now a rewriting process is a map
τ that identifies each ji with a single symbol si, and maps the words in H accordingly. In
other words

τ(h) = τ(jε1n1
· · · jεtnt) = sε1n1

· · · sεtnt . (7)

Therefore τ(h) is the same group element as h, but h is a word in {aν} while τ(h) is a word
in {si}.
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3.2 Simple Example of a Rewriting Process

For example, let us return to the dihedral group with eight elements:

D4 = {e, a, a2, a3, b, ab, a2b, a3b},

or, as a presentation:
D4 = 〈a, b | a4, b2, abab〉.

Here, we are using a and b as generators of the whole group. Recall that the Klein 4-group,
V , is a subgroup of D4, and in fact there is more than one subgroup of D4 that is isomorphic
to the Klein 4-group. One possibility is

V = {e, a2, a2b, b}.

In this case, V is generated by the set {a2, b}. Let us make the following identifications:
x = a2 and y = b. Then a rewriting process for V could be the following map:

e
τ−→ e

a2
τ−→ x

a2b
τ−→ xy

b
τ−→ y.

In terms of the notation in the definition of a rewriting process, the set {ji} is {a2, b}, and
the set {si} is {x, y}. Say, j1 = a2, j2 = b and s1 = x, s2 = y. So then for a2b ∈ V , we have
that a2b = j1j2 and

τ(a2b) = τ(j11j
1
2) = s11s

1
2 = xy.

We will use this group again to illustrate various general concepts, so we designate it as a
running example below.

Definition 3.2. (Running Example 1) Let G1 have the following presentation

G1 = D4 = 〈a, b | a4, b2, abab〉

and let us designate the following subgroup:

H1 = V = {e, a2, a2b, b}.

In this case, note that G1/H1 = {H,Ha} = {{e, a2, a2b, b}, {a, a3, ab, a3b}}.

3.3 The Simple Example Becomes Unwieldy

As we will see, we can obtain a presentation for H1 using the above rewriting function! At
this point it will be fairly cumbersome, but the Reidemeister rewriting function simplifies it,
and then the Reidemeister-Schreier process simplifies it even more. Continuing with Running
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Example 1 for now, a presentation for H1 can be obtained using the generators {x, y}, and
using the following relations (as will be proved in the next section):

x = τ(a2) and y = τ(b) (8)

τ(h) = τ(h′) (9)

where h and h′ are any freely equal words in V (written as words in a, b), and

τ(hi · hj) = τ(hi) · τ(hj) (10)

where hi and hj are any elements of V (written as words in a, b), and

τ(wRµw
−1) = e (11)

where {Rµ} are the relators of G1, and w is any word in a, b.
The reason this presentation is cumbersome is because we have infinitely many relations

here! So even with our simple example of H1 as a subgroup of G1, we cannot expect to
completely write this down explicitly. Nevertheless, let us attempt to see at least a finite
selection of these relations to 1) get a sense of why we need a simpler way of obtaining a
presentation of subgroups and 2) feel somewhat convinced that these relations do in fact
generate H. Later on we will prove it in general. The following are selections of relations of
the form (8)

x = τ(a2) (12)

y = τ(b), (13)

and of the form (9)

τ(ea4e−1) = τ(a4) (14)

τ(eb2e−1) = τ(b2), (15)

and of the form (10)

τ(a2b) = τ(a2)τ(b) (16)

τ(b2) = τ(b)τ(b) (17)

τ(a4) = τ(a2)τ(a2) (18)

τ(a2ba2b) = τ(a2)τ(b)τ(a2)τ(b), (19)

and, finally, of the form (11)

τ(ea4e−1) = e (20)

τ
(
(ab−1a−1)abab(ab−1a−1)−1

)
= e (21)

τ
(
(ab−1)abab(ab−1)−1

)
= e (22)

τ(ab2a−1) = e (23)

τ(eb2e−1) = e (24)

τ(ea4e−1) = e. (25)

As long as τ is a rewriting process, these, along with all other relations of this form, are the
basis for the relators in a presentation of a subgroup H.
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3.4 Reducing to a More Familiar Presentation

Note that there are infinitely many possible relations of the form (8) through (11). In this
case we already know a presentation of V , so the relations (12) through (25) were carefully
chosen in order to show that we can obtain the usual relators known in a presentation of V .
In fact, we know that the generators x and y along with the relators x2, y2, and xyxy form
a presentation of V . In other words, it is known that

V = 〈x, y | x2, y2, xyxy〉

is a presentation of V . In practice, we may not know the presentation of a subgroup, H,
before hand (the whole point of this process after all is to obtain a presentation of H), so it
would likely be much more difficult to weed through infinitely many relations and select a
finite (much less, minimally finite) collection of relations that are sufficient for a presentation
of H.

