Enumerating Cyclic Quasiplatonic Groups For a Given Signature

Robert W. Benim

Fariborz Maseeh Department of Mathematics and Statistics
Portland State University,
Portland, OR 97201, USA

Preliminaries:

A finite group G is said to act topologically (in an orientation preserving manner) on a surface S if there is an injection $\epsilon: G \rightarrow$ Homeo $^{+}(S)$ into the group of orientation preserving homeomorphisms. We will identify G with its image, and refer to each of its elements as an automorphism of the surface.

Example

A_{4} acts topologically on the tetrahedron. That is, A_{4} is a group of automorphisms that act on the tetrahedron. Recall that A_{4} is the even permutations on a set of four letters. We can identify the vertices of the tetrahedron to be these letters.

Orbits

- This is the set of images that the automorphism group can send a point.

Orbits

- This is the set of images that the automorphism group can send a point.

The Tetrahedron has 12 symmetries; - Most points on the tetrahedron have orbits of size 12.

Orbits

- This is the set of images that the automorphism group can send a point.

The Tetrahedron has 12 symmetries; - Most points on the tetrahedron have orbits of size 12.

The points with different orbit sizes:

Orbits

- This is the set of images that the automorphism group can send a point.

The Tetrahedron has 12 symmetries; - Most points on the tetrahedron have orbits of size 12.

The points with different orbit sizes:
Vertices - 4
Mid-points of edges - 6
Mid-points of faces - 4

Ramification Points

Definition: Given a surface X and an automorphism group G acting on X, if a point x on a surface X lies in an orbit that is not the largest orbit of points in X, then x is a ramification point.

Ramification Points

Definition: Given a surface X and an automorphism group G acting on X, if a point x on a surface X lies in an orbit that is not the largest orbit of points in X, then x is a ramification point.

On the tetrahedron, the ramification points are:

- the vertices;
- the mid-points of the edges;
- the mid-points of the faces.

Quasiplatonic Surface

Definition: If an automorphism group G acts on a surface X with three and only three orbits of ramification points and X / G has genus 0 , then G is a quasiplatonic group.

Quasiplatonic Surface

Definition: If an automorphism group G acts on a surface X with three and only three orbits of ramification points and X / G has genus 0 , then G is a quasiplatonic group.

Defintion: Given a surface X, if there exists an automorphism group G that acts on X such that G is a quasiplatonic group, then X is a quasiplatonic surface.

Signature of a quasiplatonic surface

Definition: Suppose G is a quasiplatonic group acting on a surface X such that X is a quasiplatonic surface. Suppose $x_{1}, x_{2}, x_{3} \in X$ are ramification points lying in seperate orbits. Let

$$
n_{i}=\frac{|G|}{\left|\operatorname{Orb}\left(x_{i}\right)\right|}, i=1,2,3 .
$$

Then, the signature of (G, X) is the triple $\left(n_{1}, n_{2}, n_{3}\right)$. We call the n_{i} the periods of the signature.

Recall the size of the ramification orbits:
-Vertices - 4
-Mid-points of edges - 6
-Midpoints of faces - 4

Recall the size of the ramification orbits:
-Vertices - 4
-Mid-points of edges - 6
-Midpoints of faces - 4

So, the signature of A_{4} acting on this surface is:
$\left(\frac{\left|A_{4}\right|}{6}, \frac{\left|A_{4}\right|}{4}, \frac{\left|A_{4}\right|}{4}\right)=\left(\frac{12}{6}, \frac{12}{4}, \frac{12}{4}\right)=(2,3,3)$.

General \quad neorem 101 cuasiplatonic Groups

Theorem: A group G is a quasiplatonic group for a surface X of genus $g(X)$ with signature $\left(n_{1}, n_{2}, n_{3}\right)$ if and only if:

1) $n_{i} \geq 2$;
2) there exists $x, y \in G$ such that $|x|=n_{1},|y|=n_{2}$, $\left|(x y)^{-1}\right|=n_{3}$ and $G=<x, y>$;
3) and $g(X)=1-|G|+\frac{|G|}{2}\left(3-\frac{1}{n_{1}}-\frac{1}{n_{2}}-\frac{1}{n_{3}}\right)$.
(This formula is known as the Riemann-Hurwitz Formula.)

