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Preliminaries:
A finite groupG is said to acttopologically (in an
orientation preserving manner) on a surfaceS if there
is an injectionǫ : G →Homeo+(S) into the group of
orientation preserving homeomorphisms. We will
identify G with its image, and refer to each of its
elements as anautomorphism of the surface.
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Example

A4 acts topologically on the tetrahedron. That is,A4 is
a group of automorphisms that act on the tetrahedron.
Recall thatA4 is the even permutations on a set of
four letters. We can identify the vertices of the
tetrahedron to be these letters.
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Orbits

- This is the set of images that the automorphism
group can send a point.
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Orbits

- This is the set of images that the automorphism
group can send a point.

The Tetrahedron has 12 symmetries; - Most points on
the tetrahedron have orbits of size 12.
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Orbits

- This is the set of images that the automorphism
group can send a point.

The Tetrahedron has 12 symmetries; - Most points on
the tetrahedron have orbits of size 12.

The points with different orbit sizes:
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Orbits

- This is the set of images that the automorphism
group can send a point.

The Tetrahedron has 12 symmetries; - Most points on
the tetrahedron have orbits of size 12.

The points with different orbit sizes:

Vertices - 4

Mid-points of edges - 6

Mid-points of faces - 4
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Ramification Points
Definition: Given a surfaceX and an automorphism
groupG acting onX, if a pointx on a surfaceX lies
in an orbit that is not the largest orbit of points inX,
thenx is a ramification point.
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Ramification Points
Definition: Given a surfaceX and an automorphism
groupG acting onX, if a pointx on a surfaceX lies
in an orbit that is not the largest orbit of points inX,
thenx is a ramification point.

On the tetrahedron, the ramification points are:
- the vertices;
- the mid-points of the edges;
- the mid-points of the faces.
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Quasiplatonic Surface

Definition: If an automorphism groupG acts on a
surfaceX with three and only three orbits of
ramification points andX/G has genus 0, thenG is a
quasiplatonic group.
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Quasiplatonic Surface

Definition: If an automorphism groupG acts on a
surfaceX with three and only three orbits of
ramification points andX/G has genus 0, thenG is a
quasiplatonic group.

Defintion: Given a surfaceX, if there exists an
automorphism groupG that acts onX such thatG is a
quasiplatonic group, thenX is a quasiplatonic surface.
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Signature of a quasiplatonic sur-
face

Definition: SupposeG is a quasiplatonic group acting
on a surfaceX such thatX is a quasiplatonic surface.
Supposex1, x2, x3 ∈ X are ramification points lying
in seperate orbits. Let

ni =
|G|

|Orb(xi)|
, i = 1, 2, 3.

Then, thesignatureof (G,X) is the triple
(n1, n2, n3). We call theni theperiodsof the
signature.
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Signature of the Tetrahedron
and A4

Recall the size of the ramification orbits:
-Vertices - 4
-Mid-points of edges - 6
-Midpoints of faces - 4

Enumerating Cyclic Quasiplatonic Groups For a Given Signature – p. 8/37



Signature of the Tetrahedron
and A4

Recall the size of the ramification orbits:
-Vertices - 4
-Mid-points of edges - 6
-Midpoints of faces - 4

So, the signature ofA4 acting on this surface is:
( |A4|

6 , |A4|
4 , |A4|

4 ) = (12
6 , 12

4 , 12
4 ) = (2, 3, 3).
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General Theorem for Quasipla-
tonic Groups
Theorem: A groupG is a quasiplatonic group for a
surfaceX of genusg(X) with signature(n1, n2, n3) if
and only if:

1) ni ≥ 2;

2) there existsx, y ∈ G such that|x| = n1, |y| = n2,
|(xy)−1| = n3 andG =< x, y >;

3) andg(X) = 1 − |G| + |G|
2 (3 − 1

n1

− 1
n2

− 1
n3

).

(This formula is known as the Riemann-Hurwitz
Formula.)
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Application of General Theorem
Theorem: Recall thatA4 acting on the tetrahedron
has signature(2, 3, 3). We can now show this action is
quasiplatonic:

1) Our periods 2 and 3 are both at least 2.

