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Abstract

In this 501 project we study and present the results of a recent journal article by
Tsai and West [14] that uses the existence of non-crossing Eulerian circuits in planar
triangulations to establish that such graphs are 3-colorable.

1. Introduction

We begin by motivating the main result with a short review of some of the history of
the problem. We also fix our terminology and we set out the notation to be used in the
remainder of the paper.

1.1 The four-color problem

Graph colorability has been a topic of discussion since the 1800’s. The original problem
was to color the regions on a planar map in such a way that if two regions share a non-trivial
(i.e. positive length) border, then they would be assigned different colors. In 1852, Francis
Guthrie made a conjecture that you can color any planar map in this fashion using only
four colors. The first printed reference of this claim is due to Arthur Cayley (in [5]) in 1878,
where he explains the difficulties that lie in attempting to prove the conjecture.

A year later the first ’proof’ (in [13]) of this four-color theorem, by Alfred Kempe, had
appeared. Kempe received a great amount of acknowledgement from the public for his proof.
However, it was pointed out to be incorrect (in [11]) by Percy Heawood eleven years later.
Although Heawood showed that Kempe’s proof of the four-color problem was wrong, he
managed to salvage a proof that every planar map can be 5-colored [17].

The next major contributions came from George Birkhoff, who introduced (in [4]) the
concept of reducibility (A configuration is reducible if it cannot be contained in a triangulation
of the smallest graph which cannot be 4-colored.). His work allowed Philip Franklin, in 1922,
to prove the conjecture was true for all planar maps with at most 25 regions.

The final idea necessary for the solution of the four-color conjecture was a method called
charging and was introduced in 1969 by Heinrich Heesch (in [12]). Using this technique, a
computer search was developed by Kenneth Appel and Wolfgang Haken, and the result was
later confirmed in 1976 when they published (in [3]) their famous computer-aided proof of the
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four-color theorem. Unfortunately, however, their work was not well received by the math
community. This was the first major theorem to be proved in a way that relied critically
upon the use of a computer, and although the computational portion (in theory) is hand-
checkable, such an undertaking would be extraordinarily complicated and tedious. No one
to this day has ever verified it in its entirety, as far as we know.

At present, however, after several independent algorithms have verified the result, and
with a number of major reductions in the complexity of the case breakdown, there is no longer
any serious doubt concerning the result. Overwhelmingly, the mathematical community has
come to accept the four-color theorem as true (see [17]).

We turn now to a brief review of some basic graph theory terminology before we continue
to a discussion of our primary focus, the result of the paper “A new proof of 3-colorability
of Eulerian triangulation” by Tsai and West [14].

1.2 Terminology and Notation

In this section, we collect some of the basic definitions concerning graphs. Our terminol-
ogy in this paper will remain consistent with the textbooks by Godsil [6] and West [18]. We
begin with the formal definition of a graph.

1.2.1 Definition A simple graph G consists of finite set V (G) of vertices, together with a
collection E(G) of 2-element subsets of V (G), referred to as edges.

An edge is usually referenced by the two vertices comprising it, and these are called its
endpoints. For example, we will denote by uv the edge with endpoints u and v. If uv is an
edge, then we say the two vertices u and v are adjacent and we write u ∼ v. The degree of v
is the number of edges with v as an endpoint. For this paper, we will also need to introduce
the concept of a multigraph.

1.2.2 Definition A multigraph G consists of finite set V (G) of vertices, together with a
multi-set E(G) of 1-element or 2-element subsets of V (G), referred to as edges.

We may think of a multigraph as a graph G that may have parallel edges, which are
edges that share the same endpoints, and loops, where a loop is an edge that shares an
endpoint with itself. When determining the degree of a vertex in a multigraph, we follow
the convention that loops count twice.

1.2.3 Figure
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1.2.4 Definition A planar graph is a graph that can be drawn in the plane without any
edge crossings. Such a drawing is a planar embedding. A plane graph is a planar graph
together with a fixed embedding. Planar multigraphs and plane multigraphs are defined
similarly.

Planar graph G Plane graph of G Different plane graph of G

1.2.5 Figure

1.2.6 Definition A walk with endpoints a, b is an alternating sequence of vertices and
edges.

a = v0, e1, v1, e2, v2, ..., ek, vk = b

Where each edge ei has endpoints vi−1, vi. We say G is connected if, for every a, b ∈ V (G),
there is a walk with endpoints a, b. A walk is closed if its endpoints are identical.