Application of General Theorem

Theorem: Recall that A_{4} acting on the tetrahedron has signature $(2,3,3)$. We can now show this action is quasiplatonic:

1) Our periods 2 and 3 are both at least 2 .
2) We choose elements $x=(12)(34)$ and $y=(123)$. So, $(x y)^{-1}=(234)$, and $|x|=2,|y|=3$, $\left|(x y)^{-1}\right|=3$ and $A_{4}=\langle x, y>$;
3) Lastly, we see
$g(X)=1-12+\frac{12}{2}\left(3-\frac{1}{2}-\frac{1}{3}-\frac{1}{3}\right)=0$.

Generating Vectors

Defintion: Suppose $\left(n_{1}, n_{2}, n_{3}\right)$ is a signature. A triplet of group elements (x, y, z) in a finite group G is called a Quasiplatonic generating vector of G for signature $\left(n_{1}, n_{2}, n_{2}\right)$ if $z=(x y)^{-1}$, and x, y and $(x y)^{-1}$ satisfy the conditions of the previous theorem.

Generating Vectors

Defintion: Suppose $\left(n_{1}, n_{2}, n_{3}\right)$ is a signature. A triplet of group elements (x, y, z) in a finite group G is called a Quasiplatonic generating vector of G for signature $\left(n_{1}, n_{2}, n_{2}\right)$ if $z=(x y)^{-1}$, and x, y and $(x y)^{-1}$ satisfy the conditions of the previous theorem.

Defintion: We consider two generating vectors $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ for a given group G and signature $\left(n_{1}, n_{2}, n_{2}\right)$ to be equivalent if there exists $\sigma \in \operatorname{Aut}(G)$ such that $\left(\sigma\left(x_{1}\right), \sigma\left(y_{1}\right), \sigma\left(z_{1}\right)\right)=\left(x_{2}, y_{2}, z_{2}\right)$, or if $\left(x_{2}, y_{2}, z_{2}\right)$ is a reordering of the elements of $\left(x_{1}, y_{1}, z_{1}\right)$.

Generating Vectors

For our example of A_{4} acting on the tetrahedron, we had generating vector $((12)(34),(123),(234))$.

An example of an equivalent generating vector is ((14)(23), (143), (243))

Harvey's Theorem

Theorem: Fix a signature $\left(n_{1}, n_{2}, n_{3}\right)$ and let $M=\operatorname{Lcm}\left(n_{1}, n_{2}, n_{3}\right)$. There is a quasiplatonic surface X with quasiplatonic cyclic group G and signature $\left(n_{1}, n_{2}, n_{3}\right)$ if and only if the following conditions are met:

1) $|G|=M=\operatorname{Lcm}\left(n_{1}, n_{2}\right)=\operatorname{Lcm}\left(n_{1}, n_{3}\right)=$ $\operatorname{Lcm}\left(n_{2}, n_{3}\right)$;
2) if M is even, then exactly 2 of the signature elements n_{i} must be divisible by the maximum power of 2 that divides $|G|$.

Results of Harvey's Theorem

Suppose we are considering the cyclic group of order m. Then, Harvey's Theorem tells us that there are only three types of signatures possible:

- $\left(n_{1}, n_{2}, n_{3}\right)$ where each of the n_{i} are distinct,
- (n, m, m) where $n \neq m$, and
- (m, m, m).

Note that the final case can occur only when m is odd.