In our case, it would be nice to be able to derive the relators x2, y2, and xyxy from (12)
through (25). To this end, note that (12), (14), (18), and (25) yield x2 = e, while (13), (15),
(17), and (24) yield y2 = e. More difficult to see is the following:

e = e · e · e−1

= τ
(
(ab−1a−1)abab(ab−1a−1)−1

)
τ
(
(ab−1)abab(ab−1)−1

)
τ ((ab2a−1)−1) ∗

by (21), (22), and (23)

= τ
(
(ab−1a−1)abab(ab−1a−1)−1(ab−1)abab(ab−1)−1(ab2a−1)−1

)
by (10)

= τ(ab−1a−1abababa−1ab−1ababba−1ab−2a−1)

by (9)

= τ(a2ba2b)

by (9)

= xyxy

by (12), (13), and (19).

(∗ Note that we will show τ(h−1) = τ(h)−1 in the next section, a fact used to get from the
first bold factor to the second in the first two lines.)
Thus we obtain the desired relators x2, y2, xyxy in a known presentation of V from the
carefully chosen relations (12) through (25) of the infinitely many relations of the form (8)
through (11).

From this exploration it is easy to suspect that the collection of relations of the form
(8) through (11) do in fact give us a defining set of relators, along with many redundant
relators. We prove this fact in more generality now in the next section.

3.5 A First Presentation for a subgroup H

Thanks to Reidemeister and Schreier, we can find a simpler presentation for our subgroup
H. We obtain this simpler presentation by choosing special generators for H and using
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the following tools, a right coset representative function (defined in Section 5) and a
Schreier transversal (defined in Section 6.3.1). In the meantime, let us prove that relations
of the form (8)-(11) do in fact give presentations of subgroups more generally. To show this,
recall the two steps from Section 2.2.3 for showing that a list of relators is a presentation of
a group G.

Theorem 3.1. Let G have the presentation

G = 〈a1, . . . , an | Rµ, . . . 〉

and let H be a subgroup of G. If {ji} is a set of generators of H and τ is a rewriting process
for H with respect to the generators {ji}, then a presentation for H under the mapping
ji → si is obtained by using the symbols si as generating symbols and using the following
equations as defining relations:

si = τ(ji) (26)

τ(h) = τ(h′) (27)

τ(hi · hj) = τ(hi) · τ(hj) (28)

τ(wRµw
−1) = e (29)

where h, h′, hi, and hj words in the generators of G which define elements of H, and h, h′

are freely equal. Also, Rµ is a defining relator in the presentation of G and w is any word
in the generators of G.

Proof.

(i) First we show that (26)-(29) are relations.

(26) This is a relation under the identification si ⇒ ji.

(27) This is a relation since if h and h′ are freely equal words, then they are the same
group element of H. Also h and τ(h) denote the same group element for all h ∈ H
by definition of the rewriting process. Thus τ(h) and τ(h′) denote the same group
element of H.

(28) This is a relation since, again, h and τ(h) denote the same group element for all
h ∈ H, thus

τ(hihj) = hihj = τ(hi)τ(hj).

The equality here is understood to mean “as group elements”.

(29) This is a relation since wRµw
−1 is the identity in G, and hence the identity in H.

In other words, wRµw
−1 ∈ H, thus we can use the fact that h and τ(h) denote

the same group element for all h to say

τ(wRµw
−1) = wRµw

−1 = e.
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(ii) Next we show that any arbitrary relator can be reduced to the empty word using
(26)-(29).

Let
sε1n1
· · · sεrnr (εi = ±1) (30)

be any relator. We must show we can reduce this to the empty word using (26)-(29).
First, let us derive a few consequences of (26)-(29):

(a) We have τ(e) = e. This follows from (28) by letting hi = hj = e:

τ(e) · τ(e) = τ(e · e) = τ(e).

And since τ(e) is a group element, we can multiply both sides by τ(e)−1 to obtain
the desired result.

(b) We also have that τ(h−1) = τ(h)−1. To see this, we again using (28) and the
result from (a), which gives

τ(h−1)τ(h) = τ(h−1h) = τ(e) = e.

Multiplying both sides by τ(h)−1 yields the desired result.

(c) Thus for any product of elements, hε11 · · ·h
εq
q such that εi = ±1 for all i, we have

by (3) and (b)

τ(hε11 · · ·hεqq ) = τ(hε11 ) · · · τ(hεqq ) = τ(h1)
ε1 · · · τ(hq)

εq .

Now we have the tools for the following reduction of (30) to the empty word (let
ηi = ±1 for all i):

sε1n1
· · · sεrnr = τ(j1)

ε1 · · · τ(jr)
εr (31)

= τ(jε11 · · · jεrr ) (32)

= τ
(
(w1Rµ1w

−1
1 )η1 · · · (wtRµtw

−1
t )ηt

)
(33)

= τ
(
w1Rµ1w

−1
1

)η1 · · · τ (wtRµtw
−1
t

)ηt
(34)

= eη1 · · · eηt (35)

= e · · · e (36)

= e (37)

I imagine for most of us, the most mysterious step is from (32) to (33) (it certainly
was for me!). But step by step:

(31) is by relation (26).