Returning to the four-color problem, we can see that one can redraw planar maps into
planar graphs in the following manner. First, identify each region of the planar map with a
vertex (Figure 1.2.7 b). Then let vi ∼ vj if and only if their corresponding regions share a
border of positive length (Figure 1.2.7 c).

(a) (b)

(c) (d)

1.2.7 Figure
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In this way, all of the edges in the graph represent borders of adjacent regions in the
map. The connected regions in the complement of any plane graph are called faces. They
are all bounded except for the outer face which is unbounded. The length of a face is the
number of edge steps taken in a walk around its boundary. In the case of the unbounded
face, the length is called the perimeter of the graph.

Given any plane graph G, we wish to consider the different ways of coloring the vertices
of G. In the context of a given planar map, this corresponds to assigning colors to each
region. The way in which we are coloring the vertices in G is as follows:

1) Each vertex receives a color.
2) If vi ∼ vj then they must receive different colors.

According to the four-color theorem, we can do this by using at most four colors if our
graph is given by a planar map. An interesting question that is left unanswered by the
four-color theorem is the question: When do we only need three colors to properly color the
vertices of a plane graph?

2. Determining three-colorability of planar graphs

The Three Color Problem is the question of determining which planar graphs can be
vertex-labeled from a set of three colors so that adjacent vertices have distinct colors, mak-
ing them three-colorable. Larry Stockmeyer [1] proved that it is NP-complete to determine
whether an arbitrary given planar graph is three-colorable, so it is likely that no nice char-
acterization exists. Attention has therefore focused on finding sufficient conditions for three-
colorability. For example, Grötzsch’s Theorem [10] states that triangle-free planar graphs
are three-colorable [14].

It was claimed in the 19th century that triangulations (plane graphs in which every face is
a triangle) are three-colorable if (and only if) every vertex has even degree, but no complete
proof was published until much later. The claim holds more generally for near triangulations
in which every vertex has even degree, where a near-triangulation is a planar multigraph
whose bounded faces are all three-cycles. Over the years, this statement has been proved and
reproved in a variety of ways. In this project, we follow the exposition of “A new proof of
3-colorability of Eulerian triangulations” by Tsai and West [14], which uses a novel approach
that is quite different from the previous proofs.

Recall that a connected graph with all vertex degrees even is Eulerian, meaning that it
has a closed walk traversing all the edges exactly once (an Eulerian circuit). We will need
to prove a lemma saying that Eulerian plane graphs have non-crossing Eulerian circuits. In
particular, we will see that in a near-triangulation, by cycling through the colors 1; 2; 3,
consecutively along the vertices, such a circuit produces a proper three-coloring. The proof
will also use a lemma saying that the number of edges of any Eulerian near-triangulation is
divisible by three. The method of proof given here can be viewed as providing a fast algorithm
to produce the coloring. In fact, once one proves three-colorability, the independent sets in
a proper three-coloring of an Eulerian triangulation are immediately unique. Indeed, as one
travels from face to face, the vertices that complete two bounded faces sharing an edge must
be in the same independent set.
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In the next chapter, we begin the proof of the main result of this project, stated below.

2.0.1 Theorem Every Eulerian near-triangulation is 3-colorable.

2.0.2 Figure Eulerian near-triangulation with a three-coloring

3. Proof of the main result

The first task is to show that there always exist non-crossing Eulerian circuits in any
Eulerian plane multigraph.

3.0.1 Lemma Every Eulerian plane multigraph has a non-crossing Eulerian circuit.

Proof. Let G be a Eulerian plane multigraph. By definition, G has at least one Eulerian
circuit. Among all Eulerian circuits, pick the circuit that has the least amount of crossings
and call that circuit C. If C has no crossings then we would be done. Then, by way of
contradiction, suppose now that C has at least one crossing. Pick a crossing Cv in C on a
vertex v with edge sets {e, e′} and {f, f ′}. In other words, C contains the sequence

..., e, v, e′, ..., f, v, f ′, ...

