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CARLY VOLLET

Abstract. A fullerene is a trivalent (valency three), convex polyhedron with
only convex pentagonal and convex hexagonal faces. The graph theoretic in-
dependence number of fullerenes may be a useful predictor for stability in
chemistry. We explore the independence number of fullerenes by exploring
the structure of two maximum independent sets and an independent edge set.
We will see that certain pairings of pentagons result in maximum independent
sets, and that these pairings can be used to compute the independence number
of icosahedral fullerenes.
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2. History

In chemistry, the term “fullerene” refers to a family of carbon allotropes that
were discovered in 1985 by researchers at Rice University. Fullerenes are named
after Buckminster Fuller, and are sometimes called buckyballs (the state molecule
of Texas). The structure of a fullerene is very similar to that of graphite, which
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is composed of a sheet of hexagonal rings. However, fullerenes contain pentago-
nal rings that prevent the sheet from being planar. Around the same time of the
discovery of fullerenes, Siemion Fajtlowicz, a mathematician at University of Hous-
ton developed a computer program called Graffiti [4]. Graffiti is a program that
makes conjectures in various subfields of mathematics and chemistry. The first
fullerene conjectures of Graffiti led to a new representation and characterization of
the Buckminsterfullerene, which is defined later. Another conjecture inspired the
paper “Graph-Theoretic Independence as a Predictor of Fullerene Stability” [5],
written by Fajtlowicz and C.E. Larson. The independence number of a fullerene is
a graph theoretic property, so it is from this perspective that we will explore the
structure of maximum independent sets in fullerenes.

3. General graph theory definitions and lemmas

The following Graph Theory Definitions and Lemmas are adapted from Douglas
B. West [6].

A graph G is a triple consisting of a vertex set V , an edge set E, and a
relation that associates two vertices called endpoints to each edge.
A loop is an edge whose endpoints are equal. Multiple edges are edges having

Figure 1. A simple graph

the same pair of endpoints. A simple graph is a graph having no loops or multiple
edges. Two vertices u and v are said to be adjacent if they are joined by an edge.
We will also say that u and v are neighbors.

If vertex v is the endpoint of an edge e, then we say that v and e are incident.
The valency, or degree of a vertex v is the number of edges the vertex is incident
to, denoted deg(v).

A walk is a consecutive list of incident vertices and edges. A path is a walk
with no repeated vertices. An elementary path is a path that is not crossed by
any other path. A cycle is a closed walk.
Remark For the purposes of this paper, we will only deal with simple graphs.
Therefore, a path can be described just by the ordered list of vertices, with the
assumption that consecutive vertices in a walk are adjacent.

An independent set in a graph G is a set pairwise nonadjacent vertices. The
independence number of a graph G, α(G) is the size of a maximum independent
set.

A planar graph is a graph that can be drawn so that there are no edge crossings.
A plane graph is a drawing of a plane graph o that there are no edge crossings.
Any cycle on a planar graph that encloses a region and does not have any edges on
the interior of the cycle is called a face.
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Lemma 1 (The Degree Sum Formula). Let G be a graph with vertices v1, v2 . . . , vn.
The number |E| of edges of a graph is related to the vertex valencies as follows:

(1)
n∑

i=1

deg(vi) = 2|E|

Proof. Since deg(vi) denotes the valency of a vertex, we can use this to count the
number of edges that originate from each vertex, vi. However, since each edge has
two endpoints, we are double counting each edge when we sum over all of the v′is.
Therefore,

∑n
i=1 deg(vi) = 2e. ¤

4. Graph theoretic properties of fullerenes

Definition A fullerene is a trivalent (valency three), convex polyhedron with only
convex pentagonal and convex hexagonal faces.
Every fullerene admits a planar embedding, with the outer face being either a
pentagon or a hexagon. The smallest fullerene consists only of pentagons, the
dodecahedron. The smallest fullerene in which no two pentagons share an edge
is called the Buckminsterfullerene (C60 in chemistry), which looks exactly like a
soccer ball. It consists of 12 pentagons and 20 hexagons. The figure below shows
a planar embedding of the Buckminsterfullerene. Notice that the outside face is a
pentagon, and all of the pentagons are shaded grey. The Buckminsterfullerene is
also an icosahedral fullerene with Coxeter coordinates (1, 1), as will be explained
later.

Figure 2. An planar embedding of the Buckminsterfullerene

Every fullerene has exactly 12 pentagons. Since fullerenes are planar, we can
show this using Euler’s formula.