(32) is by (c) above.

(33) is by the fact that since si and ji denote the same group element, and since
sε1n1
· · · sεrnr = e, then we also have jε11 · · · jεrr = e. In particular, this tells us that

jε11 · · · jεrr is the identity in G. By Corollary 2.1 in [2], if a word is the identity in G,
then that word is an element of the normal subgroup of the free group, F , on {aν},
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that is generated by the relations in the presentation of G. A normal subgroup
containing these relations must also contain their conjugates and the inverses of
their conjugates (in order to be normal), thus a word that is the identity in G can
always be written as we see in the argument of τ in (33).

(34) is by (c) again.

(35) is by (29).

(36) and (37) should be obvious.

Thus, any relation satisfied by the generators of H can be reduced to the empty word using
(26)-(29). Therefore (26)-(29), along with the generators {si} do in fact form a presentation
for H. In other words, we can present H thusly:

H = 〈s1, s2, · · · | si = τ(ji), τ(h) = τ(h′), τ(hi · hj) = τ(hi) · τ(hj), τ(wRµw
−1) = e〉

for all h, h′, hi, and hj words in the generators of G which define elements of H, where h, h′

are freely equal, and where Rµ is any defining relator in the presentation of G, and w is any
word in the generators of G.

4 Searching for a Second Running Example

Let
G = 〈a, b, c | a4, b2, c2, baba, caca3, bcbc〉.

Alternatively, we could rewrite the relators as relations, which might make the underlying
structure of G a little more clear:

G = 〈a, b, c | a4 = b2 = c2 = e, ba = a3b, ac = ca, bc = cb〉.

Thus we can see, for example, that a, c and b, c commute but not a, b. This group G has
order 16 and is isomorphic to the external direct product D4×Z2, where we use the notation
Dn to denote the symmetry group of a regualar n-gon, i.e. the dihedral group of order 2n.

Consider the subgroup
H = {e, a3bc}.

Note that H is a subgroup, since if we expand and move c to the end, and simplify using
the relations, we have:

(a3bc)2 = aaabcaaabc = aa(aba)aab(cc)

= aabaabe

= a(aba)ab

= abab

= (aba)b

= bb

= e
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Also, [G : H] = 8, since the cosets are given by G/H =
H0 = H = {e, a3bc}, H4 = Ha2 = {a2, abc},
H1 = Ha = {a, a2bc}, H5 = Hab = {ab, a2c},
H2 = Hb = {b, a3c}, H6 = Hac = {ac, a2b},
H3 = Hc = {c, a3b}, H7 = Ha3 = {a3, bc}


We will define this example below.

Definition 4.1. (Running Example 2) Let G have presentation

G = 〈a, b, c | a4, b2, c2, baba, caca3, bcbc〉

and let H denote the following subgroup of G:

H = {e, a3bc}.

5 Some Special Generators of H

Let K be a complete set of distinct representatives of G/H that contains e, called here,
for short, a transversal. One possibility for K in Running Example 2 is

K = {e, a, a3c, c, abc, ab, a2b, a3},

which we get by picking one element from each coset in our complete list of cosets at the
end of the previous section. In this case, there are 27 = 128 possible transversals for G/H
that contain e.

Definition 5.1. Right Coset Representative Function
Let W be the set of words in {aν}, where {aν} are the generators of G, and let K be any
transversal for the cosets of a subgroup H. Define the function :W → K by the rule

w 7→ w where w is the element of K such that w ∈ Hw.

We call this function a right coset representative function for G (on the generators
aν) modulo a subgroup H.

Visualization of an element being mapped under a right coset representative function for a
situation in which [G : H] = 4:

H

Hk1

Hk2

Hk3

w

W K

w = k1

e

k2

k3

12



In the above diagram, we can think of each “Hki” as all words that, as group elements of
G, are elements of Hki. Also, the transversal being used is K = {e, k1, k2, k3}.

Theorem 5.1. With the above notation, the subgroup H is generated by the set of words

S =
{
kaνkaν

−1 | k ∈ K and aν is any generator of G
}
.

In other words, any element of H can be written as a product of elements, or the inverses of
elements, in S.

The proof of this relies on the following lemma:

Lemma 5.2. With the above notation,

(i) w = e if and only if w defines an element of H;

(ii) whenever w is freely equal to v, we have w = v;

(iii) w = w;

(iv) wv = wv.

Proof. (i) If w = e, then w ∈ Hw = He = H by definition. On the other hand, if w ∈ H,
then Hw = H. Since we defined K to contain e, and since e ∈ H, then we only have
one choice for w, namely e.

(ii) Since w and v are freely equal, they define the same group element, thus Hw = Hv.
Hence Hw = Hw = Hv = Hv. Since w and v define the same coset of H, and each
element of K represents a distinct coset of G/H, then w = v.