So, C is a Eulerian circuit and we have picked a crossing at the vertex v. We know that
there must exist a sub-circuit Cs that starts with v, e′ and ends with f, v.

v

e
f

e′
f ′

3.0.2 Figure Crossing Cv in C

v

f

e′

3.0.3 Figure Subcircuit Cs

Reverse the direction of the sub-circuit Cs (Figure 3.0.4), and call the resulting Eulerian
circuit C ′. Now C ′ follows the path

..., e, v, f, ..., e′, v, f ′, ...

as shown in Figure 3.0.5.
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v

f

e′

3.0.4 Figure Reversed subcircuit C ′s

v

e
f

e′
f ′

3.0.5 Figure Non-crossing C ′v in C ′

Since Cs is a sub-circuit, changing the direction that we walk along its path will not
disconnect the graph. Furthermore, it will eliminate this particular crossing at Cv and it will
not increase the number of crossings.

To see this, we only need to consider any new crossings formed at v in C ′ that involve the
newly formed sequences (e, v, f) or (e′, v, f ′). I claim any crossing formed in this way must
correspond with a crossing that occurred already in C. For example, if C ′ has a crossing
(e, v, f) with, say, (g, v, g′), there are three cases to consider, depicted below:

v

e
f

e′
f ′

g

g′

3.0.6 Figure

v

e
f

e′
f ′

g

g′

3.0.7 Figure

v

e
f

e′
f ′

g

g′

3.0.8 Figure

But in each of these cases, either (e, v, e′) or (f, v, f ′) (or both) already formed crossings
in C with (g, v, g′) as shown:

v

e
f

e′
f ′

g

g′

3.0.9 Figure

v

e
f

e′
f ′

g

g′

3.0.10 Figure

v

e
f

e′
f ′

g

g′

3.0.11 Figure

In Figure 3.0.9 (g, v, g′) crossed (e, v, e′) in C. In Figure 3.0.10 (g, v, g′) crossed (f, v, f ′)
in C. In Figure 3.0.11 (g, v, g′) crossed both (e, v, e′) and (f, v, f ′) in C.

There are three more cases that are similar if (e′, v, f ′) forms a new crossing in C ′ which
we omit for brevity. It follows that, since C ′ has fewer crossings than C, and since C was
selected to have the fewest crossings possible, we have arrived at the desired contradiction.

Therefore, every Eulerian plane graph has a non-crossing Eulerian circuit.
�
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Now we have a non-crossing Eulerian circuit C. To obtain our coloring, we will assign
colors to vertices while traversing the circuit C just described, cycling through colors 1, 2,
and 3. In order to do this, it would be helpful to know if the number of edges in G is divisible
by three. Also, we would need to know that the length of every sub-circuit is divisible by
three. That way, when we are traversing along C, we will not assign more than one color to
a vertex. Let us introduce some useful definitions and lemmas.

The external edges and external vertices in a plane graph are the edges and vertices in-
cident with the unbounded face. A graph is trivial if it has no edges.

3.0.12 Lemma In every Eulerian near-triangulation, the number of edges is divisible by
three.

Proof. Let G be an Eulerian near-triangulation. We will form a smaller near-triangulation
G′ from G by deleting the three edges of a bounded face that contains at least one external
edge. We will then apply induction to this new graph G′, which will always just be a disjoint
union of smaller Eulerian near-triangulation graphs.

Base Case: Let n be the number of bounded faces in G, for some n ∈ N.
When n = 0, G is the trivial graph with isolated vertices, which has zero edge count.

Induction hypothesis: In every Eulerian near-triangulation graph H with fewer than
n bounded faces, the number of edges in H is divisible by three.

Let G be a Eulerian near-triangulation with n > 0 bounded faces. Let F be a bounded
face containing at least one external edge. I claim when F is removed from G, you will be
left with at most n− 3 bounded faces. This is because each edge will unbound at most one
face. So by removing F you will have unbounded at most three bounded faces, one for each
edge.

This leaves us with a graph G′ that has at most n − 1 and at least n − 3 bounded
faces. This graph G′ is a Eulerian near-triangulations, each with fewer than n bounded
faces. Therefore, by our induction hypothesis, the number of edges in G′ is divisible by
three. When F was removed we removed three edges along with it. Therefore, when F is
added back into G′ to recreate G, the number of edges in G will also be divisible by three.