Lemma 2 (Euler’s Formula). If a finite, connected, planar graph is drawn in the
plane without any edge intersections, and |V |, |E|, |F | are the number of vertices,
edges and faces respectively, then:

|V | − |E|+ |F | = 2
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Since there are only pentagons and hexagons, let |P | denote the number of
pentagons, and |H| denote the number of hexagons.

|F | = |P |+ |H|
Each edge is shared by at exactly two faces. Each pentagon has 5 edges, each

hexagon has 6 edges, so:

|E| = 5|P |+ 6|H|
2

Each vertex is adjacent to three polygons, so

|V | = 5|P |+ 6|H|
3

Substituting into Euler’s formula:

2 =
5|P |+ 6|H|

3
− 5|P |+ 6|H|

2
+ |P |+ |H|

=
2(5|P |+ 6|H|)

6
− 3(5|P |+ 6|H|)

6
+

6|P |+ 6|H|
6

=
|P |
6

Hence 2 = |P |
2 , so |P | = 12

5. Vertex and edge colorings

Let Γ = (V, E, F ) be a fullerene with vertex set V , edge set E and face set
F . As noted previously, a fullerene is a trivalent graph with only pentagonal and
hexagonal faces. For our purposes, we will draw Γ as a planar graph with one large
outer face that is a pentagon. Our goal is to calculate α(Γ), since it appears to be
a useful selector in identifying stable fullerene isomers [5]. Let W be a maximum
independent set in Γ and color the vertices in W white. Among the remaining
vertices, V − W , let B be a maximum independent set, and color these vertices
black. Let G = V −B −W , and color the vertices in G grey. This creates a vertex
partition in which every vertex is colored either white, black or grey.

Remark We will use the maximality of W and B quite often in this paper. Since
B and W are maximum independent sets, they are also maximal. That is, |W | and
|B| cannot be extended subject to the constraints that B and W are independent
ant B is contained in V −W .

Lemma 3. In a fullerene with the vertex coloring defined above, each grey vertex
is adjacent to a black vertex and to a white vertex.

Proof. Let g be a grey vertex with only black and grey neighbors. Then g could be
recolored white. Similarly, if g is a grey vertex with only white and grey neighbors,
then g could be recolored black. By the maximality of W and B, such a g cannot
exist. Therefore, every grey vertex is adjacent to a black vertex and to a white
vertex.

¤
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We will now begin to color the edges in E that are incident to vertices in G.
Edges will be colored either white, black or grey, denoted by the sets EW , EB , and
EG respectively. In light of Lemma 3, there are three configurations to consider,
shown below:

Figure 3

Edges will be colored as follows:
• If g is adjacent to two black vertices and one white vertex, w, color the

edge (g, w) white (Configuration 1).

• If g is adjacent to two white vertices and one black vertex, b, color the edge
(g, b) black (Configuration 2).

• Finally, if there are two adjacent grey vertices g1 and g2, each must have a
single black and a single white neighbor. Color the edge (g1, g2) grey, and
choose to color either (b1, g1) black and (g2, w2) white or (w1, g1) white and
(b2, g2) black (Configuration 3). This configuration is the only configura-
tion that offers a choice in the edge colorings. We will see later that this
choice in colorings will largely be eliminated.

Remark We will only color edges that correspond to the configurations above, all
other edges remain uncolored. Only colored edges will play a role in our results, so
we will not bother giving the uncolored edges a special name.

Definition A coloring of the vertices and edges in Γ as defined above will be called
an independence coloring, denoted ξ.

An independent edge set is an edge set where no two edges are incident to
the same vertex. An independent edge set is also sometimes called a matching.

Lemma 4. Let Γ = (V, E, F ) be a fullerene with the independence coloring ξ defined
above. Then |G| = |EB |+ |EW | and the collection EW ∪EB is an independent edge
set.

Proof. From the independence coloring ξ, every grey vertex is incident to exactly
one edge in EB ∪ EW , and each edge in EB ∪ EW has exactly one endpoint in
G. Therefore, |G| = |EB ∪ EW | and since EW and EB are disjoint, |EB ∪ EW | =
|EB | + |EW |. Therefore |G| = |EB | + |EW |. Now suppose e, e′ ∈ EB ∪ EW are
incident to the same vertex, x. Since each grey vertex is incident with exactly
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one edge in EB ∪ EW , x /∈ G. WLOG, suppose x ∈ B and let y, y′ be the other
endpoints of e, e′ respectively. Now, x /∈ G, so clearly y, y′ ∈ G, since every edge
in EB has a grey endpoint. See the figure below:

Also, y cannot be adjacent to another black vertex, because this would lead to
a Configuration 1, contradicting the assumption that (x, y) ∈ EB . Similarly, y′ is
not adjacent to another black vertex. But now we may re-color x grey and both y
and y′ black–contradicting the maximality of B. Similarly, x /∈ W , so we conclude

that no such x exists. Therefore, EW and EB are independent edge sets. ¤
Lemma 5. Let Γ = (V, E, F ) be a fullerene with independence coloring ξ.

(i) Each pentagonal face is incident with exactly one edge from EB ∪ EW .
(ii) Each hexagonal face is either incident with exactly two edges from EW ∪EB

or with no edges from EW ∪EB. Furthermore, if two edges from EW ∪EB

bound a hexagonal face and are opposite one another, they are both from
EW or both from EB. If two edges from EW ∪ EB bound a hexagonal face
and are not opposite one another, then one is from EW and one is from
EB.