Wootton's Theorem: Part 1

Theorem: The number of inequivalent Quasiplatonic generating vectors T with signature $\left(n_{1}, n_{2}, n_{3}\right)$ on a quasiplatonic surface X can be calculated as follows:

$$
T=\frac{\left|V_{G}\right|}{|\operatorname{Aut}(G)|}
$$

where V_{G} denotes the set of all quasiplatonic generating vectors of G with the given signature.

Results: Part 1

We will assume that $G=C_{m}$, and that we have a signature $\left(n_{1}, n_{2}, n_{3}\right)$, where all the n_{i} are distinct. We know $T=\frac{\left|V_{G}\right|}{|\operatorname{Aut}(G)|}$ and that $|\operatorname{Aut}(G)|=\phi(m)$. So, we need only find $\left|V_{G}\right|$. That is, we need to count all of the valid quasiplatonic generating vectors for this case.
Let $p_{1}, p_{2}, \ldots, p_{l}$ be the distinct primes that divide m. Write m and the periods in terms of these primes:
$m=\prod_{i=1}^{l} p_{i}^{k_{i}}, n_{1}=\prod_{i=1}^{l} p_{i}^{r_{i}}, n_{2}=\prod_{i=1}^{l} p_{i}^{s_{i}}, n_{3}=$ $\prod_{i=1}^{l} p_{i}^{t_{i}}$.

Results: Part 1

$G=C_{p_{1}^{k_{1}}} \times C_{p_{2}^{k_{2}}} \times \cdots \times C_{p_{l}^{k_{l}}}$. For each i, there exists an element $u_{i} \in G$ such that $u=\prod_{i=1}^{l} u_{i}$ and u_{i} generates $C_{p_{i}}$. We will use these generators to construct our vector, (x, y, z). Each of x, y and z will be a product of powers of the u_{i}, and we will count the number of choices we have for each i.

Results: Part 1

Let us first suppose that exactly one of r_{i}, s_{i}, and t_{i} is less than k_{i}. There are $\phi\left(p_{i}^{h_{i}}\right)$ choices of a_{i} such that $u_{i}^{a_{i}}$ is an element in $C_{p_{i}^{k_{i}}}$ of order $p_{i}^{h_{i}}$. For any such choice of a_{i}, we know that $u_{i}^{-\left(a_{i}+1\right)}$ has order $p_{i}^{k_{i}}$. Of the three elements $u_{i}, u_{i}^{a_{i}}$, and $u_{i}^{-\left(a_{i}+1\right)}$, let x_{i} be one whose order is the maximal power of p_{i} that divides n_{1}, and likewise for y_{i} with n_{2} and z_{i} with n_{3}. The important thing to remember is that there were $\phi\left(p_{i}^{h_{i}}\right)$ choices for a_{i}, and therefore $\phi\left(p_{i}^{h_{i}}\right)$ choices for the elements x_{i}, y_{i}, and z_{i}.

Results: Part 1

The other case to consider is $r_{i}=s_{i}=t_{i}=k_{i}$. Now we must choose a_{i} such that both $u_{i}^{a_{i}}$ and $u_{i}^{-\left(a_{i}+1\right)}$ have order $p_{i}^{k_{i}}$. So, p_{i} cannot divide a_{i} or $-\left(a_{i}+1\right)$. There are $\frac{p_{i}-2}{p_{i}-1} \phi\left(p_{i}^{k_{i}}\right)$ such choices. Now, label $u_{i}, u_{i}^{a_{i}}$ and $u_{i}^{-\left(a_{i}+1\right)}$ as x_{i}, y_{i}, and z_{i}, respectively. The important thing to remember is that there were $\frac{p_{i}-2}{p_{i}-1} \phi\left(p_{i}^{k_{i}}\right)$ choices for a_{i}, and therefore $\frac{p_{i}-2}{p_{i}-1} \phi\left(p_{i}^{k_{i}}\right)$ choices for the elements x_{i}, y_{i}, and z_{i}.