2) We choose elementsx = (12)(34) andy = (123).
So,(xy)−1 = (234), and|x| = 2, |y| = 3,
|(xy)−1| = 3 andA4 =< x, y >;

3) Lastly, we see
g(X) = 1 − 12 + 12

2 (3 − 1
2 −

1
3 −

1
3) = 0.
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Generating Vectors
Defintion: Suppose(n1, n2, n3) is a signature. A
triplet of group elements(x, y, z) in a finite groupG
is called aQuasiplatonic generating vector ofG for
signature (n1, n2, n2) if z = (xy)−1, andx, y and
(xy)−1 satisfy the conditions of the previous theorem.
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Generating Vectors
Defintion: Suppose(n1, n2, n3) is a signature. A
triplet of group elements(x, y, z) in a finite groupG
is called aQuasiplatonic generating vector ofG for
signature (n1, n2, n2) if z = (xy)−1, andx, y and
(xy)−1 satisfy the conditions of the previous theorem.

Defintion: We consider two generating vectors
(x1, y1, z1) and(x2, y2, z2) for a given groupG and
signature(n1, n2, n2) to beequivalent if there exists
σ ∈ Aut(G) such that
(σ(x1), σ(y1), σ(z1)) = (x2, y2, z2), or if (x2, y2, z2) is
a reordering of the elements of(x1, y1, z1).
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Generating Vectors

For our example ofA4 acting on the tetrahedron, we
had generating vector((12)(34), (123), (234)).

An example of an equivalent generating vector is
((14)(23), (143), (243))
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Harvey’s Theorem

Theorem: Fix a signature(n1, n2, n3) and let
M = Lcm(n1, n2, n3). There is a quasiplatonic
surfaceXwith quasiplatonic cyclic groupG and
signature(n1, n2, n3) if and only if the following
conditions are met:

1) |G| = M = Lcm(n1, n2) = Lcm(n1, n3) =
Lcm(n2, n3);

2) if M is even, then exactly 2 of the signature
elementsni must be divisible by the maximum power
of 2 that divides|G|.
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Results of Harvey’s Theorem

Suppose we are considering the cyclic group of order
m. Then, Harvey’s Theorem tells us that there are
only three types of signatures possible:

• (n1, n2, n3) where each of theni are distinct,
• (n,m,m) wheren 6= m, and
• (m,m,m).

Note that the final case can occur only whenm is odd.
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Wootton’s Theorem: Part 1

Theorem: The number of inequivalent Quasiplatonic
generating vectorsT with signature(n1, n2, n3) on a
quasiplatonic surfaceX can be calculated as follows:

T =
|VG|

|Aut(G)|

whereVG denotes the set of all quasiplatonic
generating vectors ofG with the given signature.
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Results: Part 1

We will assume thatG = Cm, and that we have a
signature(n1, n2, n3), where all theni are distinct. We

knowT = |VG|
|Aut(G)| and that|Aut(G)| = φ(m). So,

we need only find|VG|. That is, we need to count all
of the valid quasiplatonic generating vectors for this
case.
Let p1, p2, ..., pl be the distinct primes that dividem.
Write m and the periods in terms of these primes:
m =

∏l
i=1 pki

i , n1 =
∏l

i=1 pri

i , n2 =
∏l

i=1 psi

i , n3 =
∏l

i=1 pti
i .
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Results: Part 1

G = C
p

k1

1

× C
p

k2

2

× · · · × C
p

kl
l

. For eachi, there exists

an elementui ∈ G such thatu =
∏l

i=1 ui andui

generatesC
p

ki
i

. We will use these generators to

construct our vector,(x, y, z). Each ofx, y andz will
be a product of powers of theui, and we will count
the number of choices we have for eachi.
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Results: Part 1

Let us first suppose that exactly one ofri, si, andti is
less thanki. There areφ(phi

i ) choices ofai such that
uai

i is an element inC
p

ki
i

of orderphi

i . For any such

choice ofai, we know thatu−(ai+1)
i has orderpki

i . Of

the three elementsui, uai

i , andu
−(ai+1)
i , let xi be one

whose order is the maximal power ofpi that divides
n1, and likewise foryi with n2 andzi with n3. The
important thing to remember is that there wereφ(phi

i )

choices forai, and thereforeφ(phi

i ) choices for the
elementsxi, yi, andzi.
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Results: Part 1