Proof. (i) Let x1 . . . , x5 be the vertices of a pentagonal face listed in cycle
order. Clearly at least one of these vertices must be grey- say x1. There
are three cases to consider, illustrated below:

Figure 4. Possible pentagonal colorings

Case 1: There is only one grey vertex, x1. By symmetry we can assume
that the rest of the vertices alternate between black and white in cyclic
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order. So x2, x4 ∈ B and x3, x5 ∈ W . The only edges on the pentagon that
could be in EW ∪ EB are the edges that are incident to x1. Let y be the
third neighbor of x1. The edges that could be colored are (x1, y), (x1, x2)
and (x1, x5). By definition of the independence coloring ξ, if y ∈ W , then
(x1, x2) ∈ EB and (x1, x5) /∈ EB ∪ EW ; if y ∈ B, then (x1, x5) ∈ EW and
(x1, x2) /∈ EB ∪ EW ; if y ∈ G, either (x1, x2) ∈ EW or (x1, x5) ∈ EW , but
not both.

Case 2: x1 and x2 are both colored grey. Then (x1, x2) /∈ EB ∪ EW .
Without loss of generality, we may assume that x3 is black. In Case 2a,
we suppose that x5 is also black. By Lemma 3, the neighbors of x1 and
x2 must both be white, leading to a configuration 3. By the independence
coloring ξ, we have that only one of (x1, x5) and (x2, x3) belong to EB .
Now, x4 can be either white or grey, but in either case, neither of (x3, x4)
and (x4, x5) belong to EW ∪ EB .

In case 2b, we suppose that x5 is white. Then x4 must be colored grey.
Let z denote the third neighbor of x4. By Lemma 3, the other neighbors of
x1 and x2 are black and white respectively. Without loss of generality, we
may assume that z is black or grey. However, we may then re-color x1 and
x4 white and x5 grey, contradicting the maximality conditions on W and
B. See the figure below:

Hence, case 2b is not possible.
Case 3: If both x1 and x4 are grey; then, without loss of generality, we

may assume that x2 is black. x4 and x5 cannot be grey, because that would
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be the previously considered (impossible) Case 2b. Hence, by symmetry,
we may assume that x4 is black and x5 is white (if we had assumed x2 was
white, it would be just the opposite). The other neighbor of x3 must be
white, which leads to a configuration 1 centered at x3. However, neither
(x2, x3) or (x3, x4) will be colored by the independence coloring ξ. As
argued previously in Case 1, in any configuration that contains x1, exactly
one of (x1, x2) or(x1, x5) belongs to EW ∪ EB .

Therefore, each pentagonal face is incident with exactly one edge from
EW ∪ EB .

(ii) Let x1 . . . x6 be the vertices of a hexagonal face listed in cyclic order. If
none of the vertices are grey, then none of the edges of this face belong to
EW ∪ EB . So, for the remainder of the proof, we shall assume that x1 is
grey. In each of the cases we now consider, we will always assume that the
nongrey vertex of the smallest subscript will be black. There are a number
of cases to consider. Because of symmetry, we will only consider 12 cases,
pictured below.

Figure 5. Possible hexagonal colorings–up to black/white symmetry

There is only one case if there is a single grey vertex. In Case 1, there
are no other grey vertices, so the black and white vertices alternate in
cyclic order. This means x2, x4, x6 ∈ B and x3, x5 ∈ W . If follows from
the independence coloring ξ that none of the edges incident to x1 are in
EW ∪ EB . Since both x3 and x5 are white, it is impossible to have a
Configuration 3. Therefore, none of the edges incident to the hexagon are
in EW ∪ EB . See the figure.
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Much of the reasoning is the same for all of the cases, so diagrams are
presented in addition to outlines of the proofs.

There are 5 cases where there are two grey vertices, Cases 2-6.
Case 2: In Case 2, x1 and x2 are both colored grey. Without loss of

generality, we assume that x3 is black. We must have a Configuration
3 that includes x1 and x2. Either (x1, x6) ∈ EB and (x2, x3) ∈ EW , or
neither of them are colored.

If the other grey vertex is x3, this gives rise to cases 3 and 4.
Case 3: In case 3 below, it is clear that none of the edges in the pentagon

belong to EW ∪ EB .

Case 4: If we consult the figure for case 4 we can see that it is possible
to have any of the many possible configurations centered at x1and x3. The
possible scenarios are outlined below (there are few cases due to symmetry):

The other possibilities for two grey vertices are cases 5 and 6.
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Case 5: By the independence coloring ξ, none of the edges in case five
belong to EW ∪ EB .

Case 6: In case 6, we could have (x1, x6) ∈ EW and (x3, x4) ∈ EW or
(x1, x2) ∈ EB and (x4, x5) ∈ EB or (x1, x6) ∈ EW and (x4, x5) ∈ EB or
(x1, x2) ∈ EB and (x3, x4) ∈ EW .

By Lemma 3, each grey vertex must have exactly one white and one black
neighbor. This means that there can be no more than two consecutive grey
vertices around the face of any hexagon. Thus, up to black/white symmetry,
there are only three possible configurations of hexagons that contain three
grey vertices; each of these cases has two sub cases.