Results: Part 1

Now, let $x=\prod_{i=1}^{l} x_{i}, y=\prod_{i=1}^{l} y_{i}$, and $z=\prod_{i=1}^{l} z_{i}$. (x, y, z) is a valid generating vector. The number of choices for such vectors is:

$$
\left|V_{G}\right|=\phi(m)\left(\prod_{i=1}^{w} \frac{p_{i}-2}{p_{i}-1} \phi\left(p_{i}^{k_{i}}\right)\right)\left(\prod_{i=w+1}^{l} \phi\left(p_{i}^{h_{i}}\right)\right)
$$

since there were $\phi(m)$ choices for our generator u of G, and because we also found the number of choices for a_{i} in each case.

Results: Part 1

Theorem: Let $p_{1}, p_{2}, \ldots, p_{l}$ be the distinct primes that divide m. Write m and the periods in terms of these primes: $m=\prod_{i=1}^{l} p_{i}^{k_{i}}, n_{1}=\prod_{i=1}^{l} p_{i}^{r_{i}}, n_{2}=$ $\prod_{i=1}^{l} p_{i}^{s_{i}}, n_{3}=\prod_{i=1}^{l} p_{i}^{t_{i}}$. We can reorder the $p_{i}{ }^{\prime}$ s and find an integer $w \leq l$ so that if $1 \leq i \leq w$, then r_{i}, s_{i}, and t_{i} are all equal to k_{i}, and if $w<i \leq l$, then exactly one of r_{i}, s_{i}, and t_{i} is less than k_{i}. In the latter case, let h_{i} represent this smaller value. Then,

$$
T=\left(\prod_{i=1}^{w} \frac{p_{i}-2}{p_{i}-1} \phi\left(p_{i}^{k_{i}}\right)\right)\left(\prod_{i=w+1}^{l} \phi\left(p_{i}^{h_{i}}\right)\right) .
$$

Counting Tools

Definition: Suppose (x, y, z) is a generating vector for a Quasiplatonic group G. Then we define the following permutations:

- $i_{1}: x \rightarrow y, y \rightarrow x, z \rightarrow z$
- $i_{2}: x \rightarrow x, y \rightarrow z, z \rightarrow y$
- $i_{3}: x \rightarrow z, y \rightarrow y, z \rightarrow x$
- $j: x \rightarrow y, y \rightarrow z, z \rightarrow x$

Wootton's Theorem: Part 2

Theorem: The number of inequivalent Quasiplatonic generating vectors T with signature (n, m, m) on a quasiplatonic surface X can be calculated as follows:

$$
T=\frac{\left|V_{G}\right|}{2|\operatorname{Aut}(G)|}+\frac{\left|V_{G, i}\right|}{|\operatorname{Aut}(G)|}
$$

where V_{G} denotes the set of quasiplatonic generating vectors of G with the given signature for which the identification i_{2} does not extend to an automorphism of G. $V_{G, i}$ denotes the set of quasiplatonic generating vectors of G with the given signature for which i_{2} does extend to an automorphism of G.

Results: Part 2

We will assume that $G=C_{m}$, and that we have a signature (n, m, m), where $n<m$. We know $T=\frac{\left|V_{G}\right|}{2|\operatorname{Aut}(G)|}+\frac{\left|V_{G, i}\right|}{|\operatorname{Aut}(G)|}$ and that $|\operatorname{Aut}(G)|=\phi(m)$. So, we need only find $\left|V_{G}\right|$ and $\left|V_{G, i}\right|$. That is, we need to count all of the valid quasiplatonic generating vectors for this case.
Let $p_{1}, p_{2}, \ldots, p_{l}$ be the distinct primes that divide m. Write m and n in terms of these primes:
$m=\prod_{i=1}^{l} p_{i}^{k_{i}}, n=\prod_{i=1}^{l} p_{i}^{h_{i}}$.