(iii) By definition, w is the element of K such that w ∈ Hw. Note that w ∈ Hw as well.
Thus w ∈ Hw ∩ Hw which implies Hw = Hw, since cosets can only be disjoint or
equal. Since there is one and only one representative for each coset in K, it must be
that w = w. Visual aid for (iv):

Hwv

wv

wv

Hw

w

w

Hwv = Hwv

wv

wv

wv
Multiply on right by v.

13



(iv) By definition, wv,wv ∈ Hwv, and wv,wv ∈ Hwv. Similarly w,w ∈ Hw. Multiplying
every element of Hw on the right by v results in the coset Hwv, which is the same as
Hwv. Since w ∈ Hw, we now have wv ∈ Hwv.Thus wv ∈ Hwv ∩Hwv which implies
Hwv = Hwv, from which the conclusion wv = wv follows, since each coset has one
and only one representative in K.

Now we have enough to prove Theorem 5.1:

Proof. First, two preliminary facts: note that kaνkaν
−1 ∈ H for all k ∈ K and all generators {aν} of G.

This is because Hkaν = Hkaν by definition, so Hkaνkaν
−1

= H. Thus there exists an h ∈ H
such that h = kaνkaν

−1
.

Less obviously, note the fact that ka−1ν ka−1ν
−1

is the inverse of ka−1ν aνka−1ν aν
−1

, the latter
of which we can see is an element of S (after staring at it for a week or so). Obvious, right?
Well, not for me, so let’s work it out:(

ka−1ν ka−1ν
−1
)
·
(
ka−1ν aνka−1ν aν

−1
)

=
(
ka−1ν ka−1ν

−1
)
·
(
ka−1ν aνka−1ν aν

−1
)

by (iv)

=
(
ka−1ν ka−1ν

−1
)
·
(
ka−1ν aνke

−1
)

=
(
ka−1ν ka−1ν

−1
)
·
(
ka−1ν aνk

−1
)

by (i)

=
(
ka−1ν ka−1ν

−1
)
·
(

(aνk
−1)−1

(
ka−1ν

)−1)−1
=
(
ka−1ν ka−1ν

−1
)
·
(
ka−1ν ka−1ν

−1
)−1

= e

So now anytime we see something of the form ka−1ν ka−1ν
−1

, we know it is the inverse of
something in S.

Let h ∈ H, and write h in the following way:

h = aε1ν1a
ε2
ν2
. . . aεrνr (εi = ±1),

where aνi is not necessarily distinct from aνj when i 6= j. For example, pick h = a3bc from
Running Example 2. We would write h in the above way as

h = aaabc or a−1bc.

If we could find W1, . . . ,Wr such that

h = W1a
ε1
ν1
W1a

ε1
ν1

−1 ·W2a
ε2
ν2
W2a

ε2
ν2

−1 · · · · ·Wra
εr
νrWraεrνr

−1
, (38)

then since εi = ±1 for all i, and by property (iv) above, we will have written h in terms of

S or the inverses of S. In other words, when εi = 1 then WiaνiWiaνi
−1

= WiaνiWiaνi
−1
∈ S

14



and when εi = −1 then Wia
−1
νi
Wia−1νi

−1
= Wia

−1
νi
Wia−1νi

−1
∈ S−1, the set of inverses of S,

since Wia
−1
νi
Wia−1νi

−1
is of the form ka−1ν ka−1ν

−1
.

The following choices for W1, . . . ,Wr will rewrite h as a product in the form of (38). Let

W1 = e, W2 = aε1ν1 , W3 = aε1ν1a
ε2
ν2
, . . . , Wr = aε1ν1a

ε2
ν2
. . . aεr−1

νr−1
.

We call these choices for Wj the (j − 1)st initial segments of h. Let’s see how this works:

W1a
ε1
ν1
W1a

ε1
ν1

−1 ·W2a
ε2
ν2
W2a

ε2
ν2

−1 · · ·Wra
εr
νrWraεrνr

−1

= eaε1ν1ea
ε1
ν1

−1 · aε1ν1aε2ν2a
ε1
ν1a

ε2
ν2

−1 · · · aε1ν1aε2ν2 . . . a
εr−1
νr−1a

εr
νra

ε1
ν1a

ε2
ν2 . . . a

εr−1
νr−1aεrνr

−1

= eaε1ν1

(
aε1ν1
−1
aε1ν1

)
aε2ν2

(
aε1ν1a

ε2
ν2

−1
aε1ν1a

ε2
ν2

)
· · ·(

aε1ν1a
ε2
ν2 . . . a

εr−1
νr−1

−1
aε1ν1a

ε2
ν2 . . . a

εr−1
νr−1

)
aεrνra

ε1
ν1a

ε2
ν2 . . . a

εr−1
νr−1aεrνr

−1

= eaε1ν1(e)a
ε2
ν2

(e) · · · (e)aεrνrh
−1

= ehh
−1

= ehe−1 by (i)

= h

Truly awesome! Let’s see how this works with a concrete example, using Running Example
2. Let h = a3bc. Now write it in the form h = aaabc. Thus we have

W1 = e, W2 = a, W3 = aa, W4 = aaa, and W5 = aaab.