Case 7: Clearly none of the edges on the pentagon that are incident to
x4are in EW ∪EB . Since there is a Configuration 3 in this pentagon, there
is a choice of which edges to color. We have either (x1, x6) ∈ EW and
(x2, x3) ∈ EB , or we have no edges that belong to EW ∪ EB .

Case 8: There is a Configuration 3 centered at x1and x2. There is either
a Configuration 1 or 2 centered at x4. So, we have one of (x1, x6), (x2, x3) ∈
EB , but not both. We also have that one of (x3, x4), (x4, x5) ∈ EW , but not
both. Also, Lemma 2 excludes the possibility of both (x2, x3), (x3, x4) ∈
EB .
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Case 9: By Lemma 3, x1, x3, x4must be incident to vertices from EW .
This gives rise to three Configuration 1’s, which leaves all of the edges
incident to the pentagon uncolored by the independence coloring ξ.

Case 10: Clearly none of the edges incident to x1belong to EW ∪ EB .
We will have at least one of (x5, x6), (x4, x5) ∈ EW ∪EB , and at least one
of (x2, x3), (x3, x4) ∈ EW ∪ EB , except that only one of (x3, x4), (x4, x5)
can belong to EW (by Lemma 4).

Finally, there is only one way to place four grey vertices, and up to
black/white symmetry, this gives rise to two cases.

Case 11: There are type 3 configurations centered at (x1, x2) and (x4, x5).
By the independence coloring ξ , only one of (x1, x6), (x2, x3) ∈ EB , and
only one of (x3, x4), (x5, x6) ∈ EB . But Lemma 4, we cannot have both
(x2, x3), (x3, x4) ∈ EB or both (x1, x6), (x5, x6) ∈ EB . So we must have
(x1, x6), (x3, x4) ∈ EB .

Case 12: There are type 3 configurations centered at (x1, x2) and (x4, x5).
By the independence coloring ξ , we could have (x1, x6) ∈ EW and (x2, x3) ∈
EB as well as (x3, x4) ∈ EB and (x5, x6) ∈ EW . Lemma 4 makes it impos-
sible for all four edges to belong to EW ∪ EB .

¤

6. Some counting results for |B| and |W |
Lemma 6. Let Γ = (V, E, F ) be a fullerene with the independence coloring ξ defined
previously. Then:

|W | =
|E|
3
− 2|EW |+ |EB |

3

|B| =
|E|
3
− 2|EB |+ |EW |

3
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Proof. Let ci denote the number of type i configurations from Figure 3 in Γ and let
ebw, egw, egb and egg denote the number of black-white, grey-white, grey-black and
grey-grey edges respectively. Since each of these types of edges arise from the three
different configurations, these parameters are related by the following equations:

egb = 2c1 + c2 + 2c3

egw = c1 + 2c2 + 2c3

egg = c3

ebw = E − egb − egw − egg

We also have from the independence coloring ξ :

|EB | = c2 + c3

|EW | = c1 + c3

|EG| = c3

Solving for the cis we get:

c3 = |EG|
c1 = |EW | − |EG|
c2 = |EB | − |EG|

Substituting the cis, we have:

egb = 2|EW |+ |EB | − |EG|
egw = 2|EB |+ |EW | − |EG|
egg = |EG|
ebw = |E| − 3|EB | − 3|EW |+ |EG|

Since a fullerene is trivalent, each white vertex is incident to three edges, so:

3|W | = ebw + egw

= |E| − (2|EW |+ |EB |)

Dividing both sides by 3 gives the result: |W | = |E|
3 − 2|EW |+|EB |

3
Similarly:

3|B| = ebw + egb

= |E| − (2|EB |+ |EW |)

So, |B| = |E|
3 − 2|EB |+|EW |

3
¤
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7. Paths and circuits through edges in Γ

We will begin to construct paths through the fullerene Γ. Our paths will not be
through vertices and edges in Γ, rather they will originate in the centers of the faces
of Γ, and exit the face through an edge of the face. If we look at the planar dual of
Γ, we will have a more natural and graph theoretic description of these paths.
Definition A planar dual of the graph X = (V, E, F ) is denoted X⊥. The vertex
set of X⊥ is in one-to-one correspondence with the faces of X. Adjacency of a vertex
in X⊥ is determined by adjacency of faces in X. For example, if f1 ∼ f2, and x1, x2

are the corresponding vertices in X⊥, then x1 ∼ x2.

Figure 6. Construction of the Planar Dual

To construct the planar dual Γ⊥ , for each face in Γ (including the outer face),
assign a vertex in Γ⊥ . When two faces are adjacent (meaning they share an edge)
in Γ, make the two corresponding vertices adjacent in Γ⊥ . A simple example of
the planar dual is shown above.

It can be easily seen that in the case that X is a fullerene, X⊥ is a solid with
only triangular faces. The vertices that correspond to hexagons will have valency 6,
while the vertices that correspond to pentagons will have valency 5. This structure
resembles a geodesic sphere, which once again reminds us of Buckminster Fuller.
This structure is also useful for one construction of Coxeter coordinates, which will
be discussed later.