Results: Part 2

We know by an argument similar to our first result that we can reorder the p_{i} 's and find an integer $w \leq l$ so that if $1 \leq i \leq w$, then $k_{i}=h_{i}$, and if $w<i \leq l$, then $h_{i}<k_{i}$, and that $\left|V_{G}\right|+\left|V_{G, i}\right|=$
$\phi(m)\left(\prod_{i=1}^{w} \frac{p_{i}-2}{p_{i}-1} \phi\left(p_{i}^{k_{i}}\right)\right)\left(\prod_{i=w+1}^{l} \phi\left(p_{i}^{h_{i}}\right)\right)$. So, we need only find $\left|V_{G}\right|$ or $\left|V_{G, i}\right|$. We will find $\left|V_{G, i}\right|$. These are the vectors where i_{2} does extend to an automorphism of G.

Results: Part 2

Choose a generator $x \in G$ choose a such that we have a quasiplatonic generating vector $\left(x^{a}, x^{-(a+1)}, x\right)$ where i_{2} extends to an automorphism of G. That is, the map that sends $x \rightarrow x^{-(a+1)}$, $x^{-(a+1)} \rightarrow x$, and $x^{a} \rightarrow x^{a}$ extends to an automorphism. Observe that

$$
x^{a}=i_{2}\left(x^{a}\right)=\left(i_{1}(x)\right)^{a}=\left(x^{-(a+1)}\right)^{a}=x^{-a^{2}-a}
$$

which tells us that

$$
a^{2}+2 a \equiv 0 \quad \bmod m .
$$

Results: Part 2

Definition: We define $\tau_{1}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ where $\tau_{1}(m, n)$ represents the number of nonzero noncongruent solutions a to $a^{2}+2 a \equiv 0 \bmod m$ where $\operatorname{gcd}(a, m)=\frac{m}{n}$.
i_{2} extends to an automorphism if and only if a is such a solution. So, $\left|V_{G, i}\right|=\phi(m) \tau_{1}(m, n)$.

Results: Part 2

Theorem: Let $p_{1}, p_{2}, \ldots, p_{l}$ be the distinct primes that divide m. Write m and n in terms of these primes: $m=\prod_{i=1}^{l} p_{i}^{k_{i}}, n=\prod_{i=1}^{l} p_{i}^{h_{i}}$. We can reorder the p_{i} 's and find an integer $w \leq l$ so that if $1 \leq i \leq w$, then $h_{i}=k_{i}$, and if $w<i \leq l$, then $h_{i}<k_{i}$. Then, the number of inequivalent Quasiplatonic generating vectors T with signature (n, m, m) is $T=$

$$
\frac{1}{2}\left(\tau_{1}(m, n)+\left(\prod_{i=1}^{w} \frac{p_{i}-2}{p_{i}-1} \phi\left(p_{i}^{k_{i}}\right)\right)\left(\prod_{i=w+1}^{l} \phi\left(p_{i}^{h_{i}}\right)\right)\right)
$$

Wootton's Theorem: Part 3

Theorem: The number of inequivalent Quasiplatonic generating vectors T with signature (n, m, m) on a quasiplatonic surface X can be calculated as follows:

$$
T=\frac{\left|V_{G}\right|}{6|\operatorname{Aut}(G)|}+\frac{\left|V_{G, i}\right|}{3 \operatorname{Aut}(G) \mid}+\frac{\left|V_{G, j}\right|}{2|\operatorname{Aut}(G)|}+\frac{\left|V_{G, i, j}\right|}{|\operatorname{Aut}(G)|}
$$

where...

Results: Part 3

We will assume that $G=C_{m}$, and that we have a signature (m, m, m). We know
$T=\frac{\left|V_{G}\right|}{6|\operatorname{Aut}(G)|}+\frac{\left|V_{G, i}\right|}{3 \operatorname{Aut}(G) \mid}+\frac{\left|V_{G, j}\right|}{2|\operatorname{Aut}(G)|}+\frac{\left|V_{G, i, j}\right|}{|\operatorname{Aut}(G)|}$ and that $|\operatorname{Aut}(G)|=\phi(m)$. So, we need only find $\left|V_{G}\right|,\left|V_{G, i}\right|$, $\left|V_{G, j}\right|$ and $\left|V_{G, i, j}\right|$.