Then we proceed as follows:

W1aW1a
−1 ·W2aW2a

−1 ·W3aW3a
−1 ·W4bW4b

−1 ·W5cW5c
−1

= eaea−1 · aaaa−1 · aaaaaa−1aaabaaab−1 · aaabcaaabc−1

= ea
(
ea−1a

)
a
(
aa−1aa

)
a
(
aaa−1aaa

)
b
(
aaab

−1
aaab

)
caaabc

−1

= e (aaabc) aaabc
−1

= ehh
−1

= h.

Cool! Ok, now I have to try it with the second way I wrote h, namely h = a−1bc just to see
that it works! In this case

W1 = e, W2 = a−1, W3 = a−11 b.

So then we have:

15



W1a
−1W1a−1

−1 ·W2bW2b
−1 ·W3cW3c

−1

= ea−1ea−1
−1 · a−1ba−1b−1 · a−1bca−1bc−1

= ea−1
(
a−1

−1
a−1
)
b
(
a−1b

−1
a−1b

)
ca−1bc

−1

= ea−1(e)b(e)ca−1bc
−1

= ehh
−1

= h

Notably this delightfully matches our results above.
Indeed, at this point we have found a generating set for H, so now we can prove the

following result:

Theorem 5.3. If G is finitely generated and H is a subgroup of G of finite index, then H
is finitely generated.

Proof. Recall that we have a (possibly infinite) list of generators for H, namely the set

S = {kaνkaν
−1 | k ∈ K and aν is any generator of G}.

Since G is finitely generated, we can say G has n generators, for some n ∈ N. Likewise, since
H is a subgroup of finite index, we can say [G : H] = j, for some j ∈ N. Then |K| = j.
Accordingly, for elements of S, there are n choices for aν and j choices for k, thus |S| ≤ nj

(nothing we’ve said so far necessitates that kiaνikiaνi
−1 6= ktaνtktaνt

−1
when i 6= t). Thus H

is generated by a finite set; hence H is finitely generated.

6 More Practical Presentations of H

6.1 The Reidemeister Rewriting Process

We can find a rewriting process using the generators, S = {kaνkaν
−1}, for any subgroup

H. Let’s first explore the Reidemeister rewriting process with our running example. The
element a−1bc is an element of H, written in terms of the generators of G, and we actually
rewrote it previously as

a−1bc =
(
ea−1ea−1

−1
)(

a−1ba−1b
−1
)(

a−1bca−1bc
−1
)

=
(
a−1ae−1

)−1 (
a−1ba−1b

−1
)(

a−1bca−1bc
−1
)

=
(
a−1aa−1a

−1
)−1 (

a−1ba−1b
−1
)(

a−1bca−1bc
−1
)

where each element in parenthesis, on the final line, is a generator of H, not G. Notice how

the first bold factor begins in the form k′a−1k′a−1
−1

. Recall from the previous section that

16



something in this form is the inverse of a generator of H, i.e. the inverse of an element of S.

Thus we know there is a k ∈ K such that k′a−1k′a−1
−1

=
(
kaka

)−1
. And, in fact

k′ = e and k = k′a−1 = ea−1 = a−1.

In even more excruciating detail, this is how we get from k′a−1k′a−1
−1

to
(
kaka

)−1
:

(
k′a−1k′a−1

−1
)−1

= k′a−1a(k′)−1

= k′a−1ak′
−1

by (iii) from §5

= k′a−1ak′a−1a
−1
.

Then taking the respective inverses of both sides yields

k′a−1k′a−1 =
(
k′a−1ak′a−1a

−1
)−1

=
(
kaka

−1
)−1

for k = k′a−1.

In practice it might be simpler to deal with a specific element, rather than in this generality,
like we did with the example at the beginning of this section with(

ea−1ea−1
−1
)

=
(
a−1aa−1a

−1
)−1

,

but it’s kind of nice to know the relationship between k′ and k. So there it is!
If generalized, this basically becomes the Reidemeister rewriting process. But first, some

new notation for the elements of S. We’ll say that

sk,aν ∈ S means sk,aν = kaνkaν
−1
.

Using this new notation in the above example yields

a−1bc =
(
a−1aa−1a

−1
)−1 (

a−1ba−1b
−1
)(

a−1bca−1bc
−1
)

= s−1k1,a · sk2,b · sk3,c,

where k1 = a−1, k2 = a−1, and k3 = a−1b.
With this notation, we are now ready to define the Reidemeister rewriting function.
The Reidemeister Rewriting Process
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Let h = aε1ν1a
ε2
ν2
. . . aεrνr (εj = ±1) be a word in the generators of G that defines an

element of H. Define the mapping τ in the following way:

τ(h) = sε1k1,aν1
sε2k2,aν2

· · · sεrkr,aνr

where

kj =

{
aε1ν1a

ε2
ν2 . . . a

εj−1
νj−1 if εj = 1

aε1ν1a
ε2
ν2 . . . a−1νj if εj = −1

We say that τ is a Reidemeister rewriting process.