Let Γ⊥ = (F,E, V ) be the planar dual of the fullerene Γ = (V, E, F ) and let Φ
be the sub graph of Γ⊥ induced by the edge set EW ∪EB . That is, Φ consists only
of those edges in Γ⊥ that corresponded to colored edges in Γ. In the figure below,
only the darkest segments belong to Φ.

By Lemma 5, each vertex of Φ that has degree six in Γ⊥ will have degree 2 in Φ.
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Remark Note that hexagons that have no colored edges will not contribute to Φ;
only the hexagons that have exactly two colored edges will contribute to Φ.

Also, each vertex in Φ that has degree 5 in Γ⊥ has degree 1 in Φ. Thus, there are
exactly 12 degree 1 vertices in Φ, so there are exactly 6 elementary paths (Lemma 5
excludes the possibility of paths crossing). There also may be circuits in Φ.

Corollary 7. Let Γ = (V, E, F ) be a fullerene with the independence coloring ξ
defined previously. Let Φ be the induced subgraph of Γ⊥ , also defined previously.
Then, any portion of an elementary path or circuit in Φ cannot make any sharp
left, or sharp right turns.

Proof. Note first that turns correspond to edges that were on the faces of hexagons
in Γ. By Lemma 4, the edges in EW ∪ EB are an independent edge set. So, paths
in Φ can only go straight, veer right, or veer left. See the figure below:

Figure 7. Possible path directions (Without loss of generality)

¤

Remark We will now use the terms right and left without ambiguity, since we
have excluded the possibility of sharp turns.

Lemma 8. Let Γ = (V,E, F ) be a fullerene with the independence coloring ξ. Let
∆ be a circuit in Φ. Arbitrarily choose some face not among the hexagons that
correspond to vertices of ∆ to be the “outside” face. Let Θ denote the subgraph of Γ
consisting of the hexagons that correspond to ∆ and its interior. Orient the circuit
clockwise and let l and r denote the number of right and left turns respectively, and
let p denote the number of interior pentagonal faces of Θ. Then p = 6 + l − r.

Proof. By construction, Θ consists only of degree two and degree three vertices.
Referring to the figure below, you can see that every straight portion contributes one
degree two vertex, every right turn contributes two, and every left turn contributes
zero. If n is the total length of ∆, and s is the number of straight portions of ∆,
n = s + r + l. So, the number of degree two vertices in Θ is s + 2r, which simplifies
to s + r + l + r − l = n + r − l. Hence, by Lemma 1, the degree sum formula,

3(v − (n + r − l)) + 2(n + r − l) = 3v − n− r + l = 2e

where v and e are the number of vertices and edges of Θ. Next, we note that
the length of the boundary of the outside face of θ is

2s + 3r + l = 2s + 2r + 2l + r − l

= 2n + r − l
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Figure 8

The number of hexagonal faces of Θ is f − p − 1, where f is the total number of
faces of Θ (including the outer face). If we wish to count the edges of Λ, note that
edges that are completely on the interior of Λ can be counted using the hexagons
and pentagons, and edges on the boundary of Λ can be counted using the formula
2n + r − l. However, this results in a double counting of all of the edges so,

6(f − p− 1) + 5p + (2n + r − 1) = 2e

We solve equation for 6v and 6f to obtain:

6v = 4e + 2n + 2r − 2l

6f = 2e + 6f + 6− 5p− 2n− r + l

Substituting into Euler’s Formula gives us:

6v − 6e + 6f = 4e + 2n + 2r − 2l − 6e + 2e + 6f + 6− 5p− 2n− r + l

= r − l + p + 6
= 12

Solving for p, we get p = 6 + l − r. ¤

Lemma 9. Let Γ = (V, E, F ) be a fullerene with the independence coloring ξ defined
above. Let Π be a path or circuit in Φ, the subgraph of Γ⊥ induced by the edge set
EW ∪EB. Then Π cannot make two consecutive right turns or two consecutive left
turns. Furthermore, if a path or circuit makes a right turn, then no pentagonal face
can abut two of its adjacent hexagons on the right before it makes another turn.
Similarly, if a path or circuit makes a left turn, then no pentagonal face can abut
two of its adjacent hexagons on the left before it makes another turn.

Proof. By way of contradiction. Assume that our path or circuit makes two con-
secutive turns in the same direction, or takes a turn followed by a pentagonal face
abutting two hexagons on the same side of the direction of the turn. Assume fur-
ther that among all such configurations, we have selected the one with the shortest
distance between the turns or the turn and the pentagonal face. Without loss of
generality, we may orient the segment so that the first turn is a right turn as we
move along the segment clockwise. We may assume that none of the hexagons
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on the right of the above mentioned segment belong to another circuit or path;
we know paths cannot cross, so the second circuit would also have to make two
right turns with a shorter distance between them (a contradiction since we have
chosen the smallest configuration), or a turn with a pentagonal face closer together
(again a contradiction). There are only three configurations that we need to inves-
tigate: two right turns, and a right turn followed by a pentagon on the right (two
sub-configurations). Our goal is to show that such configurations do not result in
maximal sets for B and W . We will begin with two consecutive right turns, as
pictured below:

The dual path or circuit Π is indicated by the heavy line. A vertex coloring that
will result in two consecutive turns has been selected.