Results: Part 3

Let $p_{1}, p_{2}, \ldots, p_{l}$ be the distinct primes that divide m and write $m=\prod_{i=1}^{l} p_{i}^{k_{i}}$.

By an argument similar to the first case, we know that $\left|V_{G}\right|+\left|V_{G, i}\right|+\left|V_{G, j}\right|+\left|V_{G, i, j}\right|=$ $\phi(m) \prod_{i=1}^{l} \frac{p_{i}-2}{p_{i}-1} \phi\left(p_{i}^{k_{i}}\right)=\phi(m)^{2} \prod_{i=1}^{l} \frac{p_{i}-2}{p_{i}-1}$.

Results: Part 3

We begin by finding when i_{1}, i_{2}, or i_{3} is an automorphism. Since a vector where i_{2} or i_{3} extends to an automorphism is equivalent to a vector where i_{1} extends to an automorphism, we will only concern ourselves with i_{1}. Choose a generator $x \in G$ and suppose we choose a such that we have a quasiplatonic generating vector $\left(x, x^{-(a+1)}, x^{a}\right)$. Further, let us suppose that i_{1} does extend to an automorphism. That is, the map that sends
$x \rightarrow x^{-(a+1)}, x^{-(a+1)} \rightarrow x$, and $x^{a} \rightarrow x^{a}$ extends to an automorphism.

Results: Part 3

Observe that

$$
x^{a}=i_{1}\left(x^{a}\right)=\left(i_{1}(x)\right)^{a}=\left(x^{-(a+1)}\right)^{a}=x^{-a^{2}-a}
$$

which tells us that

$$
a^{2}+2 a \equiv 0 \quad \bmod m .
$$

We know that $\operatorname{gcd}(a, m)=1$ since $\left|x^{a}\right|=m$. So, m cannot divide a, which means that m must divide $a+2$ since m divides $a^{2}+2 a$. Thus, $a \equiv-2$ $\bmod m$. Thus, the vector in question is $\left(x, x, x^{-2}\right)$. Note that in this case j cannot extend to an automorphism. So, $\left|V_{G, i}\right|=3 \phi(m)$ and $\left|V_{G, i, j}\right|=0$.

Results: Part 3

Now we suppose that j does extend to an automorphism. That is, the map that sends $x \rightarrow x^{a}$, $x^{a} \rightarrow x^{-(a+1)}$, and $x^{-(a+1)} \rightarrow x$ extends to an automorphism. Observe that

$$
x^{-(a+1)}=j\left(x^{a}\right)=(j(x))^{a}=\left(x^{a}\right)^{a}=x^{a^{2}},
$$

which tells us that

$$
a^{2}+a+1 \equiv 0 \quad \bmod m
$$

Results: Part 3

Definition: We define $\tau_{2}: \mathbb{N} \rightarrow \mathbb{N}$ where $\tau_{2}(m)$ represents the number of nonzero noncongruent solutions x to $x^{2}+x+1 \equiv 0 \bmod m$.

Note that any solution to this congruence will be a value that is coprime to m, that is any such a will satisfy $\left|x^{a}\right|=m$. So, any solution to the congruence will create a valid generating vector. Thus, $\left|V_{G, j}\right|=\phi(m) \tau_{2}(m)$.

Results: Part 3

Theorem: Write m in its prime factorization: $m=\prod_{i=1}^{l} p_{i}^{k_{i}}$. The number of inequivalent Quasiplatonic generating vectors T with signature (m, m, m) is

$$
T=\frac{3+2 \tau_{2}(m)+\phi(m) \prod_{i=1}^{l} \frac{p_{i}-2}{p_{i}-1}}{6} .
$$