In order to prove that τ is in fact a rewriting process, we need to show that h and τ(h)
are the same group element in H. To do this, recall from before equation (38):

h = W1a
ε1
ν1
W1a

ε1
ν1

−1 ·W2a
ε2
ν2
W2a

ε2
ν2

−1 · · · · ·Wra
εr
νrWraεrνr

−1

where Wj is defined as:
Wj = aε1ν1a

ε2
ν2
. . . aεj−1

νj−1
.

We saw from before that the right hand side defines the same group element as the left hand
side. Now we have two cases to consider (note: I make free use of property (iv) of Lemma
5.1 without reference):

Case 1 (εj = 1):

skj ,aνj = kjaνjkjaνj
−1

= WjaνjWjaνj
−1

by definition of kj and Wj

= Wja
εj
νj
Wja

εj
νj

−1
.

Case 2 (εj = −1):

s−1kj ,aνj
=
(
kjaνjkjaνj

−1
)−1

=
(
Wja−1νj aνjWja−1ν aνj

−1
)−1

since kj = Wja−1νj in this case

= Wja
−1
νj
Wja−1νj

−1

= Wja
εj
νj
Wja

εj
νj

−1
.

Thus, in either case, we have s
εj
kj ,aνj

= Wja
εj
νjWja

εj
νj

−1
. Hence

τ(h) = sε1k1,aν1
sε2k2,aν2

· · · sεrk2,aνr
= W1a

ε1
ν1
W1a

ε1
ν1

−1 ·W2a
ε2
ν2
W2a

ε2
ν2

−1 · · · · ·Wra
εr
νrWraεrνr

−1

= h

as was shown before.
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6.2 A Simplified Presentation for H

6.2.1 Reidemeister’s Presentation

Using the Reidemeister rewriting process, we can obtain a presentation for H with a more
manageable, i.e. finite, list of relations. The following theorem states this fact formally:

Theorem 6.1. Let τ be a Reidermeister rewriting process for a subgroup H of a group G.
If G has the presentation G = 〈aν , · · · | Rµ, . . . 〉, then H has the presentation

H = 〈sk,aν , · · · | sk,aν = τ(kaνkaν
−1

), . . . , τ(kRµk
−1), . . . 〉

under the mapping sk,aν → kaνkaν
−1

, where k ∈ K.

6.2.2 Example of Reidemeister’s Presentation

Although it is fairly routine to verify that the Reidemeister presentation gives a valid pre-
sentation (just using the checklist provided in Section 2.2.3), it is more illuminating to work
through a concrete example in detail. For this purpose, we return to Running Example 1.
In this case we have

G/H = {H,Ha}
where H = {e, a2, a2b, b} and Ha = {a, a3, ab, a3b}. Thus a possible transversal for G/H
could be:

K = {e, ab}.
Referring to Theorem 6.1, H will have the following list of generators:

{se,a, se,b, sab,a, sab,b}.

Some of whose relations are of the form sk,aν = τ(kaνkaν
−1

) seen below.

se,a = τ(eaea−1) = τ(aa−1) = τ(a(ab)−1) = τ(ab−1a−1) = se,as
−1
ab,bs

−1
e,a (39)

se,b = τ(ebeb
−1

) = τ(b) = e (40)

sab,a = τ((ab)a(ab)a
−1

) = τ(aba) = se,asab,bsab,a (41)

sab,b = τ((ab)b(ab)b
−1

) = τ(abbb−1a−1) = se,asab,bsab,bs
−1
ab,bs

−1
e,a. (42)

The details, for all but line (39), are left to the reader. To evaluate τ above, we are using the
fact that τ is a Reidemeister rewriting process, and using the definition from Section 6.1.

According to Theorem 6.1, we also have relations of the form τ(kRµk
−1) = e, shown

below.

e = τ(ea4e−1) = τ(aaaa) = se,asab,ase,asab,a (43)

e = τ(eb2e−1) = τ(bb) = se,bse,b (44)

e = τ(eababe−1) = τ(abab) = se,asab,bsab,ase,b (45)

e = τ((ab)a4(ab)−1) = τ(abaaaab−1a−1) = se,asab,bsab,ase,asab,ase,as
−1
ab,bs

−1
e,a (46)

e = τ((ab)b2(ab)−1) = τ(abbbb−1a−1) = se,asab,bsab,b)sab,bs
−1
ab,bs

−1
e,a (47)

e = τ((ab)abab(ab)−1) = τ(abababb−1a−1) = se,asab,bsab,bse,bse,asab,bs
−1
ab,bs

−1
e,a. (48)
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By canceling group elements when possible and cleaning things up (for instance, eliminating
se,b, since (40) says that se,b = e), we get the following list of relations:

se,asab,b = e (49)

sab,asab,b = e (50)

sab,bse,a = se,asab,b (51)