Remark If an edge belongs to EW (EB) the its endpoints are colored grey and
white (black), but which endpoint is colored white (black) is completely optional.

This portion of the circuit or path starts on the left in a hexagonal or pentagonal
face. If it is a hexagonal face, the arrows indicated the possible directions in which
this portion could continue to the left. The possibility of crossing the edge labeled
e is excluded since, if e did belong to EW , its white and grey endpoints could be
swapped, resulting in three consecutive grey vertices (see remark above). Now, we
see that by relocating the segment of Π along the dashed line, they grey vertices in
the upper box will be recolored black and the black vertices in the lower box may
be recolored grey. This new coloring has the same number of white vertices, but
an additional black vertex, a contradiction.

We assume next that we have a right turn followed by a pentagonal face on the
right. This pentagonal face is the terminal vertex of a second dual path in Φ and
this path could exit the face to the left, right or down.

One can easily see that the path cannot exit to the top of the pentagon, since that
would violate Lemma 4. Also, it is clear that the path can not exit the pentagon
to the left, since this would violate Lemma 4 in the adjacent hexagon. There are
just two cases to left: paths that exit the pentagon to the right, and paths that
exit down.

We will begin with paths that exit down:
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In the case that the path exits the pentagon downward, we relocate the segment
of Π coming in from the left and connect it to the path leaving the pentagon. We
divert the right end of the segment into the pentagon where it will now terminate.
To do so, we will re-color the grey vertices in the upper box black, the black vertices
in the lower box grey, and the single black vertex in the small box will be recolored
white. We now have no change in the number of black vertices, but an increase in
white vertices, a contradiction.

For paths that exit to the right:

In the case pictured above, we relocate the segment of Π coming in from the
left and connect it to the pentagon where it terminates. We divert the right end
of the segment to the remainder of the path that started in the pentagon. Again,
the grey vertices in the upper box will be recolored black, and the black vertices in
the lower box will be recolored gray. This results in a net increase of a single black
vertex, leaving |W | unchanged, a contradiction. ¤
Lemma 10. If Γ = (V, E, F ) is a fullerene, and Φ is the induced subgraph of Γ⊥

constructed as described previously, there are no circuits in Φ.

Proof. Let Γ be a fullerene and ∆ a circuit in Φ. We first note that since pentagonal
faces must be joined in pairs by paths that cannot cross ∆, there must be an
even number of pentagonal faces on each side of ∆. It follows from Lemma 8
(p = 6 + l− r) that, unless there are 6 pentagonal faces on each side of ∆, ∆ must
take two consecutive right turns or two consecutive left turns in direct conflict of
Lemma 9. So we must have 6 pentagons on each side of ∆. We conclude that ∆
has the same number (perhaps zero) of left and right turns, and that they must
alternate around ∆. In the figure below, we consider at least one pair of turns.

Applying the shift alterations shown (either right or left) we decrease the number
of faces on the right side of the circuit without altering |W | and |B|. Repeated shifts
will eventually bring the circuit in contact with a pentagonal face. If that pentagon
meets two of the hexagons in ∆, we are in conflict of Lemma 9. However, if the
pentagon is in the position indicated by the asterisk (depending on whether we have
shifted left or right), the first contact does not satisfy the hypothesis of Lemma 9.
But in one more shift, this case will also be eliminated.
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Finally, suppose that the circuit makes no turns. If it does not meet a pentagonal
face on the right, we may shift to the circuit of hexagons on the right without
altering |W | and |B|. Again, we continue this shift until we meet a pentagonal face
as illustrated in the figure below. Here we shift down once more, amalgamating the
circuit and the path leaving the pentagonal face into a single path, as indicated.
The vertices in the row of grey vertices are recolored black and the black vertices in
the next row are recolored grey, except for a single black vertex which is recolored
white, a contradiction.

Therefore, we conclude that circuits cannot occur in Φ ¤

We are now ready to state the main result:

Theorem 11. Let Γ = (V, E, F ) be a fullerene with the independence coloring ξ
defined previously and let Γ⊥ = (F, E, V ) be its planar dual; let Φ be the subgraph
of Γ⊥ induced by the edge set EW ∪ EB. Then Φ is disconnected with six compo-
nents Π1,Π2, . . . , Π6, each of which is an elementary path between different pairs
of vertices of degree 5 in Γ⊥ . These paths correspond exactly to the 12 pentagons
of Γ.
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8. Going towards the independence number of the icosahedral
fullerenes

We will use some of the same techniques of the proof of Theorem 11 to say a
little bit more about the structure of the maximum independent sets (recall that
there are two, B and W ) of an icosahedral fullerene.
Definition An icosahedral fullerene is a fullerene that shares its symmetries
with the icosahedron. It can be considered to be a truncated icosahedron, with an
equal number and configuration of hexagons between “nearby” pentagons.
The soccer ball is an example of an icosahedral fullerene.