The other case to consider isri = si = ti = ki. Now
we must chooseai such that bothuai

i andu
−(ai+1)
i

have orderpki

i . So,pi cannot divideai or −(ai + 1).
There arepi−2

pi−1φ(pki

i ) such choices. Now, labelui, uai

i

andu
−(ai+1)
i asxi, yi, andzi, respectively. The

important thing to remember is that there were
pi−2
pi−1φ(pki

i ) choices forai, and thereforepi−2
pi−1φ(pki

i )

choices for the elementsxi, yi, andzi.
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Results: Part 1

Now, letx =
∏l

i=1 xi, y =
∏l

i=1 yi, andz =
∏l

i=1 zi.
(x, y, z) is a valid generating vector. The number of
choices for such vectors is:

|VG| = φ(m)

(

w
∏

i=1

pi − 2

pi − 1
φ(pki

i )

)(

l
∏

i=w+1

φ(phi

i )

)

,

since there wereφ(m) choices for our generatoru of
G, and because we also found the number of choices
for ai in each case.
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Results: Part 1

Theorem: Let p1, p2, ..., pl be the distinct primes that
dividem. Write m and the periods in terms of these
primes:m =

∏l
i=1 pki

i , n1 =
∏l

i=1 pri

i , n2 =
∏l

i=1 psi

i , n3 =
∏l

i=1 pti
i . We can reorder thepi’s and

find an integerw ≤ l so that if1 ≤ i ≤ w, thenri, si,
andti are all equal toki, and ifw < i ≤ l, then
exactly one ofri, si, andti is less thanki. In the latter
case, lethi represent this smaller value. Then,

T =

(

w
∏

i=1

pi − 2

pi − 1
φ(pki

i )

)(

l
∏

i=w+1

φ(phi

i )

)

.
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Counting Tools

Definition: Suppose(x, y, z) is a generating vector
for a Quasiplatonic groupG. Then we define the
following permutations:

• i1 : x → y, y → x, z → z

• i2 : x → x, y → z, z → y

• i3 : x → z, y → y, z → x

• j : x → y, y → z, z → x
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Wootton’s Theorem: Part 2
Theorem: The number of inequivalent Quasiplatonic
generating vectorsT with signature(n,m,m) on a
quasiplatonic surfaceX can be calculated as follows:

T =
|VG|

2|Aut(G)|
+

|VG,i|

|Aut(G)|

whereVG denotes the set of quasiplatonic generating
vectors ofG with the given signature for which the
identificationi2 does not extend to an automorphism
of G. VG,i denotes the set of quasiplatonic generating
vectors ofG with the given signature for whichi2
does extend to an automorphism ofG.
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Results: Part 2

We will assume thatG = Cm, and that we have a
signature(n,m,m), wheren < m. We know

T = |VG|
2|Aut(G)| +

|VG,i|
|Aut(G)| and that|Aut(G)| = φ(m).

So, we need only find|VG| and|VG,i|. That is, we
need to count all of the valid quasiplatonic generating
vectors for this case.
Let p1, p2, ..., pl be the distinct primes that dividem.
Write m andn in terms of these primes:
m =

∏l
i=1 pki

i , n =
∏l

i=1 phi

i .
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Results: Part 2

We know by an argument similar to our first result
that we can reorder thepi’s and find an integerw ≤ l
so that if1 ≤ i ≤ w, thenki = hi, and ifw < i ≤ l,
thenhi < ki, and that|VG| + |VG,i| =

φ(m)
(

∏w
i=1

pi−2
pi−1φ(pki

i )
)(

∏l
i=w+1 φ(phi

i )
)

. So, we

need only find|VG| or |VG,i|. We will find |VG,i|.
These are the vectors wherei2 does extend to an
automorphism ofG.
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Results: Part 2

Choose a generatorx ∈ G choosea such that we have
a quasiplatonic generating vector
(xa, x−(a+1), x)wherei2 extends to an automorphism
of G. That is, the map that sendsx → x−(a+1),
x−(a+1) → x, andxa → xa extends to an
automorphism. Observe that

xa = i2(x
a) = (i1(x))a = (x−(a+1))a = x−a2−a

which tells us that

a2 + 2a ≡ 0 mod m.
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Results: Part 2

Definition: We defineτ1 : N × N → N where
τ1(m,n) represents the number of nonzero
noncongruent solutionsa to a2 + 2a ≡ 0 mod m
wheregcd(a,m) = m

n
.