(se,asab,a)
2 = e (52)

se,asab,bsab,a = e (53)

(sab,ase,a)
2 = e (54)

s2ab,a = e (55)

sab,ase,asab,b = e. (56)

6.2.3 Reducing to a More Familiar Presentation

The relations (49) through (56) might not look like what we’d expect as a set of relations
for the presentation of the Klein-4 group, V , the subgroup used in Running Example 1. If
x and y are generators of V , then a familiar presentation of V could be

V = 〈x, y, z | x2, y2, (xy)2〉.

Notice that by combining (54) and (56), we obtain s2ab,b = e. By (55), we see that s2ab,a = e.
I’ll leave the details to the reader, but it is possible to then derive (sab,bsab,a)

2 = e from the
relations (49) through (56) as well. Thus, under the identification sab,b ⇒ x and sab,a ⇒ y
the relations (49) through (56) reduce to the familiar relations for V seen above.

6.3 Reidemeister’s Presentation using a Schreier Transversal

6.3.1 Schreier Transversal

Recall from Section 5 the initial segments of a word. For example, if w = a2bc, then the
initial segments of w, in order, are e, a, a2, a2b, and a2bc. A Schreier transversal is simply
a transversal that is closed under initial segments. Some hypothetical transversals that are
Schreier include

{e, a, b, c, ac}, {e, a, a2, a2b}.

Hypothetical transversals that would not be Schreier include

{e, a, b, cd}, {e, c, ab, b}, {e, x, y, x2y}.

The following lemma states that, when G is finitely generated, a Schreier transversal always
exists.

Lemma 6.2. Let G = 〈a1, . . . , an | P,Q,R, . . . 〉 and let H be a subgroup of G. Then there
is a Schreier transversal for G/H.
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Proof. We call the length of a coset of G/H the length of the shortest word in it. Let
us use `(w) to represent the length of the word w. The function ` is additive. For example
`(a2b) = 3 = `(a) + `(ab) = 1 + 2, etc. We will prove Lemma 6.2 inductively on the length
of the cosets G/H.

For each coset in G/H, we want to choose a representative in the transversal whose
length is equal to the length of the coset. In particular, note that this implies `(w) ≤ `(w)
for all w ∈ Hw. Choose e as the representative for H, the coset with length zero. If H1 is
any coset with length one, choose any word of length one to represent it. Suppose H2 is any
coset with length two. Let x1x2 be any word of length two in H2, where xi is a generator,
or the inverse of a generator, in the presentation of G. By Lemma 5.2, part (iv), x1x2 ∈ H2.
Since H2 is length two, then `(x1x2) ≥ 2, by which we have the following inequality:

2 ≤ `(x1x2) = `(x1) + `(x2) = `(x1) + 1.

Thus, `(x1) ≥ 1. But `(x1) ≤ `(x1) = 1, so we conclude that `(x1) = 1. This means that, on
the one hand, x1x2 has length two, and on the other hand, that x1 is the representative of a
coset of length one, and hence has already been chosen! We choose x1x2 as our representative
of H2 in the transversal.

For our induction hypothesis, assume we have chosen a representative in the transversal
for cosets of length less than n in the manner stated in the first sentence of the above
paragraph. Suppose that Hn is a coset of length n. In other words, the least length word in
Hn is n. Pick an element of Hn with this least length, say x1x2 · · ·xn−1xn. By Lemma 5.2,
part (iv), x1x2 · · ·xn−1xn ∈ Hn. Thus `(x1x2 · · ·xn−1xn) ≥ n, which as before implies that
`(x1x2 · · ·xn−1) ≥ n− 1. By construction we also have that

`(x1x2 · · ·xn−1) ≤ `(x1x2 · · ·xn−1) = n− 1.

Thus `(x1x2 · · ·xn−1) = n − 1. This means that x1x2 · · ·xn−1 is the representative in the
transversal of a coset of length n − 1, and, according to our hypothesis, has already been
chosen for the transversal! Thus x1x2 · · ·xn−1xn has length n, and it’s initial segment is
already in the transversal, so we choose it as the representative of Hn in the transversal.

6.3.2 Reidemeister-Schreier’s Presentation

Using the Schreier transversal, we get a further simplified presentation for a subgroup H,
stated in the following theorem.