Let Γ = (V, E, F ) be fullerene and let Γ⊥ = (F,E, V ) be its planar dual; let Φ
be the subgraph of Γ⊥ induced by the edge set EW ∪ EB and let Π be a path in
Φ connecting two pentagonal faces. Suppose that Π takes at least two turns. By
Lemma 9, these turns must alternate in direction. Assume that the path makes a
left turn and then a right turn as illustrated below.

Figure 9

Now relocate the path by shifting to the right, as indicated in the figure. If we
were to encounter another pentagonal face along the “wave” front, i.e. anywhere
along the new portion of the path except the position indicated by the asterisk,
we would be in conflict with Lemma 9. Hence, we must be able to continue this
alteration until we have a path with exactly one left turn. We may then shift in
the opposite direction until we have a path with exactly one right turn, sweeping
out a parallelogram of hexagonal faces between the two pentagonal faces. We call
such a parallelogram clear field. We have shown:

Lemma 12. Let Γ = (V, E, F ) be a fullerene with the independence coloring ξ
defined previously and let Φ be the subgraph of Γ⊥ induced by the edge set EW ∪EB.
Then, if two pentagonal faces of Γ are joined by a path in Φ, they are separated by
a clear field.

In order to provide further results, we must introduce a system or coordinates
for icosahedral fullerenes.

9. Coxeter coordinates

According to Graver [1], there are two ways to construct Coxeter coordinates.
The first way is to consider the regular triangular tessellation of the plane, and the
other is to consider the regular hexagonal tessellation of the plane. Both methods
apply to fullerenes, so we will start with triangles.

Consider Λ, the regular triangular tessellation of the plane. If Λ is considered to
be a graph, it is an infinite plane graph with vertex valency 6. By a segment in Λ,
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we mean the straight line that joins the two vertices. We assign Coxeter coordinates
to each segment that does not coincide with a“line” of the tessellation as follows:
select one endpoint to be the origin, take the edge of the graph to the right of the
segment as the unit vector in the p direction, take the edge of the graph to the left
of the segment as the unit vector in the q direction, finally, use these unit vectors
to assign coordinates to the other endpoint of the segment.

For segments that coincide with a“line” of the tessellation, that segment is as-
signed the single Coxeter coordinate (p), where p is the number of edges in the
segment. An example is shown below:

Figure 10. Coxeter Coordinates on a Triangular Tessellation

Coxeter coordinates can be determined in a similar way using a hexagonal tes-
sellation of the plane. Consider Λ⊥, the regular hexagonal tesselation (which is
the planar dual of the regular triangular tessellation). Instead of graph theoretic
distances, we will count the number of full hexagons that we pass through in the p
and q directions. See the diagram below:

Figure 11. Coxeter Coordinates on a Hexagonal Tessellation

In the figure above, segment 1 has Coxeter Coordinates (1, 3) because its com-
ponent vectors pass through the centers of two hexagons in the p direction, each
contributing 1

2 to the coordinate. In the q direction, the component vectors pass
through 2 full hexagons, and through 2 centers, resulting in a coordinate of 3 in the
q direction. Note: Coxeter coordinates are the same when using either a triangular
tessellation, or a hexagonal tessellation, as illustrated below:
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Figure 12. Equivalence of Triangular and Hexagonal Coxeter Coordinates

10. The independence number of icosahedral fullerenes

In the figure below, we have drawn a portion of the icosahedral fullerene with
Coxeter coordinates (4, 7).

Figure 13. Part of an icosahedral fullerene with Coxeter Coordi-
nates (4, 7)

These Coxeter coordinates only refer to segments that could be drawn between
two “nearby” pentagons. By nearby pentagons, we mean only the pentagons that
are closest to a given pentagon. You can see that the Coxeter coordinates are
related to the dimension of the clear field separating the pentagons; there is a 4 by
7 clear field separating the pentagons. Recall that icosahedral fullerenes are highly
symmetric, so we will see the same type of clear field between any two pentagons
that are nearby.
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Two of the 4 by 7 clear fields are shaded in. There is also a 4 by 7 clear field
separating P1 and P3, as well as P2 and P4. Notice that there is a 15 by 3 clear
field separating P1 from P4, but P1 and P4 are not nearby. In general, in an
icosahedral fullerene with Coxeter coordinates (p, p + r), two nearby pentagonal
faces are separated by a p by p + r clear field and any two non nearby but not
antipodal pentagonal faces are separated by an r by 3p + r clear field. Recall that
in a fullerene Γ = (V, E, F ) , 2|E| = 3|V | (a simple application of Lemma 1). So the
formula for the independence number of a fullerene α(Γ) = |W | from Lemma 6 can
be written in the form |W | = |V |