Thus, in every Eulerian near-triangulation graph, the number of edges will be divisible
by three.

�

3.0.13 Lemma In a non-crossing Eulerian circuit of an Eulerian near-triangulation, the
length of every sub-circuit is divisible by three.

Proof. Let G be an Eulerian near-triangulation graph. By Lemma 3.0.1 there exists a
non-crossing Eulerian circuit C in G. Let C ′ be a sub-circuit of C. We will use induction
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on the number of faces that are enclosed by C ′ to deduce the length of C ′ is divisible by three.

Base Case: If there is only one face bounded by C ′, then C ′ must be a triangle by
definition. Therefore, the length of C ′ is three.

Induction hypothesis: In a non-crossing Eulerian circuit C of an Eulerian near-
triangulation G, a sub-circuit C ′ enclosing fewer than n bounded faces has a length divisible
by three, where n ∈ N.

Let v be the first (and last) vertex of C ′. Let H be a subgraph of G such that E(H) and
V (H) consist of all the edges and vertices in G that are contained on C ′ and enclosed by C ′.

Case 1: Suppose C ′ traverses all of H. Since C ′ is a circuit, H is Eulerian. Since H is
a subgraph of G, H is also a near triangulation. So by Lemma 3.0.12 the number of edges
in H is divisible by three. Since C ′ traverses all of H, the number of edges in C ′ is divisible
by three.

Case 2: Suppose C ′ does not traverse all of H. This means there are portions of C that
enter the interior of C ′ to traverse the parts of H that are contained in C ′, but that are not
included on C ′. This can happen at v or another external vertex of H that is visited more
than once by C ′.

Note that C ′ is a non-crossing circuit, and each external vertex of H has even degree.
Also, since C ′ is non-crossing, each portion of C that enters the interior of C ′ must leave the
interior at the same external vertex of H where it entered. This contributes even degree on
all internal vertices of H and the vertices of H where C enters and exits C ′. This tells us
that H is Eulerian (and a near-triangulation). So using Lemma 3.0.12 the number of edges
is divisible by three.

To restrict now to the portion of H not covered by C ′, note that each entry by the rest
of C into the interior of H enters and departs from the same vertex. So these portions of C
create sub-circuits of C that enclose fewer faces than C ′. Thus by our induction hypothesis
their lengths are divisible by three. So given the number of edges in H, and subtracting
the number of edges in these sub-circuits, we are left with the number of edges in C ′. The
number of edges in H is divisible by three and the number of edges in the subtracted sub-
circuits are also divisible by three. This leaves us with C ′ whose length must be divisible by
three.

Therefore, in a non-crossing Eulerian circuit of an Eulerian near-triangulation, the length
of every sub-circuit is divisible by three.

�

Every time you return to a vertex that has already been colored you will have com-
pleted a sub-circuit of C. By Lemma 3.0.13 the length of the sub-circuit is divisible by three.
Therefore, the same color would be assigned to that vertex. In conclusion, the coloring is
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consistent, and it explicitly assigns distinct colors to the endpoints of every edge. Therefore,
every Eulerian near-triangulation is three-colorable, which completes the proof of our main
result.

4. Applications of study and new questions to ponder

The problem of coloring a graph arises in many practical areas such as pattern matching,
sports scheduling, designing seating plans, exam timetabling, the scheduling of taxis, and
solving Sudoku puzzles. The specific question of vertex coloring is useful in many scheduling
problems. Given a set of jobs needed to be assigned to time slots, each job requires one such
slot. Suppose jobs can be scheduled in any order, but pairs of jobs may be in conflict – in
the sense that they may not be assigned to the same time slot. The corresponding graph
contains a vertex for every job and an edge for every conflicting pair of jobs. The minimum
number of colors assigned leads to a schedule with the optimal time to finish all jobs without
any conflicts.

In light of the results of this paper, there are a number of natural questions that could be
considered. For example, what other sufficient conditions gives a three-colorable graph? Are
there other sufficient conditions that do not rely on triangulation that give a three-colorable
graph? Can you use this type of walking around a Eulerian circuit algorithm when you are
given a four-colorable graph? What about a five-colorable graph?

Perhaps such further questions could lead to an extension of these results.
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