i2 extends to an automorphism if and only ifa is such
a solution. So,|VG,i| = φ(m)τ1(m,n).
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Results: Part 2

Theorem: Let p1, p2, ..., pl be the distinct primes that
dividem. Write m andn in terms of these primes:
m =

∏l
i=1 pki

i , n =
∏l

i=1 phi

i . We can reorder thepi’s
and find an integerw ≤ l so that if1 ≤ i ≤ w, then
hi = ki, and ifw < i ≤ l, thenhi < ki. Then, the
number of inequivalent Quasiplatonic generating
vectorsT with signature(n,m,m) is T =
1
2

(

τ1(m,n) +
(

∏w
i=1

pi−2
pi−1φ(pki

i )
)(

∏l
i=w+1 φ(phi

i )
))

.

Enumerating Cyclic Quasiplatonic Groups For a Given Signature – p. 28/37



Wootton’s Theorem: Part 3
Theorem: The number of inequivalent Quasiplatonic
generating vectorsT with signature(n,m,m) on a
quasiplatonic surfaceX can be calculated as follows:

T =
|VG|

6|Aut(G)|
+

|VG,i|

3 Aut(G)|
+

|VG,j|

2|Aut(G)|
+

|VG,i,j|

|Aut(G)|

where...
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Results: Part 3

We will assume thatG = Cm, and that we have a
signature(m,m,m). We know

T = |VG|
6|Aut(G)| +

|VG,i|
3 Aut(G)| +

|VG,j |
2|Aut(G)| +

|VG,i,j |
|Aut(G)| and that

|Aut(G)| = φ(m). So, we need only find|VG|,|VG,i|,
|VG,j| and|VG,i,j|.
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Results: Part 3

Let p1, p2, ..., pl be the distinct primes that dividem
and writem =

∏l
i=1 pki

i .

By an argument similar to the first case, we know that
|VG| + |VG,i| + |VG,j| + |VG,i,j| =

φ(m)
∏l

i=1
pi−2
pi−1φ(pki

i ) = φ(m)2
∏l

i=1
pi−2
pi−1 .
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Results: Part 3

We begin by finding wheni1, i2, or i3 is an
automorphism. Since a vector wherei2 or i3 extends
to an automorphism is equivalent to a vector wherei1
extends to an automorphism, we will only concern
ourselves withi1. Choose a generatorx ∈ G and
suppose we choosea such that we have a
quasiplatonic generating vector(x, x−(a+1), xa).
Further, let us suppose thati1 does extend to an
automorphism. That is, the map that sends
x → x−(a+1), x−(a+1) → x, andxa → xa extends to an
automorphism.
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Results: Part 3

Observe that

xa = i1(x
a) = (i1(x))a = (x−(a+1))a = x−a2−a

which tells us that

a2 + 2a ≡ 0 mod m.

We know thatgcd(a,m) = 1 since|xa| = m. So,m
cannot dividea, which means thatm must divide
a + 2 sincem dividesa2 + 2a. Thus,a ≡ −2
mod m. Thus, the vector in question is(x, x, x−2).
Note that in this casej cannot extend to an
automorphism. So,|VG,i| = 3φ(m) and|VG,i,j| = 0.
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Results: Part 3

Now we suppose thatj does extend to an
automorphism. That is, the map that sendsx → xa,
xa → x−(a+1), andx−(a+1) → x extends to an
automorphism. Observe that

x−(a+1) = j(xa) = (j(x))a = (xa)a = xa2

,

which tells us that

a2 + a + 1 ≡ 0 mod m.
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Results: Part 3

Definition: We defineτ2 : N → N whereτ2(m)
represents the number of nonzero noncongruent
solutionsx to x2 + x + 1 ≡ 0 mod m.

Note that any solution to this congruence will be a
value that is coprime tom, that is any sucha will
satisfy|xa| = m. So, any solution to the congruence
will create a valid generating vector. Thus,
|VG,j| = φ(m)τ2(m).
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Results: Part 3

Theorem: Write m in its prime factorization:
m =

∏l
i=1 pki

i . The number of inequivalent
Quasiplatonic generating vectorsT with signature
(m,m,m) is

T =
3 + 2τ2(m) + φ(m)

∏l
i=1

pi−2
pi−1

6
.
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