2 − 2|EW |+|EB |
3 . Hence we must select the pairings

of pentagons in order to minimize 2|EW |+ |EB |.
We first note that any alternating paths in the clear field between paired pen-

tagons have the same contribution to 2|EW | + |EB |; hence that contribution is a
property of the pairing. Referring to figure 14, if the vertex labeled w on the bound-
ary of P1 is colored white, the pair P1, P2 will contribute 4 to EW and 7 to EB for
a total contribution of 2 × 4 + 7 = 15 to 2|EW | + |EB |. If the pair P3, P4 is also
selected, coloring w white will force the vertex labeled b on the boundary of P3 to
be colored black. So that pairing will contribute 2×7+4 = 18 to 2|EW |+ |EB |. We
also note that the pair P1, P4 would contribute 2× 3 + 15 = 21 or 2× 15 + 3 = 33
to 2|EW | + |EB |. Hence, we would like to find a set of pairings that minimizes
contributions to 2|EW |+ |EB |. Since 15 was the smallest contribution, we wish to
find pairings so that each pairing contributes exactly 15 to 2|EW |+ |EB |. We will
now show that such a pairing exists.

Refer again to figure 14. We first note that in the full fullerene, P3 has 5 neigh-
boring pentagons; label the remaining two P5 and P6 so that P1, P2, P4, P5, P6

appear counterclockwise around P3. One easily checks that if P1, P2 are paired,
they contribute 15 to 2|EW | + |EB | (w is white, since that will give us a smaller
contribution). The pairs P3, P4 and P3, P6 would each contribute 18, while the
pair P3, P5 would only contribute 15. Hence, to minimize 2|EW | + |EB |, we must
select the pair P3, P5. Once we have selected the pair P1, P2, and the coloring that
makes its contribution 15, then the selection of the remaining pairs are forced. The
pattern of pairs is pictured in figure 15. Pentagons that are near each other are
connected with a line, pentagons that are paired are connected with a thick line.

Figure 14. Pentagonal pairings to minimize 2|EW |+ |EB |

With the exception of the case r = 0, this is true for general icosahedral fullerenes
with Coxeter coordinates (p, p + r). Let Γ = (V,E, F ) be the icosahedral fullerene
with Coxeter coordinates (p, p + r) where p, r ≥ 0 and at least one is positive. A
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pairing of nearby pentagons will contribute 2×p+(p+r) = 3p+r or 2×(p+r)+p =
2p+2r to 2|EW |+ |EB |, depending on the orientation of the pair. As noted above,
any two nonadjacent, non-antipodal pentagonal faces are separated by a 3p+r clear
field. Such a pair contributes 2× r +(3p+ r) = 3p+3r or 2× (3p+ r)+ r = 6p+3r
to 2|EW | + |EB |, again depending on the orientation. As noted above, each of
the six sets illustrated in figure 15 can be oriented so that each pair contributes
2× p + (p + r) = 3p + r to 2|EW |+ |EB |. Hence:

|E| − 6(3p + r)
3

=
|V |
2
− (6p + 2r)

Referring to Graver [2] we can see that a fullerene with Coxeter coordinates
(p, p + r) has |V | = 60p2 + 60pr + 20r2. So this simplifies to:

|E| − 6(3p + r)
3

=
|V |
2
− (6p + 2r)

= 30p2 + 30pr + 10r2 − 6p− 2r

We have proved the following corollary.

Corollary 13. Let Γ = (V, E, F ) be the icosahedral fullerene with Coxeter co-
ordinates (p, p + r) where p, r ≥ 0 and at least one is positive. Then α(Γ) =
30p2 + 30pr + 10r2 − 6p− 2r

For a concrete example, see the next page.
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Here is a particular example of the icosahedral fullerene with p = 1 and r = 0.

Figure 15. An icosahedral fullerene with Coxeter Coordinates (1,1)

Using Corollary 13, we see that α(Γ) = 30−6 = 24. As you can see in the figure
above, the independence coloring ξ has been respected. Lemma 4 and Lemma 5
are also satisfied. We have |EW | = 6 and |EB | = 6. Comparing this to Lemma 5
we see that

|E|
3
− 2|EW |+ |EB |

3
=

90
3
− 2(6) + 6

3
= 30− 6
= 24
= |W |

And:
|E|
3
− 2|EB |+ |EW |

3
=

90
3
− 2(6) + 6

3
= 30− 6
= 24
= |B|
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We can see the construction of Φ below:

Figure 16

It is interesting to note that, in the case of the icosahedral fullerene with Coxeter
coordinates (p, p), any pairing of pentagons separated by (p, p) clear fields yield
maximum independent sets. Hence, these icosahedral fullerenes admit far more
maximal independent sets, relative to their size than do other icosahedral fullerenes.
Further extensions of this paper could include calculations of the independence
number of other symmetric fullerenes. For example, it may be possible to calculate
the independence number of fullerenes with two Coxeter coordinates. For further
information on such fullerenes see Jack E. Gravers “Catalog of All Fullerenes with
Ten or More Symmetries” [2].
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