Theorem 6.3. Suppose G has the following presentation:

G = 〈a1, . . . , an | P,Q,R, . . . 〉, (57)

and let H be a subgroup of G. If τ is a Reidemeister-Schreier rewriting process, then H can
be presented as

〈sk,aν , · · · | sm,aλ , . . . , τ(kRk−1), . . . 〉, (58)

where k is an element of a Schreier transversal for G/H, aν is any generator of G and R is
any relator in (57), and m is a Schreier representative and aλ a generator such that

maλ is freely equal to maλ. (59)
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6.3.3 Example of Reidemeister-Schreier’s Presentation

Here again, it is fairly routine to verify that the Reidemeister-Schreier presentation gives a
valid presentation (just using the checklist provided in Section 2.2.3), it is more illuminating
to work through a concrete example in detail. For this purpose, we return to Running
Example 2.

First, we would like to find a Schreier transversal for H. Using Lemma (6.2) as a guide,
let the Schreier representative for H be e. Notice that H1, H2, and H3 all have length one.
For each there is only one element of length one, namely a, b, and c, respectively. The length
of H4, H5, H6, and H7 is two. Lemma (6.2) requires that we pick elements of length two to
begin finding their respective Schreier representatives, but again there is only one such choice
for each. Thus, a Schreier transversal for G/H is

K = {e, a, b, c, a2, ab, ac, bc}. (60)

Next we need to find for which choices m ∈ K and aλ in the generating set {a, b, c} are maλ
freely equal to maλ. To that end, see the following table (note: to save space, ≈? stands for
“Are they freely equal?”):

maλ maλ ≈? maλ maλ ≈? maλ maλ ≈?
ea → a Y eb → b Y ec → c Y
aa → a2 Y ab → ab Y ac → ac Y
ba → c N bb → e N bc → bc Y
ca → ac N cb → bc N cc → e N
a2a → bc N a2b → ac N a2c → ab N
aba → b N abb → a N abc → a2 N
aca → ab N acb → a2 N acc → a N
bca → e N bcb → c N bcc → b N.

So out of the 24 possible expressions of the form maλ, only 7 are freely equal to their
respective representatives in the Schreier transversal. Note that for the remaining relators,
that are of the form τ(kRk−1), there are 8 choices for k and 6 choices for R, so there are
a total of 48 relators of this form. This brings the total relators in a presentation for H to
55. At this point it’s beginning to seem a little difficult to see how this new presentation is
simplifying things. Let us revisit Running Example 1 (defined at the bottom of Section 3.2),
and compare it to our results in Section 6.2.2 to get a better sense of this.

Recall that in Running Example 1, [G : H] = 2, withG/H = {{e, a2, a2b, b}, {a, a3, ab, a3b}} =
{H,Ha}. As usual, we choose e as the Schreier representative for H. Notice that Ha has
length one, and contains only one element of length one as well, namely a. Thus a Schreier
transversal in this case is

K = {e, a}.
According to Theorem 6.3, the generating symbols for H are of the form sk,aν , of which there
are the following four:

se,a, se,b, sa,a, and sa,b.

Then we have relations of two different types. First, those of the form sm,aλ , where maλ is
freely equal to maλ. In this case there is only one out of a total possible four that satisfy
this relation, as can be seen in the following table:
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maλ maλ freely equal? maλ maλ freely equal?
ea → a Y eb → e N
ab → a N ab → a N.

Thus the only relation of this type that we obtain is se,a = e. The second type of re-
lator in Theorem 6.3 is of the form τ(kRk−1), of which we have 2 · 3 = 6, in this case.
Calculating these similar to how we calculated them in 6.2.2 yields

se,asa,ase,asa,a = e

se,bse,b = e

se,asa,bsa,ase,b = e

se,asa,ase,asa,a = e

se,asa,bsa,bs
−1
e,a = e

se,asa,ase,bse,asa,bs
−1
e,a = e.

Cleaning this up by cancelling group elements, using the fact that se,a = e, and eliminating
one redundant relation, we obtain

(sa,a)
2 = e (61)

(se,b)
2 = e (62)

sa,bsa,ase,b = e (63)

(sa,b)
2 = e (64)

sa,ase,bse,asa,b = e. (65)

Comparing this cleaned up list of relations to the final list of Section 6.2.2, we have something
noticeably more simple.

6.3.4 Reducing to a More Familiar Presentation

As we have already done twice with the previous two presentations, it might be nice to see
that the defining set of relations that we get for V from the Reidemeister-Schreier theorem
will also derive a common and familiar presentation for V . Recall that the Klein-4 group, V ,
need only two generators, say x and y, and is often defined by the relators x2, y2, and (xy)2.
Consider the identifications sa,a ⇒ x, se,b ⇒ y, and sa,b ⇒ z. Then (61) through (65) from
above becomes

x2 = e (66)

y2 = e (67)

zxy = e (68)

z2 = e (69)

xyz = e (70)

Notice that (66) and (67) are already two of the familiar relators we want. To get the third,
observe that (68) and (69) yield xy = z, and by substituting this result into (69), we obtain
(xy)2 = e.
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[5] Joseph A. Gallian Contemporary Abstract Algebra. Cengage, 2017

24


